Category Archives: materials

Artificial muscles using folded graphene

Slide1

Folded Graphene Concept

Two years ago I wrote a blog on future hosiery where I very briefly mentioned the idea of using folded graphene as synthetic muscles:

https://timeguide.wordpress.com/2015/11/16/the-future-of-nylon-ladder-free-hosiery/

Although I’ve since mentioned it to dozens of journalists, none have picked up on it, so now that soft robotics and artificial muscles are in the news, I guess it’s about time I wrote it up myself, before someone else claims the idea. I don’t want to see an MIT article about how they have just invented it.

The above pic gives the general idea. Graphene comes in insulating or conductive forms, so it will be possible to make sheets covered with tiny conducting graphene electromagnet coils that can be switched individually to either polarity and generate strong magnetic forces that pull or push as required. That makes it ideal for a synthetic muscle, given the potential scale. With 1.5nm-thick layers that could be anything from sub-micron up to metres wide, this will allow thin fibres and yarns to make muscles or shape change fabrics all the way up to springs or cherry-picker style platforms, using many such structures. Current can be switched on and off or reversed very rapidly, to make continuous forces or vibrations, with frequency response depending on application – engineering can use whatever scales are needed. Natural muscles are limited to 250Hz, but graphene synthetic muscles should be able to go to MHz.

Uses vary from high-rise rescue, through construction and maintenance, to space launch. Since the forces are entirely electromagnetic, they could be switched very rapidly to respond to any buckling, offering high stabilisation.

Slide2

The extreme difference in dimensions between folded and opened state mean that an extremely thin force mat made up of many of these cherry-picker structures could be made to fill almost any space and apply force to it. One application that springs to mind is rescues, such as after earthquakes have caused buildings to collapse. A sheet could quickly apply pressure to prize apart pieces of rubble regardless of size and orientation. It could alternatively be used for systems for rescuing people from tall buildings, fracking or many other applications.

Slide3

It would be possible to make large membranes for a wide variety of purposes that can change shape and thickness at any point, very rapidly.

Slide4

One such use is a ‘jellyfish’, complete with stinging cells that could travel around in even very thin atmospheres all by itself. Upper surfaces could harvest solar power to power compression waves that create thrust. This offers use for space exploration on other planets, but also has uses on Earth of course, from surveillance and power generation, through missile defense systems or self-positioning parachutes that may be used for my other invention, the Pythagoras Sling. That allows a totally rocket-free space launch capability with rapid re-use.

Slide5

Much thinner membranes are also possible, as shown here, especially suited for rapid deployment missile defense systems:

Slide6

Also particularly suited to space exploration o other planets or moons, is the worm, often cited for such purposes. This could easily be constructed using folded graphene, and again for rescue or military use, could come with assorted tools or lethal weapons built in.

Slide7

A larger scale cherry-picker style build could make ejector seats, elevation platforms or winches, either pushing or pulling a payload – each has its merits for particular types of application.  Expansion or contraction could be extremely rapid.

Slide8

An extreme form for space launch is the zip-winch, below. With many layers just 1.5nm thick, expanding to 20cm for each such layer, a 1000km winch cable could accelerate a payload rapidly as it compresses to just 7.5mm thick!

Slide9

Very many more configurations and uses are feasible of course, this blog just gives a few ideas. I’ll finish with a highlight I didn’t have time to draw up yet: small particles could be made housing a short length of folded graphene. Since individual magnets can be addressed and controlled, that enables magnetic powders with particles that can change both their shape and the magnetism of individual coils. Precision magnetic fields is one application, shape changing magnets another. The most exciting though is that this allows a whole new engineering field, mixing hydraulics with precision magnetics and shape changing. The powder can even create its own chambers, pistons, pumps and so on. Electromagnetic thrusters for ships are already out there, and those same thrust mechanisms could be used to manipulate powder particles too, but this allows for completely dry hydraulics, with particles that can individually behave actively or  passively.

Fun!

 

 

Advertisements

We need to stop xenoestrogen pollution

Endocrine disruptors in the environment are becoming more abundant due to a wide variety of human-related activities over the last few decades. They affect mechanisms by which the body’s endocrine system generates and responds to hormones, by attaching to receptors in similar ways to natural hormones. Minuscule quantities of hormones can have very substantial effects on the body so even very diluted pollutants may have significant effects. A sub-class called xenoestrogens specifically attach to estrogen receptors in the body and by doing so, can generate similar effects to estrogen in both women and men, affecting not just women’s breasts and wombs but also bone growth, blood clotting, immune systems and neurological systems in both men and women. Since the body can’t easily detach them from their receptors, they can sometimes exert a longer-lived effect than estrogen, remaining in the body for long periods and in women may lead to estrogen dominance. They are also alleged to contribute to prostate and testicular cancer, obesity, infertility and diabetes. Most notably, mimicking sex hormones, they also affect puberty and sex and gender-specific development.

