Category Archives: design

Self-driving bicycles

I just saw a video of a Google self-driving bike on Linked-In. It is a 2017 April Fool prank, but that just means it is fake in this instance, it doesn’t mean it couldn’t be done in real life. It is fun to watch anyway.

https://www.psfk.com/2017/04/google-prank-pushes-for-self-driving-bicycles-in-amsterdam.html

In 2005 I invented a solution for pulling bikes along on linear induction motor bile lanes, pulling a metal plate attached (via a hinged rod to prevent accidents) to the front forks.

The original idea was simply that the bike would be pulled along, but it would still need a rider to balance it. However, with a fairly small modification, it could self balance. All it needs is to use plates on both sides, so that the magnetic force can be varied to pull one side more than the other. If the force is instantly variable, that could be used in a simple control system both to keep the bike vertical when going straight and to steer it round bends as required, as illustrated on the right of the diagram. Therefore the bike could be self-driving.

Self-driving bikes would be good for lazy riders who don’t even want the effort of steering, but their auto-routing capability would also help any rider who simply wants navigation service, and presumably some riders with disabilities that make balancing difficult, and of course the propulsion is potentially welcome for any cyclist who doesn’t want to arrive sweaty or who is tiring of a long hill. Best of all, the bikes could find their own way to a bike park when not needed, balancing the numbers of available bikes according to local demand at any time.

 

Quantum rack and pinion drive for interstellar travel

This idea from a few weeks back is actually a re-hash of ones that are already known, but that seems the norm for space stuff anyway, and it gives alternative modus operandi for one that NASA is playing with at the moment, so I’ll write it anyway. My brain has gotten rather fixated on space stuff of late, I blame Nick Colosimo who helped me develop the Pythagoras Sling. It’s still most definitely futurology so it belongs on my blog. You won’t see it in operation for a while.

A few railways use a rack and pinion mechanism to climb steep slopes. Usually they are trains that go up a mountainside, where presumably friction of a steel wheel on a steel rail isn’t enough to prevent slipping. Gears give much better traction. It seems to me that we could do that in space too. Imagine if such a train carries the track, lays it out in front of it, and then travels along it while getting the next piece ready. That’s the idea here too, except that the track is quantized space and the gear engaging on it is another basic physics effect chosen to give a minimum energy state when aligned with the appropriate quantum states on the track. It doesn’t really matter what kind of interaction is used as long as it is quantized, and most physics fields and forces are.

Fortunately, since most future physics will be discovered and consequential engineering implemented by AI, and even worse, much will only be understood by AI, AI will do most of the design here and I as a futurist can duck most of the big questions like “how will you actually do it then?” and just let the future computers sort it out. We have plenty of time, we’re not going anywhere far away any time soon.

An electric motor in your washing machine typically has a lot of copper coils that produce a strong magnetic field when electricity is fed through them, and those fields try to force the rotor into a position that is closest to another adjacent set of magnets in the casing. This is a minimum energy state, kind of like a ball rolling into the bottom of a valley. Before it gets a chance to settle there, the electric current is fed  into the next section of coil so the magnetic field changes and the rotor is no longer comfy and instead wants to move to the next orientation. It never gets a chance to settle since the magnet it wants to cosy up with always changes its mind just in time for the next one to look sexy.

Empty space like you find between stars has very little matter in it, but it will still have waves travelling through it, such as light, radio waves, or x-rays, and it will still be exposed to gravitational and electromagnetic forces from all directions. Some scientists also talk of dark energy, a modern equivalent of magic as far as I can tell, or at best the ether. I don’t think scientists in 2050 will still talk of dark energy except as an historic scientific relic. The many fields at a point of space are quantized, that is, they can only have certain values. They are in one state or the next one but they can’t be in between. All we need for our quantum rack and pinion to work is a means to impose a field onto the nearby space so that our quantum gear can interact with it just like our rotor in its electrical casing.

