Category Archives: city

The future of land value

St BeesI don’t do investment advice much, and I am NOT an investment adviser of any kind, just a futurist doing some simple reasoning.

World population is around 7.7Bn.

It will increase, level off, then decline, then grow again.

Any projections you see are just educated guesswork. 9.8Bn figure is the UN global population estimate for 2050, and I won’t argue with that, it seems as good a guess as any. Everyone then expects it to level off and decline, as people have fewer kids. I’m not so sure. Read my blog five years ago that suggested it might grow again in the late century, perhaps reaching as high as 15Bn:

https://timeguide.wordpress.com/2014/02/05/will-population-grow-again-after-2050-to-15bn/

I only say might, because there are pressures in both directions and it is too hard to be sure in a far future society which ones will be stronger and by how much. I’m just challenging the standard view that it will decline into the far future, and if I had to place a bet, it would be on resumed growth.

Population is one large influence on demand for land and ‘real estate’.

Another is population distribution. Today, all around the world, people are moving from the countryside to cities. I argue that urbanization will soon peak, and then start to reverse:

https://timeguide.wordpress.com/2018/06/13/will-urbanization-continue-or-will-we-soon-reach-peak-city/

De-urbanization will largely be enabled by high technology and its impacts on work and social life. It will be caused by increasing wealth, coupled to the normal desire to live happier lives. Wealth is increasing quickly, varying place to place and year to year. It is reasonable, given positive feedback effects from AI and automation, to assume average real growth of 2%, including occasional recessions and booms. By 2100, that means global wealth will be 5 times today’s. Leaving aside the lack of understanding of exponential growth by teachers indoctrinating schoolkids to think of themselves as economic victims, taken advantage of by greedy Boomers, that means today’s and tomorrow’s kids will have one hell of a lot more money available to spend on property.

So, there will be more people, with more money, more able to live anywhere. Real estate prices will increase, but not uniformly.

Very many of them will choose to leave cities and with lots of money in the bank, will want somewhere really nice. A lovely beachfront property perhaps, or on a mountainside with a gorgeous view. Or even on a hill overlooking the city, or deep in a forest with a waterfall in the garden. Some might buy boring homes in boring estates surrounded by fields but it won’t be first choice very often. The high prices will go to large and pretty homes in pretty locations, as they do today, but with much higher differential, because supply and demand dictates that. We won’t build more mountains or valleys or coastline. Supply stays limited while demand and bank balances rockets, so prices will rocket too.

Other property won’t necessarily become cheaper, it just won’t become as expensive as fast. Many people will still like cities and choose to live there, do business there, socialize there. They also will be richer, and there may be a lot more of them if population does indeed grow again, but increasing congestion would just cause more de-urbanization. Prices may still rise, but the real money will be moving elsewhere.

Farmland will mostly stay as farmland. Farms are generally functional rather than pretty. Agricultural productivity will be double or triple what it is today, maybe even more. Some food will be made in factories or vertical farms, using tissue culturing or hydroponics, or using feed-stocks based on algae grown at sea, or insects, or fungi. The figures therefore suggest that demand for land to grow stuff will be lower than today, in spite of a larger population. Some will be converted to city, some to pretty villages, some given back to nature, to further increase the attractiveness of those ultra-expensive homes in the nice areas in the distance. Whichever way, that doesn’t suggest very rapid growth of value for most agricultural land, the obvious exception being where it happens to be in or next to a pretty area, in which case it will rocket in value.

As I said, all of this is educated guesswork. Don’t bet the farm on it until you’ve done your own analysis. But my guess is, city property will gain modest value, agricultural land will hold its value or even fall slightly, unless it is in a pretty location. Anywhere pretty will skyrocket in price, be it an existing property or a piece of land that can be built on and stay pretty.

As a final observation, you might argue that pretty isn’t everything. Surely some people will value being near to centers of power or major hubs too? Yes they will, but that is already factored into the urbanization era. That value is already banked. Then it follows the rules just like any other urban property.

 

Enhanced cellular blockchain

I thought there was a need for a cellular blockchain variant, and a more sustainable alternative to cryptocurrencies like Bitcoin that depend on unsustainable proofs-of-work. So I designed one and gave it a temporary project name of Grapevine. I like biomimetics, which I used for both the blockchain itself and its derivative management/application/currency/SW distribution layer. The ANTs were my invention in 1993 when I was with BT, along with Chris Winter. BT never did anything with it, and I believe MIT later published some notes on the idea too. ANTs provide an ideal companion to blockchain and together, could be the basis of some very secure IT systems.

The following has not been thoroughly checked so may contain serious flaws, but hopefully contain some useful ideas to push the field a little in the right direction.

A cellular, distributed, secure ledger and value assurance system – a cheap, fast, sustainable blockchain variant

  • Global blockchain grows quickly to enormous size because all transactions are recorded in single chain – e.g. bitcoin blockchain is already >100GB
  • Grapevine (temp project name) cellular approach would keep local blocks small and self-contained but assured by blockchain-style verification during growth and protected from tampering after block is sealed and stripped by threading with a global thread
  • Somewhat analogous to a grape vine. Think of each local block as a grape that grow in bunches. Vine links bunches together but grapes are all self-contained and stay small in size. Genetics/nutrients/materials/processes all common to entire vine.
  • Grape starts as a flower, a small collection of unverified transactions. All stamens listen to transactions broadcast via any stamen. Flower is periodically (every minute) frozen (for 2 seconds) while pollen is emitted by each stamen, containing stamen signature, previous status verification and new transactions list. Stamens check the pollen they receive for origin signature and previous growth verification and then check all new transactions. If valid, they emit a signed pollination announcement. When each stamen has received signed pollination announcements from the majority of other stamens, that growth stage is closed, (all quite blockchain-like so far), stripped of unnecessary packaging such as previous hash, signatures etc) to leave a clean record of validated transactions, which is then secured from tampering by the grape signature and hash. The next stage of growth then begins, which needs another pollination process (deviating from biological analogy here). Each grape on the bunch grows like this throughout the day. When the grapes are all fully grown, and the final checks made by each grape, the grapes are stripped again and the whole bunch is signed onto the vine using a highly secure bunch signature and hash to prevent any later tampering. Grapes are therefore collections of verified local transactions that have grown in many fully verified stages during the day but are limited in size and stripped of unnecessary packaging. The bunch is a verified global record of all of the grapes grown that day that remains the same forever. The vine is a growing collection of bunches of grapes, but each new grape and bunch starts off fresh each day so signalling and the chain never grow significantly. Each transaction remains verified and recorded forever but signalling is kept minimal. As processing power increases, earlier bunches can be re-secured using a new bunch signature.

