Guest Post: Reed and Bhs are inevitable collateral damage in today’s omni-channel sales and marketing world

Another guest post from Christopher Moseley, (details below)

Reed and Bhs are inevitable collateral damage in today’s omni-channel sales and marketing world

It’s not hard not to get a little bit nostalgic about the death throes of well-known British High Street brands. Woollies was the first big name in living memory to get killed off in the Great War of the Internet versus the High Street; Austin Reed and Bhs are the very latest casualties.

Philip Green’s soon to face a grilling from a Commons committee, and no doubt the sense of outrage and accusations of asset stripping will heighten the tensions and anger associated with job losses and the of dying British High Street brands. As to Austin Reed, it’s hard to see a well-heeled target figure stepping forward to face similar political brickbats: it just kind of, well, died away.

Asset stripping aside it’s hard to see how tired old brands like Bhs might have survived in a world where choice is a touch screen away. The venerable British High Street, and the myriad shops which struggle to stay solvent within the confines of her bricks and mortar structure, still has a white knight in the form of Mary Portas, but it’s clear that the writing is on the, er, shop window … it reads, ‘Closing Down’.

Twenty or so years ago if I had wanted to buy a set of headphones I would have strolled to my nearest retailers to make my purchase.  In the 2010s, close as I am to my local high street, I can simply go online. It’s the only viable decision – there’s simply a much bigger choice, and greater availability.

And with a smartphone in hand, or a laptop or tablet at my side, I’m able to quickly locate a wealth of information about my desired product before being given a list of potential suppliers – often ranked by reliability and item price.

Why would I ‘go’ bricks and mortar, when with a simple click my goods can be delivered to my house the very next day?

Why break into a bipedal sweat when one can surf?

Omni-channel selling provides consumers with numerous channels through which they can interact with and purchase from retail businesses. There’s all the attendant information about products, the means to interact with technical experts, and a giddy range of devices: smartphones, desktops, notebooks to browse on.

The 24-7 shopping experience

The obvious advantage of Internet shopping is that is that one can shop well after the High Street curfew of 5:30pm. We can all shop to heart’s content, on the couch, in the bath, or in a tent on Ben Nevis. Businesses that can’t cater for the around-the-clock punters face obliteration. Why walk?

The future’s bespoke, more interesting and built for humans

Around 16 years ago, when the first corrosive impact of the Internet was being felt in the High Street, I once tried to stage a media stunt. I proposed a debate between several well-known exponents of retail, pitted against some toughies (clients actually) who worked in e-commerce. If memory serves I’d wanted to co-opt a Selfridges or Harrods window to conduct the debate. It would have been fab I think.

It never happened – I guess the issue wasn’t quite sufficiently in the public eye back in ’00.

It’s a different story today. We’re right in the middle of a bloodbath and it’s hard to see a future for the great British High Street, other than, perhaps, this is an opportunity to return to something rather old-fashioned, something much more traditional.

If there is a future for the High Street, it won’t be a continuation of today’s confection of identikit chain stores, but rather much akin to the boutique butcher, baker and candlestick maker of yesteryear. Throw in some vibrant street markets, some residential housing, and one has something like the world of the Edwardian era.

So, the mantra of the High Street in the 2020s might just be, ‘Let’s party like it’s 1899 …’

Chris Moseley

Head of Public Relations, Merchant Marketing Group

Tel +44 238022 5478

Future sex, gender and design

This is a presentation I made for the Eindhoven Design Academy. It is mostly self-explanatory

Slide1

Slide2Slide3 Slide4 Slide5 Slide6 Slide7 Slide8 Slide9 Slide10 Slide11 Slide12 Slide13 Slide14 Slide15 Slide16 Slide17 Slide18 Slide19 Slide20

 

The future of vacuum cleaners

Dyson seems pretty good in vacuum cleaners and may well have tried this and found it doesn’t work, but then again, sometimes people in an industry can’t see the woods for the trees so who knows, there may be something in this:

Our new pet cat Jess, loves to pick up soft balls with a claw and throw them, and catch them again. Retractable claws are very effective.IMG_6689- Jess (2)

Jess the cat

At a smaller scale, velcro uses tiny little hooks to stick together, copying burs from nature.