The most obvious way to do that is to use a strong electromagnetic field. Why? Well, we know how to do that, we use electrics, electronics and radio and lasers and such all the time. The other fields we know of are out of our reach and likely to remain so for decades or centuries, i.e. strong and weak forces and gravity. We know about them, and can make good use of them but we can’t yet engineer  with them. We can’t even do anti-gravity yet. AI might fix that, but not yet.

If we generate a strong oscillating EM field in front of our space ship, it would impose a convenient quantum structure on nearby space. Another EM field slightly out of alignment should create a force pulling them into alignment just like it does for our washing machine motor. That will be harder than it sounds due to EM fields moving at light speed, relativity and all that stuff. It would need the right pulse design and phasing, and accurate synchronization of phase differences too. We have many devices that can generate high frequency EM waves, such as lasers and microwaves, and microwaves particularly interact well with metals, generating eddy currents that produce large magnetic forces. Therefore, clever design should be able to make a motor that generates microwaves as the rack and the metal shell of the microwave containment should then be able to act as the pinion.

Or engineers could do it accidentally (and that happens more often than you’d like to believe). You’ve probably already heard of the EM drive that has NASA all excited.

https://en.wikipedia.org/wiki/RF_resonant_cavity_thruster

It produces microwaves that bounce around in a funnel-shaped cavity and experiments do seem to indicate that it produces measurable thrust. NASA thinks it works by asymmetric forces caused by the shape of their motor. I beg to differ. The explanation is important because you need to know how something works if you want to get the most from it.

I think their EM drive works as a quantum rack and pinion device as I’ve described. I think the microwaves impose the quantum structure and phase differences caused by the shape accidentally interact and create a very inefficient thruster which would be a hell of a lot better if they phase their fields correctly. When NASA realizes that, and starts designing it with that theoretical base then they’ll be able to adjust the beam frequencies and phases and the shape of the cavity to optimize the result, and they’ll get far greater force.

If you don’t like my theory, another one has since come to light that is also along similar lines, Pilot Wave theory:

https://www.sciencealert.com/physicists-have-a-weird-new-idea-about-how-the-impossible-em-drive-could-produce-thrust

It may well all be the same idea, just explained from different angles and experiences. If it works, and if we can make it better, then we may well have a mechanism that can realistically take us to the stars. That is something we should all hope for.

Instant buildings: Kinetic architecture

Revisiting an idea I raised in a blog in July last year. Even I think it was badly written so it’s worth a second shot.

Construction techniques are diverse and will get diverser. Just as we’re getting used to seeing robotic bricklaying and 3D printed walls, another technique is coming over the horizon that will build so fast I call it kinetic architecture. The structure will be built so quickly it can build a bridge from one side just by building upwards at an angle, and the structure will span the gap and meet the ground at the other side before gravity has a chance to collapse it.

The key to such architecture is electromagnetic propulsion, the same as on the Japanese bullet trains or the Hyperloop, using magnetic forces caused by electric currents to propel the next piece along the existing structure to the front end where it acts as part of the path for the next. Adding pieces quickly enough leads to structures that can follow elegant paths, as if the structure is a permanent trace of the path an object would have followed if it were catapulted into the air and falling due to gravity. It could be used for buildings, bridges, or simply art.

It will become possible thanks to new materials such as graphene and other carbon composites using nanotubes. Graphene combines extreme strength, hence lightness for a particular strength requirement, with extreme conductivity, allowing it to carry very high electric currents, and therefore able to generate high magnetic forces. It is a perfect material for kinetic architecture. Pieces would have graphene electromagnet circuitry printed on their surface. Suitable circuit design would mean that every extra piece falling into place becomes an extension to the magnetic railway transporting the next piece. Just as railroads may be laid out just in front of the train using pieces carried by the train, so pieces shot into the air provide a self-building path for other pieces to follow. A building skeleton could be erected in seconds. I mentioned in my original blog (about carbethium) that this could be used to create the sort of light bridges we see in Halo. A kinetic architecture skeleton would be shot across the divide and the filler pieces in between quickly transported into place along the skeleton and assembled.