Xenoestrogens can arise from breakdown or release of many products in the petrochemical and plastics industries. They may be emitted from furniture, carpets, paints or plastic packaging, especially if that packaging is heated, e.g. in preparing ready-meals. Others come from women taking contraceptive pills if drinking water treatment is not effective enough. Phthalates are a major group of synthetic xenoestrogens – endocrine-disrupting estrogen-mimicking chemicals, along with BPA and PCBs. Phthalates are present in cleaning products, shampoos, cosmetics, fragrances and other personal care products as well as soft, squeezable plastics often used in packaging but some studies have also found them in foodstuffs such as dairy products and imported spices. There have been efforts to outlaw some, but others persist because of lack of easy alternatives and lack of regulation, so most people are exposed to them, in doses linked to their lifestyles. Google ‘phthalates’ or ‘xenoestrogen’ and you’ll find lots of references to alleged negative effects on intelligence, fertility, autism, asthma, diabetes, cardiovascular disease, neurological development and birth defects. It’s the gender and IQ effects I’ll look at in this blog, but obviously the other effects are also important.

‘Gender-bending’ effects have been strongly suspected since 2005, with the first papers on endocrine disrupting chemicals appearing in the early 1990s. Some fish notably change gender when exposed to phthalates while human studies have found significant feminizing effects from prenatal exposure in young boys too (try googling “human phthalates gender” if you want references).  They are also thought likely to be a strong contributor to greatly reducing sperm counts across the male population. This issue is of huge importance because of its effects on people’s lives, but its proper study is often impeded by LGBT activist groups. It is one thing to champion LGBT rights, quite another to defend pollution that may be influencing people’s gender and sexuality. SJWs should not be advocating that human sexuality and in particular the lifelong dependence on medication and surgery required to fill gender-change demands should be arbitrarily imposed on people by chemical industry pollution – such a stance insults the dignity of LGBT people. Any exposure to life-changing chemicals should be deliberate and measured. That also requires that we fully understand the effects of each kind of chemical so they also should not be resisting studies of these effects.

The evidence is there. The numbers of people saying they identify as the opposite gender or are gender fluid has skyrocketed in the years since these chemicals appeared, as has the numbers of men describing themselves as gay or bisexual. That change in self-declared sexuality has been accompanied by visible changes. An AI recently demonstrated better than 90% success at visually identifying gay and bisexual men from photos alone, indicating that it is unlikely to be just a ‘social construct’. Hormone-mimicking chemicals are the most likely candidate for an environmental factor that could account for both increasing male homosexuality and feminizing gender identity.

Gender dysphoria causes real problems for some people – misery, stress, and in those who make a full physical transition, sometimes post-op regrets and sometimes suicide. Many male-to-female transsexuals are unhappy that even after surgery and hormones, they may not look 100% feminine or may require ongoing surgery to maintain a feminine appearance. Change often falls short of their hopes, physically and psychologically. If xenoestrogen pollution is causing severe unhappiness, even if that is only for some of those whose gender has been affected, then we should fix it. Forcing acceptance and equality on others only superficially addresses part of their problems, leaving a great deal of their unhappiness behind.

Not all affected men are sufficiently affected to demand gender change. Some might gladly change if it were possible to change totally and instantly to being a natural woman without the many real-life issues and compromises offered by surgery and hormones, but choose to remain as men and somehow deal with their dysphoria as the lesser of two problems. That impacts on every individual differently. I’ve always kept my own feminine leanings to being cyber-trans (assuming a female identity online or in games) with my only real-world concession being wearing feminine glasses styles. Whether I’m more feminine or less masculine than I might have been doesn’t bother me; I am happy with who I am; but I can identify with transgender forces driving others and sympathize with all the problems that brings them, whatever their choices.

Gender and sexuality are not the only things affected. Xenoestrogens are also implicated in IQ-reducing effects. IQ reduction is worrying for society if it means fewer extremely intelligent people making fewer major breakthroughs, though it is less of a personal issue. Much of the effect is thought to occur while still in the womb, though effects continue through childhood and some even into adulthood. Therefore individuals couldn’t detect an effect of being denied a potentially higher IQ and since there isn’t much of a link between IQ and happiness, you could argue that it doesn’t matter much, but on the other hand, I’d be pretty miffed if I’ve been cheated out of a few IQ points, especially when I struggle so often on the very edge of understanding something. 

Gender and IQ effects on men would have quite different socioeconomic consequences. While feminizing effects might influence spending patterns, or the numbers of men eager to join the military or numbers opposing military activity, IQ effects might mean fewer top male engineers and top male scientists.

