Training
Today it takes many years of training to get to the top of any field of sports. In the future it could be a whole lot faster thanks to progress in three areas of technology – biotech, nanotech and IT. Miniaturisation in IT, thanks to nanotechnology, will continue to the point where electronics can be printed onto the skin surface. So you may get a display on your arm, like a video tattoo, showing you how well you are doing, showing your heart rate, temperature, blood chemistry and so on and displaying any relevant warnings. Not long after that, electronics can be blasted into the skin, so that it is contact with blood capillaries and nerve endings. With this technology, called Active Skin, athletes could have their body condition monitored all the way through a session to help optimise the balance of effort over the duration of the event and to help them choose the right dietary supplements. So problems of giving too much or too little at a particular point could be identified and fixed. But more excitingly, nerve signals could also be recorded from individual nerve endings, and recreated by computer later. So, a novice golfer or tennis player would try to copy the swing that their pro is showing them, and a computer could create nerve inputs, creating discomfort when they deviate from the perfect movement. So the perfect swing with feel right and any other will feel wrong. As an extra aid, active contact lenses will be able to create 3d images directly into the athlete’s eyes, showing them exactly what they are doing and superimposing what they should be doing. They would be able to see their body position precisely, with any deviations highlighted and amplified with mild discomfort. With practice, doing what feels right will generate the right movement every time. With such training aids, progress from novice to expert could be a matter of weeks rather than years. This will certainly help people to quickly reach their potential, and to get more out of the sports they participate in, but it will also allow the top pros to extract every last bit of potential from their bodies. If they could do a little better by changing one tiny little thing, the computer will be able to help identify it, and help them address the imperfection. So professional sport will improve too.
We’ll also see computer game technology coming down the same route. Physiotherapists are already using Wii machines to treat stroke patients by helping them learn movement again through sports games. Taking this forward, we will certainly start seeing some hybrid sport evolve, with lots of top level physical activity in combination with the computer game. Top skiers would be able to practice different runs all the year round, with the computer recreating all the sensations of doing it for real as well as the full 3d video. So by the time they even get there, they will have had hours of computer assisted training on the run. Who knows, maybe the top level of sports in the future might not even take place on real snow, but in fantastic computer simulations of imaginary, more challenging environments
Nutrition
Top performance depends on a lot of things, and getting proper nutrition is one of the most important, both during training and right up to the main event. At the moment, athletes don’t get enough data on exactly what happens in their bodies while they are performing. New technologies in the biotech industry will change that soon. Already, special chips, developed for genetic analysis, can identify chemicals with just a couple of molecules. As ongoing development inevitably takes this level of monitoring capability into everyday training, athletes will soon be able to see exactly how their body behaved all the way through a session. Even during a session, if something is running low, they could be warned, and perhaps change their behaviour accordingly. Computers would be able to identify exactly what nutrition an athlete should take before a performance to put the body in perfect condition for the event.
The release of energy and nutrients over time varies enormously among foodstuffs as they break down at different rates. Athletes already take different foodstuffs to keep them going during different parts of an event. Again, new developments borrowed from the biotech industry will allow nutrients to be packaged in microcapsules that enter the blood during normal digestion, and which can then be ruptured on receiving a special signal from a computer, allowing a perfectly tailored delivery of nutrients into the blood just as the athlete needs them. Just how far such electronically assisted nutrition goes depends on regulation.
Making the right proteins and vitamins in the first place is also changing. Rather than producing batches of chemicals and pills, genetic modification is developing nicely, and already a commonplace technology and already a whole range of plants will be grown specifically to optimise particular protein or vitamin content. Athletes can also go to a clinic and have their genes tested, helping their doctors and trainers to identify a highly personalised regime to get exactly the right nutrition for that person and that event, even to the extent of tackling some medical conditions. They will then be able to commission foodstuffs grown to their own needs and personal specification. They will still have their own genetic limitations, but at least they can go all the way to the limits of their personal potential. And it is likely that in some events, there may be handicap systems that take account of genetic limitations to allow athletes to compete on a level playing field. Sport would then become about reaching your natural limits, rather than just been born with some genetic advantages.
Personalised and optimised nutrition regime stands in stark contrast to today’s increasing obesity, but new foodstuffs promise to make dents in that too, as does the rising popularity of computer games that involve vigorous physical activity. Playing electronic sports on the net against other people could well be one of the next big social networking trends, maybe even becoming the 21st century version of the gym, or more probably being incorporated into gym technology to make it as much fun there as staying with the games console at home. Hopefully obesity will start levelling off soon and start to decline.
Psychology
With all the technology advances over the last few millennia, our psychology probably hasn’t changed much since we were cavemen. Sport appears to be a symbolic form of hunting or combat designed to demonstrate skill and bravery and to win a higher place in the pecking order, or bind a tribe together. At a deep level, people still want to win, to be top dog, to have the admiration of the crowd, to win prizes and to feel the close bonds of hunting or fighting together. I don’t think that is going to change, even with future technology. Better tools and better locations will only change the nature of the game, not the psychological incentives to perform heroically.
Future training equipment will include thought recognition and nervous system links to gather information on neurological and mental activity. If our champions are not giving it their all, it will show on the readout. And in the far future, when brain add-on devices can enhance people’s minds, even if they are not allowed in sporting events , they might be permitted during training. But none of this changes the fundamental nature of the person underneath. The degree of motivation they experience when faced with a challenge, the possibility of winning a prize, or the possibility of losing, goes deeper than technology can reach. These are part of the nature component in the formula, so as with physiology, it takes a good trainer with the right tools, in the right environment, to bring them fully to the surface. Champions are champions partly because their inner motivation is stronger and they will push themselves even harder than their competitors.
But I still think there is a missing component in the equation, the roar of the crowd. Champions will manage to find the last tiny bit of heroic effort only when the crowd demands it. At a live event with a big audience, there is no problem, but when the main crowd is only there via TV or the net, I suspect that the performance will be less. If we can somehow bring the crowd deeper into their perception while they compete, maybe they can perform better. But full sensory immersion technology can bring the crowd from the living room into the competitors’ presence. Active contact lenses will allow athletes to see the crowd, ear implants will allow them to hear them roar. Then they will still feel the atmosphere even in an empty arena. Only then will the ancestral tribal motivations kick in fully.
Finally, we will one day see androids competing in sports, and though they will normally compete against each other, there will be demands to have humans compete with them. When this happens, our champions will want to win in defence of humankind, the ultimate crowd. I think we will be able to give androids emotions too. If we design them to be similar in physical performance, and give them similar psychology, maybe we could have a very interesting contest indeed.
Making a champion
People have debated for millennia what it is that makes a sporting hero into a real champion. How can people be compared when they competed in different sports, in different periods? Some of the equations hold some merit, other don’t. Here is my take, based on the above.

Like this:
Like Loading...