See https://timeguide.wordpress.com/2016/07/25/carbethium-a-better-than-scifi-material/. The electronic circuitry potential for graphene also allows for generating plasma or simply powering LEDs to give a nice glow just like the light bridges too.

Apart from clever circuit design, kinetic architecture also requires pieces that can interlock. The kinetic energy of the new piece arriving at the front edge would ideally be sufficient to rotate it into place, interlocking with previous front edge. 3d interlocking is tricky but additional circuitry can provide additional magnetic forces to rotate and translate pieces if kinetic energy alone isn’t enough. The key is that once interlocked, the top surface has to form a smooth continuous line with the previous one, so that pieces can move along smoothly. Hooks can catch an upcoming piece to make it rotate, with the hooks merging nicely with part of the new piece as it falls into place, making those hooks part of a now smooth surface and a new hook at the new front end. You’ll have to imagine it yourself, I can’t draw it. Obviously, pieces would need precision engineering because they’d need to fit precisely to give the required strength and fit.

Ideally, with sufficiently well-designed pieces, it should be possible to dismantle the structure by reversing the build process, unlocking each end piece in turn and transporting it back to base along the structure until no structure remains.

I can imagine such techniques being used at first for artistic creations, sculptures using beautiful parabolic arcs. But they could also be used for rapid assembly for emergency buildings, instant evacuation routes for tall buildings, or to make temporary bridges after an earthquake destroyed a permanent one. When a replacement has been made, the temporary one could be rolled back up and used elsewhere. Maybe it could become routine for making temporary structures that are needed quickly such as for pop concerts and festivals. One day it could become an everyday building technique. 

Mega-buildings could become cultural bubbles

My regular readers, both of them in fact, will know I am often concerned about the dangerous growth of social media bubbles. By mid-century, thanks to upcoming materials, some cities will have a few buildings over 1km tall, possibly 10km (and a spaceport or two up to 30km high). These would be major buildings, and could create a similar problem.

A 1km building could have 200 floors, and with 100m square floors, 200 hectares of space.  Assuming half is residential space and the other half is shops, offices or services, that equates to 20,000 luxury apartments (90 sq m each) or 40,000 basic flats. That means each such building could be equivalent to a small town, with maybe 50,000 inhabitants. A 10km high mega-building, with a larger 250m side, would have 60 times more space, housing up to 300,000 people and all they need day-to-day, essentially a city.

Construction could be interesting. My thoughts are that a 10km building could be extruded from the ground using high pressure 3D printing, rather than assembled with cranes. Each floor could be fully fitted out while it is still near ground level, its apartments sold and populated, even as the building grows upward. That keeps construction costs and cash flow manageable.

My concern is that although we will have the technology to build such buildings in the 2040s, I’m not aware of much discussion about how cultures would evolve in such places, at least not outside of sci-fi (like Judge Dredd or Blade Runner). I rather hope we wouldn’t just build them first and try to solve social problems later. We really ought to have some sort of plans to make them work.

In a 100m side building, entire floors or groups of floors would likely be allocated to particular functions – residential, shopping, restaurants, businesses etc. Grouping functions sensibly reduces the total travel needed. In larger buildings, it is easier to have local shops mixed with apartments for everyday essentials, with larger malls elsewhere.

People could live almost entirely in the building, rarely needing to leave, and many might well do just that, essentially becoming institutionalized. I think these buildings will feel very different from small towns. In small towns, people still travel a lot to other places, and a feeling of geographic isolation doesn’t emerge. In a huge tower block of similar population and facilities, I don’t think people would leave as often, and many will stay inside. All they need is close by and might soon feel safe and familiar, while the external world might seem more distant, scarier. Institutionalization might not take long, a month or two of becoming used to the convenience of staying nearby while watching news of horrors going on elsewhere. Once people stop the habit of leaving the building, it could become easier to find reasons not to leave it in future.

