Category Archives: security

Technology 2040: Technotopia denied by human nature

This is a reblog of the Business Weekly piece I wrote for their 25th anniversary.

It’s essentially a very compact overview of the enormous scope for technology progress, followed by a reality check as we start filtering that potential through very imperfect human nature and systems.

25 years is a long time in technology, a little less than a third of a lifetime. For the first third, you’re stuck having to live with primitive technology. Then in the middle third it gets a lot better. Then for the last third, you’re mainly trying to keep up and understand it, still using the stuff you learned in the middle third.

The technology we are using today is pretty much along the lines of what we expected in 1990, 25 years ago. Only a few details are different. We don’t have 2Gb/s per second to the home yet and AI is certainly taking its time to reach human level intelligence, let alone consciousness, but apart from that, we’re still on course. Technology is extremely predictable. Perhaps the biggest surprise of all is just how few surprises there have been.

The next 25 years might be just as predictable. We already know some of the highlights for the coming years – virtual reality, augmented reality, 3D printing, advanced AI and conscious computers, graphene based materials, widespread Internet of Things, connections to the nervous system and the brain, more use of biometrics, active contact lenses and digital jewellery, use of the skin as an IT platform, smart materials, and that’s just IT – there will be similarly big developments in every other field too. All of these will develop much further than the primitive hints we see today, and will form much of the technology foundation for everyday life in 2040.

For me the most exciting trend will be the convergence of man and machine, as our nervous system becomes just another IT domain, our brains get enhanced by external IT and better biotech is enabled via nanotechnology, allowing IT to be incorporated into drugs and their delivery systems as well as diagnostic tools. This early stage transhumanism will occur in parallel with enhanced genetic manipulation, development of sophisticated exoskeletons and smart drugs, and highlights another major trend, which is that technology will increasingly feature in ethical debates. That will become a big issue. Sometimes the debates will be about morality, and religious battles will result. Sometimes different parts of the population or different countries will take opposing views and cultural or political battles will result. Trading one group’s interests and rights against another’s will not be easy. Tensions between left and right wing views may well become even higher than they already are today. One man’s security is another man’s oppression.

There will certainly be many fantastic benefits from improving technology. We’ll live longer, healthier lives and the steady economic growth from improving technology will make the vast majority of people financially comfortable (2.5% real growth sustained for 25 years would increase the economy by 85%). But it won’t be paradise. All those conflicts over whether we should or shouldn’t use technology in particular ways will guarantee frequent demonstrations. Misuses of tech by criminals, terrorists or ethically challenged companies will severely erode the effects of benefits. There will still be a mix of good and bad. We’ll have fixed some problems and created some new ones.

The technology change is exciting in many ways, but for me, the greatest significance is that towards the end of the next 25 years, we will reach the end of the industrial revolution and enter a new age. The industrial revolution lasted hundreds of years, during which engineers harnessed scientific breakthroughs and their own ingenuity to advance technology. Once we create AI smarter than humans, the dependence on human science and ingenuity ends. Humans begin to lose both understanding and control. Thereafter, we will only be passengers. At first, we’ll be paying passengers in a taxi, deciding the direction of travel or destination, but it won’t be long before the forces of singularity replace that taxi service with AIs deciding for themselves which routes to offer us and running many more for their own culture, on which we may not be invited. That won’t happen overnight, but it will happen quickly. By 2040, that trend may already be unstoppable.

Meanwhile, technology used by humans will demonstrate the diversity and consequences of human nature, for good and bad. We will have some choice of how to use technology, and a certain amount of individual freedom, but the big decisions will be made by sheer population numbers and statistics. Terrorists, nutters and pressure groups will harness asymmetry and vulnerabilities to cause mayhem. Tribal differences and conflicts between demographic, religious, political and other ideological groups will ensure that advancing technology will be used to increase the power of social conflict. Authorities will want to enforce and maintain control and security, so drones, biometrics, advanced sensor miniaturisation and networking will extend and magnify surveillance and greater restrictions will be imposed, while freedom and privacy will evaporate. State oppression is sadly as likely an outcome of advancing technology as any utopian dream. Increasing automation will force a redesign of capitalism. Transhumanism will begin. People will demand more control over their own and their children’s genetics, extra features for their brains and nervous systems. To prevent rebellion, authorities will have little choice but to permit leisure use of smart drugs, virtual escapism, a re-scoping of consciousness. Human nature itself will be put up for redesign.

We may not like this restricted, filtered, politically managed potential offered by future technology. It offers utopia, but only in a theoretical way. Human nature ensures that utopia will not be the actual result. That in turn means that we will need strong and wise leadership, stronger and wiser than we have seen of late to get the best without also getting the worst.

