Category Archives: nature

Proposed Kent solar farm is green lunacy

Solar farms should be placed in desert regions that have low value for growing food, and relatively low value to nature. There are plans to install a massive solar farm in nice green Kent, where it is occasionally a little bit sunny. That strikes me as lunacy, and even some green groups agree and are campaigning against it.

http://www.kentonline.co.uk/faversham/news/proposal-for-solar-farm-site-increases-to-1-000-acres-184240/

The project is apparently being led by Hive Energy and Wirsol. I have been in contact with Tesla, who say “Tesla is not in conversations with any parties with regards to this project”.

Land is limited and we must use it sensibly

Nature often takes a battering when money is available, but a rich country should protect nature and ensure that some appropriate spaces are set aside. It is right to resist attempts to reassign such land to other purposes, especially when there area obvious alternatives. In this case, the land in question is mainly natural habitat, but other green areas are used for food production.

World population is growing, with another 3 billion mouths to feed mid-century. Agricultural technology will improve output per hectare and food trends may reduce the amount of meat consumption, but we should be able to feed everyone just fine even with 10 or 11 Billion people, but it will require good land stewardship. Prime agricultural land should be used mainly to grow crops. Some will be needed for buildings and roads of course, and we will want to have extensive nature reserves too. When we can produce more food than people need, we can return land to nature, but we should certainly not waste it by using it for solar farms when there are far better places to put them.

Using agricultural land for solar farms increases food costs by reducing food supply, hurting the world’s poorest people. This is also true of using land to grow biofuels, essentially an extraordinarily inefficient form of indirect solar power.

Secondly, the main current argument for solar power is to save CO2 emissions. If you read my blogs regularly, you’ll know I think that claims of human-related CO2-induced global warming catastrophe are greatly exaggerated, but there is some effect so we should not be complacent, and we do still need to be careful with emission levels. I’ve always been in favor of moving to solar and fusion as very long-term solutions. Fusion won’t be a big player until the 2040s. One day, solar will be cheaper than using shale gas, the most environmentally friendly fossil fuel solution with only half the CO2 output for a unit of energy compared to oil and coal, but that day is still far in the future. The more energy a panel can make, the more CO2 it saves. We only have one atmosphere, and a ton saved anywhere is a ton saved globally. It makes sense to put them in places where there is a lot of sun. Often that means deserts, which obviously have very little value for growing crops and support relatively low levels of life for the same reason. Putting a panel in a desert produces far more energy for far less environmental cost. A solar panel in the Sahara would make 5 times more energy than one in Kent, without reducing world food output at all. 

Sahara solar

Furthermore, many desert areas are home to poor people, who might welcome extra income from housing and maintaining panels for a cut of the revenue they make. Dust and sand would make maintenance a regular issue, but providing decent income for regular work for people with few other options makes good economic sense. Doing so would also help subsidize other infrastructure badly needed that might also improve local quality of life in those areas.

Finally, by providing extra income to deprived areas of the world, geo-political tensions may reduce somewhat.

All in, it makes far more sense socially, economically, politically, and environmentally to provide solar power from desert areas than from prime agricultural land or natural habitat.

 

 

Will urbanization continue or will we soon reach peak city?

For a long time, people have been moving from countryside into cities. The conventional futurist assumption is that this trend will continue, with many mega-cities, some with mega-buildings. I’ve consulted occasionally on future buildings and future cities from a technological angle, but I’ve never really challenged the assumption that urbanization will continue. It’s always good  to challenge our assumptions occasionally, as things can change quite rapidly.

There are forces in both directions. Let’s list those that support urbanisation first.

People are gregarious. They enjoy being with other people. They enjoy eating out and having coffees with friends. They like to go shopping. They enjoy cinemas and theatre and art galleries and museums. They still have workplaces. Many people want to live close to these facilities, where public transport is available or driving times are relatively short. There are exceptions of course, but these still generally apply.

Even though many people can and do work from home sometimes, most of them still go to work, where they actually meet colleagues, and this provides much-valued social contact, and in spite of recent social trends, still provides opportunities to meet new friends and partners. Similarly, they can and do talk to friends via social media or video calls, but still enjoy getting together for real.

Increasing population produces extra pressure on the environment, and governments often try to minimize it by restricting building on green field land. Developers are strongly encouraged to build on brown field sites as far as possible.

Now the case against.

Truly Immersive Interaction

Talking on the phone, even to a tiny video image, is less emotionally rich than being there with someone. It’s fine for chats in between physical meetings of course, but the need for richer interaction still requires ‘being there’. Augmented reality will soon bring headsets that provide high quality 3D life-sized images of the person, and some virtual reality kit will even allow analogs of physical interaction via smart gloves or body suits, making social comms a bit better. Further down the road, active skin will enable direct interaction with the peripheral nervous system to produce exactly the same nerve signals as an actual hug or handshake or kiss, while active contact lenses will provide the same resolution as your retina wherever you gaze. The long term is therefore communication which has the other person effectively right there with you, fully 3D, fully rendered to the capability of your eyes, so you won’t be able to tell they aren’t. If you shake hands or hug or kiss, you’ll feel it just the same as if they were there too. You will still know they are not actually there, so it will never be quite as emotionally rich as if they were, but it can get pretty close. Close enough perhaps that it won’t really matter to most people most of the time that it’s virtual.

In the same long term, many AIs will have highly convincing personalities, some will even have genuine emotions and be fully conscious. I blogged recently on how that might happen if you don’t believe it’s possible:

https://timeguide.wordpress.com/2018/06/04/biomimetic-insights-for-machine-consciousness/

None of the technology required for this is far away, and I believe a large IT company could produce conscious machines with almost human-level AI within a couple of years of starting the project. It won’t happen until they do, but when one starts trying seriously to do it, it really won’t be long. That means that as well as getting rich emotional interaction from other humans via networks, we’ll also get lots from AI, either in our homes, or on the cloud, and some will be in robots in our homes too.

This adds up to a strong reduction in the need to live in a city for social reasons.

Going to cinemas, theatre, shopping etc will also all benefit from this truly immersive interaction. As well as that, activities that already take place in the home, such as gaming will also advance greatly into more emotionally and sensory intensive experiences, along with much enhanced virtual tourism and virtual world tourism, virtual clubbing & pubbing, which barely even exist yet but could become major activities in the future.

Socially inclusive self-driving cars

Some people have very little social interaction because they can’t drive and don’t live close to public transport stops. In some rural areas, buses may only pass a stop once a week. Our primitive 20th century public transport systems thus unforgivably exclude a great many people from social inclusion, even though the technology needed to solve that has existed for many years.  Leftist value systems that much prefer people who live in towns or close to frequent public transport over everyone else must take a lot of the blame for the current epidemic of loneliness. It is unreasonable to expect those value systems to be replaced by more humane and equitable ones any time soon, but thankfully self-driving cars will bypass politicians and bureaucrats and provide transport for everyone. The ‘little old lady’ who can’t walk half a mile to wait 20 minutes in freezing rain for an uncomfortable bus can instead just ask her AI to order a car and it will pick her up at her front door and take her to exactly where she wants to go, then do the same for her return home whenever she wants. Once private sector firms like Uber provide cheap self-driving cars, they will be quickly followed by other companies, and later by public transport providers. Redundant buses may finally become extinct, replaced by better socially inclusive transport, large fleets of self-driving or driverless vehicles. People will be able to live anywhere and still be involved in society. As attendance at social events improves, so they will become feasible even in small communities, so there will be less need to go into a town to find one. Even political involvement might increase. Loneliness will decline as social involvement increases, and we’ll see many other social problems decline too.