Power structures would soon evolve – local politics would happen, criminal gangs would emerge, people would soon learn of good and bad zones. It’s possible that people might become tribal, their building and their tribe competing for external resources and funding with tribes in other mega-buildings, and their might be conflict. Knowing they are physically detached, the same bravery to attack total strangers just because they hold different views might emerge that we see on social media today. There might be cyber-wars, drone wars, IoT wars between buildings.

I’m not claiming to be a social anthropologist. I have no real idea how these buildings will work and perhaps my fears are unjustified. But even I can see some potential problems just based on what we see today, magnified for the same reasons problems get magnified on social media. Feelings of safety and anonymity can lead to some very nasty tribal behaviors. Managing diversity of opinion among people moving in would be a significant challenge, maintaining it might be near impossible. With the sort of rapid polarization we’ve already seen today thanks to social media bubbles, physically contained communities would surely see those same forces magnified everyday.

Building a 10km mega-building will become feasible in the 2040s, and increased urban populations will make them an attractive option for planners. Managing them and making them work socially might be a much bigger challenge.

 

 

Hull in 2050

I wrote a piece for KCOM on what we can expect to feature in the city by 2050.

KCOM illustration

Highlights and KCOM commentary at: https://www.kcomhome.com/news/articles/welcome-to-the-hull-of-the-future/

If you want my full article, they have allowed me to share it. Here is a pdf of my original article, but it’s just text – I can’t do nice graphics:

 

Hull 2050

They also have a great project called We Made Ourselves Over, set in 2097. Here’s one of their graphics from that:

Graphic from http://wemadeourselvesover.com/

High-rise external evacuation

A quick googling turned up this great idea, using an escape chute attached to the top of a fire crane. The chute has a fireproof external layer and people slow or speed their descent in it simply by varying their posture. Read the pdf for more details:

http://www.escapeconsult.biz/download.php?module=prod&id=26

But the picture tells all you need to know. You can see it reaches very high, up to 100m with the tallest fire appliance.

It is a great idea, but you can still see how it could be improved, and the manufacturer may well already have better versions on the way.

Firstly, the truck is already leaning, even though it has extendable feet to increase the effective base area. This affects all free-standing fire rescue cranes and ladders (suspension ladders, or ladders able to lean against a wall obviously include other forces). Physics dictates that the center of gravity, with the evacuees included, must remain above the base or it will start to topple. The higher it reaches and the further from the truck, the harder that becomes, and the fewer people can simultaneously use the escape chute. Clearly if it is go even higher, we need to find new ways of keeping the base and center of gravity aligned, or to prevent it toppling by leaning the ladder securely against a sound piece of wall that isn’t above a fire.

One solution is obvious. Usually with a high-rise fire, a number of fire appliances would be there. By linking several appliances to the ladder in a stable pattern, the base area then becomes far larger, the entire area enclosed by the combined appliances. At the very least, they can spread out across a street, and sometimes as in the Grenfell Tower fire, there is a lot of nearby space to spread over. With a number of fire appliances, the crane is also not limited to the carrying capacity of a single appliance.

If theses are specialist hi-rise appliances, one or two would carry telescopic arms to support the rescue equipment, with one or more trucks using tension wires to increase the base area.

We also need to speed up entry to the chute and preferably make it accessible to more windows. The existing system has access via a small hole that might be slow to pass through, and challenging for larger people or those with less mobility. A funneled design would allow people to jump in from several windows or even drop from a floor above. Designing the access to prevent simultaneous arrivals at the chute is easy enough, even if several people jump in together

Also, it would be good if the chute could take evacuees away from the building and flames as fast as possible. Getting them to the ground is a lesser priority. Designing the funnel so it crosses several windows, with a steep slope away from the building (like an airplane escape slide) before it enters the downward chute would do that.

