Monthly Archives: May 2018

AI that talks to us could quickly become problematic

Google’s making the news again adding evidence to the unfortunate stereotype of the autistic IT nerd that barely understands normal people, and they have therefore been astonished at the backlash that normal people would all easily have predicted. (I’m autistic and work in IT mostly too, and am well used to the stereotype it so it doesn’t bother me, in fact it is a sort of ‘get out of social interactions free’ card). Last time it was Google Glass, where it apparently didn’t occur to them that people may not want other people videoing them without consent in pubs and changing rooms. This time it is Google Duplex, that makes phone calls on your behalf to arrange appointment using voice that is almost indistinguishable from normal humans. You could save time making an appointment with a hairdresser apparently, so the Googlanders decided it must be a brilliant breakthrough, and expected everyone to agree. They didn’t.

Some of the objections have been about ethics: e.g. An AI should not present itself as human – Humans have rights and dignity and deserve respectful interactions with other people, but an AI doesn’t and should not masquerade as human to acquire such privilege without knowledge of the other party and their consent.

I would be more offended by the presumed attitude of the user. If someone thinks they are so much better then me that they can demand my time and attention without the expense of any of their own, delegating instead to a few microseconds of processing time in a server farm somewhere, I’ll treat them with the contempt they deserve. My response will not be favourable. I am already highly irritated by the NHS using simple voice interaction messaging to check I will attend a hospital appointment. The fact that my health is on the line and notices at surgeries say I will be banned if I complain on social media is sufficient blackmail to ensure my compliance, but it still comes at the expense of my respect and goodwill. AI-backed voice interaction with better voice wouldn’t be any better, and if it asking for more interaction such as actually booking an appointment, it would be extremely annoying.

In any case, most people don’t speak in fully formed grammatically and logically correct sentences. If you listen carefully to everyday chat, a lot of sentences are poorly pronounced, incomplete, jumbled, full of ums and er’s, likes and they require a great deal of cooperation by the listener to make any sense at all. They also wander off topic frequently. People don’t stick to a rigid vocabulary list or lists of nicely selected sentences.  Lots of preamble and verbal meandering is likely in a response that is highly likely to add ambiguity. The example used in a demo, “I’d like to make a hairdressing appointment for a client” sounds fine until you factor in normal everyday humanity. A busy hairdresser or a lazy receptionist is not necessarily going to cooperate fully. “what do you mean, client?”, “404 not found”, “piss off google”, “oh FFS, not another bloody computer”, “we don’t do hairdressing, we do haircuts”, “why can’t your ‘client’ call themselves then?” and a million other responses are more likely than “what time would you like?”

Suppose though that it eventually gets accepted by society. First, call centers beyond the jurisdiction of your nuisance call blocker authority will incessantly call you at all hours asking or telling you all sorts of things, wasting huge amounts of your time and reducing quality of life. Voice spam from humans in call centers is bad enough. If the owners can multiply productivity by 1000 by using AI instead of people, the result is predictable.

We’ve seen the conspicuous political use of social media AI already. Facebook might have allowed companies to use very limited and inaccurate knowledge of you to target ads or articles that you probably didn’t look at. Voice interaction would be different. It uses a richer emotional connection that text or graphics on a screen. Google knows a lot about you too, but it will know a lot more soon. These big IT companies are also playing with tech to log you on easily to sites without passwords. Some gadgets that might be involved might be worn, such as watches or bracelets or rings. They can pick up signals to identify you, but they can also check emotional states such as stress level. Voice gives away emotion too. AI can already tell better then almost all people whether you are telling the truth or lying or hiding something. Tech such as iris scans can also tell emotional states, as well as give health clues. Simple photos can reveal your age quite accurately to AI, (check out how-old.net).  The AI voice sounds human, but it is better then even your best friends at guessing your age, your stress and other emotions, your health, whether you are telling the truth or not, and it knows far more about what you like and dislike and what you really do online than anyone you know, including you. It knows a lot of your intimate secrets. It sounds human, but its nearest human equivalent was probably Machiavelli. That’s who will soon be on the other side of the call, not some dumb chatbot. Now re-calculate political interference, and factor in the political leaning and social engineering desires of the companies providing the tools. Google and Facebook and the others are very far from politically neutral. One presidential candidate might get full cooperation, assistance and convenient looking the other way, while their opponent might meet rejection and citation of the official rules on non-interference. Campaigns on social issues will also be amplified by AI coupled to voice interaction. I looked at some related issue in a previous blog on fake AI (i.e. fake news type issues): https://timeguide.wordpress.com/2017/11/16/fake-ai/

I could but won’t write a blog on how this tech could couple well to sexbots to help out incels. It may actually have some genuine uses in providing synthetic companionship for lonely people, or helping or encouraging them in real social interactions with real people. It will certainly have some uses in gaming and chatbot game interaction.