The next 25 years will be arguably the most important in human history. It will be the time when people will have to decide whether we want to live together in prosperity, nurturing and mutual respect, or to use technology to fight, oppress and exploit one another, with the inevitable restrictions and controls that would cause. Sadly, the fine engineering and scientist minds that have got us this far will gradually be taken out of that decision process.

Estimating potential UK Islamist terrorism: IRA x 13

I wrote last June about the potential level for Islamist terrorism in the UK, where I used a comparison with the Northern Ireland troubles. It is a useful comparison because thanks to various polls and surveys, we know the ratio of actual active terrorist numbers there to the size of the supporter community.

The majority of people there didn’t support the violence, but quite a lot did, about 30% of the community. From the nationalist 245,000, the 30% (75,000) who supported violence resulted in only around 300 front line IRA ‘terrorists’ and another 450 in ‘support roles’ at any one time. The terrorist population churned, with people leaving and joining the IRA throughout, but around 1% of 30% of that 245,000 were IRA members at any one time.

We’ve recently had another survey on UK Muslims conducted for the BBC that included attitudes to violence. You can read the figures from the survey here:

http://comres.co.uk/wp-content/uploads/2015/02/BBC-Today-Programme_British-Muslims-Poll_FINAL-Tables_Feb2015.pdf

The figures they found are a little worse than the estimates I used last year, and we have slightly higher population estimates too, so it is time to do an update. The 30% support for violence attributed to the Northern Ireland nationalist community is very similar to the 32% found for the UK Muslim community. Perhaps 30% violence support is human nature rather than peculiar to a particular community. Perhaps all that is needed is a common grievance.

In the wake of the Charlie Hebdo attacks, 68% of UK Muslims claimed that they didn’t think violence was justified if someone ‘publishes images of the Prophet Mohammed’. The survey didn’t specify what kind of images of the Prophet were to be hypothetically published, or even that they were insulting, it just said ‘images’. That 68% gives us a first actual figure for what is often referred to as ‘the overwhelming peaceful majority of Muslims in Britain’. 32% either said they supported violence or wouldn’t say.

(The survey also did not ask the non-Muslim population whether they would support violence in particular circumstances, and I haven’t personally found the people I know in Great Britain to be more civilized than those I knew in Northern Ireland. If the same 30% applies when a common grievance exists, then at least we can take some comfort that we are all the same when we are angry over something.)

Some other surveys around the world in the last few years have confirmed that only around 30% of Muslims support violence against those who offend Islam. Just like in Northern Ireland, almost all of those supporters would not get directly involved in violence themselves, but would simply approve of it when it happens.

Let’s translate that into an estimate of potential Islamist terrorism. There are no accurate figures for the UK Muslim population, but it is likely now to be around 3 million. Around 32% of that is around a million; there is no point aiming for higher precision than that since the data just doesn’t exist. So around a million UK Muslims would state some support for violence. From that million, only a tiny number would be potential terrorists. The IRA drew its 750 members from a violence supporter base of 75,000, so about one percent of supporters of violence were prepared to be IRA members and only 40% of those joined the equivalent of ‘active service units’, i.e. the ones that plant bombs or shoot people.

Another similarity to Northern Ireland is that the survey found that 45% of UK Muslims felt that prejudice against them made it difficult to live here, and in Northern Ireland, 45% of nationalists supported the political motives of the IRA even if only 30% condoned its violence, so the level of grievance against the rest of the population seems similar. Given that similarity and that the 32% violence support level is also similar, it is only a small leap of logic to apply the same 1% to terrorist group recruitment might also apply. Taking 1% of 1 million suggests that if Islamist violence were to achieve critical mass, a steady 10,000 UK Muslims might eventually belong to Islamist terrorist groups and 0.4% or 4000 of those in front line roles. By comparison, the IRA at its peak had 750, with 300 on the front line.

So based on this latest BBC survey, if Islamists are allowed to get a grip, the number of Islamist terrorists in the UK could be about 13 times as numerous as the IRA at the height of ‘The Troubles’. There is a further comparison to be had of an ISIS-style terrorist v an IRA-style terrorist but that is too subjective to quantify, except to note that the IRA at least used to give warnings of most of their bombs.

That is only one side of the potential conflict of course, and the figures for far right opposition groups suggest an anti-Islamist terrorist response that might not be much smaller. Around 1.25 million support far right groups, and I would guess that more than 30% of those would support violence and more would be willing to get directly involved, so with a little hand-waving the problem looks symmetrical, just as it was in Northern Ireland.