Key Advantages

  • Grape vine analogy is easier for non-IT managers to understand than normal blockchain.
  • Unlike conventional blockchains, blocks grow in stages so transactions don’t have to wait long to be verified and sealed.
  • Cellular structure means signalling is always light, with just a few nearby nodes checking a few transactions and keeping short records.
  • Ditto bunching, each day’s records start from zero and bunch is finished and locked at end of day.
  • Cellular structure allows sojourn time for signalling to be kept low with potentially low periods for verification and checking. Will scale well with improving processing speed, less limited by signal propagation time than non-cellular chains.
  • Global all-time record is still complete, duplicated, distributed, but signalling for new transactions always starts light and local every new day.
  • Cellular approach allows easy re-use of globally authenticated tokens within each cell. This limits cost of token production.
  • Cells may be either geographic or logical/virtual. Virtual cells can be geographically global (at penalty of slower comms), but since each is independent until the end of the day, virtual cell speed will not affect local cell speed.
  • Protocols can be different for different cells, allowing cells with higher value transactions to use tighter security.

Associated mechanisms

  • Inter-cell transactions can be implemented easily by using logical/virtual cell that includes both parties. Users may need to be registered for access to multiple cells. If value is being transferred, it is easy to arrange clearing of local cell first (1 minute overhead) and then check currency hasn’t already been spent before allowing transaction on another cell.
  • Grapes are self-contained and data is held locally, duplicated among several stamens. Once sealed for the day, the grape data remains in place, signed off with the appropriate grape signature and the bunch signature verifies it with an extra lock that prevents even a future local majority from being able to tamper with it later. To preserve data in the very long-term against O/S changes, company failure etc, subsequent certified copies may be distributed and kept updated.
  • Signalling during the day can be based on ANT (autonomous network telepher) protocols. These use a strictly limited variety of ANT species that are authenticated and shared at the start of a period (a day or a week perhaps), using period lifetime encryption keys. Level of encryption is determined by ensuring that period is much smaller than the estimated time to crack on current hardware at reasonable cost. All messages use this encryption and ANT mechanisms therefore chances of infiltration or fraudulent transaction is very low so associated signalling and time overhead costs are kept low.
  • ANTs may include transaction descriptor packets, signature distribution packets, new key distribution packets, active (executable code) packets, new member verification packets, software distribution, other admin data, performance maintenance packets such as load distribution, RPCs and many others. Overall, perhaps 64 possible ANT species may be allowed at any one time. This facility makes the system ideal for secure OS and software distribution/maintenance.

Financial use

  • ANTs can contain currency to make valuable packets, or an ANT variant could actually be currency.
  • Optional coins could be made for privacy, otherwise transactions would use real world accounts. A coin-based system can be implemented simply by using the grape signature and coin number. Coins could be faked by decrypting the signature but that signature only lasts one period so by then they will be invalid. Remember, encryption level is set according to cost to decrypt during a period. Coins are globally unique due to different cells having different signatures. Once grapes are sealed no tampering is possible.
  • One mechanism is that coins are used as temporary currency that only lasts one period. Coins are bought using any currency immediately before transactions. At end of day, coins are converted back to desired currency. Any profits/losses due to conversion differences during day accrue to user at point of conversion.
  • A lingering cybercurrency can be made that renews its value to live longer than one period. It simply needs conversion to a new coin at the start of the new day, relying on signature security and short longevity to protect.
  • ANTs can alternatively carry real currency value by direct connection to any account. At end of each growth stage or end of day, transaction clearing debits and deposits in each respective account accordingly.
  • Transaction fees can be implemented easily and simply debited at either or both ends.
  • No expensive PoW is needed. Wasteful mining and PoW activity is unnecessary. Entire system relies only on using encryption signatures that are valid for shorter times than their cost-effective decryption times. Tamper-resistance avoids decryption of earlier signatures being useful.

With thanks to my good friend Prof Nick Colosimo for letting me bounce the ideas off him.

Will urbanization continue or will we soon reach peak city?

For a long time, people have been moving from countryside into cities. The conventional futurist assumption is that this trend will continue, with many mega-cities, some with mega-buildings. I’ve consulted occasionally on future buildings and future cities from a technological angle, but I’ve never really challenged the assumption that urbanization will continue. It’s always good  to challenge our assumptions occasionally, as things can change quite rapidly.

There are forces in both directions. Let’s list those that support urbanisation first.

People are gregarious. They enjoy being with other people. They enjoy eating out and having coffees with friends. They like to go shopping. They enjoy cinemas and theatre and art galleries and museums. They still have workplaces. Many people want to live close to these facilities, where public transport is available or driving times are relatively short. There are exceptions of course, but these still generally apply.

Even though many people can and do work from home sometimes, most of them still go to work, where they actually meet colleagues, and this provides much-valued social contact, and in spite of recent social trends, still provides opportunities to meet new friends and partners. Similarly, they can and do talk to friends via social media or video calls, but still enjoy getting together for real.

Increasing population produces extra pressure on the environment, and governments often try to minimize it by restricting building on green field land. Developers are strongly encouraged to build on brown field sites as far as possible.

Now the case against.

Truly Immersive Interaction

Talking on the phone, even to a tiny video image, is less emotionally rich than being there with someone. It’s fine for chats in between physical meetings of course, but the need for richer interaction still requires ‘being there’. Augmented reality will soon bring headsets that provide high quality 3D life-sized images of the person, and some virtual reality kit will even allow analogs of physical interaction via smart gloves or body suits, making social comms a bit better. Further down the road, active skin will enable direct interaction with the peripheral nervous system to produce exactly the same nerve signals as an actual hug or handshake or kiss, while active contact lenses will provide the same resolution as your retina wherever you gaze. The long term is therefore communication which has the other person effectively right there with you, fully 3D, fully rendered to the capability of your eyes, so you won’t be able to tell they aren’t. If you shake hands or hug or kiss, you’ll feel it just the same as if they were there too. You will still know they are not actually there, so it will never be quite as emotionally rich as if they were, but it can get pretty close. Close enough perhaps that it won’t really matter to most people most of the time that it’s virtual.

In the same long term, many AIs will have highly convincing personalities, some will even have genuine emotions and be fully conscious. I blogged recently on how that might happen if you don’t believe it’s possible:

https://timeguide.wordpress.com/2018/06/04/biomimetic-insights-for-machine-consciousness/

None of the technology required for this is far away, and I believe a large IT company could produce conscious machines with almost human-level AI within a couple of years of starting the project. It won’t happen until they do, but when one starts trying seriously to do it, it really won’t be long. That means that as well as getting rich emotional interaction from other humans via networks, we’ll also get lots from AI, either in our homes, or on the cloud, and some will be in robots in our homes too.