We are not very far from computers that are smarter then people across a very wide spectrum, and probably not very far from conscious machines that have superhuman intelligence. If we can’t even rely on IT companies to understand likely consequences of such obvious stuff as Duplex before thy push it, how can we trust them in other upcoming areas of AI development, or even closer term techs with less obvious consequences? We simply can’t!

There are certainly a few such areas where such technology might help us but most are minor and the rest don’t need any deception, but they all come at great cost or real social and political risk, as well as more abstract risks such as threats to human dignity and other ethical issues. I haven’t give this much thought yet and I am sure there must be very many other consequences I have not touched on yet. Google should do more thinking before they release stuff. Technology is becoming very powerful, but we all know that great power comes with great responsibility, and since most people aren’t engineers so can’t think through all the potential technology interactions and consequences, engineers such as Google’s must act more responsibly. I had hoped they’d started, and they said they had, but this is not evidence of that.

 

Advertisements

Futurist memories: The leisure society and the black box economy

Things don’t always change as fast as we think. This is a piece I wrote in 1994 looking forward to a fully automated ‘black box economy, a fly-by-wire society. Not much I’d change if I were writing it new today. Here:

The black box economy is a strictly theoretical possibility, but may result where machines gradually take over more and more roles until the whole economy is run by machines, with everything automated. People could be gradually displaced by intelligent systems, robots and automated machinery. If this were to proceed to the ultimate conclusion, we could have a system with the same or even greater output as the original society, but with no people involved. The manufacturing process could thus become a ‘black box’. Such a system would be so machine controlled that humans would not easily be able to pick up the pieces if it crashed – they would simply not understand how it works, or could not control it. It would be a fly-by-wire society.

The human effort could be reduced to simple requests. When you want a new television, a robot might come and collect the old one, recycling the materials and bringing you a new one. Since no people need be involved and the whole automated system could be entirely self-maintaining and self-sufficient there need be no costs. This concept may be equally applicable in other sectors, such as services and information – ultimately producing more leisure time.

Although such a system is theoretically possible – energy is free in principle, and resources are ultimately a function of energy availability – it is unlikely to go quite this far. We may go some way along this road, but there will always be some jobs that we don’t want to automate, so some people may still work. Certainly, far fewer people would need to work in such a system, and other people could spend their time in more enjoyable pursuits, or in voluntary work. This could be the leisure economy we were promised long ago. Just because futurists predicted it long ago and it hasn’t happened yet does not mean it never will. Some people would consider it Utopian, while others possibly a nightmare, it’s just a matter of taste.

Interstellar travel: quantum ratchet drive

Introductory waffle & background state of the art bit

My last blog included a note on my Mars commute system, which can propel spacecraft with people in up to 600km/s. Unfortunately, although 1000 times faster than a bullet, that is still only 0.2% of light speed and it would take about 2000 years to get to our nearest star at that speed, so we need a better solution. Star Trek uses warp drive to go faster than light, and NASA’s Alcubierre drive is the best approximation we have to that so far:

https://en.wikipedia.org/wiki/Alcubierre_drive

but smarter people than me say it probably won’t work, and almost certainly won’t work any time soon:

https://jalopnik.com/the-painful-truth-about-nasas-warp-drive-spaceship-from-1590330763

If it does work, it will need to use negative energy extracted via the Casimir effect, and if that works, so will my own invention, the Space Anchor:

https://timeguide.wordpress.com/2014/06/14/how-the-space-anchor-works/

The Space Anchor would also allow space dogfights like you see in Star Wars. Unless you’re a pedant like me, you probably never think about how space fighters turn in the vacuum of space when you’re watching movies, but wings obviously won’t work well with no atmosphere, and you’d need a lot of fuel to eject out the back at high thrust to turn otherwise, but the space anchor actually locks on to a point in space-time and you can pivot around it to reverse direction without using fuel, thanks to conservation of angular momentum. Otherwise, the anchor drifts with ‘local’ space time expansion and contraction, which essentially creates relativity based ‘currents’ that can pull a spacecraft along at high speed. But enough about Space Anchors. Read my novel Space Anchor to see how much fun they could be.

Space anchors might not work, being only semi-firm sci-fi based at least partly on hypothetical physics. If they don’t work, and warp drive won’t work without using massive amounts of dark energy that I don’t believe exists either, then we’re left with solar sails, laser sails, and assorted ion drives. Solar sails won’t work well too far from a star. Lasers that can power a spacecraft well outside a star system sound expensive and unworkable and the light sails that capture the light mean this could only get to about 10% light speed. Ion drives work OK for modest speeds if you have an on-board power source and some stuff to thrust out the back to get Newtonian reaction. Fancy shaped resonant cavity thrusters try to cheat maths and physics to get a reaction by using special shapes of microwave chambers,

https://en.wikipedia.org/wiki/RF_resonant_cavity_thruster

but I’d personally put these ‘Em-drives’ in the basket with cold fusion and perpetual motion machines. Sure, there have been experiments that supposedly show they work, but so do many experiments for cold fusion and perpetual motion machines, and we know those results are just experimental or interpretational errors. Of the existing techniques that don’t contradict known physics or rely on unverified and debatable hypotheses, the light sails are best and get 10% of light speed at high expense.