Suppose you make a tiny little ball that has even tinier little retractable spines or even better, hooks. And suppose you make them by the trillion and make a powder that your vacuum cleaner attachment first sprinkles onto a carpet, then agitates furiously and quickly, and thus gets the hooks to stick to dirt, pull it off the surface and retract (so that the balls don’t stick to the carpet) and then you suck the whole lot into the machine. Since the balls have a certain defined specification, they are easy to separate from the dirt and dust and reuse again straight away. So you get superior cleaning. Some of the balls would be lost each time, and some would get sucked up next time, but overall you’d need to periodically top up the reservoir.

The current approach is to beat the hell out of the carpet fibers with a spinning brush and that works fine, but I think adding the active powder might be better because it gets right in among the dirt and drags it kicking and screaming off the fibers.

So, ball design. Firstly, it doesn’t need to be ball shaped at all, and secondly it doesn’t need spines really, just to be able to rapidly change its shape so it gets some sort of temporary traction on a dirt particle to knock it off. What we need here is any structure that expands and contracts or dramatically changes shape when a force is applied, ideally resonantly. Two or three particles connected by a tether would move back and forwards under an oscillating electrostatic, electrical or magnetic field or even an acoustic wave. There are billions of ways of doing that and some would be cheaper than others to manufacture in large quantity. Chemists are brilliant at designing custom molecules with particular shapes, and biology has done that with zillions of enzymes too. Our balls would be pretty small but more micro-tech than nano-tech or molecular tech.

The vacuum cleaner attachment would thus spray this stuff onto the carpet and start resonating it with an EM field or sound waves. The little particles would wildly thrash around doing their micro-cleaning, yanking dirt free, and then they would be sucked back into the cleaner to be used again. The cleaner head doesn’t even need to have a spinning brush, the only moving parts would be the powder, though having an agitating brush might help get them deeper into the fabric I guess.

 

Smart packaging: Acoustic sterilisation

I should have written this on the ides of March, but hey ho. I was discussing packaging this morning for an IoT event.

Imagine a bacterium sitting on a package on a supermarket shelf is called Julius Caesar. Now imagine Brutus coming along with a particularly sharp knife and stabbing him hundreds of times. That’s my idea, just scaled down a bit.

selfsterilising

This started as a slight adaptation of an idea I developed for Dunlop a few years ago to make variable grip tires. (Still waiting for Dunlop to make those, so maybe some other tire company might pick up the idea).

The idea is very simple, to use tiny triangular structures embedded in the surface, and then pull the base of the triangle together, thereby pushing up the tip. My tire idea used electro-active polymers to do the pulling, and sharp carbon composites to do the grip bit, or in this antibacterial case, the sharp knife. Probably for packaging I’d use carbon nanotubes or similar as the sides with which to stab the bacteria, but engineers frequently come up with different nanostructure shapes so I’m pretty agnostic about material and shape. If it ruptures a bacterium, it will be good.

An easier to use alternative for widespread use in packaging would be to ditch the electro-active polymer and associated electronics, and instead to use a tuned acoustic wave to move the blades in and out of the surface. All that is needed to activate them is to put out that frequency of sound through a speaker system in the supermarket or factory. The sound needed would likely be ultrasonic, so it doesn’t irritate all the shoppers, and in any case, nano-structures will generally be associated with high frequencies.

So the packaging would include tiny structures that act as the dagger attached to a particular acoustic mass acting as Brutus, that would move when the appropriate resonant frequency is broadcast.

This technique doesn’t need any nasty chemicals, though it does need the nanostructures and sound and if they aren’t designed right, the nanostructures could be just as harmful. Anyway, that’s the basic idea.