This adds up to a strong reduction in the need to live in a city for social reasons.

Going to cinemas, theatre, shopping etc will also all benefit from this truly immersive interaction. As well as that, activities that already take place in the home, such as gaming will also advance greatly into more emotionally and sensory intensive experiences, along with much enhanced virtual tourism and virtual world tourism, virtual clubbing & pubbing, which barely even exist yet but could become major activities in the future.

Socially inclusive self-driving cars

Some people have very little social interaction because they can’t drive and don’t live close to public transport stops. In some rural areas, buses may only pass a stop once a week. Our primitive 20th century public transport systems thus unforgivably exclude a great many people from social inclusion, even though the technology needed to solve that has existed for many years.  Leftist value systems that much prefer people who live in towns or close to frequent public transport over everyone else must take a lot of the blame for the current epidemic of loneliness. It is unreasonable to expect those value systems to be replaced by more humane and equitable ones any time soon, but thankfully self-driving cars will bypass politicians and bureaucrats and provide transport for everyone. The ‘little old lady’ who can’t walk half a mile to wait 20 minutes in freezing rain for an uncomfortable bus can instead just ask her AI to order a car and it will pick her up at her front door and take her to exactly where she wants to go, then do the same for her return home whenever she wants. Once private sector firms like Uber provide cheap self-driving cars, they will be quickly followed by other companies, and later by public transport providers. Redundant buses may finally become extinct, replaced by better socially inclusive transport, large fleets of self-driving or driverless vehicles. People will be able to live anywhere and still be involved in society. As attendance at social events improves, so they will become feasible even in small communities, so there will be less need to go into a town to find one. Even political involvement might increase. Loneliness will decline as social involvement increases, and we’ll see many other social problems decline too.

Distribution drones

We hear a lot about upcoming redundancy caused by AI, but far less about the upside. AI might mean someone is no longer needed in an office, but it also makes it easier to set up a company and run it, taking what used to be just a hobby and making it into a small business. Much of the everyday admin and logistics can be automated Many who would never describe themselves as entrepreneurs might soon be making things and selling them from home and this AI-enabled home commerce will bring in the craft society. One of the big problems is getting a product to the customer. Postal services and couriers are usually expensive and very likely to lose or damage items. Protecting objects from such damage may require much time and expense packing it. Even if objects are delivered, there may be potential fraud with no-payers. Instead of this antiquated inefficient and expensive system, drone delivery could collect an object and take it to a local customer with minimal hassle and expense. Block-chain enables smart contracts that can be created and managed by AI and can directly link delivery to payment, with fully verified interaction video if necessary. If one happens, the other happens. A customer might return a damaged object, but at least can’t keep it and deny receipt. Longer distance delivery can still use cheap drone pickup to take packages to local logistics centers in smart crates with fully block-chained g-force and location detectors that can prove exactly who damaged it and where. Drones could be of any size, and of course self-driving cars or pods can easily fill the role too if smaller autonomous drones are inappropriate.

Better 3D printing technology will help to accelerate the craft economy, making it easier to do crafts by upskilling people and filling in some of their skill gaps. Someone with visual creativity but low manual skill might benefit greatly from AI model creation and 3D printer manufacture, followed by further AI assistance in marketing, selling and distribution. 3D printing might also reduce the need to go to town to buy some things.

Less shopping in high street

This is already obvious. Online shopping will continue to become a more personalized and satisfying experience, smarter, with faster delivery and easier returns, while high street decline accelerates. Every new wave of technology makes online better, and high street stores seem unable or unwilling to compete, in spite of my wonderful ‘6s guide’:

https://timeguide.wordpress.com/2013/01/16/the-future-of-high-street-survival-the-6s-guide/

Those that are more agile still suffer decline of shopper numbers as the big stores fail to attract them so even smart stores will find it harder to survive.

Improving agriculture

Farming technology has doubled the amount of food production per hectare in the last few decades. That may happen again by mid-century. Meanwhile, the trend is towards higher vegetable and lower meat consumption. Even with an increased population, less land will be needed to grow our food. As well as reducing the need to protect green belts, that will also allow some of our countryside to be put under better environmental stewardship programs, returning much of it to managed nature. What countryside we have will be healthier and prettier, and people will be drawn to it more.

Improving social engineering

Some objections to green-field building can be reduced by making better use of available land. Large numbers of new homes are needed and they will certainly need some green field to be used, but given the factors already listed above, a larger number of smaller communities might be better approach. Amazingly, in spite of decades of dating technology proving that people can be matched up easily using AI, there is still no obvious use of similar technology to establish new communities by blending together people who are likely to form effective communities. Surely it must be feasible to advertise a new community building program that wants certain kinds of people in it – even an Australian style points system might work sometimes. Unless sociologists have done nothing for the past decades, they must surely know what types of people work well together by now? If the right people live close to each other, social involvement will be high, loneliness low, health improved, care costs minimized, the need for longer distance travel reduced and environmental impact minimized. How hard can it be?

Improving building technology such as 3D printing and robotics will allow more rapid construction, so that when people are ready and willing to move, property suited to them can be available soon.

Lifestyle changes also mean that homes don’t need to be as big. A phone today does what used to need half a living room of technology and space. With wall-hung displays and augmented reality, decor can be partly virtual, and even a 450 sq ft apartment is fine as a starter place, half as big as was needed a few decades ago, and that could be 3D printed and kitted out in a few days.

Even demographic changes favor smaller communities. As wealth increases, people have smaller families, i.e fewer kids. That means fewer years doing the school run, so less travel, less need to be in a town. Smaller schools in smaller communities can still access specialist lessons via the net.

Increasing wealth also encourages and enables people to a higher quality of life. People who used to live in a crowded city street might prefer a more peaceful and spacious existence in a more rural setting and will increasingly be able to afford to move. Short term millennial frustrations with property prices won’t last, as typical 2.5% annual growth more than doubles wealth by 2050 (though automation and its assorted consequences will impact on the distribution of that wealth).

Off-grid technology

Whereas one of the main reasons to live in urban areas was easy access to telecomms, energy and water supply and sewerage infrastructure, all of these can now be achieved off-grid. Mobile networks provide even broadband access to networks. Solar or wind provide easy energy supply. Water can be harvested out of the air even in arid areas (http://www.dailymail.co.uk/sciencetech/article-5840997/The-solar-powered-humidity-harvester-suck-drinkable-water-AIR.html) and human and pet waste can be used as biomass for energy supply too, leaving fertilizer as residue.