Distribution drones

We hear a lot about upcoming redundancy caused by AI, but far less about the upside. AI might mean someone is no longer needed in an office, but it also makes it easier to set up a company and run it, taking what used to be just a hobby and making it into a small business. Much of the everyday admin and logistics can be automated Many who would never describe themselves as entrepreneurs might soon be making things and selling them from home and this AI-enabled home commerce will bring in the craft society. One of the big problems is getting a product to the customer. Postal services and couriers are usually expensive and very likely to lose or damage items. Protecting objects from such damage may require much time and expense packing it. Even if objects are delivered, there may be potential fraud with no-payers. Instead of this antiquated inefficient and expensive system, drone delivery could collect an object and take it to a local customer with minimal hassle and expense. Block-chain enables smart contracts that can be created and managed by AI and can directly link delivery to payment, with fully verified interaction video if necessary. If one happens, the other happens. A customer might return a damaged object, but at least can’t keep it and deny receipt. Longer distance delivery can still use cheap drone pickup to take packages to local logistics centers in smart crates with fully block-chained g-force and location detectors that can prove exactly who damaged it and where. Drones could be of any size, and of course self-driving cars or pods can easily fill the role too if smaller autonomous drones are inappropriate.

Better 3D printing technology will help to accelerate the craft economy, making it easier to do crafts by upskilling people and filling in some of their skill gaps. Someone with visual creativity but low manual skill might benefit greatly from AI model creation and 3D printer manufacture, followed by further AI assistance in marketing, selling and distribution. 3D printing might also reduce the need to go to town to buy some things.

Less shopping in high street

This is already obvious. Online shopping will continue to become a more personalized and satisfying experience, smarter, with faster delivery and easier returns, while high street decline accelerates. Every new wave of technology makes online better, and high street stores seem unable or unwilling to compete, in spite of my wonderful ‘6s guide’:

https://timeguide.wordpress.com/2013/01/16/the-future-of-high-street-survival-the-6s-guide/

Those that are more agile still suffer decline of shopper numbers as the big stores fail to attract them so even smart stores will find it harder to survive.

Improving agriculture

Farming technology has doubled the amount of food production per hectare in the last few decades. That may happen again by mid-century. Meanwhile, the trend is towards higher vegetable and lower meat consumption. Even with an increased population, less land will be needed to grow our food. As well as reducing the need to protect green belts, that will also allow some of our countryside to be put under better environmental stewardship programs, returning much of it to managed nature. What countryside we have will be healthier and prettier, and people will be drawn to it more.

Improving social engineering

Some objections to green-field building can be reduced by making better use of available land. Large numbers of new homes are needed and they will certainly need some green field to be used, but given the factors already listed above, a larger number of smaller communities might be better approach. Amazingly, in spite of decades of dating technology proving that people can be matched up easily using AI, there is still no obvious use of similar technology to establish new communities by blending together people who are likely to form effective communities. Surely it must be feasible to advertise a new community building program that wants certain kinds of people in it – even an Australian style points system might work sometimes. Unless sociologists have done nothing for the past decades, they must surely know what types of people work well together by now? If the right people live close to each other, social involvement will be high, loneliness low, health improved, care costs minimized, the need for longer distance travel reduced and environmental impact minimized. How hard can it be?

Improving building technology such as 3D printing and robotics will allow more rapid construction, so that when people are ready and willing to move, property suited to them can be available soon.

Lifestyle changes also mean that homes don’t need to be as big. A phone today does what used to need half a living room of technology and space. With wall-hung displays and augmented reality, decor can be partly virtual, and even a 450 sq ft apartment is fine as a starter place, half as big as was needed a few decades ago, and that could be 3D printed and kitted out in a few days.

Even demographic changes favor smaller communities. As wealth increases, people have smaller families, i.e fewer kids. That means fewer years doing the school run, so less travel, less need to be in a town. Smaller schools in smaller communities can still access specialist lessons via the net.

Increasing wealth also encourages and enables people to a higher quality of life. People who used to live in a crowded city street might prefer a more peaceful and spacious existence in a more rural setting and will increasingly be able to afford to move. Short term millennial frustrations with property prices won’t last, as typical 2.5% annual growth more than doubles wealth by 2050 (though automation and its assorted consequences will impact on the distribution of that wealth).

Off-grid technology

Whereas one of the main reasons to live in urban areas was easy access to telecomms, energy and water supply and sewerage infrastructure, all of these can now be achieved off-grid. Mobile networks provide even broadband access to networks. Solar or wind provide easy energy supply. Water can be harvested out of the air even in arid areas (http://www.dailymail.co.uk/sciencetech/article-5840997/The-solar-powered-humidity-harvester-suck-drinkable-water-AIR.html) and human and pet waste can be used as biomass for energy supply too, leaving fertilizer as residue.

There are also huge reasons that people won’t want to live in cities, and they will also cause deurbansisation.

The biggest by far in the problem of epidemics. As antibiotic resistance increases, disease will be a bigger problem. We may find good antibiotics alternatives but we may not. If not, then we may see some large cities where disease runs rampant and kills hundreds of thousands of people, perhaps even millions. Many scientists have listed pandemics among their top ten threats facing humanity. Obviously, being in a large city will incur a higher risk of becoming a victim, so once one or two incidents have occurred, many people will look for options to leave cities everywhere. Linked to this is bioterrorism, where the disease is deliberate, perhaps created in a garden shed by someone who learned the craft in one of today’s bio-hacking clubs. Disease might be aimed at a particular race, gender or lifestyle group or it may simply be designed to be as contagious and lethal as possible to everyone.

I’m still not saying we won’t have lots of people living in cities. I am saying that more people will feel less need to live in cities and will instead be able to find a small community where they can be happier in the countryside. Consequently, many will move out of cities, back to more rural living in smaller, friendlier communities that improving technology makes even more effective.

Urbanization will slow down, and may well go into reverse. We may reach peak city soon.

 

 

Some anti-futurology on The Age of the Universe

Confession: although I am a futurologist and look forwards most of the time, I also enjoy pre-history. In fact, my father is Dr Gordon Pearson, who won the Pomerance Award for his contributions to archaeology, producing a calibration curve for C14 proportion against the age of a sample, thereby facilitating many other researchers’ work on ancient civilization going back 50,000 years, and who was one of the first to measure accurately the correlation between sunspot activity and climate. I inherited his time-traveler gene and conventional generational inversion was then applied.

I wrote a short piece a month or two back on the acceleration of the universe

https://timeguide.wordpress.com/2017/03/23/explaining-accelerating-universe-expansion-without-dark-energy/

I have been irritated by the bad science that has jumped illogically to the conclusion of dark matter and dark energy as the reason for acceleration. Occam’s razor needed to be used so I took it out. I noted that as galaxies expand and move further away from each other, Higgs particle flux must fall so the mass of the galaxies must fall, so their speed must increase to conserve energy. Then I moved on to work that pays my bills. So I missed a bit. If my theory above is correct (and in that regard, I should note that I have forgotten much of the Physics I learned at university, and some of the rest is now wrong anyway), then it must also be true that the universe was accelerating much more slowly in the past when the galaxies were close together, and its mass must have been much higher.

So if you assume, as I now do, that when observing red shifts today, when we are moving faster than before due to that ongoing acceleration, that we are measuring higher speeds than those light emitting galaxies had when they emitted that light, and by assuming relatively constant mass, as is also seemingly assumed, then the earlier speeds must have been far less, therefore we must be looking at too steep a curve for backward extrapolation to the beginning. Therefore the estimate for the age of the universe of 13.82 Billion years is too low. I no longer have the maths skills or physics knowledge to calculate an age that takes my theory into account, but engineer’s intuition suggests it would be 15Bn years or possible even more.

As I’ve cautioned, perhaps you should take my theory with a pinch of salt. There is much I don’t understand. But I do understand enough to know that combinations of group-think and intense focus sometimes mean that scientists overlook gorillas standing right in front of them as they concentrate on their current equations. Unlikely as it is, I might possibly be right.

Just occasionally, everyone else IS wrong.

Explaining accelerating universe expansion without dark energy

I am not the only ex-physicist that doesn’t believe in dark matter or dark energy, or multiple universes. All of these are theoretically possible interpretations of the maths, but I do not believe they are interpretations appropriate to our universe. Like the concept of the ether, I expect they will be shown to be incorrect and replaced by explanations that don’t need such concepts.