If the potential level of violence is 13 times worse than the height of the Troubles, it is clearly very important that Islamists are not allowed to get sufficient traction or we will have a large problem. We should also be conscious that violence in one region might spread to others and this could extend to a European problem. On a positive note, if our leaders and security forces do their jobs well, we may see no significant problem at all.

Stimulative technology

You are sick of reading about disruptive technology, well, I am anyway. When a technology changes many areas of life and business dramatically it is often labelled disruptive technology. Disruption was the business strategy buzzword of the last decade. Great news though: the primarily disruptive phase of IT is rapidly being replaced by a more stimulative phase, where it still changes things but in a more creative way. Disruption hasn’t stopped, it’s just not going to be the headline effect. Stimulation will replace it. It isn’t just IT that is changing either, but materials and biotech too.

Stimulative technology creates new areas of business, new industries, new areas of lifestyle. It isn’t new per se. The invention of the wheel is an excellent example. It destroyed a cave industry based on log rolling, and doubtless a few cavemen had to retrain from their carrying or log-rolling careers.

I won’t waffle on for ages here, I don’t need to. The internet of things, digital jewelry, active skin, AI, neural chips, storage and processing that is physically tiny but with huge capacity, dirt cheap displays, lighting, local 3D mapping and location, 3D printing, far-reach inductive powering, virtual and augmented reality, smart drugs and delivery systems, drones, new super-materials such as graphene and molybdenene, spray-on solar … The list carries on and on. These are all developing very, very quickly now, and are all capable of stimulating entire new industries and revolutionizing lifestyle and the way we do business. They will certainly disrupt, but they will stimulate even more. Some jobs will be wiped out, but more will be created. Pretty much everything will be affected hugely, but mostly beneficially and creatively. The economy will grow faster, there will be many beneficial effects across the board, including the arts and social development as well as manufacturing industry, other commerce and politics. Overall, we will live better lives as a result.

So, you read it here first. Stimulative technology is the next disruptive technology.

 

The future of drones – predators. No, not that one.

It is a sad fact of life that companies keep using the most useful terminology for things that don’t deserve it. The Apple retina display, which makes it more difficult to find a suitable name for direct retinal displays that use the retina directly. Why can’t they be the ones called retina displays? Or the LED TV, where the LEDs are typically just LED back-lighting for an LCD display. That makes it hard to name TVs where each pixel is actually an LED. Or the Predator drone, as definitely  not the topic of this blog, where I will talk about predator drones that attack other ones.

I have written several times now on the dangers of drones. My most recent scare was realizing the potential for small drones carrying high-powered lasers and using cloud based face recognition to identify valuable targets in a crowd and blind them, using something like a Raspberry Pi as the main controller. All of that could be done tomorrow with components easily purchased on the net. A while ago I blogged that the Predators and Reapers are not the ones you need to worry about, so much as the little ones which can attack you in swarms.

This morning I was again considering terrorist uses for the micro-drones we’re now seeing. A 5cm drone with a networked camera and control could carry a needle infected with Ebola or aids or carrying a drop of nerve toxin. A small swarm of tiny drones, each with a gram of explosive that detonates when it collides with a forehead, could kill as many people as a bomb.

We will soon have to defend against terrorist drones and the tiniest drones give the most effective terror per dollar so they are the most likely to be the threat. The solution is quite simple. and nature solved it a long time ago. Mosquitos and flies in my back garden get eaten by a range of predators. Frogs might get them if they come too close to the surface, but in the air, dragonflies are expert at catching them. Bats are good too. So to deal with threats from tiny drones, we could use predator drones to seek and destroy them. For bigger drones, we’d need bigger predators and for very big ones, conventional anti-aircraft weapons become useful. In most cases, catching them in nets would work well. Nets are very effective against rotors. The use of nets doesn’t need such sophisticated control systems and if the net can be held a reasonable distance from the predator, it won’t destroy it if the micro-drone explodes. With a little more precise control, spraying solidifying foam onto the target drone could also immobilize it and some foams could help disperse small explosions or contain their lethal payloads. Spiders also provide inspiration here, as many species wrap their victims in silk to immobilize them. A single predator could catch and immobilize many victims. Such a defense system ought to be feasible.

The main problem remains. What do we call predator drones now that the most useful name has been trademarked for a particular model?

 

The future of zip codes

Finally. Z. Zero, zoos, zebras, zip codes. Zip codes is the easiest one since I can use someone else’s work and just add a couple of notes.

This piece for the Spectator was already written by Rory Sutherland and fits the bill perfectly so I will just link to it: http://www.spectator.co.uk/life/the-wiki-man/9348462/the-best-navigation-idea-ive-seen-since-the-tube-map/.