There are also huge reasons that people won’t want to live in cities, and they will also cause deurbansisation.

The biggest by far in the problem of epidemics. As antibiotic resistance increases, disease will be a bigger problem. We may find good antibiotics alternatives but we may not. If not, then we may see some large cities where disease runs rampant and kills hundreds of thousands of people, perhaps even millions. Many scientists have listed pandemics among their top ten threats facing humanity. Obviously, being in a large city will incur a higher risk of becoming a victim, so once one or two incidents have occurred, many people will look for options to leave cities everywhere. Linked to this is bioterrorism, where the disease is deliberate, perhaps created in a garden shed by someone who learned the craft in one of today’s bio-hacking clubs. Disease might be aimed at a particular race, gender or lifestyle group or it may simply be designed to be as contagious and lethal as possible to everyone.

I’m still not saying we won’t have lots of people living in cities. I am saying that more people will feel less need to live in cities and will instead be able to find a small community where they can be happier in the countryside. Consequently, many will move out of cities, back to more rural living in smaller, friendlier communities that improving technology makes even more effective.

Urbanization will slow down, and may well go into reverse. We may reach peak city soon.

 

 

Self-driving bicycles

I just saw a video of a Google self-driving bike on Linked-In. It is a 2017 April Fool prank, but that just means it is fake in this instance, it doesn’t mean it couldn’t be done in real life. It is fun to watch anyway.

https://www.psfk.com/2017/04/google-prank-pushes-for-self-driving-bicycles-in-amsterdam.html

In 2005 I invented a solution for pulling bikes along on linear induction motor bile lanes, pulling a metal plate attached (via a hinged rod to prevent accidents) to the front forks.

The original idea was simply that the bike would be pulled along, but it would still need a rider to balance it. However, with a fairly small modification, it could self balance. All it needs is to use plates on both sides, so that the magnetic force can be varied to pull one side more than the other. If the force is instantly variable, that could be used in a simple control system both to keep the bike vertical when going straight and to steer it round bends as required, as illustrated on the right of the diagram. Therefore the bike could be self-driving.

Self-driving bikes would be good for lazy riders who don’t even want the effort of steering, but their auto-routing capability would also help any rider who simply wants navigation service, and presumably some riders with disabilities that make balancing difficult, and of course the propulsion is potentially welcome for any cyclist who doesn’t want to arrive sweaty or who is tiring of a long hill. Best of all, the bikes could find their own way to a bike park when not needed, balancing the numbers of available bikes according to local demand at any time.

 

Instant buildings: Kinetic architecture

Revisiting an idea I raised in a blog in July last year. Even I think it was badly written so it’s worth a second shot.

Construction techniques are diverse and will get diverser. Just as we’re getting used to seeing robotic bricklaying and 3D printed walls, another technique is coming over the horizon that will build so fast I call it kinetic architecture. The structure will be built so quickly it can build a bridge from one side just by building upwards at an angle, and the structure will span the gap and meet the ground at the other side before gravity has a chance to collapse it.

The key to such architecture is electromagnetic propulsion, the same as on the Japanese bullet trains or the Hyperloop, using magnetic forces caused by electric currents to propel the next piece along the existing structure to the front end where it acts as part of the path for the next. Adding pieces quickly enough leads to structures that can follow elegant paths, as if the structure is a permanent trace of the path an object would have followed if it were catapulted into the air and falling due to gravity. It could be used for buildings, bridges, or simply art.

It will become possible thanks to new materials such as graphene and other carbon composites using nanotubes. Graphene combines extreme strength, hence lightness for a particular strength requirement, with extreme conductivity, allowing it to carry very high electric currents, and therefore able to generate high magnetic forces. It is a perfect material for kinetic architecture. Pieces would have graphene electromagnet circuitry printed on their surface. Suitable circuit design would mean that every extra piece falling into place becomes an extension to the magnetic railway transporting the next piece. Just as railroads may be laid out just in front of the train using pieces carried by the train, so pieces shot into the air provide a self-building path for other pieces to follow. A building skeleton could be erected in seconds. I mentioned in my original blog (about carbethium) that this could be used to create the sort of light bridges we see in Halo. A kinetic architecture skeleton would be shot across the divide and the filler pieces in between quickly transported into place along the skeleton and assembled.

See https://timeguide.wordpress.com/2016/07/25/carbethium-a-better-than-scifi-material/. The electronic circuitry potential for graphene also allows for generating plasma or simply powering LEDs to give a nice glow just like the light bridges too.

Apart from clever circuit design, kinetic architecture also requires pieces that can interlock. The kinetic energy of the new piece arriving at the front edge would ideally be sufficient to rotate it into place, interlocking with previous front edge. 3d interlocking is tricky but additional circuitry can provide additional magnetic forces to rotate and translate pieces if kinetic energy alone isn’t enough. The key is that once interlocked, the top surface has to form a smooth continuous line with the previous one, so that pieces can move along smoothly. Hooks can catch an upcoming piece to make it rotate, with the hooks merging nicely with part of the new piece as it falls into place, making those hooks part of a now smooth surface and a new hook at the new front end. You’ll have to imagine it yourself, I can’t draw it. Obviously, pieces would need precision engineering because they’d need to fit precisely to give the required strength and fit.

Ideally, with sufficiently well-designed pieces, it should be possible to dismantle the structure by reversing the build process, unlocking each end piece in turn and transporting it back to base along the structure until no structure remains.

I can imagine such techniques being used at first for artistic creations, sculptures using beautiful parabolic arcs. But they could also be used for rapid assembly for emergency buildings, instant evacuation routes for tall buildings, or to make temporary bridges after an earthquake destroyed a permanent one. When a replacement has been made, the temporary one could be rolled back up and used elsewhere. Maybe it could become routine for making temporary structures that are needed quickly such as for pop concerts and festivals. One day it could become an everyday building technique. 

Mega-buildings could become cultural bubbles

My regular readers, both of them in fact, will know I am often concerned about the dangerous growth of social media bubbles. By mid-century, thanks to upcoming materials, some cities will have a few buildings over 1km tall, possibly 10km (and a spaceport or two up to 30km high). These would be major buildings, and could create a similar problem.

A 1km building could have 200 floors, and with 100m square floors, 200 hectares of space.  Assuming half is residential space and the other half is shops, offices or services, that equates to 20,000 luxury apartments (90 sq m each) or 40,000 basic flats. That means each such building could be equivalent to a small town, with maybe 50,000 inhabitants. A 10km high mega-building, with a larger 250m side, would have 60 times more space, housing up to 300,000 people and all they need day-to-day, essentially a city.