Another enhancement would be that instead of a broad funnel and single chute, a number of chutes could be suspended, with one for each window. Several people would be able to descend down different chutes at the same time. with a much broader base area, toppling risk would still be greatly reduced.

If a few support arms could be extended from the crane towards the building, that would provide extra stability until their strength (or building fabric) is compromised by fire. Further support might sometimes be available from window cleaning platform apparatus that could support the weight of the rescue chutes. If emergency escape chutes are built into the platforms could even make for an instant escape system before fire services arrive.

With these relatively straightforward enhancements, this evacuation system would be even better and would allow many people to escape who otherwise wouldn’t. OK, here’s a badly drawn pic:

Vertical solar farms, the next perpetual motion machine

I am a big fan of hydroponics. LED lighting allows growers to deliver a spectrum optimised for plant growth and they can get many times the productivity from a square metre inside under lighting than outside. In the right context, it’s a great idea. Here is a nice image from GE Reports , albeit with pointless scanning.

I don’t think much however of the various ‘futuristic’ artist impressions of external vertical farms with trees likely to fall on pedestrians from 20 floors up. Like this one, described as an ‘environmental alternative’. No it isn’t, its a daft idea that makes a pretty picture, not an alternative.

But as far as silliness is concerned, I suspect I can see one that is coming soon: the vertical solar farm. Here is how it will work, cough. Actually two ways.

PLEASE DON’T TAKE THE FOLLOWING SERIOUSLY!

A lot of external solar panels on a building will gather solar energy (or solar paint, whatever), and that wonderful renewable energy will then be used to power super-efficient LED lights, illuminating highly efficient solar panels inside. The LED banks and solar panels will be arranged in numerous layers to make lots of nice clean energy. The resultant ‘energy amplifier’ will appear.

A more complex version will use hydroponics instead, converting the externally gather solar energy into plant material to make biofuel to make energy to power the lights during the night.

Some clever-clogs will then work out that the external panels are not needed since the internal panels will make the light to power the LEDs 24/7. People will object, but they’ll just point at the rapidly growing efficiencies of both LEDs and solar panels, especially coupled to other enhancements such as picking the right spectrum for the LEDs. How can it not work?

You know as well as I do, I hope, that this is total nonsense and will remain so. However, you also know as well as I do that some people are very easily taken in. Personally, I can’t wait to see the first claims from some Green company. I wouldn’t be all that surprised if they manage to get a development grant. It would be hilarious if something like this makes it through a patent office somewhere. Perpetual machines don’t go extinct, they just evolve.

Actually, I’m more upset that it isn’t April 1st.

AI presents a new route to attack corporate value

As AI increases in corporate, social, economic and political importance, it is becoming a big target for activists and I think there are too many vulnerabilities. I think we should be seeing a lot more articles than we are about what developers are doing to guard against deliberate misdirection or corruption, and already far too much enthusiasm for make AI open source and thereby giving mischief-makers the means to identify weaknesses.

I’ve written hundreds of times about AI and believe it will be a benefit to humanity if we develop it carefully. Current AI systems are not vulnerable to the terminator scenario, so we don’t have to worry about that happening yet. AI can’t yet go rogue and decide to wipe out humans by itself, though future AI could so we’ll soon need to take care with every step.

AI can be used in multiple ways by humans to attack systems.

First and most obvious, it can be used to enhance malware such as trojans or viruses, or to optimize denial of service attacks. AI enhanced security systems already battle against adaptive malware and AI can probe systems in complex ways to find vulnerabilities that would take longer to discover via manual inspection. As well as AI attacking operating systems, it can also attack AI by providing inputs that bias its learning and decision-making, giving AI ‘fake news’ to use current terminology. We don’t know the full extent of secret military AI.

Computer malware will grow in scope to address AI systems to undermine corporate value or political campaigns.