It is about http://what3words.com/. Visit the site yourself, find out what words describe precisely where you are.

The idea in a nutshell is that there are so many words that combining three words is enough to give a unique address to every 3×3 metre square on the planet. Zip codes, or post codes to us brits, don’t do that nearly so well, so I really like this idea. I am currently sitting at stem.trees.wage. (I just noticed that the relevant google satellite image is about 2006, why so old?). It would allow a geographic web too, allowing you to send messages to geographic locations easily. I could send an email to orbit.escape.given.coffeemachine to make a cup of coffee. The 4th word is needed because a kettle, microwave and fridge also share that same square. The fatal flaw that ruins so many IoT ideas though is that I still have to go there to put a cup under the nozzle and to collect it once it’s full. Another one is that with that degree of precision, now that I’ve published the info, ISIS now has the coordinates to hit me right on the head (or my coffee machine). I think they probably have higher priorities though.

OLED fashion contact lenses

Self explanatory concept, but not connected to my original active contact lens direct retinal projection concept. This one is just fashion stuff and could be done easily tomorrow. I allowed a small blank central area so that you aren’t blinded if you wear them. This version doesn’t project onto the retina, though future versions could also house and power devices to do so.

Fashion contacts

OK, the illustration is crap, but I’m an engineer, not a fashion designer. Additional functionality could be to display a high res one time code into iris recognition systems for high security access.

The future of terminators

The Terminator films were important in making people understand that AI and machine consciousness will not necessarily be a good thing. The terminator scenario has stuck in our terminology ever since.

There is absolutely no reason to assume that a super-smart machine will be hostile to us. There are even some reasons to believe it would probably want to be friends. Smarter-than-man machines could catapult us into a semi-utopian era of singularity level development to conquer disease and poverty and help us live comfortably alongside a healthier environment. Could.

But just because it doesn’t have to be bad, that doesn’t mean it can’t be. You don’t have to be bad but sometimes you are.

It is also the case that even if it means us no harm, we could just happen to be in the way when it wants to do something, and it might not care enough to protect us.

Asimov’s laws of robotics are irrelevant. Any machine smart enough to be a terminator-style threat would presumably take little notice of rules it has been given by what it may consider a highly inferior species. The ants in your back garden have rules to govern their colony and soldier ants trained to deal with invader threats to enforce territorial rules. How much do you consider them when you mow the lawn or rearrange the borders or build an extension?

These arguments are put in debates every day now.

There are however a few points that are less often discussed

Humans are not always good, indeed quite a lot of people seem to want to destroy everything most of us want to protect. Given access to super-smart machines, they could design more effective means to do so. The machines might be very benign, wanting nothing more than to help mankind as far as they possibly can, but misled into working for them, believing in architected isolation that such projects are for the benefit of humanity. (The machines might be extremely  smart, but may have existed since their inception in a rigorously constructed knowledge environment. To them, that might be the entire world, and we might be introduced as a new threat that needs to be dealt with.) So even benign AI could be an existential threat when it works for the wrong people. The smartest people can sometimes be very naive. Perhaps some smart machines could be deliberately designed to be so.

I speculated ages ago what mad scientists or mad AIs could do in terms of future WMDs:

https://timeguide.wordpress.com/2014/03/31/wmds-for-mad-ais/

Smart machines might be deliberately built for benign purposes and turn rogue later, or they may be built with potential for harm designed in, for military purposes. These might destroy only enemies, but you might be that enemy. Others might do that and enjoy the fun and turn on their friends when enemies run short. Emotions might be important in smart machines just as they are in us, but we shouldn’t assume they will be the same emotions or be wired the same way.

Smart machines may want to reproduce. I used this as the core storyline in my sci-fi book. They may have offspring and with the best intentions of their parent AIs, the new generation might decide not to do as they’re told. Again, in human terms, a highly familiar story that goes back thousands of years.

In the Terminator film, it is a military network that becomes self aware and goes rogue that is the problem. I don’t believe digital IT can become conscious, but I do believe reconfigurable analog adaptive neural networks could. The cloud is digital today, but it won’t stay that way. A lot of analog devices will become part of it. In

https://timeguide.wordpress.com/2014/10/16/ground-up-data-is-the-next-big-data/

I argued how new self-organising approaches to data gathering might well supersede big data as the foundations of networked intelligence gathering. Much of this could be in a the analog domain and much could be neural. Neural chips are already being built.

It doesn’t have to be a military network that becomes the troublemaker. I suggested a long time ago that ‘innocent’ student pranks from somewhere like MIT could be the source. Some smart students from various departments could collaborate to see if they can hijack lots of networked kit to see if they can make a conscious machine. Their algorithms or techniques don’t have to be very efficient if they can hijack enough. There is a possibility that such an effort could succeed if the right bits are connected into the cloud and accessible via sloppy security, and the ground up data industry might well satisfy that prerequisite soon.