Construction could be interesting. My thoughts are that a 10km building could be extruded from the ground using high pressure 3D printing, rather than assembled with cranes. Each floor could be fully fitted out while it is still near ground level, its apartments sold and populated, even as the building grows upward. That keeps construction costs and cash flow manageable.

My concern is that although we will have the technology to build such buildings in the 2040s, I’m not aware of much discussion about how cultures would evolve in such places, at least not outside of sci-fi (like Judge Dredd or Blade Runner). I rather hope we wouldn’t just build them first and try to solve social problems later. We really ought to have some sort of plans to make them work.

In a 100m side building, entire floors or groups of floors would likely be allocated to particular functions – residential, shopping, restaurants, businesses etc. Grouping functions sensibly reduces the total travel needed. In larger buildings, it is easier to have local shops mixed with apartments for everyday essentials, with larger malls elsewhere.

People could live almost entirely in the building, rarely needing to leave, and many might well do just that, essentially becoming institutionalized. I think these buildings will feel very different from small towns. In small towns, people still travel a lot to other places, and a feeling of geographic isolation doesn’t emerge. In a huge tower block of similar population and facilities, I don’t think people would leave as often, and many will stay inside. All they need is close by and might soon feel safe and familiar, while the external world might seem more distant, scarier. Institutionalization might not take long, a month or two of becoming used to the convenience of staying nearby while watching news of horrors going on elsewhere. Once people stop the habit of leaving the building, it could become easier to find reasons not to leave it in future.

Power structures would soon evolve – local politics would happen, criminal gangs would emerge, people would soon learn of good and bad zones. It’s possible that people might become tribal, their building and their tribe competing for external resources and funding with tribes in other mega-buildings, and their might be conflict. Knowing they are physically detached, the same bravery to attack total strangers just because they hold different views might emerge that we see on social media today. There might be cyber-wars, drone wars, IoT wars between buildings.

I’m not claiming to be a social anthropologist. I have no real idea how these buildings will work and perhaps my fears are unjustified. But even I can see some potential problems just based on what we see today, magnified for the same reasons problems get magnified on social media. Feelings of safety and anonymity can lead to some very nasty tribal behaviors. Managing diversity of opinion among people moving in would be a significant challenge, maintaining it might be near impossible. With the sort of rapid polarization we’ve already seen today thanks to social media bubbles, physically contained communities would surely see those same forces magnified everyday.

Building a 10km mega-building will become feasible in the 2040s, and increased urban populations will make them an attractive option for planners. Managing them and making them work socially might be a much bigger challenge.

 

 

Hull in 2050

I wrote a piece for KCOM on what we can expect to feature in the city by 2050.

KCOM illustration

Highlights and KCOM commentary at: https://www.kcomhome.com/news/articles/welcome-to-the-hull-of-the-future/

If you want my full article, they have allowed me to share it. Here is a pdf of my original article, but it’s just text – I can’t do nice graphics:

 

Hull 2050

They also have a great project called We Made Ourselves Over, set in 2097. Here’s one of their graphics from that:

Graphic from http://wemadeourselvesover.com/

Future Augmented Reality

AR has been hot on the list of future IT tech for 25 years. It has been used for various things since smartphones and tablets appeared but really hit the big time with the recent Pokemon craze.

To get an idea of the full potential of augmented reality, recognize that the web and all its impacts on modern life came from the convergence of two medium sized industries – telecoms and computing. Augmented reality will involve the convergence of everything in the real world with everything in the virtual world, including games, media, the web, art, data, visualization, architecture, fashion and even imagination. That convergence will be enabled by ubiquitous mobile broadband, cloud, blockchain payments, IoT, positioning and sensor tech, image recognition, fast graphics chips, display and visor technology and voice and gesture recognition plus many other technologies.

Just as you can put a Pokemon on a lawn, so you could watch aliens flying around in spaceships or cartoon characters or your favorite celebs walking along the street among the other pedestrians. You could just as easily overlay alternative faces onto the strangers passing by.

People will often want to display an avatar to people looking at them, and that could be different for every viewer. That desire competes with the desire of the viewer to decide how to see other people, so there will be some battles over who controls what is seen. Feminists will certainly want to protect women from the obvious objectification that would follow if a woman can’t control how she is seen. In some cases, such objectification and abuse could even reach into hate crime territory, with racist, sexist or homophobic virtual overlays. All this demands control, but it is far from obvious where that control would come from.

As for buildings, they too can have a virtual appearance. Virtual architecture will show off architect visualization skills, but will also be hijacked by the marketing departments of the building residents. In fact, many stakeholders will want to control what you see when you look at a building. The architects, occupants, city authorities, government, mapping agencies, advertisers, software producers and games designers will all try to push appearances at the viewer, but the viewer might want instead to choose to impose one from their own offerings, created in real time by AI or from large existing libraries of online imagery, games or media. No two people walking together on a street would see the same thing.

Interior decor is even more attractive as an AR application. Someone living in a horrible tiny flat could enhance it using AR to give the feeling of far more space and far prettier decor and even local environment. Virtual windows onto Caribbean beaches may be more attractive than looking at mouldy walls and the office block wall that are physically there. Reality is often expensive but images can be free.

Even fashion offers a platform for AR enhancement. An outfit might look great on a celebrity but real life shapes might not measure up. Makeovers take time and money too. In augmented reality, every garment can look as it should, and that makeup can too. The hardest choice will be to choose a large number of virtual outfits and makeups to go with the smaller range of actual physical appearances available from that wardrobe.

Gaming is in pole position, because 3D world design, imagination, visualization and real time rendering technology are all games technology, so perhaps the biggest surprise in the Pokemon success is that it was the first to really grab attention. People could by now be virtually shooting aliens or zombies hoarding up escalators as they wait for their partners. They are a little late, but such widespread use of personal or social gaming on city streets and in malls will come soon.

AR Visors are on their way too, and though the first offerings will be too expensive to achieve widespread adoption, cheaper ones will quickly follow. The internet of things and sensor technology will create abundant ground-up data to make a strong platform. As visors fall in price, so too will the size and power requirements of the processing needed, though much can be cloud-based.

It is a fairly safe bet that marketers will try very hard to force images at us and if they can’t do that via blatant in-your-face advertising, then product placement will become a very fine art. We should expect strong alliances between the big marketing and advertising companies and top games creators.