Image

Self-sterilizing surfaces & packaging

selfsterilising

Image

Future of cleaning: UV hybrid drone/ambient with presence detection

UV cleaning

The future of mind control headbands

Have you ever wanted to control millions of other people as your own personal slaves or army? How about somehow persuading lots of people to wear mind control headbands, that you control? Once they are wearing them, you can use them as your slaves, army or whatever. And you could put them into offline mode in between so they don’t cause trouble.

Amazingly, this might be feasible. It just requires a little marketing to fool them into accepting a device with extra capabilities that serve the seller rather than the buyer. Lots of big companies do that bit all the time. They get you to pay handsomely for something such as a smartphone and then they use it to monitor your preferences and behavior and then sell the data to advertisers to earn even more. So we just need a similar means of getting you to buy and wear a nice headband that can then be used to control your mind, using a confusingly worded clause hidden on page 325 of the small print.

I did some googling about TMS- trans-cranial magnetic stimulation, which can produce some interesting effects in the brain by using magnetic coils to generate strong magnetic fields to create electrical currents in specific parts of your brain without needing to insert probes. Claimed effects vary from reducing inhibitions, pain control, activating muscles, assisting learning, but that is just today, it will be far easier to get the right field shapes and strengths in the future, so the range of effects will increase dramatically. While doing so, I also discovered numerous pages about producing religious experiences via magnetic fields too. I also recalled an earlier blog I wrote a couple of year ago about switching people off, which relied on applying high frequency stimulation to the claustrum region. https://timeguide.wordpress.com/2014/07/05/switching-people-off/

The source I cited for that is still online:  http://www.newscientist.com/article/mg22329762.700-consciousness-onoff-switch-discovered-deep-in-brain.html.

So… suppose you make a nice headband that helps people get in touch with their spiritual side. The time is certainly right. Millennials apparently believe in the afterlife far more than older generations, but they don’t believe in gods. They are begging for nice vague spiritual experiences that fit nicely into their safe spaces mentality, that are disconnected from anything specific that might offend someone or appropriate someone’s culture, that bring universal peace and love feelings without the difficult bits of having to actually believe in something or follow some sort of behavioral code. This headband will help them feel at one with the universe, and with other people, to be effortlessly part of a universal human collective, to share the feeling of belonging and truth. You know as well as I do that anyone could get millions of millennials or lefties to wear such a thing. The headband needs some magnetic coils and field shaping/steering technology. Today TMS uses old tech such as metal wires, tomorrow they will use graphene to get far more current and much better fields, and they will use nice IoT biotech feedback loops to monitor thoughts emotions and feelings to create just the right sorts of sensations. A 2030 headband will be able to create high strength fields in almost any part of the brain, creating the means for stimulation, emotional generation, accentuation or attenuation, muscle control, memory recall and a wide variety of other capabilities. So zillions of people will want one and happily wear it.  All the joys of spirituality without the terrorism or awkward dogma. It will probably work well with a range of legal or semi-legal smart drugs to make experiences even more rich. There might be a range of apps that work with them too, and you might have a sideline in a company supplying some of them.

And thanks to clause P325e paragraph 2, the headband will also be able to switch people off. And while they are switched off, unconscious, it will be able to use them as robots, walking them around and making them do stuff. When they wake up, they won’t remember anything about it so they won’t mind. If they have done nothing wrong, they have nothing to fear, and they are nor responsible for what someone else does using their body.

You could rent out some of your unconscious people as living statues or art-works or mannequins or ornaments. You could make shows with them, synchronised dances. Or demonstrations or marches, or maybe you could invade somewhere. Or get them all to turn up and vote for you at the election.  Or any of 1000 mass mind control dystopian acts. Or just get them to bow down and worship you. After all, you’re worth it, right? Or maybe you could get them doing nice things, your choice.

 

Pubic fashion and the Internet-of-genitalia

Not for the easily offended, or my parents, who do read my blog sometimes, but hopefully not this one. This is another extract from my forthcoming book on future fashion. No sector is immune to futurology.