A new route to attacking corporate AI, and hence the value in that company that relates in some way to it is already starting to appear though. As companies such as Google try out AI-driven cars or others try out pavement/sidewalk delivery drones, so mischievous people are already developing devious ways to misdirect or confuse them. Kids will soon have such activity as hobbies. Deliberate deception of AI is much easier when people know how they work, and although it’s nice for AI companies to put their AI stuff out there into the open source markets for others to use to build theirs, that does rather steer future systems towards a mono-culture of vulnerability types. A trick that works against one future AI in one industry might well be adaptable to another use in another industry with a little devious imagination. Let’s take an example.

If someone builds a robot to deliberately step in front of a self-driving car every time it starts moving again, that might bring traffic to a halt, but police could quickly confiscate the robot, and they are expensive, a strong deterrent even if the pranksters are hiding and can’t be found. Cardboard cutouts might be cheaper though, even ones with hinged arms to look a little more lifelike. A social media orchestrated campaign against a company using such cars might involve thousands of people across a country or city deliberately waiting until the worst time to step out into a road when one of their vehicles comes along, thereby creating a sort of denial of service attack with that company seen as the cause of massive inconvenience for everyone. Corporate value would obviously suffer, and it might not always be very easy to circumvent such campaigns.

Similarly, the wheeled delivery drones we’ve been told to expect delivering packages any time soon will also have cameras to allow them to avoid bumping into objects or little old ladies or other people, or cats or dogs or cardboard cutouts or carefully crafted miniature tank traps or diversions or small roadblocks that people and pets can easily step over but drones can’t, that the local kids have built from a few twigs or cardboard from a design that has become viral that day. A few campaigns like that with the cold pizzas or missing packages that result could severely damage corporate value.

AI behind websites might also be similarly defeated. An early experiment in making a Twitter chat-bot that learns how to tweet by itself was quickly encouraged by mischief-makers to start tweeting offensively. If people have some idea how an AI is making its decisions, they will attempt to corrupt or distort it to their own ends. If it is heavily reliant on open source AI, then many of its decision processes will be known well enough for activists to develop appropriate corruption tactics. It’s not to early to predict that the proposed AI-based attempts by Facebook and Twitter to identify and defeat ‘fake news’ will fall right into the hands of people already working out how to use them to smear opposition campaigns with such labels.

It will be a sort of arms race of course, but I don’t think we’re seeing enough about this in the media. There is a great deal of hype about the various AI capabilities, a lot of doom-mongering about job cuts (and a lot of reasonable warnings about job cuts too) but very little about the fight back against AI systems by attacking them on their own ground using their own weaknesses.

That looks to me awfully like there isn’t enough awareness of how easily they can be defeated by deliberate mischief or activism, and I expect to see some red faces and corporate account damage as a result.

PS

This article appeared yesterday that also talks about the bias I mentioned: https://techcrunch.com/2016/12/10/5-unexpected-sources-of-bias-in-artificial-intelligence/

Since I wrote this blog, I was asked via Linked-In to clarify why I said that Open Source AI systems would have more security risk. Here is my response:

I wasn’t intending to heap fuel on a dying debate (though since current debate looks the same as in early 1990s it is dying slowly). I like and use open source too. I should have explained my reasoning better to facilitate open source checking: In regular (algorithmic) code, programming error rate should be similar so increasing the number of people checking should cancel out the risk from more contributors so there should be no a priori difference between open and closed. However:

In deep learning, obscurity reappears via neural net weightings being less intuitive to humans. That provides a tempting hiding place.

AI foundations are vulnerable to group-think, where team members share similar world models. These prejudices will affect the nature of OS and CS code and result in AI with inherent and subtle judgment biases which will be less easy to spot than bugs and be more visible to people with alternative world models. Those people are more likely to exist in an OS pool than a CS pool and more likely to be opponents so not share their results.

Deep learning may show the equivalent of political (or masculine and feminine). As well as encouraging group-think, that also distorts the distribution of biases and therefore the cancelling out of errors can no longer be assumed.