It is not only an overall IQ reduction that would be significant. Studies have often claimed that although men and women have the same average IQ, the distribution is different and that more men lie at the extremes, though that is obviously controversial and rapidly becoming a taboo topic. But if men are being psychologically feminized by xenoestrogens, then their IQ distribution might be expected to align more closely with female IQ distributions too, the extremes brought closer to centre.  In that case, male IQ range-compression would further reduce the numbers of top male scientists and engineers on top of any reduction caused by a shift. 

The extremes are very important. As a lifelong engineer, my experience has been that a top engineer might contribute as much as many average ones. If people who might otherwise have been destined to be top scientists and engineers are being prevented from becoming so by the negative effects of pollution, that is not only a personal tragedy (albeit a phantom tragedy, never actually experienced), but also a big loss for society, which develops slower than should have been the case. Even if that society manages to import fine minds from elsewhere, their home country must lose out. This matters less as AI improves, but it still matters.

Looking for further evidence of this effect, one outcome would be that women in affected areas would be expected to account for a higher proportion of top engineers and scientists, and a higher proportion of first class degrees in Math and Physical Sciences, once immigrants are excluded. Tick. (Coming from different places and cultures, first generation immigrants are less likely to have been exposed in the womb to the same pollutants so would not be expected to suffer as much of the same effects. Second generation immigrants would include many born to mothers only recently exposed, so would also be less affected on average. 3rd generation immigrants who have fully integrated would show little difference.)

We’d also expect to see a reducing proportion of tech startups founded by men native to regions affected by xenoestrogens. Tick. In fact, 80% of Silicon Valley startups are by first or second generation immigrants. 

We’d also expect to see relatively fewer patents going to men native to regions affected by xenoestrogens. Erm, no idea.

We’d also expect technology progress to be a little slower and for innovations to arrive later than previously expected based on traditional development rates. Tick. I’m not the only one to think engineers are getting less innovative.

So, there is some evidence for this hypothesis, some hard, some colloquial. Lower inventiveness and scientific breakthrough rate is a problem for both human well-being and the economy. The problems will continue to grow until this pollution is fixed, and will persist until the (two) generations affected have retired. Some further outcomes can easily be predicted:

Unless AI proceeds well enough to make a human IQ drop irrelevant, and it might, then we should expect that having enjoyed centuries of the high inventiveness that made them the rich nations they are today, the West in particular would be set on a path to decline unless it brings in inventive people from elsewhere. To compensate for decreasing inventiveness, even in 3rd generation immigrants (1st and 2nd are largely immune), they would need to attract ongoing immigration to survive in a competitive global environment. So one consequence of this pollution is that it requires increasing immigration to maintain a prosperous economy. As AI increases its effect on making up deficiencies, this effect would drop in importance, but will still have an impact until AI exceeds the applicable intelligence levels of the top male scientists and engineers. By ‘applicable’, I’m recognizing that different aspects of intelligence might be appropriate in inventiveness and insight levels, and a simple IQ measurement might not be sufficient indicator.

Another interesting aspect of AI/gender interaction is that AI is currently being criticised from some directions for having bias, because it uses massive existing datasets for its training. These datasets contain actual data rather than ideological spin, so ‘insights’ are therefore not always politically correct. Nevertheless, they but could be genuinely affected by actual biases in data collection. While there may well be actual biases in such training datasets, it is not easy to determine what they are without having access to a correct dataset to compare with. That introduces a great deal of subjectivity, because ‘correct’ is a very politically sensitive term. There would be no agreement on what the correct rules would be for dataset collection or processing. Pressure groups will always demand favour for their favorite groups and any results that suggest that any group is better or worse than any other will always meet with objections from activists, who will demand changes in the rules until their own notion of ‘equality’ results. If AI is to be trained to be politically correct rather than to reflect the ‘real world’, that will inevitably reduce any correlation between AI’s world models and actual reality, and reduce its effective general intelligence. I’d be very much against sabotaging AI by brainwashing it to conform to current politically correct fashions, but then I don’t control AI companies. PC distortion of AI may result from any pressure group or prejudice – race, gender, sexuality, age, religion, political leaning and so on. Now that the IT industry seems to have already caved in to PC demands, the future for AI will be inevitably sub-optimal.

A combination of feminization, decreasing heterosexuality and fast-reducing sperm counts would result in reducing reproductive rate among xenoestrogen exposed communities, again with 1st and 2nd generation immigrants immune. That correlates well with observations, albeit there are other possible explanations. With increasing immigration, relatively higher reproductive rates among recent immigrants, and reducing reproduction rates among native (3rd generation or more) populations, high ethnic replacement of native populations will occur. Racial mix will become very different very quickly, with groups resident longest being displaced most. Allowing xenoestrogens to remain is therefore a sort of racial suicide, reverse ethnic cleansing. I make no value judgement here on changing racial mix, I’m just predicting it.