As AI simultaneously develops, people will be able to generate a lot of their own overlays, explaining to AI what they’d like and having it produced for them in real time. That would undermine marketing use of AR so again there will be some battles for control. Just as we have already seen owners of landmarks try to trademark the image of their buildings to prevent people including them in photographs, so similar battles will fill the courts over AR. What is to stop someone superimposing the image of a nicer building on their own? Should they need to pay a license to do so? What about overlaying celebrity faces on strangers? What about adding multimedia overlays from the web to make dull and ordinary products do exciting things when you use them? A cocktail served in a bar could have a miniature Sydney fireworks display going on over it. That might make it more exciting, but should the media creator be paid and how should that be policed? We’ll need some sort of AR YouTube at the very least with added geolocation.

The whole arts and media industry will see city streets as galleries and stages on which to show off and sell their creations.

Public services will make more mundane use of AR. Simple everyday context-dependent signage is one application, but overlays would be valuable in emergencies too. If police or fire services could superimpose warning on everyone’s visors nearby, that may help save lives in emergencies. Health services will use AR to assist ordinary people to care for a patient until an ambulance arrives

Shopping provide more uses and more battles. AR will show you what a competing shop has on offer right beside the one in front of you. That will make it easy to digitally trespass on a competitor’s shop floor. People can already do that on their smartphone, but AR will put the full image large as life right in front of your eyes to make it very easy to compare two things. Shops won’t want to block comms completely because that would prevent people wanting to enter their shop at all, so they will either have to compete harder or find more elaborate ways of preventing people making direct visual comparisons in-store. Perhaps digital trespassing might become a legal issue.

There will inevitably be a lot of social media use of AR too. If people get together to demonstrate, it will be easier to coordinate them. If police insist they disperse, they could still congregate virtually. Dispersed flash mobs could be coordinated as much as ones in the same location. That makes AR a useful tool for grass-roots democracy, especially demonstrations and direct action, but it also provides a platform for negative uses such as terrorism. Social entrepreneurs will produce vast numbers of custom overlays for millions of different purposes and contexts. Today we have tens of millions of websites and apps. Tomorrow we will have even more AR overlays.

These are just a few of the near term uses of augmented reality and a few hints as issues arising. It will change every aspect of our lives in due course, just as the web has, but more so.

 

2045: Constructing the future

CarsHiRes_02

Today is the day Marty Mc’Fly time traveled 30 years forwards to in ‘Back to the Future 2’. In recognition of that, equipment rental firm Hewden commissioned me to produce a report on what the world will look like in 2045, 30 years on from now. It considers construction technology as well as general changes in cities and buildings. The report is called 2045: Constructing the future and you can get a full copy from http://www.constructingthefuture.com. Here are a few of the highlights:

Report Highlights

High use of super-strong carbon-based materials, including ultra-high buildings such as spaceports up to 30km tall. Superlight materials will even enable decorative floating structures.

LondonSkyline

Greatly increased safety thanks to AI, robotics and total monitoring via drones

Half human, half machine workers will be common as exoskeletons allow workers to wear sophisticated hydraulic equipment.

ConstructionWorkerHiRes_02

Upskilled construction workers will enjoy better safety, better job satisfaction and better pay.

Augmented reality will be useful in construction and to allow cheap buildings to have elaborate appearance.

Smart makes buildings cheap – with tiny sensors, augmented reality, energy harvesting coatings, less wiring and no windows, buildings can become very cheap at the same time as becoming better.

The future of electronic cash and value

 

Picture first, I’m told people like to see pics in blogs. This one is from 1998; only the title has changed since.

future electronic cash

Every once in a while I have to go to a bank. This time it was my 5th attempt to pay off a chunk of my Santander Mortgage. I didn’t know all the account details for web transfer so went to the Santander branch. Fail – they only take cash and cheques. Cash and what??? So I tried via internet banking. Entire transaction details plus security entered, THEN Fail – I exceeded what Barclays allows for their fast transfers. Tried again with smaller amount and again all details and all security. Fail again, Santander can’t receive said transfers, try CHAPS. Tried CHAPS, said it was all fine, all hunkydory. Happy bunny. Double fail. It failed due to amount exceeding limit AND told me it had succeeded when it hadn’t. I then drove 12 miles to my Barclays branch who eventually managed to do it, I think (though I haven’t checked that it worked  yet).

It is 2015. Why the hell is it so hard for two world class banks to offer a service we should have been able to take for granted 20 years ago?

Today, I got tweeted about Ripple Labs and a nice blog that quote their founder sympathising with my experience above and trying to solve it, with some success:

http://www.wfs.org/blogs/richard-samson/supermoney-new-wealth-beyond-banks-and-bitcoin

Ripple seems good as far as it goes, which is summarised in the blog, but do read the full original:

Basically the Ripple protocol “provides the ability for humans to confirm financial transactions without a central operator,” says Larsen. “This is major.” Bitcoin was the first technology to successfully bypass banks and other authorities as transaction validators, he points out, “but our method is much cheaper and takes only seconds rather than minutes.” And that’s just for starters. For example, “It also leverages the enormous power of banks and other financial institutions.”

The power of the value web stems from replacing archaic back-end systems with all their cumbersome delays and unnecessary costs. 

That’s great, I wish them the best of success. It is always nice to see new systems that are more efficient than the old ones, but the idea is early 1990s. Lots of IT people looked at phone billing systems and realised they managed to do for a penny what banks did for 65 pennies at the time, and telco business cases were developed to replace the banks with pretty much what Ripple tries to do. Those were never developed for a variety of reasons, both business and regulatory, but the ideas were certainly understood and developed broadly at engineer level to include not only traditional cash forms but many that didn’t exist then and still don’t. Even Ripple can only process transactions that are equivalent to money such as traditional currencies, electronic cash forms like bitcoin, sea shells or air-miles.

That much is easy, but some forms require other tokens to have value, such as personalized tokens. Some value varies according to queue lengths, time of day, who is spending it to whom. Some needs to be assignable, so you can give money that can only be used to purchase certain things, and may have a whole basket of conditions attached. Money is also only one form of value, and many forms of value are volatile, only existing at certain times and places in certain conditions for certain transactors. Aesthetic cash? Play money? IOUs? Favours?These are  all a bit like cash but not necessarily tradable or exchangeable using simple digital transaction engines because they carry emotional weighting as well as financial value. In the care economy, which is now thankfully starting to develop and is finally reaching concept critical mass, emotional value will become immensely important and it will have some tradable forms, though much will not be tradable ever. We understood all that then, but are still awaiting proper implementation. Most new startups on the web are old ideas finally being implemented and Ripple is only a very partial implementation so far.