A few proposed thruster-based systems use particles collected from the not-quite-empty space as the fuel source and propellant. Again, if we stretch the Casimir effect theory to near breaking point, it may be possible to use virtual particles popping in and out of existence as propellant by allowing them to appear and thrusting them before they vanish, the quantum thruster drive. My own variant of this solution is to use Casimir combs with oscillating interleaving nano-teeth that separate virtual particles before they can annihilate to prolong that time enough to make it feasible. I frankly have no idea whether this would actually work.

Better still would be if we could use a form of propulsion that doesn’t need to throw matter backwards to get reactionary force forwards. If magical microwave chambers and warp drives are no use, how about this new idea of mine:

The Quantum Ratchet Drive

You can explore other theoretical interstellar drives via Google or Wikipedia, but you won’t find my latest idea there – the Quantum Ratchet Drive. I graduated in Theoretical Physics, but this drive is more in the Hypothetical Physics Department, along with my explanations for inflation, dark matter and novel states of matter. That doesn’t mean it is wrong or won’t work though, just that I can’t prove it will work yet. Anyway, faint heart ne’er won fair maid.

You have seen pics of trains that climb steep slopes using a rack and pinion system, effectively gear wheels on a toothed rail so that they don’t slip (not the ones that use a cable). I originally called my idea the quantum rack and pinion drive because it works in a similar way, but actually, the more I think about it, the more appropriate is the analogy with a ratchet, using a gear tooth as a sort of anchor to pull against to get the next little bit of progress. It relies on the fact that fields are quantized and any system will exist in one state and then move up or down to the next quantum state, it can’t stay in between. At this point I feel I need another 50 IQ points to grasp a very slippery idea, so be patient – this is an idea in early stages of development. I’m basically trying to harness the physics that causes particles to switch quantum states, looking at the process in which quantum states change, nature’s ‘snap to grid’ approach, to make a propulsion system out of it.

If we generate an external field that interacts with the field in a nearby microscopic region of space in front of our craft then as the total field approaches a particular quantum threshold, nature will drag that region to the closest quantum state, hopefully creating a tiny force that drags the system to that state. In essence, the local quantum structure becomes a grid onto which the craft can lock. At very tiny scales obviously, but if you add enough tiny distances you eventually get big ones.

But space doesn’t have a fixed grid does it? If we just generate any old field any which way in front of our craft, no progress will happen because nature will be quite happy to have those states in any location in space so no force of movement will be generated. HOWEVER… suppose space did have such a grid, and we could use interaction of the quantum states in the grid cells and our generated field. Then we could get what we want, a toothed rail with which our gearwheels can engage.

So we just need a system that assigns local quantum states to microscopic space regions and that is our rack, then we apply a field to our pinion that is not quite enough to become that state, but is closer than any other one. At some point, there will be a small thrust towards the next state so that it can reach a local minimum energy level. Those tiny thrusts would add up.

We could use any kind of field that our future tech can generate. Our craft would have two field emitters. One produces a nice tidy waveform that maps quantum states onto the space just in front of our craft. A second emitter produces a second field that creates an interaction so that the system wants to come to rest in a region set slightly ahead of the craft’s current position. It would be like a train laying a toothed track just in front of it as it goes along, always positioning the teeth so that the train will fall into the next location.

We could certainly produce EM fields, making a sort of stepper linear induction motor on a mat created by the ship itself. What about strong or weak nuclear forces? Even if stuck with EM, maybe we use rotating nuclei or rotating atoms or molecules, which would move like a microscopic stepper motors across our pre-quantized space grid. Tiny forces acting on individual protons or electrons adding up to macroscopic forces on our spacecraft. If we’re doing it with individual atoms or nuclear particles, the regions of space we impose the fields on would be just ahead of them, not  out in front of the spacecraft. If we’re using interacting EM fields,  then we’re relying on appropriate phasing and beam intensities to do the job.

As I said, early days. Needs work. Also needs a bigger brain. Intuitively this ought to work. It ought to be capable of up to light speed. The big question is where the energy comes from. It isn’t an impulse drive and doesn’t chuck matter out of a rocket nozzle, but it might collect small particles along the way to convert into energy. Or perhaps nature contributes the energy. If so, then this could get light speed travel without fuel and limited on-board energy supply. Just like gravity pulls a train down a hill, perhaps clever phase design could arrange the grid ahead to be always ‘downhill’ in which case this might turn out to be yet another vacuum energy drive. I honestly don’t know. I’m out of my depth, but intuition suggests this shows promise for someone smarter.