With less testosterone and more men resisting military activities, exposed communities will also become more militarily vulnerable and consequently less influential.

Now increasingly acknowledged, this pollution is starting to be tackled. A few of these chemicals have been banned and more are likely to follow. If successful, effects will start to disappear, and new babies will no longer be affected. But even that will  create another problem, with two generations of people with significantly different characteristics from those before and after them. These two generations will have substantially more transgender people, more feminine men, and fewer macho men than those following. Their descendants may have all the usual inter-generational conflicts but with a few others added.

LGBTQ issues are topical and ubiquitous. Certainly we must aim for a society that treats everyone with equality and dignity as far as possible, but we should also aim for one where people’s very nature isn’t dictated by pollution.

 

Instant buildings: Kinetic architecture

Revisiting an idea I raised in a blog in July last year. Even I think it was badly written so it’s worth a second shot.

Construction techniques are diverse and will get diverser. Just as we’re getting used to seeing robotic bricklaying and 3D printed walls, another technique is coming over the horizon that will build so fast I call it kinetic architecture. The structure will be built so quickly it can build a bridge from one side just by building upwards at an angle, and the structure will span the gap and meet the ground at the other side before gravity has a chance to collapse it.

The key to such architecture is electromagnetic propulsion, the same as on the Japanese bullet trains or the Hyperloop, using magnetic forces caused by electric currents to propel the next piece along the existing structure to the front end where it acts as part of the path for the next. Adding pieces quickly enough leads to structures that can follow elegant paths, as if the structure is a permanent trace of the path an object would have followed if it were catapulted into the air and falling due to gravity. It could be used for buildings, bridges, or simply art.

It will become possible thanks to new materials such as graphene and other carbon composites using nanotubes. Graphene combines extreme strength, hence lightness for a particular strength requirement, with extreme conductivity, allowing it to carry very high electric currents, and therefore able to generate high magnetic forces. It is a perfect material for kinetic architecture. Pieces would have graphene electromagnet circuitry printed on their surface. Suitable circuit design would mean that every extra piece falling into place becomes an extension to the magnetic railway transporting the next piece. Just as railroads may be laid out just in front of the train using pieces carried by the train, so pieces shot into the air provide a self-building path for other pieces to follow. A building skeleton could be erected in seconds. I mentioned in my original blog (about carbethium) that this could be used to create the sort of light bridges we see in Halo. A kinetic architecture skeleton would be shot across the divide and the filler pieces in between quickly transported into place along the skeleton and assembled.

See https://timeguide.wordpress.com/2016/07/25/carbethium-a-better-than-scifi-material/. The electronic circuitry potential for graphene also allows for generating plasma or simply powering LEDs to give a nice glow just like the light bridges too.

Apart from clever circuit design, kinetic architecture also requires pieces that can interlock. The kinetic energy of the new piece arriving at the front edge would ideally be sufficient to rotate it into place, interlocking with previous front edge. 3d interlocking is tricky but additional circuitry can provide additional magnetic forces to rotate and translate pieces if kinetic energy alone isn’t enough. The key is that once interlocked, the top surface has to form a smooth continuous line with the previous one, so that pieces can move along smoothly. Hooks can catch an upcoming piece to make it rotate, with the hooks merging nicely with part of the new piece as it falls into place, making those hooks part of a now smooth surface and a new hook at the new front end. You’ll have to imagine it yourself, I can’t draw it. Obviously, pieces would need precision engineering because they’d need to fit precisely to give the required strength and fit.

Ideally, with sufficiently well-designed pieces, it should be possible to dismantle the structure by reversing the build process, unlocking each end piece in turn and transporting it back to base along the structure until no structure remains.

I can imagine such techniques being used at first for artistic creations, sculptures using beautiful parabolic arcs. But they could also be used for rapid assembly for emergency buildings, instant evacuation routes for tall buildings, or to make temporary bridges after an earthquake destroyed a permanent one. When a replacement has been made, the temporary one could be rolled back up and used elsewhere. Maybe it could become routine for making temporary structures that are needed quickly such as for pop concerts and festivals. One day it could become an everyday building technique. 

Mega-buildings could become cultural bubbles

My regular readers, both of them in fact, will know I am often concerned about the dangerous growth of social media bubbles. By mid-century, thanks to upcoming materials, some cities will have a few buildings over 1km tall, possibly 10km (and a spaceport or two up to 30km high). These would be major buildings, and could create a similar problem.

A 1km building could have 200 floors, and with 100m square floors, 200 hectares of space.  Assuming half is residential space and the other half is shops, offices or services, that equates to 20,000 luxury apartments (90 sq m each) or 40,000 basic flats. That means each such building could be equivalent to a small town, with maybe 50,000 inhabitants. A 10km high mega-building, with a larger 250m side, would have 60 times more space, housing up to 300,000 people and all they need day-to-day, essentially a city.