Here is one of my early blogs from 1998, using ideas we’d developed several years earlier that were no longer commercially sensitive – you’ll observe just how much banks have under-performed against what we expected of them, and what was entirely feasible using already known technology then:

Future of Money

 Ian Pearson, BT Labs, June 98

Already, people are buying things across the internet. Mostly, they hand over a credit card number, but some transactions already use electronic cash. The transactions are secure so the cash doesn’t go astray or disappear, nor can it easily be forged. In due course, using such cash will become an everyday occurrence for us all.

Also already, electronic cash based on smart cards has been trialled and found to work well. The BT form is called Mondex, but it is only one among several. These smart cards allow owners to ‘load’ the card with small amounts of money for use in transactions where small change would normally be used, paying bus fares, buying sweets etc. The cards are equivalent to a purse. But they can and eventually will allow much more. Of course, electronic cash doesn’t have to be held on a card. It can equally well be ‘stored’ in the network. Transactions then just require secure messaging across the network. Currently, the cost of this messaging makes it uneconomic for small transactions that the cards are aimed at, but in due course, this will become the more attractive option, especially since you no longer lose your cash when you lose the card.

When cash is digitised, it loses some of the restrictions of physical cash. Imagine a child has a cash card. Her parents can give her pocket money, dinner money, clothing allowance and so on. They can all be labelled separately, so that she can’t spend all her dinner money on chocolate. Electronic shopping can of course provide the information needed to enable the cash. She may have restrictions about how much of her pocket money she may spend on various items too. There is no reason why children couldn’t implement their own economies too, swapping tokens and IOUs. Of course, in the adult world this grows up into local exchange trading systems (LETS), where people exchange tokens too, a glorified babysitting circle. But these LETS don’t have to be just local, wider circles could be set up, even globally, to allow people to exchange services or information with each other.

Electronic cash can be versatile enough to allow for negotiable cash too. Credit may be exchanged just as cash and cash may be labelled with source. For instance, we may see celebrity cash, signed by the celebrity, worth more because they have used it. Cash may be labelled as tax paid, so those donations from cards to charities could automatically expand with the recovered tax. Alternatively, VAT could be recovered at point of sale.

With these advanced facilities, it becomes obvious that the cash needs to become better woven into taxation systems, as well as auditing and accounting systems. These functions can be much more streamlined as a result, with less human administration associated with money.

When ID verification is added to the transactions, we can guarantee who it is carrying out the transaction. We can then implement personal taxation, with people paying different amounts for the same goods. This would only work for certain types of purchase – for physical goods there would otherwise be a thriving black market.

But one of the best advantages of making cash digital is the seamlessness of international purchases. Even without common official currency, the electronic cash systems will become de facto international standards. This will reduce the currency exchange tax we currently pay to the banks every time we travel to a different country, which can add up to as much as 25% for an overnight visit. This is one of the justifications often cited for European monetary union, but it is happening anyway in global e-commerce.

Future of banks

 Banks will have to change dramatically from today’s traditional institutions if they want to survive in the networked world. They are currently introducing internet banking to try to keep customers, but the move to digital electronic cash, held perhaps by the customer or an independent third party, will mean that the cash can be quite separate from the transaction agent. Cash does not need to be stored in a bank if records in secured databases anywhere can be digitally signed and authenticated. The customer may hold it on his own computer, or in a cyberspace vault elsewhere. With digital signatures and high network security, advanced software will put the customer firmly in control with access to any facility or service anywhere.

In fact, no-one need hold cash at all, or even move it around. Cash is just bits today, already electronic records. In the future, it will be an increasingly blurred entity, mixing credit, reputation, information, and simply promises into exchangeable tokens. My salary may be just a digitally signed certificate from BT yielding control of a certain amount of credit, just another signature on a long list as the credit migrates round the economy. The ‘promise to pay the bearer’ just becomes a complex series of serial promises. Nothing particularly new here, just more of what we already have. Any corporation or reputable individual may easily capture the bank’s role of keeping track of the credit. It is just one service among many that may leave the bank.

As the world becomes increasingly networked, the customer could thus retain complete control of the cash and its use, and could buy banking services on a transaction by transaction basis. For instance, I could employ one company to hold my cash securely and prevent its loss or forgery, while renting the cash out to companies that want to borrow via another company, keeping the bulk of the revenue for myself. Another company might manage my account, arrange transfers etc, and deal with the taxation, auditing etc. I could probably get these done on my personal computer, but why have a dog and bark yourself.

The key is flexibility, none of these services need be fixed any more. Banks will not compete on overall package, but on every aspect of service. Worse still (for the banks), some of their competitors will be just freeware agents. The whole of the finance industry will fragment. The banks that survive will almost by definition be very adaptable. Services will continue and be added to, but not by the rigid structures of today. Surviving banks should be able to compete for a share of the future market as well as anyone. They certainly have a head start in many of the required skills, and have the advantage of customer lethargy when it comes to changing to potentially better suppliers. Many of their customers will still value tradition and will not wish to use the better and cheaper facilities available on the network. So as always, it looks like there will be a balance.

Firstly, with large numbers of customers moving to the network for their banking services, banks must either cater for this market or become a niche operator, perhaps specialising in tradition, human service and even nostalgia. Most banks however will adapt well to network existence and will either be entirely network based, or maintain a high street presence to complement their network presence.

High Street banking

 Facilities in high street banking will echo this real world/cyberspace nature. It must be possible to access network facilities from within the banks, probably including those of competitors. The high street bank may therefore be more like shops today, selling wares from many suppliers, but with a strongly placed own brand. There is of course a niche for banks with no services of their own at all who just provide access to services from other suppliers. All they offer in addition is a convenient and pleasant place to access them, with some human assistance as appropriate.

Traditional service may sometimes be pushed as a differentiator, and human service is bound to attract many customers too. In an increasingly machine dominated world, actually having the right kind of real people may be significant value add.

But many banks will be bursting with high technology either alongside or in place of people. Video terminals to access remote services, perhaps with translation to access foreign services. Biometric identification based on iris scan, fingerprints etc may be used to authenticate smart cards, passports or other legal documents before their use, or simply a means of registering securely onto the network. High quality printers and electronic security embedding would enable banks to offer additional facilities like personal bank notes, usable as cash.

Of course, banks can compete in any financial service. Because the management of financial affairs gives them a good picture of many customer’s habits and preferences, they will be able to use this information to sell customer lists, identify market niches for new businesses, and predict the likely success of customers proposing setting up businesses.