The pubic area may not be talked about much in fashion articles, but it is suited to fashion as any other. Pubic hairstyles (including bald) vary from person to person and over time, but they certainly do get fashion consideration. Vajazzling, decorating the female pubic area with stick-on glitter, has also had its limelight as a fashion thing, Beautifying and styling the pubic area is here to stay for as long as casual sex remains common. If an area gets attention, people will want to make it look sexier or more interesting or enticing, so it is just another platform for personal expression, as much as choice of underwear.

Updating stick-on glitter to LEDs or lasers could make a whole light show down there. This could of course tap into data from sensors that pick up on sexual activity and arousal level. That would allow a direct feedback route on performance. Whoever is pleasuring her could see the results echoed in a visual response in local LEDs or flashing glitter or laser beams. That would be fun, but it could use audio too. Since the pubic region is fairly flat and firm, it also presents a potential surface for flat speakers to generate sound effects or music during sex, again linked to arousal sensor feedback. Of course, speakers are another form of vibration device too so they might also take an active role in stimulation.

Hair management already uses lasers to kill hair follicles, but some women regret having their pubic areas completely depilated, and are now having hair implanted back. As hair styles come and go, what is needed is a better trimming and shaving system. I am surprised the shaver industry has not already picked up on this possibility, (if it has I am not aware of it) but a design could be rendered much better if the shaver can access a local positioning system. If a person sticks on a few tiny transmitters, reflectors or transponders in specific places near the trimming zone, the shaver head would know its exact position and orientation and would be able to trim that specific area precisely as dictated by the chosen pattern. Automated precision hair styles would be feasible without taking too much time. Another cheap and easy way of doing this would be to spray a marker pattern through a stencil and have the shaver trim the areas marked.

Naturally, such shaver technology would also be useful for other areas such as the head or chest (for men anyway, I don’t expect female chest hair to be a significant fashion trend any time soon), or to replace waxing anywhere on the body with precision patterns and trims.

Many people are unhappy with their actual genitalia. Re-scuplting, trimming, tightening, or changing size is becoming common. Gender re-assignment surgery is also growing, but gender-change and gender-play fashion needs a whole section for itself, and I’ve written about it before anyway(my most popular post ever in fact) : https://timeguide.wordpress.com/2014/02/14/the-future-of-gender-2/

Not in the pubic area, but somewhat related  to this topic nonetheless, here is a quick consideration of smart breast implants:

[Smart breast implants

Smart breast implants are one of my best inventions – the only one for which I have ever received a prize. The idea was that if a woman is determined to expand her breasts by putting stuff into them, why not put electronics in? In fact, electronics can be made using silicone, one of the main breast implant materials. It won’t work as fast as silicon-based IT but it will do fine for things like MP3 players (MP4 now of course). A range of smartphone-style functions could be added as well as music playing. For example, navigation could link location and maps to vibrating nipples to indicate left or right. I suggested using nipples as control knobs for my MP3 implants, and that is perfectly feasible. Detectors in the implant could easily detect torsion and interpret the tweaks. Implants would be able to monitor some biological functions more precisely than wristbands. Heartbeat and breathing could be audio recorded far better for example.

Shape changing breast implants

I often cite polymer gel muscles in fashion, because they are so useful. Contracting when a voltage is applied across them, but made of electro-active polymer so they feel organic, they are ideal for many purposes in and on the body for extra strength of for changing shapes or orientation. Breast implants could contain strands of such gel, arranged so that the shape of the implant can be altered. They could be adjusted to change breast shape, improve lift or cleavage, and relaxed when no-one is looking.

Pectoral implants already give some men the appearance of being more muscular and fit. Adding actual strength using polymer gel muscles rather than simple padding would be a lot better.

Bras

Shape change materials could also be used in bras of course, allowing control to be varied by an app. A single bra could work for general and sports use for example. Similarly, hydraulic bras could give extra lift or control by inflating tubes with compressed air. Staying with inflation, of course the bra as a whole could be inflated to give the illusion of larger size.

Bras can incorporate energy harvesting for use while running. A suitable material could be plastic capacitors, which make electricity directly as they flex.