Construction could be interesting. My thoughts are that a 10km building could be extruded from the ground using high pressure 3D printing, rather than assembled with cranes. Each floor could be fully fitted out while it is still near ground level, its apartments sold and populated, even as the building grows upward. That keeps construction costs and cash flow manageable.

My concern is that although we will have the technology to build such buildings in the 2040s, I’m not aware of much discussion about how cultures would evolve in such places, at least not outside of sci-fi (like Judge Dredd or Blade Runner). I rather hope we wouldn’t just build them first and try to solve social problems later. We really ought to have some sort of plans to make them work.

In a 100m side building, entire floors or groups of floors would likely be allocated to particular functions – residential, shopping, restaurants, businesses etc. Grouping functions sensibly reduces the total travel needed. In larger buildings, it is easier to have local shops mixed with apartments for everyday essentials, with larger malls elsewhere.

People could live almost entirely in the building, rarely needing to leave, and many might well do just that, essentially becoming institutionalized. I think these buildings will feel very different from small towns. In small towns, people still travel a lot to other places, and a feeling of geographic isolation doesn’t emerge. In a huge tower block of similar population and facilities, I don’t think people would leave as often, and many will stay inside. All they need is close by and might soon feel safe and familiar, while the external world might seem more distant, scarier. Institutionalization might not take long, a month or two of becoming used to the convenience of staying nearby while watching news of horrors going on elsewhere. Once people stop the habit of leaving the building, it could become easier to find reasons not to leave it in future.

Power structures would soon evolve – local politics would happen, criminal gangs would emerge, people would soon learn of good and bad zones. It’s possible that people might become tribal, their building and their tribe competing for external resources and funding with tribes in other mega-buildings, and their might be conflict. Knowing they are physically detached, the same bravery to attack total strangers just because they hold different views might emerge that we see on social media today. There might be cyber-wars, drone wars, IoT wars between buildings.

I’m not claiming to be a social anthropologist. I have no real idea how these buildings will work and perhaps my fears are unjustified. But even I can see some potential problems just based on what we see today, magnified for the same reasons problems get magnified on social media. Feelings of safety and anonymity can lead to some very nasty tribal behaviors. Managing diversity of opinion among people moving in would be a significant challenge, maintaining it might be near impossible. With the sort of rapid polarization we’ve already seen today thanks to social media bubbles, physically contained communities would surely see those same forces magnified everyday.

Building a 10km mega-building will become feasible in the 2040s, and increased urban populations will make them an attractive option for planners. Managing them and making them work socially might be a much bigger challenge.

 

 

Colour changing cars, everyday objects and makeup

http://www.theverge.com/2016/11/24/13740946/dutch-scientists-use-color-changing-graphene-bubbles-to-create-mechanical-pixels shows how graphene can be used to make displays with each pixel changing colour according to mechanical deformation.

Meanwhile, Lexus have just created a car with a shell covered in LEDs so it can act as a massive display.

http://www.theverge.com/2016/12/5/13846396/lexus-led-lit-is-colors-dua-lipa-vevo

In 2014 I wrote about using polymer LED displays for future Minis so it’s nice to see another prediction come true.

Looking at the mechanical pixels though, it is clear that mechanical pixels could respond directly to sound, or to turbulence of passing air, plus other vibration that arises from motion on a road surface, or the engine. Car panel colours could change all the time powered by ambient energy. Coatings on any solid objects could follow, so people might have plenty of shimmering colours in their everyday environment. Could. Not sure I want it, but they could.

With sound as a control system, sound wave generators at the edges or underneath such surfaces could produce a wide variety of pleasing patterns. We could soon have furniture that does a good impression of being a cuttlefish.

I often get asked about smart makeup, on which I’ve often spoken since the late 90s. Thin film makeup displays could use this same tech. So er, we could have people with makeup pretending to be cuttlefish too. I think I’ll quit while I’m ahead.

Sky-lines – The Solar Powered Future of Air Travel

High altitude solar array to power IT and propel planes

High altitude solar array to power IT and propel planes

A zero carbon air travel solution. Well, most of the bits would be made of carbon materials, but it wouldn’t emit any CO2.

The pic says it all. A linear solar farm suspended in the high atmosphere to provide an IT platform for sensors, comms and other functions often accomplished by low orbit satellite. It would float up there thanks to being fixed to a graphene foam base layer that can be made lighter than helium (my previous invention, see https://timeguide.wordpress.com/2013/01/05/could-graphene-foam-be-a-future-helium-substitute/ which has since been prototyped and proven to be extremely resilient to high pressures too). Ideally, it would go all the way around the world, in various inclinations at different altitudes to provide routes to many places. Carbon materials are also incredibly strong so the line can be made as strong as can reasonably be required.