Human factors in defeating security often work better than exploiting software bugs. Some of the deep learning AI is designed to mimic humans as well as possible in thinking and in interfacing. I suspect that might also make them more vulnerable to meta-human-factor attacks. Again, exposure to different and diverse cultures will show a non-uniform distribution of error/bias spotting/disclosure/exploitation.

Deep learning will become harder for humans to understand as it develops and becomes more machine dependent. That will amplify the above weaknesses. Think of optical illusions that greatly distort human perception and think of similar in advanced AI deep learning. Errors or biases that are discovered will become more valuable to an opponent since they are less likely to be spotted by others, increasing their black market exploitation risk.

I have not been a programmer for over 20 years and am no security expert so my reasoning may be defective, but at least now you know what my reasoning was and can therefore spot errors in it.

Colour changing cars, everyday objects and makeup

http://www.theverge.com/2016/11/24/13740946/dutch-scientists-use-color-changing-graphene-bubbles-to-create-mechanical-pixels shows how graphene can be used to make displays with each pixel changing colour according to mechanical deformation.

Meanwhile, Lexus have just created a car with a shell covered in LEDs so it can act as a massive display.

http://www.theverge.com/2016/12/5/13846396/lexus-led-lit-is-colors-dua-lipa-vevo

In 2014 I wrote about using polymer LED displays for future Minis so it’s nice to see another prediction come true.

Looking at the mechanical pixels though, it is clear that mechanical pixels could respond directly to sound, or to turbulence of passing air, plus other vibration that arises from motion on a road surface, or the engine. Car panel colours could change all the time powered by ambient energy. Coatings on any solid objects could follow, so people might have plenty of shimmering colours in their everyday environment. Could. Not sure I want it, but they could.

With sound as a control system, sound wave generators at the edges or underneath such surfaces could produce a wide variety of pleasing patterns. We could soon have furniture that does a good impression of being a cuttlefish.

I often get asked about smart makeup, on which I’ve often spoken since the late 90s. Thin film makeup displays could use this same tech. So er, we could have people with makeup pretending to be cuttlefish too. I think I’ll quit while I’m ahead.

Sky-lines – The Solar Powered Future of Air Travel

High altitude solar array to power IT and propel planes

High altitude solar array to power IT and propel planes

A zero carbon air travel solution. Well, most of the bits would be made of carbon materials, but it wouldn’t emit any CO2.

The pic says it all. A linear solar farm suspended in the high atmosphere to provide an IT platform for sensors, comms and other functions often accomplished by low orbit satellite. It would float up there thanks to being fixed to a graphene foam base layer that can be made lighter than helium (my previous invention, see https://timeguide.wordpress.com/2013/01/05/could-graphene-foam-be-a-future-helium-substitute/ which has since been prototyped and proven to be extremely resilient to high pressures too). Ideally, it would go all the way around the world, in various inclinations at different altitudes to provide routes to many places. Carbon materials are also incredibly strong so the line can be made as strong as can reasonably be required.

The flotation layer also supports a hypersonic linear induction motor that could provide direct propulsion to a hypersonic glider or to electric fans on a powered plane. Obviously this could also provide a means of making extremely low earth orbit satellites that continuously circumnavigate the ring.

I know you’re asking already how the planes get up there. There are a few solutions. Tethers could come all the way to ground level to airports, and electric engines would be used to get to height where the plane would pick up a sled-link.

Alternatively, stronger links to the ground would allow planes to be pulled up by sleds, though this would likely be less feasible.

Power levels? Well, the engines on a Boeing 777 generate about 8.25MW. A high altitude solar cell, above clouds could generate 300W per square metre. So a 777 equivalent plane needs 55km of panels if the line is just one metre wide. That means planes need to be at least that distance apart, but since that equates to around a minute, that is no barrier at all.

If you still doubt this, the Hyperloop was just a crazy idea a century ago too.