Nipple-tapes could be coupled to vibrators for a slightly more immersive sexual experience, and remote controlled for more kinky play.]

Now, back to the pubic area.

Rather along the same lines as smart breast implants, if someone is going to the lengths of having genital surgery and particularly if implants are involved, then electronic implants could be a useful consideration. Some devices use electrical stimulation, applying particular patterns of voltages and currents to create, magnify and sustain arousal. Devices could be implanted to do exactly this. They could be access restricted to the wearer, controlled by a dominant or even networked for remote control, by any chosen individual or group. MEMS or sensors could also be implanted to create vibration or to measure arousal.

Sensors can easily detect moisture levels, skin resistance, blood flow, blood oxygen levels, heart rate, breathing and so on. These together can indicate a great deal about arousal state and that can be fed back into stimulation system to maximise pleasure. Stimulation devices could provide direct stimulation or work along with external devices such as vibrators, controlling their behavior according to location and sensor feedback. Vibrators shouldn’t need control knobs that distract their users, but should automatically adjust their behavior according to the region they are stimulating and the user’s  arousal profile, changing stimulation throughout the session according to programs and recorded routines stored in the cloud. Shared toys could use fingerprint recognition or implanted RFID chips, but I think that would usually be considered to be going too far. 

An important fashion consideration is that visual appearance can mostly be decoupled from function. Electronics can be shrunk to vanishingly small size and fit in the tiniest of sensors or actuators. Genital and pubic electronics can therefore be visually appealing at the same time as providing a full suite of functionality.

Shape change materials such as electro-active polymers can also be implanted. These could also be used to generate vibration by varying applied voltage patterns appropriately. Shape changing implants could be used to vary tightness during penetration, or to make features more appealing during foreplay.

As with the pubic area as a whole, genitals could also incorporate visual feedback using color change, LEDS or even music or other sound effects according to arousal state. Sound is better generated by pubic speakers though as surfaces are more cooperative to engineering.

Clearly, with a number of feedback and bio-sign monitoring sensors, MEMS, speaker systems, illumination, decoration and visual effects systems, the whole pubic and genital region is a potentially large electronics ecosystem, and we will need a whole branch of IoT technology, which could be termed ‘Internet of genitalia’.

Future air travel

Now and then I get asked about future air travel, sometimes about planes, sometimes about the travel and tourism industry, sometimes climate change or luxury. There is already lots in the media about the future of the industry, such as NASA’s supersonic aircraft, e.g. https://t.co/PWpd2yVN0y or the latest business class space design concepts to cram in even more luxury, e.g. http://www.airlinereporter.com/2016/03/business-class-reimagined-etihad-airways-a380-business-studio-review/ so I won’t waste time repeating stuff you can find on Google. Here are some things I haven’t seen yet instead:

Aircraft skin design – video panels

Aircraft skins are generally painted in carrier colors and logos, but a new development in luxury yachts might hint at aircraft skins that behave as video screens instead. The designs in

http://www.dailymail.co.uk/travel/travel_news/article-3475039/Moonstone-superyacht-LED-triangles-light-display.html

are meant to mimic reflections of the sea, since it is a yacht skin, but obviously higher resolution polymer displays on an aircraft could display anything at all. It is surprising give aircraft prices that this hasn’t already been done, at least for large panels. One possible reason is that the outer skin heats up a lot during flight. That might bar some types of panel being used, but some LEDs can function perfectly well at the sort of temperatures expected for civil aircraft.

Integration with self-driving cars – terminal-free flying

A decade or more ago, I suggested integrating self driving cars systems into rail, so that a long chain of self driving cars could form a train. Obviously Euro-tunnel already has actual trains carry cars, but what I meant was that the cars can tether to each other electronically and drive themselves, behaving as a train as a half way evolution point to fully replacing trains later with self driving pod systems. As each car reaches its local station, it would peel off and carry on the roads to the final destination. The other pods would close together to fill the gap, or expand gaps to allow other pods to join from that station. Previous blogs have detailed how such systems can be powered for city or countrywide use.