The flotation layer also supports a hypersonic linear induction motor that could provide direct propulsion to a hypersonic glider or to electric fans on a powered plane. Obviously this could also provide a means of making extremely low earth orbit satellites that continuously circumnavigate the ring.

I know you’re asking already how the planes get up there. There are a few solutions. Tethers could come all the way to ground level to airports, and electric engines would be used to get to height where the plane would pick up a sled-link.

Alternatively, stronger links to the ground would allow planes to be pulled up by sleds, though this would likely be less feasible.

Power levels? Well, the engines on a Boeing 777 generate about 8.25MW. A high altitude solar cell, above clouds could generate 300W per square metre. So a 777 equivalent plane needs 55km of panels if the line is just one metre wide. That means planes need to be at least that distance apart, but since that equates to around a minute, that is no barrier at all.

If you still doubt this, the Hyperloop was just a crazy idea a century ago too.

Carbethium, a better-than-scifi material

How to build one of these for real:

Light_bridge

Halo light bridge, from halo.wikia.com

Or indeed one of these:

From halo.wikia.com

From halo.wikia.com

I recently tweeted that I had an idea how to make the glowy bridges and shields we’ve seen routinely in sci-fi games from Half Life to Destiny, the bridges that seem to appear in a second or two from nothing across a divide, yet are strong enough to drive tanks over, and able to vanish as quickly and completely when they are switched off. I woke today realizing that with a bit of work, that it could be the basis of a general purpose material to make the tanks too, and buildings and construction platforms, bridges, roads and driverless pod systems, personal shields and city defense domes, force fields, drones, planes and gliders, space elevator bases, clothes, sports tracks, robotics, and of course assorted weapons and weapon systems. The material would only appear as needed and could be fully programmable. It could even be used to render buildings from VR to real life in seconds, enabling at least some holodeck functionality. All of this is feasible by 2050.

Since it would be as ethereal as those Halo structures, I first wanted to call the material ethereum, but that name was already taken (for a 2014 block-chain programming platform, which I note could be used to build the smart ANTS network management system that Chris Winter and I developed in BT in 1993), and this new material would be a programmable construction platform so the names would conflict, and etherium is too close. Ethium might work, but it would be based on graphene and carbon nanotubes, and I am quite into carbon so I chose carbethium.

Ages ago I blogged about plasma as a 21st Century building material. I’m still not certain this is feasible, but it may be, and it doesn’t matter for the purposes of this blog anyway.

https://timeguide.wordpress.com/2013/11/01/will-plasma-be-the-new-glass/

Around then I also blogged how to make free-floating battle drones and more recently how to make a Star Wars light-saber.

https://timeguide.wordpress.com/2013/06/23/free-floating-ai-battle-drone-orbs-or-making-glyph-from-mass-effect/

https://timeguide.wordpress.com/2015/11/25/how-to-make-a-star-wars-light-saber/

Carbethium would use some of the same principles but would add the enormous strength and high conductivity of graphene to provide the physical properties to make a proper construction material. The programmable matter bits and the instant build would use a combination of 3D interlocking plates, linear induction,  and magnetic wells. A plane such as a light bridge or a light shield would extend from a node in caterpillar track form with plates added as needed until the structure is complete. By reversing the build process, it could withdraw into the node. Bridges that only exist when they are needed would be good fun and we could have them by 2050 as well as the light shields and the light swords, and light tanks.

The last bit worries me. The ethics of carbethium are the typical mixture of enormous potential good and huge potential for abuse to bring death and destruction that we’re learning to expect of the future.

If we can make free-floating battle drones, tanks, robots, planes and rail-gun plasma weapons all appear within seconds, if we can build military bases and erect shield domes around them within seconds, then warfare moves into a new realm. Those countries that develop this stuff first will have a huge advantage, with the ability to send autonomous robotic armies to defeat enemies with little or no risk to their own people. If developed by a James Bond super-villain on a hidden island, it would even be the sort of thing that would enable a serious bid to take over the world.

But in the words of Professor Emmett Brown, “well, I figured, what the hell?”. 2050 values are not 2016 values. Our value set is already on a random walk, disconnected from any anchor, its future direction indicated by a combination of current momentum and a chaos engine linking to random utterances of arbitrary celebrities on social media. 2050 morality on many issues will be the inverse of today’s, just as today’s is on many issues the inverse of the 1970s’. Whatever you do or however politically correct you might think you are today, you will be an outcast before you get old: https://timeguide.wordpress.com/2015/05/22/morality-inversion-you-will-be-an-outcast-before-youre-old/

We’re already fucked, carbethium just adds some style.