There are already explanations for accelerating expansion that don’t rely on dark energy, such as relativity: https://astronomynow.com/2015/01/05/dark-energy-explained-by-relativistic-time-dilation/ (the title is confusing since the article explains why it isn’t needed).

My theory is even simpler and probably not original, but I can’t find any references to it on the first two pages of Google so either it’s novel or so wrong that it doesn’t even warrant mentions. Anyway, here it is, make up your own mind, it doesn’t even need equations to explain it:

As galaxies get further apart, the various field fluxes reduce with the square of distance – gravitational, electromagnetic, and so must the intergalactic portion of the Higgs flux. The Higgs field is what gives particles their mass. As the Higgs field declines, the mass of the particles in each galaxy must therefore drop too. If energy is to be conserved, then as mass declines, Galaxy speed must increase linearly with distance, as is the observation. QED.

State of the world in 2050

Some things are getting better, some worse. 2050 will be neither dystopian nor utopian. A balance of good and bad not unlike today, but with different goods and bads, and slightly better overall. More detail? Okay, for most of my followers, this will mostly collate things you may know already, but there’s no harm in a refresher Futures 101.

Health

We will have cost-effective and widespread cures or control for most cancers, heart disease, diabetes, dementia and most other killers. Quality-of-life diseases such as arthritis will also be controllable or curable. People will live longer and remain healthier for longer, with an accelerated decline at the end.

On the bad side, new diseases will exist, including mutated antibiotic-resistant versions of existing ones. There will still be occasional natural flu mutations and other viruses, and there will still be others arising from contacts between people and other animals that are more easily spread due to increased population, urbanization and better mobility. Some previously rare diseases will become big problems due to urbanization and mobility. Urbanization will be a challenge.

However, diagnostics will be faster and better, we will no longer be so reliant on antibiotics to fight back, and sterilisation techniques for hospitals will be much improved. So even with greater challenges, we will be able to cope fine most of the time with occasional headlines from epidemics.

A darker side is the increasing prospect for bio-terrorism, with man-made viruses deliberately designed to be highly lethal, very contagious and to withstand most conventional defenses, optimized for maximum and rapid spread by harnessing mobility and urbanization. With pretty good control or defense against most natural threats, this may well be the biggest cause of mass deaths in 2050. Bio-warfare is far less likely.

Utilizing other techs, these bio-terrorist viruses could be deployed by swarms of tiny drones that would be hard to spot until too late, and of course these could also be used with chemical weapons such as use of nerve gas. Another tech-based health threat is nanotechnology devices designed to invade the body, damage of destroy systems or even control the brain. It is easy to detect and shoot down macro-scale deployment weapons such as missiles or large drones but far harder to defend against tiny devices such as midge-sized drones or nanotech devices.

The overall conclusion on health is that people will mostly experience much improved lives with good health, long life and a rapid end. A relatively few (but very conspicuous) people will fall victim to terrorist attacks, made far more feasible and effective by changing technology and demographics.

Loneliness

An often-overlooked benefit of increasing longevity is the extending multi-generational family. It will be commonplace to have great grandparents and great-great grandparents. With improved health until near their end, these older people will be seen more as welcome and less as a burden. This advantage will be partly offset by increasing global mobility, so families are more likely to be geographically dispersed.

Not everyone will have close family to enjoy and to support them. Loneliness is increasing even as we get busier, fuller lives. Social inclusion depends on a number of factors, and some of those at least will improve. Public transport that depends on an elderly person walking 15 minutes to a bus stop where they have to wait ages in the rain and wind for a bus on which they are very likely to catch a disease from another passenger is really not fit for purpose. Such primitive and unsuitable systems will be replaced in the next decades by far more socially inclusive self-driving cars. Fleets of these will replace buses and taxis. They will pick people up from their homes and take them all the way to where they need to go, then take them home when needed. As well as being very low cost and very environmentally friendly, they will also have almost zero accident rates and provide fast journey times thanks to very low congestion. Best of all, they will bring easier social inclusion to everyone by removing the barriers of difficult, slow, expensive and tedious journeys. It will be far easier for a lonely person to get out and enjoy cultural activity with other people.

More intuitive social networking, coupled to augmented and virtual reality environments in which to socialize will also mean easier contact even without going anywhere. AI will be better at finding suitable companions and lovers for those who need assistance.

Even so, some people will not benefit and will remain lonely due to other factors such as poor mental health, lack of social skills, or geographic isolation. They still do not need to be alone. 2050 will also feature large numbers of robots and AIs, and although these might not be quite so valuable to some as other human contact, they will be a pretty good substitute. Although many will be functional, cheap and simply fit for purpose, those designed for companionship or home support functions will very probably look human and behave human. They will have good intellectual and emotional skills and will be able to act as a very smart executive assistant as well as domestic servant and as a personal doctor and nurse, even as a sex partner if needed.

It would be too optimistic to say we will eradicate loneliness by 2050 but we can certainly make a big dent in it.

Poverty

Technology progress will greatly increase the size of the global economy. Even with the odd recession our children will be far richer than our parents. It is reasonable to expect the total economy to be 2.5 times bigger than today’s by 2050. That just assumes an average growth of about 2.5% which I think is a reasonable estimate given that technology benefits are accelerating rather than slowing even in spite of recent recession.

While we define poverty level as a percentage of average income, we can guarantee poverty will remain even if everyone lived like royalty. If average income were a million dollars per year, 60% of that would make you rich by any sensible definition but would still qualify as poverty by the ludicrous definition based on relative income used in the UK and some other countries. At some point we need to stop calling people poor if they can afford healthy food, pay everyday bills, buy decent clothes, have a decent roof over their heads and have an occasional holiday. With the global economy improving so much and so fast, and with people having far better access to markets via networks, it will be far easier for people everywhere to earn enough to live comfortably.

In most countries, welfare will be able to provide for those who can’t easily look after themselves at a decent level. Ongoing progress of globalization of compassion that we see today will likely make a global welfare net by 2050. Everyone won’t be rich, and some won’t even be very comfortable, but I believe absolute poverty will be eliminated in most countries, and we can ensure that it will be possible for most people to live in dignity. I think the means, motive and opportunity will make that happen, but it won’t reach everyone. Some people will live under dysfunctional governments that prevent their people having access to support that would otherwise be available to them. Hopefully not many. Absolute poverty by 2050 won’t be history but it will be rare.

In most developed countries, the more generous welfare net might extend to providing a ‘citizen wage’ for everyone, and the level of that could be the same as average wage is today. No-one need be poor in 2050.

Environment

The environment will be in good shape in 2050. I have no sympathy with doom mongers who predict otherwise. As our wealth increases, we tend to look after the environment better. As technology improves, we will achieve a far higher standards of living while looking after the environment. Better mining techniques will allow more reserves to become economic, we will need less resource to do the same job better, reuse and recycling will make more use of the same material.

Short term nightmares such as China’s urban pollution levels will be history by 2050. Energy supply is one of the big contributors to pollution today, but by 2050, combinations of shale gas, nuclear energy (uranium and thorium), fusion and solar energy will make up the vast bulk of energy supply. Oil and unprocessed coal will mostly be left in the ground, though bacterial conversion of coal into gas may well be used. Oil that isn’t extracted by 2030 will be left there, too expensive compared to making the equivalent energy by other means. Conventional nuclear energy will also be on its way to being phased out due to cost. Energy from fusion will only be starting to come on stream everywhere but solar energy will be cheap to harvest and high-tech cabling will enable its easier distribution from sunny areas to where it is needed.

It isn’t too much to expect of future governments that they should be able to negotiate that energy should be grown in deserts, and food crops grown on fertile land. We should not use fertile land to place solar panels, nor should we grow crops to convert to bio-fuel when there is plenty of sunny desert of little value otherwise on which to place solar panels.

With proper stewardship of agricultural land, together with various other food production technologies such as hydroponics, vertical farms and a lot of meat production via tissue culturing, there will be more food per capita than today even with a larger global population. In fact, with a surplus of agricultural land, some might well be returned to nature.

In forests and other ecosystems, technology will also help enormously in monitoring eco-health, and technologies such as genetic modification might be used to improve viability of some specie otherwise threatened.