Stage 1

Such end-to-end self driving could work all the way to the aircraft too. To avoid crime and terrorism abuses, self-driving cars owned by large fleet management companies – which will be almost all of them in due course – will have to impose security checks on passengers. Think about it. If that were not so, any terrorist would be able to order a car with an app on an anonymous phone, fill it full of explosives, tell it where to go, and then watch as it does the suicide bombing run all by itself. Or a drug gang could use them for deliveries. If security is already imposed with proper identity checks, then it would be easy to arrange a safe area in the airport for a simple security check for explosives, guns etc, before the car resumes its trip all the way to an aircraft departure gate. System restrictions could prevent passengers leaving the car during the airport part of the journey except at authorized locations. The rest of the terminal would be superfluous.

Stage 2

Then it starts to get interesting. My guess is that the optimal design for these self-driving pods would be uniform sized cuboids. Then, congestion and air resistance can be minimized and passenger comfort optimized. It would then be possible to link lots of these pods together with their passengers and luggage still in them, and drive the whole lot into a large aircraft. They could be stacked in layers of course too (my own design of pods doesn’t even use wheels) to maximize cabin use. Aisles could be made to allow passengers out to visit loos or exercise.

Many people of my age will think of Thunderbird 2 at this point. And why not? Not such a bad idea. A huge box acting as a departure gate for dozens of small pods, ready for the aircraft to land, drop off its existing pod, refuel, pick up the new box of pods, and take off again. Even the refuel could be box-implemented, part of the box structure or a pod.

Stage 3

Naturally, airlines might decide that they know best how to provide best comfort to their passengers. So they might design their own fleets of special pods to pick up passengers from their homes and bring them all the way onto the aircraft, then all the way to final destination at the other end. That gives them a huge opportunity for adding luxury and branding or other market differentiation. Their fleets would mix on the roads with fleets from other companies.

Stage 4

However, it is hard to think of any other sector that is as adept by necessity at making the very most of the smallest spaces as airlines. Having started to use these advantages for self driving pods for their own air passengers, many of those passengers would be very happy to also buy the use of those same pods even when they are not flying anywhere, others would learn too, and very soon airlines could become a major fleet manager company for self-driving cars.

Balloon trips and cruises

Large balloons and airships are coming back into business. e.g. http://news.sky.com/story/1654409/worlds-largest-aircraft-set-for-uk-test-flight

Solid balloons will be likely too. I suggested using carbon foam in my sci-fi book Space Anchor, and my superheroes travel around at high speed in their huge carbon balloon, the Carballoon, rescuing people from burning buildings or other disasters, or dumping foam to capture escaping criminals. Since then, Google have also been playing with making lighter than air foams and presumably they will use them for Project Loon.

Lighter than air cities have been explored in the computer game Bioshock Infinite, floating islands in the films Avatar and Buck Rogers. There is certainly no shortage of imagination when it comes to making fun destinations floating in the air. So I think that once the materials become cheap enough, we will start to see this balloon industry really evolve into a major tourism sector where people spend days or weeks in the air. Even conventional balloon experiences such as safaris would be better if the burners and their noise scaring the animals are not needed. A solid balloon could manage fine with just a quiet fan.

Whatever the type of floating destination, or duration of short trip or cruise, of course you need to get to them, so that presents an obvious opportunity for the airline industry, but designing them, providing services, holiday packages, bookings and logistics are also territories where the airline industry might be in pole position, especially since space might still be at a premium.

Air fuel

Although there have already been various demonstrations of hydrogen planes and solar powered planes, I really do not think these are likely to become mainstream. One of the main objections to using conventional fuel is the CO2 emissions, but my readers will know I don’t believe we face a short term threat from CO2-induced climate change and in the mid term, ground use of fossil fuels will gradually decline or move towards shale gas, which produces far less CO2. With all the CO2 savings from ground use decline, there will be far less pressure on airlines to also reduce. Since it is too hard to economically deliver suitable energy density for aircraft use, it will be recognized as a special case that the overall CO2 budgets can easily sustain. The future airline industry will use air fuel not unlike today’s. Let’s consider the alternatives.