Self-organisation technology will make possible extremely effective combat drones.

https://timeguide.wordpress.com/2013/06/23/free-floating-ai-battle-drone-orbs-or-making-glyph-from-mass-effect/

Terminators also don’t have to be machines. They could be organic, products of synthetic biology. My own contribution here is smart yogurt: https://timeguide.wordpress.com/2014/08/20/the-future-of-bacteria/

With IT and biology rapidly converging via nanotech, there will be many ways hybrids could be designed, some of which could adapt and evolve to fill different niches or to evade efforts to find or harm them. Various grey goo scenarios can be constructed that don’t have any miniature metal robots dismantling things. Obviously natural viruses or bacteria could also be genetically modified to make weapons that could kill many people – they already have been. Some could result from seemingly innocent R&D by smart machines.

I dealt a while back with the potential to make zombies too, remotely controlling people – alive or dead. Zombies are feasible this century too:

https://timeguide.wordpress.com/2012/02/14/zombies-are-coming/ &

https://timeguide.wordpress.com/2013/01/25/vampires-are-yesterday-zombies-will-peak-soon-then-clouds-are-coming/

A different kind of terminator threat arises if groups of people are linked at consciousness level to produce super-intelligences. We will have direct brain links mid-century so much of the second half may be spent in a mental arms race. As I wrote in my blog about the Great Western War, some of the groups will be large and won’t like each other. The rest of us could be wiped out in the crossfire as they battle for dominance. Some people could be linked deeply into powerful machines or networks, and there are no real limits on extent or scope. Such groups could have a truly global presence in networks while remaining superficially human.

Transhumans could be a threat to normal un-enhanced humans too. While some transhumanists are very nice people, some are not, and would consider elimination of ordinary humans a price worth paying to achieve transhumanism. Transhuman doesn’t mean better human, it just means humans with greater capability. A transhuman Hitler could do a lot of harm, but then again so could ordinary everyday transhumanists that are just arrogant or selfish, which is sadly a much bigger subset.

I collated these various varieties of potential future cohabitants of our planet in: https://timeguide.wordpress.com/2014/06/19/future-human-evolution/

So there are numerous ways that smart machines could end up as a threat and quite a lot of terminators that don’t need smart machines.

Outcomes from a terminator scenario range from local problems with a few casualties all the way to total extinction, but I think we are still too focused on the death aspect. There are worse fates. I’d rather be killed than converted while still conscious into one of 7 billion zombies and that is one of the potential outcomes too, as is enslavement by some mad scientist.

 

The future of sky

The S installment of this ‘future of’ series. I have done streets, shopping, superstores, sticks, surveillance, skyscrapers, security, space, sports, space travel and sex before, some several times. I haven’t done sky before, so here we go.

Today when you look up during the day you typically see various weather features, the sun, maybe the moon, a few birds, insects or bats, maybe some dandelion or thistle seeds. As night falls, stars, planets, seasonal shooting stars and occasional comets may appear. To those we can add human contributions such as planes, microlights, gliders and helicopters, drones, occasional hot air balloons and blimps, helium party balloons, kites and at night-time, satellites, sometimes the space station, maybe fireworks. If you’re in some places, missiles and rockets may be unfortunate extras too, as might be the occasional parachutist or someone wearing a wing-suit or on a hang-glider. I guess we should add occasional space launches and returns too. I can’t think of any more but I might have missed some.

Drones are the most recent addition and their numbers will increase quickly, mostly for surveillance purposes. When I sit out in the garden, since we live in a quiet area, the noise from occasional  microlights and small planes is especially irritating because they fly low. I am concerned that most of the discussions on drones don’t tend to mention the potential noise nuisance they might bring. With nothing between them and the ground, sound will travel well, and although some are reasonably quiet, other might not be and the noise might add up. Surveillance, spying and prying will become the biggest nuisances though, especially as miniaturization continues to bring us many insect-sized drones that aren’t noisy and may visually be almost undetectable. Privacy in your back garden or in the bedroom with unclosed curtains could disappear. They will make effective distributed weapons too:

https://timeguide.wordpress.com/2014/07/07/drones-it-isnt-the-reapers-and-predators-you-should-worry-about/

Adverts don’t tend to appear except on blimps, and they tend to be rare visitors. A drone was this week used to drag a national flag over a football game. In the Batman films, Batman is occasionally summoned by shining a spotlight with a bat symbol onto the clouds. I forgot which film used the moon to show an advert. It is possible via a range of technologies that adverts could soon be a feature of the sky, day and night, just like in Bladerunner. In the UK, we are now getting used to roadside ads, however unwelcome they were when they first arrived, though they haven’t yet reached US proportions. It will be very sad if the sky is hijacked as an advertising platform too.