Graphene combines huge tensile strength with enormous electrical conductivity. A plate can be added to the edge of an existing plate and interlocked, I imagine in a hexagonal or triangular mesh. Plates can be designed in many diverse ways to interlock, so that rotating one engages with the next, and reversing the rotation unlocks them. Plates can be pushed to the forward edge by magnetic wells, using linear induction motors, using the graphene itself as the conductor to generate the magnetic field and the design of the structure of the graphene threads enabling the linear induction fields. That would likely require that the structure forms first out of graphene threads, then the gaps between filled by mesh, and plates added to that to make the structure finally solid. This would happen in thickness as well as width, to make a 3D structure, though a graphene bridge would only need to be dozens of atoms thick.

So a bridge made of graphene could start with a single thread, which could be shot across a gap at hundreds of meters per second. I explained how to make a Spiderman-style silk thrower to do just that in a previous blog:

https://timeguide.wordpress.com/2015/11/12/how-to-make-a-spiderman-style-graphene-silk-thrower-for-emergency-services/

The mesh and 3D build would all follow from that. In theory that could all happen in seconds, the supply of plates and the available power being the primary limiting factors.

Similarly, a shield or indeed any kind of plate could be made by extending carbon mesh out from the edge or center and infilling. We see that kind of technique used often in sci-fi to generate armor, from lost in Space to Iron Man.

The key components in carbetheum are 3D interlocking plate design and magnetic field design for the linear induction motors. Interlocking via rotation is fairly easy in 2D, any spiral will work, and the 3rd dimension is open to any building block manufacturer. 3D interlocking structures are very diverse and often innovative, and some would be more suited to particular applications than others. As for linear induction motors, a circuit is needed to produce the travelling magnetic well, but that circuit is made of the actual construction material. The front edge link between two wires creates a forward-facing magnetic field to propel the next plates and convey enough intertia to them to enable kinetic interlocks.

So it is feasible, and only needs some engineering. The main barrier is price and material quality. Graphene is still expensive to make, as are carbon nanotubes, so we won’t see bridges made of them just yet. The material quality so far is fine for small scale devices, but not yet for major civil engineering.

However, the field is developing extremely quickly because big companies and investors can clearly see the megabucks at the end of the rainbow. We will have almost certainly have large quantity production of high quality graphene for civil engineering by 2050.

This field will be fun. Anyone who plays computer games is already familiar with the idea. Light bridges and shields, or light swords would appear much as in games, but the material would likely  be graphene and nanotubes (or maybe the newfangled molybdenum equivalents). They would glow during construction with the plasma generated by the intense electric and magnetic fields, and the glow would be needed afterward to make these ultra-thin physical barriers clearly visible,but they might become highly transparent otherwise.

Assembling structures as they are needed and disassembling them just as easily will be very resource-friendly, though it is unlikely that carbon will be in short supply. We can just use some oil or coal to get more if needed, or process some CO2. The walls of a building could be grown from the ground up at hundreds of meters per second in theory, with floors growing almost as fast, though there should be little need to do so in practice, apart from pushing space vehicles up so high that they need little fuel to enter orbit. Nevertheless, growing a  building and then even growing the internal structures and even furniture is feasible, all using glowy carbetheum. Electronic soft fabrics, cushions and hard surfaces and support structures are all possible by combining carbon nanotubes and graphene and using the reconfigurable matter properties carbethium convents. So are visual interfaces, electronic windows, electronic wallpaper, electronic carpet, computers, storage, heating, lighting, energy storage and even solar power panels. So is all the comms and IoT and all the smart embdedded control systems you could ever want. So you’d use a computer with VR interface to design whatever kind of building and interior furniture decor you want, and then when you hit the big red button, it would appear in front of your eyes from the carbethium blocks you had delivered. You could also build robots using the same self-assembly approach.

If these structures can assemble fast enough, and I think they could, then a new form of kinetic architecture would appear. This would use the momentum of the construction material to drive the front edges of the surfaces, kinetic assembly allowing otherwise impossible and elaborate arches to be made.

A city transport infrastructure could be built entirely out of carbethium. The linear induction mats could grow along a road, connecting quickly to make a whole city grid. Circuit design allows the infrastructure to steer driverless pods wherever they need to go, and they could also be assembled as required using carbethium. No parking or storage is needed, as the pod would just melt away onto the surface when it isn’t needed.

I could go to town on military and terrorist applications, but more interesting is the use of the defense domes. When I was a kid, I imagined having a house with a defense dome over it. Lots of sci-fi has them now too. Domes have a strong appeal, even though they could also be used as prisons of course. A supply of carbetheum on the city edges could be used to grow a strong dome in minutes or even seconds, and there is no practical limit to how strong it could be. Even if lasers were used to penetrate it, the holes could fill in in real time, replacing material as fast as it is evaporated away.