Anyone who reads my blog regularly will know that I don’t believe climate change is a significant problem in the 2050 time frame, or even this century. I won’t waste any more words on it here. In fact, if I have to say anything, it is that global cooling is more likely to be a problem than warming.

Food and Water

As I just mentioned in the environment section, we will likely use deserts for energy supply and fertile land for crops. Improving efficiency and density will ensure there is far more capability to produce food than we need. Many people will still eat meat, but some at least will be produced in factories using processes such as tissue culturing. Meat pastes with assorted textures can then be used to create a variety of forms of processed meats. That might even happen in home kitchens using 3D printer technology.

Water supply has often been predicted by futurists as a cause of future wars, but I disagree. I think that progress in desalination is likely to be very rapid now, especially with new materials such as graphene likely to come on stream in bulk.  With easy and cheap desalination, water supply should be adequate everywhere and although there may be arguments over rivers I don’t think the pressures are sufficient by themselves to cause wars.

Privacy and Freedom

In 2016, we’re seeing privacy fighting a losing battle for survival. Government increases surveillance ubiquitously and demands more and more access to data on every aspect of our lives, followed by greater control. It invariably cites the desire to control crime and terrorism as the excuse and as they both increase, that excuse will be used until we have very little privacy left. Advancing technology means that by 2050, it will be fully possible to implement thought police to check what we are thinking, planning, desiring and make sure it conforms to what the authorities have decided is appropriate. Even the supposed servant robots that live with us and the AIs in our machines will keep official watch on us and be obliged to report any misdemeanors. Back doors for the authorities will be in everything. Total surveillance obliterates freedom of thought and expression. If you are not free to think or do something wrong, you are not free.

Freedom is strongly linked to privacy. With laws in place and the means to police them in depth, freedom will be limited to what is permitted. Criminals will still find ways to bypass, evade, masquerade, block and destroy and it hard not to believe that criminals will be free to continue doing what they do, while law-abiding citizens will be kept under strict supervision. Criminals will be free while the rest of us live in a digital open prison.

Some say if you don’t want to do wrong, you have nothing to fear. They are deluded fools. With full access to historic electronic records going back to now or earlier, it is not only today’s laws and guidelines that you need to be compliant with but all the future paths of the random walk of political correctness. Social networks can be fiercer police than the police and we are already discovering that having done something in the distant past under different laws and in different cultures is no defense from the social networking mobs. You may be free technically to do or say something today, but if it will be remembered for ever, and it will be, you also need to check that it will probably always be praiseworthy.

I can’t counterbalance this section with any positives. I’ve side before that with all the benefits we can expect, we will end up with no privacy, no freedom and the future will be a gilded cage.

Science and the arts

Yes they do go together. Science shows us how the universe works and how to do what we want. The arts are what we want to do. Both will flourish. AI will help accelerate science across the board, with a singularity actually spread over decades. There will be human knowledge but a great deal more machine knowledge which is beyond un-enhanced human comprehension. However, we will also have the means to connect our minds to the machine world to enhance our senses and intellect, so enhanced human minds will be the norm for many people, and our top scientists and engineers will understand it. In fact, it isn’t safe to develop in any other way.

Science and technology advances will improve sports too, with exoskeletons, safe drugs, active skin training acceleration and virtual reality immersion.

The arts will also flourish. Self-actualization through the arts will make full use of AI assistance. a feeble idea enhanced by and AI assistant can become a work of art, a masterpiece. Whether it be writing or painting, music or philosophy, people will be able to do more, enjoy more, appreciate more, be more. What’s not to like?

Space

by 2050, space will be a massive business in several industries. Space tourism will include short sub-orbital trips right up to lengthy stays in space hotels, and maybe on the moon for the super-rich at least.

Meanwhile asteroid mining will be under way. Some have predicted that this will end resource problems here on Earth, but firstly, there won’t be any resource problems here on Earth, and secondly and most importantly, it will be far too expensive to bring materials back to Earth, and almost all the resources mined will be used in space, to make space stations, vehicles, energy harvesting platforms, factories and so on. Humans will be expanding into space rapidly.

Some of these factories and vehicles and platforms and stations will be used for science, some for tourism, some for military purposes. Many will be used to offer services such as monitoring, positioning, communications just as today but with greater sophistication and detail.

Space will be more militarized too. We can hope that it will not be used in actual war, but I can’t honestly predict that one way or the other.

 

Migration

If the world around you is increasingly unstable, if people are fighting, if times are very hard and government is oppressive, and if there is a land of milk and honey not far away that you can get to, where you can hope for a much better, more prosperous life, free of tyranny, where instead of being part of the third world, you can be in the rich world, then you may well choose to take the risks and traumas associated with migrating. Increasing population way ahead of increasing wealth in Africa, and a drop in the global need for oil will both increase problems in the Middle East and North Africa. Add to that vicious religious sectarian conflict and a great many people will want to migrate indeed. The pressures on Europe and America to accept several millions more migrants will be intense.

By 2050, these regions will hopefully have ended their squabbles, and some migrants will return to rebuild, but most will remain in their new homes.

Most of these migrants will not assimilate well into their new countries but will mainly form their own communities where they can have a quite separate culture, and they will apply pressure to be allowed to self-govern. A self-impose apartheid will result. It might if we are lucky gradually diffuse as religion gradually becomes less important and the western lifestyle becomes more attractive. However, there is also a reinforcing pressure, with this self-exclusion and geographic isolation resulting in fewer opportunities, less mixing with others and therefore a growing feeling of disadvantage, exclusion and victimization. Tribalism becomes reinforced and opportunities for tension increase. We already see that manifested well in  the UK and other European countries.

Meanwhile, much of the world will be prosperous, and there will be many more opportunities for young capable people to migrate and prosper elsewhere. An ageing Europe with too much power held by older people and high taxes to pay for their pensions and care might prove a discouragement to stay, whereas the new world may offer increasing prospects and lowering taxes, and Europe and the USA may therefore suffer a large brain drain.

Politics

If health care is better and cheaper thanks to new tech and becomes less of a political issue; if resources are abundantly available, and the economy is healthy and people feel wealthy enough and resource allocation and wealth distribution become less of a political issue; if the environment is healthy; if global standards of human rights, social welfare and so on are acceptable in most regions and if people are freer to migrate where they want to go; then there may be a little less for countries to fight over. There will be a little less ‘politics’ overall. Most 2050 political arguments and debates will be over social cohesion, culture, generational issues, rights and so on, not health, defence, environment, energy or industry

We know from history that that is no guarantee of peace. People disagree profoundly on a broad range of issues other than life’s basic essentials. I’ve written a few times on the increasing divide and tensions between tribes, especially between left and right. I do think there is a strong chance of civil war in Europe or the USA or both. Social media create reinforcement of views as people expose themselves only to other show think the same, and this creates and reinforces and amplifies an us and them feeling. That is the main ingredient for conflict and rather than seeing that and trying to diffuse it, instead we see left and right becoming ever more entrenched in their views. The current problems we see surrounding Islamic migration show the split extremely well. Each side demonizes the other, extreme camps are growing on both sides and the middle ground is eroding fast. Our leaders only make things worse by refusing to acknowledge and address the issues. I suggested in previous blogs that the second half of the century is when tensions between left and right might result in the Great Western War, but that might well be brought forward a decade or two by a long migration from an unstable Middle East and North Africa, which looks to worsen over the next decade. Internal tensions might build for another decade after that accompanied by a brain drain of the most valuable people, and increasing inter-generational tensions amplifying the left-right divide, with a boil-over in the 2040s. That isn’t to say we won’t see some lesser conflicts before then.

I believe the current tensions between the West, Russia and China will go through occasional ups and downs but the overall trend will be towards far greater stability. I think the chances of a global war will decrease rather than increase. That is just as well since future weapons will be far more capable of course.

So overall, the world peace background will improve markedly, but internal tensions in the West will increase markedly too. The result is that wars between countries or regions will be less likely but the likelihood of civil war in the West will be high.