I think we’ll see some high altitude balloons being used for communications. A few companies are exploring that now. Solar powered planes are a competing solution to the same market.

As well as tiny drones, we might have bubbles. Kids make bubbles all the time but they burst quickly. With graphene, a bubble could prevent helium escaping or even be filled with graphene foam, then it would float and stay there. We might have billions of tiny bubbles floating around with tiny cameras or microphones or other sensors. The cloud could be an actual cloud.

And then there’s fairies. I wrote about fairies as the future of space travel.

https://timeguide.wordpress.com/2014/06/06/fairies-will-dominate-space-travel/

They might have a useful role here too, and even if they don’t, they might still want to be here, useful or not.

As children, we used to call thistle seeds fairies, our mums thought it was cute to call them that. Biomimetics could use that same travel technique for yet another form of drone.

With all the quadcopter, micro-plane, bubble, balloon and thistle seed drones, the sky might soon be rather fuller than today. So maybe there is a guaranteed useful role for fairies, as drone police.

 

 

 

The Future of IoT – virtual sensors for virtual worlds

I recently acquired a point-and-click thermometer for Futurizon, which gives an instant reading when you point it at something. I will soon know more about the world around me, but any personal discoveries I make are quite likely to be well known to science already. I don’t expect to win a Nobel prize by discovering breeches of the second law of thermodynamics, but that isn’t the point. The thermometer just measures the transmission from a particular point in a particular frequency band, which indicates what temperature it is. It cost about £20, a pretty cheap stimulation tool to help me think about the future by understanding new things about the present. I already discovered that my computer screen doubles as a heater, but I suspected that already. Soon, I’ll know how much my head warms when if think hard, and for the futurology bit, where the best locations are to put thermal IoT stuff.

Now that I am discovering the joys or remote sensing, I want to know so much more though. Sure, you can buy satellites for a billion pounds that will monitor anything anywhere, and for a few tens of thousands you can buy quite sophisticated lab equipment. For a few tens, not so much is available and I doubt the tax man will agree that Futurizon needs a high end oscilloscope or mass spectrometer so I have to set my sights low. The results of this blog justify the R&D tax offset for the thermometer. But the future will see drops in costs for most high technologies so I also expect to get far more interesting kit cheaply soon.

Even starting with the frequent assumption that in the future you can do anything, you still have to think what you want to do. I can get instant temperature readings now. In the future, I may also want a full absorption spectrum, color readings, texture and friction readings, hardness, flexibility, sound absorption characteristics, magnetic field strength, chemical composition, and a full range of biological measurements, just for fun. If Spock can have one, I want one too.

But that only covers reality, and reality will only account for a small proportion of our everyday life in the future. I may also want to check on virtual stuff, and that needs a different kind of sensor. I want to be able to point at things that only exist in virtual worlds. It needs to be able to see virtual worlds that are (at least partly) mapped onto real physical locations, and those that are totally independent and separate from the real world. I guess that is augmented reality ones and virtual reality ones. Then it starts getting tricky because augmented reality and virtual reality are just two members of a cyberspace variants set that runs to more than ten trillion members. I might do another blog soon on what they are, too big a topic to detail here.

People will be most interested in sensors to pick up geographically linked cyberspace. Much of the imaginary stuff is virtual worlds in computer games or similar, and many of those have built-in sensors designed for their spaces. So, my character can detect caves or forts or shrines from about 500m away in the virtual world of Oblivion (yes, it is from ages ago but it is still enjoyable). Most games have some sort of sensors built-in to show you what is nearby and some of its properties.

Geographically linked cyberspace won’t all be augmented reality because some will be there for machines, not people, but you might want to make sensors for it all the same, for many reasons, most likely for navigating it, debugging, or for tracking and identifying digital trespass. The last one is interesting. A rival company might well construct an augmented reality presence that allows you to see their products alongside ones in a physical shop. It doesn’t have to be in a properly virtual environment, a web page is still a location in cyberspace and when loaded, that instance takes on a geographic mapping via that display so it is part of that same trespass. That is legal today, and it started many years ago when people started using Amazon to check for better prices while in a book shop. Today it is pretty ubiquitous. We need sensors that can detect that. It may be accepted today as fair competition, but it might one day be judged as unfair competition by regulators for various reasons, and if so, they’ll need some mechanism to police it. They’ll need to be able to detect it. Not easy if it is just a web page that only exists at that location for a few seconds. Rather easier if it is a fixed augmented reality and you can download a map.