Anyway, lots of fun. Today’s civil engineering projects like HS2 look more and more primitive by the day, as we finally start to see the true potential of genuinely 21st century construction materials. 2050 is not too early to expect widespread use of carbetheum. It won’t be called that – whoever commercializes it first will name it, or Google or MIT will claim to have just invented it in a decade or so, so my own name for it will be lost to personal history. But remember, you saw it here first.

Future sex, gender and design

This is a presentation I made for the Eindhoven Design Academy. It is mostly self-explanatory

Slide1

Slide2Slide3 Slide4 Slide5 Slide6 Slide7 Slide8 Slide9 Slide10 Slide11 Slide12 Slide13 Slide14 Slide15 Slide16 Slide17 Slide18 Slide19 Slide20

 

The future of vacuum cleaners

Dyson seems pretty good in vacuum cleaners and may well have tried this and found it doesn’t work, but then again, sometimes people in an industry can’t see the woods for the trees so who knows, there may be something in this:

Our new pet cat Jess, loves to pick up soft balls with a claw and throw them, and catch them again. Retractable claws are very effective.IMG_6689- Jess (2)

Jess the cat

At a smaller scale, velcro uses tiny little hooks to stick together, copying burs from nature.

Suppose you make a tiny little ball that has even tinier little retractable spines or even better, hooks. And suppose you make them by the trillion and make a powder that your vacuum cleaner attachment first sprinkles onto a carpet, then agitates furiously and quickly, and thus gets the hooks to stick to dirt, pull it off the surface and retract (so that the balls don’t stick to the carpet) and then you suck the whole lot into the machine. Since the balls have a certain defined specification, they are easy to separate from the dirt and dust and reuse again straight away. So you get superior cleaning. Some of the balls would be lost each time, and some would get sucked up next time, but overall you’d need to periodically top up the reservoir.

The current approach is to beat the hell out of the carpet fibers with a spinning brush and that works fine, but I think adding the active powder might be better because it gets right in among the dirt and drags it kicking and screaming off the fibers.

So, ball design. Firstly, it doesn’t need to be ball shaped at all, and secondly it doesn’t need spines really, just to be able to rapidly change its shape so it gets some sort of temporary traction on a dirt particle to knock it off. What we need here is any structure that expands and contracts or dramatically changes shape when a force is applied, ideally resonantly. Two or three particles connected by a tether would move back and forwards under an oscillating electrostatic, electrical or magnetic field or even an acoustic wave. There are billions of ways of doing that and some would be cheaper than others to manufacture in large quantity. Chemists are brilliant at designing custom molecules with particular shapes, and biology has done that with zillions of enzymes too. Our balls would be pretty small but more micro-tech than nano-tech or molecular tech.

The vacuum cleaner attachment would thus spray this stuff onto the carpet and start resonating it with an EM field or sound waves. The little particles would wildly thrash around doing their micro-cleaning, yanking dirt free, and then they would be sucked back into the cleaner to be used again. The cleaner head doesn’t even need to have a spinning brush, the only moving parts would be the powder, though having an agitating brush might help get them deeper into the fabric I guess.

 

Smart packaging: Acoustic sterilisation

I should have written this on the ides of March, but hey ho. I was discussing packaging this morning for an IoT event.

Imagine a bacterium sitting on a package on a supermarket shelf is called Julius Caesar. Now imagine Brutus coming along with a particularly sharp knife and stabbing him hundreds of times. That’s my idea, just scaled down a bit.

selfsterilising

This started as a slight adaptation of an idea I developed for Dunlop a few years ago to make variable grip tires. (Still waiting for Dunlop to make those, so maybe some other tire company might pick up the idea).

The idea is very simple, to use tiny triangular structures embedded in the surface, and then pull the base of the triangle together, thereby pushing up the tip. My tire idea used electro-active polymers to do the pulling, and sharp carbon composites to do the grip bit, or in this antibacterial case, the sharp knife. Probably for packaging I’d use carbon nanotubes or similar as the sides with which to stab the bacteria, but engineers frequently come up with different nanostructure shapes so I’m pretty agnostic about material and shape. If it ruptures a bacterium, it will be good.

An easier to use alternative for widespread use in packaging would be to ditch the electro-active polymer and associated electronics, and instead to use a tuned acoustic wave to move the blades in and out of the surface. All that is needed to activate them is to put out that frequency of sound through a speaker system in the supermarket or factory. The sound needed would likely be ultrasonic, so it doesn’t irritate all the shoppers, and in any case, nano-structures will generally be associated with high frequencies.

So the packaging would include tiny structures that act as the dagger attached to a particular acoustic mass acting as Brutus, that would move when the appropriate resonant frequency is broadcast.

This technique doesn’t need any nasty chemicals, though it does need the nanostructures and sound and if they aren’t designed right, the nanostructures could be just as harmful. Anyway, that’s the basic idea.