Robots and AIs

I mentioned robots and AIs in passing in the loneliness section, but they will have strong roles in all areas of life. Many that are thought of simply as machines will act as servants or workers, but many will have advanced levels of AI (not necessarily on board, it could be in the cloud) and people will form emotional bonds with them. Just as important, many such AI/robots will be so advanced that they will have relationships with each other, they will have their own culture. A 21st century version of the debates on slavery is already happening today for sentient AIs even though we don’t have them yet. It is good to be prepared, but we don’t know for sure what such smart and emotional machines will want. They may not want the same as our human prejudices suggest they will, so they will need to be involved in debate and negotiation. It is almost certain that the upper levels of AIs and robots (or androids more likely) will be given some rights, to freedom from pain and abuse, ownership of their own property, a degree of freedom to roam and act of their own accord, the right to pursuit of happiness. They will also get the right to government representation. Which other rights they might get is anyone’s guess, but they will change over time mainly because AIs will evolve and change over time.

OK, I’ve rambled on long enough and I’ve addressed some of the big areas I think. I have ignored a lot more, but it’s dinner time.

A lot of things will be better, some things worse, probably a bit better overall but with the possibility of it all going badly wrong if we don’t get our act together soon. I still think people in 2050 will live in a gilded cage.

Paris – Climate Change v Islamism. Which problem is biggest?

Imagine you are sitting peacefully at home watching a movie with your family. A few terrorists with guns burst in. They start shooting. What is your reaction?

Option A) you tell your family not to do anything but to continue watching TV, because reacting would be giving in to the terrorists – they want you to be angry and try to attack them, but you are the better person, you have the moral superiority and won’t stoop to their level. Anyway, attacking them might anger them more and they might be even more violent. You tell your family they should all stick together and show the terrorists they can’t win and can’t change your way of life by just carrying on as before. You watch as one by one, each of your kids is murdered, determined to occupy the moral high ground until they shoot you too.

Option B) you understand that what the terrorists want is for you and your family to be dead. So you grab whatever you can that might act as some sort of weapon and rush at the terrorists, trying to the end to disarm them and protect your family.  If you survive, you then do all you can to prevent other terrorists from coming into your home. Then you do all you can to identify where they are coming from and root them out.

The above choice is a little simplistic but it highlights the key points of the two streams of current opinion on the ‘right’ response.

Option B recognizes that you have to remain alive to defend your principles. Once you’ve dealt with the threat, then you are free to build as many ivory towers and moral pedestals as you want. Option A simply lets the terrorists win.

There is no third option for discussing it peacefully over a nice cup of tea, no option for peace and love and mutual respect for all. ISIS are not interested in peace and love. They are barbarians with the utmost contempt for civilization who want to destroy everything that doesn’t fit into their perverted interpretation of an Islamic world. However, ISIS is just one Islamist terror group of course and if we are successful in conquering them, and then Al Qaeda and Boko Haram, and so on, other Islamist groups will emerge. Islamism is the problem, ISIS is just the worst current group. We need to deal with it.

I’ll draw out some key points from my previous blogs. If you want more detail on the future of ISIS look at https://timeguide.wordpress.com/2015/07/13/the-future-of-isis/

The situation in Europe shows a few similarities with the IRA conflict, with the advantage today that we are still in the early stages of Islamist violence. In both cases, the terrorists themselves are mostly no-hoper young men with egos out of alignment with their personal reality. Yes there are a few women too. They desperately want to be respected, but with no education and no skills, a huge chip on their shoulder and a bad attitude, ordinary life offers them few opportunities. With both ISIS and the IRA, the terrorists are drawn from a community that considers itself disadvantaged. Add a hefty amount of indoctrination about how terribly unfair the world is, the promise of being a hero, going down in history as a martyr and the promise of 72 virgins to play with in the afterlife, and the offer to pick up a gun or a knife apparently seems attractive to some. The IRA recruited enough fighters even without the promise of the virgins.

The IRA had only about 300 front-line terrorists at any time, but they came from the nationalist community of which an estimated 30% of people declared some sympathy for them. Compare that with a BBC survey earlier this year that found that in the aftermath of the Charlie Hebdo attacks, only 68% of Muslims agreed with the statement “Acts of violence against those who publish images of the Prophet Mohammed can never be justified”. 68% and 70% are pretty close, so I’ll charitably accept that the 68% were being honest and not simply trying to disassociate themselves from the Paris massacre. The overwhelming majority of British Muslims rejecting violence – two thirds in the BBC survey, is entirely consistent with other surveys on Muslim attitudes around the world, and probably a reasonable figure for Muslims across Europe. Is the glass half full or half empty? Your call.

The good news is the low numbers that become actual front-line terrorists. Only 0.122% of the nationalist community in Northern Ireland at any particular time were front-line IRA terrorists. Now that ISIS are asking potential recruits not to go to Syria but to stay where they are and do their thing there, we should consider how many there might be. If we are lucky and the same 0.122% applies to our three million UK Muslims, then about 3600 are potential Islamist terrorists. That’s about 12 times bigger than the IRA problem if ISIS or other Islamist groups get their acts together. With 20 million Muslims in Europe, that would make for potentially 24,000 Islamist terrorists, or 81 IRAs to put it another way. Most can travel freely between countries.

What of immigration then? People genuinely fleeing violence presumably have lower support for it, but they are only a part of the current influx. Many are economic migrants and they probably conform more closely to the norm. We also know that some terrorists are hiding among other migrants, and indeed at least two of those were involved in the latest Paris massacre. Most of the migrants are young men, so that would tend to skew the problem upwards too. With forces acting in both directions, it’s probably not unreasonable as a first guess to assume the same overall support levels. According to the BBC, 750,000 have entered Europe this year, so that means another 900 potential terrorists were likely in their midst. Europe is currently importing 3 IRAs every year.

Meanwhile, it is rather ironic that many of the current migrants are coming because Angela Merkel felt guilty about the Holocaust. Many Jews are now leaving Europe because they no longer feel safe because of the rapidly rising numbers of attacks by the Islamists she has encouraged to come.

So, the first Paris issue is Islamism, already at 81 potential IRAs and growing at 3 IRAs per year, plus a renewed exodus of Jews due to widespread increasing antisemitism.

So, to the other Paris issue, climate change. I am not the only one annoyed by the hijacking of the environment by leftist pressure groups, because the poor quality of analysis and policies resulting from that pressure ultimately harms both the environment and the poor.

The world has warmed since the last ice age. Life has adjusted throughout to that continuing climate change. Over the last century, sea level has steadily increased, and is still increasing at the same rate now. The North Pole ice has shrunk, to 8.5% to 11% below normal at the moment depending whose figures you look at, but it certainly isn’t disappearing any time soon. However, Antarctic sea ice  has grown to 17% to 25% above normal again depending whose figures you look at, so there is more ice than normal overall. Temperature has also increased over the last century, with a few spurts and a few slowdowns. The last spurt was late 70s to late 90s, with a slowdown since. CO2 levels have rocketed up relentlessly, but satellite-measured temperature hasn’t moved at all since 1998. Only when figures are tampered with is any statistically significant rise visible.

Predictions by climate models have almost all been far higher than the empirical data. In any other branch of science, that would mean throwing theories away and formulating better ones. In climate science, numerous adjustments by alleged ‘climate scientists’ show terrible changes ahead; past figures have invariably been adjusted downwards and recent ones upwards to make the rises seem larger. Climate scientists have severely damaged the reputation of science in every field. The public now distrusts all scientists less and disregard for scientific advice in lifestyle, nutrition, exercise and medication will inevitably lead to an increase in deaths.

Everyone agrees that CO2 is a greenhouse gas and increases will have a forcing effect on temperature, but there is strong disagreement about the magnitude of that effect, the mechanisms and magnitudes of the feedback processes throughout the environmental system, and both the mechanisms and magnitudes of a wide range of natural effects. It is increasingly obvious that climate scientists only cover a subset of the processes affecting climate, but they seem contemptuous of science in other disciplines such as astrophysics that cover important factors such as solar cycles. There is a strong correlation between climate and solar cycles historically but the mechanisms are complex and not yet fully understood. It is also increasingly obvious that many climate scientists are less concerned about the scientific integrity of their ‘research’ than maintaining a closed shop, excluding those who disagree with them, getting the next grant or pushing a political agenda.