If for some reason a court does rule that digital trespass is illegal, one way of easy(though expensive) way of solving it would be to demand that all packets carry a geographic location, which of course the site would know when the person clicks on that link. To police that, turning off location would need to be blocked, or if it is turned off, sites would not be permitted to send you certain material that might not be permitted at that location. I feel certain there would be better and cheaper and more effective solutions.

I don’t intend to spend any longer exploring details here, but it is abundantly clear from just inspecting a few trees that making detectors for virtual worlds will be a very large and diverse forest full of dangers. Who should be able to get hold of the sensors? Will they only work in certain ‘dimensions’ of cyberspace? How should the watchers be watched?

The most interesting thing I can find though is that being able to detect cyberspace would allow new kinds of adventures and apps. You could walk through a doorway and it also happens to double as a portal between many virtual universes. And you might not be able to make that jump in any other physical location. You might see future high street outlets that are nothing more than teleport chambers for cyberspace worlds. They might be stuffed with virtual internet of things things and not one one of them physical. Now that’s fun.

 

Ground up data is the next big data

This one sat in my draft folder since February, so I guess it’s time to finish it.

Big Data – I expect you’re as sick of hearing that term as I am. Gathering loads of data on everything you or your company or anything else you can access can detect, measure, record, then analyzing the hell out of it using data mining, an equally irritating term.

I long ago had a quick twitter exchange with John Hewitt, who suggested “What is sensing but the energy-constrained competition for transmission to memory, as memory is but that for expression?”. Neurons compete to see who gets listened too.  Yeah, but I am still not much wiser as to what sensing actually is. Maybe I need a brain upgrade. (It’s like magnets. I used to be able to calculate the magnetic field densities around complicated shaped objects – it was part of my first job in missile design – but even though I could do all the equations around EM theory, even general relativity, I still am no wiser how a magnetic field actually becomes a force on an object. I have an office littered with hundreds of neodymium magnets and I spend hours playing with them and I still don’t understand). I can read about neurons all day but I still don’t understand how a bunch of photons triggering a series of electro-chemical reactions results in me experiencing an image. How does the physical detection become a conscious experience?

Well, I wrote some while back that we could achieve a conscious computer within two years. It’s still two years because nobody has started using the right approach yet. I have to stress the ‘could’, because nobody actually intends to do it in that time frame, but I really believe some half-decent lab could if they tried.  (Putting that into perspective, Kurzweil and his gang at Google are looking at 2029.) That two years estimate relies heavily on evolutionary development, for me the preferred option when you don’t understand how something works, as is the case with consciousness. It is pretty easy to design conscious computers at a black box level. The devil is in the detail. I argued that you could make a conscious computer by using internally focused sensing to detect processes inside the brain, and using a sensor structure with a symmetrical feedback loop. Read it:

https://timeguide.wordpress.com/2013/12/28/we-could-have-a-conscious-machine-by-end-of-play-2015/

In a nutshell, if you can feel thoughts in the same way as you feel external stimuli, you’d be conscious. I think. The symmetrical feedback loop bit is just a small engineering insight.

The missing link in that is still the same one: how does sensing work? How do you feel?

At a superficial level, you point a sensor at something and it produces a signal in some sort of relationship to whatever it is meant to sense. We can do that bit. We understand that. Your ear produces signals according to the frequencies and amplitudes of incoming sound waves, a bit like a microphone. Just the same so far. However, it is by some undefined processes later that you consciously experience the sound. How? That is the hard problem in AI. It isn’t just me that doesn’t know the answer. ‘How does red feel?’ is a more commonly used variant of the same question.

When we solve that, we will replace big data as ‘the next big thing’. If we can make sensor systems that experience or feel something rather than just producing a signal, that’s valuable already. If those sensors pool their shared experience, another similar sensor system could experience that. Basic data quickly transmutes into experience, knowledge, understanding, insight and very quickly, value, lots of it. Artificial neural nets go some way to doing that, but they still lack consciousness. Simulated neural networks can’t even get beyond a pretty straightforward computation, putting all the inputs into an equation. The true sensing bit is missing. The complex adaptive analog neural nets in our brain clearly achieve something deeper than a man-made neural network.

Meanwhile, most current AI work barks up a tree in a different forest. IBM’s Watson will do great things; Google’s search engine AI will too. But they aren’t conscious and can’t be. They’re just complicated programs running on digital processors, with absolutely zero awareness of anything they are doing. Digital programs on digital computers will never achieve any awareness, no matter how fast the chips are.