Solar is fine for the gossamer-light high altitude aircraft for surveillance of communications, but little use for passenger flight. Covering a plane upper with panels will simply not yield enough power. Large batteries could store enough energy for very short flights, but again not much use since planes can’t compete in short trips. Energy density isn’t good enough. Fuel cells are still the technology of the future and are unlikely to be suited to planes. It is easier to simply use the fuel direct to create thrust. Another red herring is hydrogen. Yes it can be done, but there is little advantage and lots of disadvantages. The output is water vapor, which sounds safe, but is actually a stronger greenhouse effect than CO2 and since aircraft fly high, it will stay in the atmosphere doing its warming far longer (for trans-polar flights it may even become stratospheric water vapor). So hydrogen is no panacea.

So, no change here then.

Threats

There have already been many instances of near collisions with drones. Many drones are very small, but some can carry significant payloads. If a drone carries a lump of solid metal, or an explosive device, it could easily do enough harm to a fast-flying aircraft to cause a crash. That makes drones a strong terrorist threat to aircraft. Even without the intent to harm, any village idiot could fly a drone near to a plane to get pictures and still cause problems.

Another threat that is becoming serious is lasers. Shone from the ground, a high powered hand-held laser could blind a pilot.

http://www.wickedlasers.com/arctic shows the sort of thing you can already buy. $400 buys you 3.5W of blue light. Really cool stuff in the right hands, and the sort of gadget I’d love to own if I could trust myself to be responsible with it, (I did look straight into a laser beam at university, as you do when you’re a student) but not the sort of thing you want used deliberately against pilots.

These two threats are already very apparent, but put them together, and you have a modest drone bought anonymously fitted with a high powered laser (I don’t know whether identity checks are needed for the laser purchase, but I suspect plenty enough are already in circulation). A simple camera linked to a basic pattern recognition system would easily allow the drone to move to an optimal location and then target the laser into the aircraft cockpit and likely into the pilots’ eyes. This is not something that should be possible to build without lots of strict identity checks, but especially for the drones bit, the law is years behind where it ought to be. Lasers of this power also need to be classed as lethal weapons.

New business models

The latest startup fashions suggest someone will soon build a crowd-flying company. A bunch of people in one area wanting to fly to another zone could link electronically via such a company app, and hire a plane/self-driving pods/departure gate/pilot/crew and fly with very little inter-mediation. The main barrier is the strong regulation in the airline industry which is there for all sorts of good reasons, but that is not an impenetrable barrier, just a large one.

 

 

 

 

 

 

The future of fashion: hair waves

I don’t do hair. I shave my head to 3mm every month or so, and never let it grow long., but I watch telly and observe that very many women use hair extensions and wigs, and I spot a high voltage technology opportunity.

Remember the Van der Graff generator in your school physics lab? It makes a high voltage than makes your hair stand up. When you finally touch something, the tiny charge involved dissipates and gives you a tiny shock.

So, suppose you are a wig manufacturer, making a wig with fine filaments, or hair I guess. You add a base layer of circuitry, ideally separated from your scalp by an insulating layer. You design the circuits so that you can apply specific voltages individually to any region of the hair, and you design a nice algorithm to move those voltages around in patterns, so that patches of hair stand up, fall down, and overall the effect is dynamic patterns such as waves all over your head. Hair will be mobile.

Total charge doesn’t need to change much, mainly just be moved around, so battery drain would be OK, and the power supply could be hidden in a collar or shoulder pad.

Hair patterns could even adopt fashion language, used for secret tribal signalling, and internet of hair will be needed. It is also capable of misuse and another potential signalling path to guard against in casinos.

It would also be trivially easy to monitor your emotional state, or even thought recognition, and have you hair respond and illustrate your emotions. So when you think “shock, horror”, you hair would actually stand on end:)

Well, you get the idea. Fun! And you read it here first.