Empirical data suggests that the forcing factor of CO2 itself is not as high as assumed in most models, and the very many feedbacks are far more complex than assumed in most models.

CO2 is removed from the environment by natural processes of adaptation faster than modeled – e.g. plants and algae grow faster, and other natural processes such as solar or ocean cycles have far greater effects than assumed in the models. Recent research suggests that it has a ‘half-life’ in the atmosphere only of around 40 years, not the 1000 years claimed by ‘climate scientists’. That means that the problem will go away far faster when we fix it than has been stated.

CO2 is certainly a greenhouse gas, and we should not be complacent about generating it, but on current science (before tampering) it seems there is absolutely no cause for urgent action. It is right to look to future energy sources and move away from fossil fuels, which also cause other large environmental problems, not least of which the particulates that kill millions of people every year. Meanwhile, we should expedite movement from coal and oil to low carbon fossil fuels such as shale gas.

As is often observed, sunny regions such as the Sahara could easily produce enough solar energy for all of Europe, but there is no great hurry so we can wait for the technology to become sufficiently cheap and for the political stability in appropriate areas to be addressed so that large solar farms can be safely developed and supply maintained. Meanwhile, southern Europe is reasonably sunny, politically stable and needs cash. Other regions also have sunny deserts to support them. We will also have abundant fusion energy in the 2nd half of the century. So we have no long term energy problem. Solar/fusion energy will eventually be cheap and abundant, and at an equivalent of less than $30 per barrel of oil, we won’t bother using fossil fuels because they will be too expensive compared to alternatives. The problems we do have in energy supply are short term and mostly caused by idiotic green policies that worsen supply, costs and environmental impact. It is hard to think of a ‘green’ policy that actually works.

The CO2 problem will go away in the long term due to nothing but simple economics and market effects. In the short term, we don’t see a measurable problem due to a happy coincidence of solar cycles and ocean cycles counteracting the presumed warming forcing of the CO2. There is absolutely no need to rush into massively problematic taxes and subsidies for immature technology. The social problems caused by short term panic are far worse than the problem they are meant to fix. Increased food prices have been caused by regulation to enforce use of biofuels. Ludicrously stupid carbon offset programs have led to chopping down of rain forests, draining of peat bogs and forced relocation of local peoples, and after all tat have actually increased CO2 emissions. Lately, carbon taxes in the UK, far higher than elsewhere, have led to collapse of the aluminium and steel industries, while the products have still been produced elsewhere at higher CO2 cost. Those made redundant are made even poorer because they have to pay higher prices for energy thanks to enormous subsidies to rich people who own wind or solar farms. Finally, closing down fossil fuel plants before we have proper substitutes in place and then asking wind farm owners to accept even bigger subsidies to put in diesel generators for use on calm  and dull days is the politics of the asylum. Green policies perform best at transferring money from poor to rich, with environmental damage seemingly a small price to pay for a feel-good factor..

Call me a skeptic or a denier or whatever you want if you like. I am technically ‘luke warm’. There is a problem with CO2, but not a big one, and it will go away all by itself. There is no need for political interference and that which we have seen so far has made far worse problems for both people and the environment than climate change would ever have done. Our politicians would do a far better job if they did nothing at all.

So, Paris then. On one hand we have a minor problem from CO2 emissions that will go away fastest with the fewest problems if our politicians do nothing at all. On the other hand, their previous mistakes have already allowed the Islamist terrorist equivalent of 81 IRAs to enter Europe and the current migrant flux is increasing that by 3 IRAs per year. That does need to be addressed, quickly and effectively.

Perhaps they should all stay in Paris but change the subject.

 

How nigh is the end?

“We’re doomed!” is a frequently recited observation. It is great fun predicting the end of the world and almost as much fun reading about it or watching documentaries telling us we’re doomed. So… just how doomed are we? Initial estimate: Maybe a bit doomed. Read on.

My 2012 blog https://timeguide.wordpress.com/2012/07/03/nuclear-weapons/ addressed some of the possibilities for extinction-level events possibly affecting us. I recently watched a Top 10 list of threats to our existence on TV and it was similar to most you’d read, with the same errors and omissions – nuclear war, global virus pandemic, terminator scenarios, solar storms, comet or asteroid strikes, alien invasions, zombie viruses, that sort of thing. I’d agree that nuclear war is still the biggest threat, so number 1, and a global pandemic of a highly infectious and lethal virus should still be number 2. I don’t even need to explain either of those, we all know why they are in 1st and 2nd place.

The TV list included a couple that shouldn’t be in there.

One inclusion was an mega-eruption of Yellowstone or another super-volcano. A full-sized Yellowstone mega-eruption would probably kill millions of people and destroy much of civilization across a large chunk of North America, but some of us don’t actually live in North America and quite a few might well survive pretty well, so although it would be quite annoying for Americans, it is hardly a TEOTWAWKI threat. It would have big effects elsewhere, just not extinction-level ones. For most of the world it would only cause short-term disruptions, such as economic turbulence, at worst it would start a few wars here and there as regions compete for control in the new world order.

Number 3 on their list was climate change, which is an annoyingly wrong, albeit a popularly held inclusion. The only climate change mechanism proposed for catastrophe is global warming, and the reason it’s called climate change now is because global warming stopped in 1998 and still hasn’t resumed 17 years and 9 months later, so that term has become too embarrassing for doom mongers to use. CO2 is a warming agent and emissions should be treated with reasonable caution, but the net warming contribution of all the various feedbacks adds up to far less than originally predicted and the climate models have almost all proven far too pessimistic. Any warming expected this century is very likely to be offset by reduction in solar activity and if and when it resumes towards the end of the century, we will long since have migrated to non-carbon energy sources, so there really isn’t a longer term problem to worry about. With warming by 2100 pretty insignificant, and less than half a metre sea level rise, I certainly don’t think climate change deserves to be on any list of threats of any consequence in the next century.

The top 10 list missed two out by including climate change and Yellowstone, and my first replacement candidate for consideration might be the grey goo scenario. The grey goo scenario is that self-replicating nanobots manage to convert everything including us into a grey goo.  Take away the silly images of tiny little metal robots cutting things up atom by atom and the laughable presentation of this vanishes. Replace those little bots with bacteria that include electronics, and are linked across their own cloud to their own hive AI that redesigns their DNA to allow them to survive in any niche they find by treating the things there as food. When existing bacteria find a niche they can’t exploit, the next generation adapts to it. That self-evolving smart bacteria scenario is rather more feasible, and still results in bacteria that can conquer any ecosystem they find. We would find ourselves unable to fight back and could be wiped out. This isn’t very likely, but it is feasible, could happen by accident or design on our way to transhumanism, and might deserve a place in the top ten threats.

However, grey goo is only one of the NBIC convergence risks we have already imagined (NBIC= Nano-Bio-Info-Cogno). NBIC is a rich seam for doom-seekers. In there you’ll find smart yogurt, smart bacteria, smart viruses, beacons, smart clouds, active skin, direct brain links, zombie viruses, even switching people off. Zombie viruses featured in the top ten TV show too, but they don’t really deserve their own category and more than many other NBIC derivatives. Anyway, that’s just a quick list of deliberate end of world solutions – there will be many more I forgot to include and many I haven’t even thought of yet. Then you have to multiply the list by 3. Any of these could also happen by accident, and any could also happen via unintended consequences of lack of understanding, which is rather different from an accident but just as serious. So basically, deliberate action, accidents and stupidity are three primary routes to the end of the world via technology. So instead of just the grey goo scenario, a far bigger collective threat is NBIC generally and I’d add NBIC collectively into my top ten list, quite high up, maybe 3rd after nuclear war and global virus. AI still deserves to be a separate category of its own, and I’d put it next at 4th.