However, back in the biological realm, nature manages just fine. So biomimetics offers a lot of hope. We know we didn’t get from a pool of algae to humans in one go. At some point, organisms started moving according to light, chemical gradients, heat, touch. That most basic process of sensing may have started out coupled to internal processes that caused movement without any consciousness. But if we can understand the analog processes (electrochemical, electronic, mechanical) that take the stimulus through to a response, and can replicate it using our electronic technology, we would already have actuator circuits, even if we don’t have any form of sensation or consciousness yet. A great deal of this science has been done already of course. The computational side of most chemical and physical processes can be emulated electronically by some means or another. Actuators will be a very valuable part of the cloud, but we already have the ability to make actuators by more conventional means, so doing it organically or biomimetically just adds more actuation techniques to the portfolio. Valuable but not a terribly important breakthrough.

Looking at the system a big further along the evolutionary timeline, where eyes start to develop, where the most primitive nervous systems and brains start, where higher level processing is obviously occurring and inputs are starting to become sensations, we should be able to what is changed or changing. It is the emergence of sensation we need to identify, even if the reaction is still an unconscious reflex. We don’t need to reverse engineer the human brain. Simple organisms are simpler to understand. Feeding the architectural insights we gain from studying those primitive systems into our guided evolution engines is likely to be far faster as a means to generating true machine consciousness and strong AI. That’s how we could develop consciousness in a couple of years rather than 15.

If we can make primitive sensing devices that work like those in primitive organisms, and can respond to specific sorts of sensory input, then that is a potential way of increasing the coverage of cloud sensing and even actuation. It would effectively be a highly distributed direct response system. With clever embedding of emergent phenomena techniques (such as cellular automata, flocking etc) , it could be a quite sophisticated way of responding to quite complex distributed inputs, avoiding some of the need for big data processing. If we can gather the outputs from these simple sensors and feed them into others, that will be an even better sort of biomimetic response system. That sort of direct experience of a situation is very different from a data mined result, especially if actuation capability is there too. The philosophical question as to whether that inclusion of that second bank of sensors makes the system in any way conscious remains, but it would certainly be very useful and valuable. The architecture we end up with via this approach may look like neurons, and could even be synthetic neurons, but that may be only one solution among many. Biology may have gone the neuron route but that doesn’t necessarily mean it is the only possibility. It may be that we could one day genetically modify bacteria to produce their own organic electronics to emulate the key processes needed to generate sensation, and to power them by consuming nutrients from their environment. I suggested smart yogurt based on this idea many years ago, and believe that it could achieve vast levels of intelligence.

Digitizing and collecting the signals from the system at each stage would generate lots of  data, and that may be used by programs to derive other kinds of results, or to relay the inputs to other analog sensory systems elsewhere. (It isn’t always necessary to digitize signals to transmit them, but it helps limit signal degradation and quickly becomes important if the signal is to travel far and is essential if it is to be recorded for later use or time shifting). However, I strongly suspect that most of the value in analog sensing and direct response is local, coupled to direct action or local processing and storage.

If we have these sorts of sensors liberally spread around, we’d create a truly smart environment, with local sensing and some basic intelligence able to relay sensation remotely to other banks of sensors elsewhere for further processing or even ultimately consciousness. The local sensors could be relatively dumb like nerve endings on our skin, feeding in  signals to a more connected virtual nervous system, or a bit smarter, like neural retinal cells, doing a lot of analog pre-processing before relaying them via ganglia cells, and maybe part of a virtual brain. If they are also capable of or connected to some sort of actuation, then we would be constructing a kind of virtual organism, with tendrils covering potentially the whole globe, and able to sense and interact with its environment in an intelligent way.

I use the term virtual not because the sensors wouldn’t be real, but because their electronic nature allows connectivity to many systems, overlapping, hierarchical or distinct. Any number of higher level systems could ‘experience’ them as part of its system, rather as if your fingers could be felt by the entire human population. Multiple higher level virtual organisms could share the same basic sensory/data inputs. That gives us a whole different kind of cloud sensing.

By doing processing locally, in the analog domain, and dealing with some of the response locally, a lot of traffic across the network is avoided and a lot of remote processing. Any post-processing that does occur can therefore add to a higher level of foundation. A nice side effect from avoiding all the extra transmission and processing is increased environmental friendliness.

So, we’d have a quite different sort of data network, collecting higher quality data, essentially doing by instinct what data mining does with huge server farms and armies of programmers. Cloudy, but much smarter than a straightforward sensor net.

… I think.

It isn’t without risk though. I had a phone discussion yesterday on the dangers of this kind of network. In brief, it’s dangerous.