Another class of technology suitable for abuse is space tech. I once wrote about a solar wind deflector using high atmosphere reflection, and calculated it could melt a city in a few minutes. Under malicious automated control, that is capable of wiping us all out, but it doesn’t justify inclusion in the top ten. One that might is the deliberate deflection of a large asteroid to impact on us. If it makes it in at all, it would be at tenth place. It just isn’t very likely someone would do that.

One I am very tempted to include is drones. Little tiny ones, not the Predators, and not even the ones everyone seems worried about at the moment that can carry 2kg of explosives or Anthrax into the midst of football crowds. Tiny drones are far harder to shoot down, but soon we will have a lot of them around. Size-wise, think of midges or fruit flies. They could be self-organizing into swarms, managed by rogue regimes, terrorist groups, or set to auto, terminator style. They could recharge quickly by solar during short breaks, and restock their payloads from secret supplies that distribute with the swarm. They could be distributed globally using the winds and oceans, so don’t need a plane or missile delivery system that is easily intercepted. Tiny drones can’t carry much, but with nerve gas or viruses, they don’t have to. Defending against such a threat is easy if there is just one, you can swat it. If there is a small cloud of them, you could use a flamethrower. If the sky is full of them and much of the trees and the ground infested, it would be extremely hard to wipe them out. So if they are well designed to cause an extinction level threat, as MAD 2.0 perhaps, then this would be way up in the top tem too, 5th.

Solar storms could wipe out our modern way of life by killing our IT. That itself would kill many people, via riots and fights for the last cans of beans and bottles of water. The most serious solar storms could be even worse. I’ll keep them in my list, at 6th place

Global civil war could become an extinction level event, given human nature. We don’t have to go nuclear to kill a lot of people, and once society degrades to a certain level, well we’ve all watched post-apocalypse movies or played the games. The few left would still fight with each other. I wrote about the Great Western War and how it might result, see

https://timeguide.wordpress.com/2013/12/19/machiavelli-and-the-coming-great-western-war/

and such a thing could easily spread globally. I’ll give this 7th place.

A large asteroid strike could happen too, or a comet. Ones capable of extinction level events shouldn’t hit for a while, because we think we know all the ones that could do that. So this goes well down the list at 8th.

Alien invasion is entirely possible and could happen at any time. We’ve been sending out radio signals for quite a while so someone out there might have decided to come see whether our place is nicer than theirs and take over. It hasn’t happened yet so it probably won’t, but then it doesn’t have to be very probably to be in the top ten. 9th will do.

High energy physics research has also been suggested as capable of wiping out our entire planet via exotic particle creation, but the smart people at CERN say it isn’t very likely. Actually, I wasn’t all that convinced or reassured and we’ve only just started messing with real physics so there is plenty of time left to increase the odds of problems. I have a spare place at number 10, so there it goes, with a totally guessed probability of physics research causing a problem every 4000 years.

My top ten list for things likely to cause human extinction, or pretty darn close:

  1. Nuclear war
  2. Highly infectious and lethal virus pandemic
  3. NBIC – deliberate, accidental or lack of foresight (includes smart bacteria, zombie viruses, mind control etc)
  4. Artificial Intelligence, including but not limited to the Terminator scenario
  5. Autonomous Micro-Drones
  6. Solar storm
  7. Global civil war
  8. Comet or asteroid strike
  9. Alien Invasion
  10. Physics research

Not finished yet though. My title was how nigh is the end, not just what might cause it. It’s hard to assign probabilities to each one but someone’s got to do it.  So, I’ll make an arbitrarily wet finger guess in a dark room wearing a blindfold with no explanation of my reasoning to reduce arguments, but hey, that’s almost certainly still more accurate than most climate models, and some people actually believe those. I’m feeling particularly cheerful today so I’ll give my most optimistic assessment.

So, with probabilities of occurrence per year:

  1. Nuclear war:  0.5%
  2. Highly infectious and lethal virus pandemic: 0.4%
  3. NBIC – deliberate, accidental or lack of foresight (includes smart bacteria, zombie viruses, mind control etc): 0.35%
  4. Artificial Intelligence, including but not limited to the Terminator scenario: 0.25%
  5. Autonomous Micro-Drones: 0.2%
  6. Solar storm: 0.1%
  7. Global civil war: 0.1%
  8. Comet or asteroid strike 0.05%
  9. Alien Invasion: 0.04%
  10. Physics research: 0.025%

I hope you agree those are all optimistic. There have been several near misses in my lifetime of number 1, so my 0.5% could have been 2% or 3% given the current state of the world. Also, 0.25% per year means you’d only expect such a thing to happen every 4 centuries so it is a very small chance indeed. However, let’s stick with them and add them up. The cumulative probability of the top ten is 2.015%. Lets add another arbitrary 0.185% for all the risks that didn’t make it into the top ten, rounding the total up to a nice neat 2.2% per year.

Some of the ones above aren’t possible quite yet, but others will vary in probability year to year, but I think that won’t change the guess overall much. If we take a 2.2% probability per year, we have an expectation value of 45.5 years for civilization life expectancy from now. Expectation date for human extinction:

2015.5 + 45.5 years= 2061,

Obviously the probability distribution extends from now to eternity, but don’t get too optimistic, because on these figures there currently is only a 15% chance of surviving past this century.

If you can think of good reasons why my figures are far too pessimistic, by all means make your own guesses, but make them honestly, with a fair and reasonable assessment of how the world looks socially, religiously, politically, the quality of our leaders, human nature etc, and then add them up. You might still be surprised how little time we have left.

I’ll revise my original outlook upwards from ‘a bit doomed’.

We’re reasonably doomed.

The future of beetles

Onto B then.

One of the first ‘facts’ I ever learned about nature was that there were a million species of beetle. In the Google age, we know that ‘scientists estimate there are between 4 and 8 million’. Well, still lots then.

Technology lets us control them. Beetles provide a nice platform to glue electronics onto so they tend to fall victim to cybernetics experiments. The important factor is that beetles come with a lot of built-in capability that is difficult or expensive to build using current technology. If they can be guided remotely by over-riding their own impulses or even misleading their sensors, then they can be used to take sensors into places that are otherwise hard to penetrate. This could be for finding trapped people after an earthquake, or getting a dab of nerve gas onto a president. The former certainly tends to be the favored official purpose, but on the other hand, the fashionable word in technology circles this year is ‘nefarious’. I’ve read it more in the last year than the previous 50 years, albeit I hadn’t learned to read for some of those. It’s a good word. Perhaps I just have a mad scientist brain, but almost all of the uses I can think of for remote-controlled beetles are nefarious.

The first properly publicized experiment was 2009, though I suspect there were many unofficial experiments before then:

http://www.technologyreview.com/news/411814/the-armys-remote-controlled-beetle/

There are assorted YouTube videos such as

A more recent experiment:

http://www.wired.com/2015/03/watch-flying-remote-controlled-cyborg-bug/

http://www.telegraph.co.uk/news/science/science-news/11485231/Flying-beetle-remotely-controlled-by-scientists.html

Big beetles make it easier to do experiments since they can carry up to 20% of body weight as payload, and it is obviously easier to find and connect to things on a bigger insect, but obviously once the techniques are well-developed and miniaturization has integrated things down to single chip with low power consumption, we should expect great things.

For example, a cloud of redundant smart dust would make it easier to connect to various parts of a beetle just by getting it to take flight in the cloud. Bits of dust would stick to it and self-organisation principles and local positioning can then be used to arrange and identify it all nicely to enable control. This would allow large numbers of beetles to be processed and hijacked, ideal for mad scientists to be more time efficient. Some dust could be designed to burrow into the beetle to connect to inner parts, or into the brain, which obviously would please the mad scientists even more. Again, local positioning systems would be advantageous.

Then it gets more fun. A beetle has its own sensors, but signals from those could be enhanced or tweaked via cloud-based AI so that it can become a super-beetle. Beetles traditionally don’t have very large brains, so they can be added to remotely too. That doesn’t have to be using AI either. As we can also connect to other animals now, and some of those animals might have very useful instincts or skills, then why not connect a rat brain into the beetle? It would make a good team for exploring. The beetle can do the aerial maneuvers and the rat can control it once it lands, and we all know how good rats are at learning mazes. Our mad scientist friend might then swap over the management system to another creature with a more vindictive streak for the final assault and nerve gas delivery.

So, Coleoptera Nefarius then. That’s the cool new beetle on the block. And its nicer but underemployed twin Coleoptera Benignus I suppose.

 

Five new states of matter, maybe.

http://en.wikipedia.org/wiki/List_of_states_of_matter lists the currently known states of matter. I had an idea for five new ones, well, 2 anyway with 3 variants. They might not be possible but hey, faint heart ne’er won fair maid, and this is only a blog not a paper from CERN. But coincidentally, it is CERN most likely to be able to make them.

A helium atom normally has 2 electrons, in a single shell. In a particle model, they go round and round. However… the five new states:

A: I suspect this one is may already known but isn’t possible and is therefore just another daft idea. It’s just a planar superatom. Suppose, instead of going round and round the same atom, the nuclei were arranged in groups of three in a nice triangle, and 6 electrons go round and round the triplet. They might not be terribly happy doing that unless at high pressure with some helpful EM fields adjusting the energy levels required, but with a little encouragement, who knows, it might last long enough to be classified as matter.

B: An alternative that might be more stable is a quad of nuclei in a tetrahedron, with 8 electrons. This is obviously a variant of A so probably doesn’t really qualify as a separate one. But let’s call it a 3D superatom for now, unless it already has a proper name.

C: Suppose helium nuclei are neatly arranged in a row at a precise distance apart, and two orthogonal electron beams are fired past them at a certain distance on either side, with the electrons spaced and phased very nicely, so that for a short period at least, each of the nuclei has two electrons and the beam energy and nuclei spacing ensures that they don’t remain captive on one nucleus but are handed on to the next. You can do the difficult sums. To save you a few seconds, since the beams need to be orthogonal, you’ll need multiple beams in the direction orthogonal to the row,

D: Another cheat, a variant of C, C1: or you could make a few rows for a planar version with a grid of beams. Might be tricky to make the beams stay together for any distance so you could only make a small flake of such matter, but I can’t see an obvious reason why it would be impossible. Just tricky.

E: A second variant of C really, C2, with a small 3D speck of such nuclei and a grid of beams. Again, it works in my head.

Well, 5 new states of matter for you to play with. But here’s a free bonus idea:

The states don’t have to actually exist to be useful. Even with just the descriptions above, you could do the maths for these. They might not be physically achievable but that doesn’t stop them existing in a virtual world with a hypothetical future civilization making them. And given that they have that specific mathematics, and ergo a whole range of theoretical chemistry, and therefore hyperelectronics, they could therefore be used as simulated constructs in a Turing machine or actual constructs in quantum computers to achieve particular circuitry with particular virtues. You could certainly emulate it on a Yonck processor (see my blog on that). So you get a whole field of future computing and AI thrown in.

Blogging is all the fun with none of the hard work and admin. Perfect. And just in case someone does build it all, for the record, you saw it here first.

Technology 2040: Technotopia denied by human nature

This is a reblog of the Business Weekly piece I wrote for their 25th anniversary.

It’s essentially a very compact overview of the enormous scope for technology progress, followed by a reality check as we start filtering that potential through very imperfect human nature and systems.

25 years is a long time in technology, a little less than a third of a lifetime. For the first third, you’re stuck having to live with primitive technology. Then in the middle third it gets a lot better. Then for the last third, you’re mainly trying to keep up and understand it, still using the stuff you learned in the middle third.

The technology we are using today is pretty much along the lines of what we expected in 1990, 25 years ago. Only a few details are different. We don’t have 2Gb/s per second to the home yet and AI is certainly taking its time to reach human level intelligence, let alone consciousness, but apart from that, we’re still on course. Technology is extremely predictable. Perhaps the biggest surprise of all is just how few surprises there have been.

The next 25 years might be just as predictable. We already know some of the highlights for the coming years – virtual reality, augmented reality, 3D printing, advanced AI and conscious computers, graphene based materials, widespread Internet of Things, connections to the nervous system and the brain, more use of biometrics, active contact lenses and digital jewellery, use of the skin as an IT platform, smart materials, and that’s just IT – there will be similarly big developments in every other field too. All of these will develop much further than the primitive hints we see today, and will form much of the technology foundation for everyday life in 2040.

For me the most exciting trend will be the convergence of man and machine, as our nervous system becomes just another IT domain, our brains get enhanced by external IT and better biotech is enabled via nanotechnology, allowing IT to be incorporated into drugs and their delivery systems as well as diagnostic tools. This early stage transhumanism will occur in parallel with enhanced genetic manipulation, development of sophisticated exoskeletons and smart drugs, and highlights another major trend, which is that technology will increasingly feature in ethical debates. That will become a big issue. Sometimes the debates will be about morality, and religious battles will result. Sometimes different parts of the population or different countries will take opposing views and cultural or political battles will result. Trading one group’s interests and rights against another’s will not be easy. Tensions between left and right wing views may well become even higher than they already are today. One man’s security is another man’s oppression.

There will certainly be many fantastic benefits from improving technology. We’ll live longer, healthier lives and the steady economic growth from improving technology will make the vast majority of people financially comfortable (2.5% real growth sustained for 25 years would increase the economy by 85%). But it won’t be paradise. All those conflicts over whether we should or shouldn’t use technology in particular ways will guarantee frequent demonstrations. Misuses of tech by criminals, terrorists or ethically challenged companies will severely erode the effects of benefits. There will still be a mix of good and bad. We’ll have fixed some problems and created some new ones.

The technology change is exciting in many ways, but for me, the greatest significance is that towards the end of the next 25 years, we will reach the end of the industrial revolution and enter a new age. The industrial revolution lasted hundreds of years, during which engineers harnessed scientific breakthroughs and their own ingenuity to advance technology. Once we create AI smarter than humans, the dependence on human science and ingenuity ends. Humans begin to lose both understanding and control. Thereafter, we will only be passengers. At first, we’ll be paying passengers in a taxi, deciding the direction of travel or destination, but it won’t be long before the forces of singularity replace that taxi service with AIs deciding for themselves which routes to offer us and running many more for their own culture, on which we may not be invited. That won’t happen overnight, but it will happen quickly. By 2040, that trend may already be unstoppable.

Meanwhile, technology used by humans will demonstrate the diversity and consequences of human nature, for good and bad. We will have some choice of how to use technology, and a certain amount of individual freedom, but the big decisions will be made by sheer population numbers and statistics. Terrorists, nutters and pressure groups will harness asymmetry and vulnerabilities to cause mayhem. Tribal differences and conflicts between demographic, religious, political and other ideological groups will ensure that advancing technology will be used to increase the power of social conflict. Authorities will want to enforce and maintain control and security, so drones, biometrics, advanced sensor miniaturisation and networking will extend and magnify surveillance and greater restrictions will be imposed, while freedom and privacy will evaporate. State oppression is sadly as likely an outcome of advancing technology as any utopian dream. Increasing automation will force a redesign of capitalism. Transhumanism will begin. People will demand more control over their own and their children’s genetics, extra features for their brains and nervous systems. To prevent rebellion, authorities will have little choice but to permit leisure use of smart drugs, virtual escapism, a re-scoping of consciousness. Human nature itself will be put up for redesign.

We may not like this restricted, filtered, politically managed potential offered by future technology. It offers utopia, but only in a theoretical way. Human nature ensures that utopia will not be the actual result. That in turn means that we will need strong and wise leadership, stronger and wiser than we have seen of late to get the best without also getting the worst.

The next 25 years will be arguably the most important in human history. It will be the time when people will have to decide whether we want to live together in prosperity, nurturing and mutual respect, or to use technology to fight, oppress and exploit one another, with the inevitable restrictions and controls that would cause. Sadly, the fine engineering and scientist minds that have got us this far will gradually be taken out of that decision process.