As they try to stretch their brands into new territories, one area they may be successful is in information banking. People may use banks as the publishers of the future. Already knowledge guilds are emerging. Ultimately, any piece of information from any source can be marketed at very low publishing and distribution cost, making previously unpublishable works viable. Many people have wanted to write, but have been unable to find publishers due to the high cost of getting to market in paper. A work may be sold on the network for just pennies, and achieve market success by selling many more copies than could have been achieved by the high priced paper alternative. The success of electronic encyclopedias and the demise of Encyclopedia Britannica is evidence of this. Banks could allow people to upload information onto the net, which they would then manage the resultant financial transactions. If there aren’t very many, the maximum loss to the bank is very small. Of course, electronic cash and micropayment technology mean that the bank is not necessary, but for many, it may smooth the road.

Virtual business centres

Their exposure to the detailed financial affairs of the community put banks in a privileged position in identifying potential markets. They could therefore act as co-ordinators for virtual companies and co-operatives. Building on the knowledge guilds, they could broker the skills of their many customers to existing virtual companies and link people together to address business needs not addressed by existing companies, or where existing companies are inadequate or inefficient. In this way, short-term contractors, who may dominate the employment community, can be efficiently utilised to everyone’s gain. The employees win by getting more lucrative work, their customers get more efficient services at lower cost, and the banks laugh to themselves.

Future of the stock market

 In the next 10 years, we will probably see a factor of 1000 in computer speed and memory capacity. In parallel with hardware development, there are numerous research forays into software techniques that might yield more factors of 10 in the execution speed for programs. Tasks that used to take a second will be reduced to a millisecond. As if this impact were not enough, software will very soon be able to make logical deductions from the flood of information on the internet, not just from Reuters or Bloomberg, but from anywhere. They will be able to assess the quality and integrity of the data, correlate it with other data, run models, and infer likely other events and make buy or sell recommendations. Much dealing will still be done automatically subject to human-imposed restrictions, and the speed and quality of this dealing could far exceed current capability.

Which brings problems…

Firstly, the speed of light is fast but finite. With these huge processing speeds, computers will be able to make decisions within microseconds of receiving information. Differences in distance from the information source become increasingly important. Being just 200m closer to the Bank of England makes one microsecond difference to the time of arrival of information on interest rates, the information, insignificant to a human, but of sufficient duration for a fast computer to but or sell before competitors even receive the information. As speeds increase further over following years, the significant distance drops. This effect will cause great unfairness according to geographic proximity to important sources. There are two obvious outcomes. Either there becomes a strong premium on being closest, with rises in property values nearby to key sources, or perhaps network operators could be asked to provide guaranteed simultaneous delivery of information. This is entirely technically feasible but would need regulation, otherwise users could simply use alternative networks.

Secondly, exactly simultaneous processing will cause problems. If many requests for transactions arrive at exactly the same moment, computers or networks have to give priority in some way. This is bound to be a source of contention. Also, simultaneous events can often cause malfunctions, as was demonstrated perfectly at the launch of Big Bang. Information waves caused by such events are a network phenomenon that could potentially crash networks.

Such a delay-sensitive system may dictate network technology. Direct transmission through the air by means of radio or infrared (optical wireless) would be faster than routing signals through fibres that take a more tortuous route, especially since the speed of light in fibre is only two third that in air.

Ultimately, there is a final solution if speed of computing increases so far that transmission delay is too big a problem. The processing engines could actually be shared, with all the deals and information processing taking place in a central computer, using massive parallelism. It would be possible to construct such a machine that treated each subscribing company fairly.

An interesting future side effect of all this is that the predicted flood of people into the countryside may be averted. Even though people can work from anywhere, their computers have to be geographically very close to the information centres, i.e. the City. Automated dealing has to live in the city, human based dealing can work from anywhere. If people and machines have to work together, perhaps they must both work in the City.

Consumer dealing

 The stock exchange long since stopped being a trading floor with scraps of paper and became a distributed computer environment – it effectively moved into cyberspace. The deals still take place, but in cyberspace. There are no virtual environments yet, but the other tools such as automated buying and selling already exist. These computers are becoming smarter and exist in cyberspace every bit the same as the people. As a result, there is more automated analysis, more easy visualisation and more computer assisted dealing. People will be able to see which shares are doing well, spot trends and act on their computer’s advice at a button push. Markets will grow for tools to profit from shares, whether they be dealing software, advice services or visualisation software.

However, as we see more people buying personal access to share dealing and software to determine best buys, or even to automatically buy or sell on certain clues, we will see some very negative behaviours. Firstly, traffic will be highly correlated if personal computers can all act on the same information at the same time. We will see information waves, and also enormous swings in share prices. Most private individuals will suffer because of this, while institutions and individuals with better software will benefit. This is because prices will rise and fall simply because of the correlated activity of the automated software and not because of any real effects related to the shares themselves. Institutions may have to limit private share transactions to control this problem, but can also make a lot of money from modelling the private software and thus determining in advance what the recommendations and actions will be, capitalising enormously on the resultant share movements, and indeed even stimulating them. Of course, if this problem is generally perceived by the share dealing public, the AI software will not take off so the problem will not arise. What is more likely is that such software will sell in limited quantities, causing the effects to be significant, but not destroying the markets.

A money making scam is thus apparent. A company need only write a piece of reasonably good AI share portfolio management software for it to capture a fraction of the available market. The company writing it will of course understand how it works and what the effects of a piece of information will be (which they will receive at the same time), and thus able to predict the buying or selling activity of the subscribers. If they were then to produce another service which makes recommendations, they would have even more notice of an effect and able to directly influence prices. They would then be in the position of the top market forecasters who know their advice will be self fulfilling. This is neither insider dealing nor fraud, and of course once the software captures a significant share, the quality of its advice would be very high, decoupling share performance from the real world. Only the last people to react would lose out, paying the most, or selling at least, as the price is restored to ‘correct’ by the stock exchange, and of course even this is predictable to a point. The fastest will profit most.

The most significant factor in this is the proportion of share dealing influenced by that companies software. The problem is that software markets tend to be dominated by just two or three companies, and the nature of this type of software is that their is strong positive reinforcement for the company with the biggest influence, which could quickly lead to a virtual monopoly. Also, it really doesn’t matter whether the software is on the visualisation tools or AI side. Each can have a predictability associated with it.

It is interesting to contemplate the effects this widespread automated dealing would have of the stock market. Black Monday is unlikely to happen again as a result of computer activity within the City, but it certainly looks like prices will occasionally become decoupled from actual value, and price swings will become more significant. Of course, much money can be made on predicting the swings or getting access to the software-critical information before someone else, so we may see a need for equalised delivery services. Without equalised delivery, assuming a continuum of time, those closest to the dealing point will be able to buy or sell quicker, and since the swings could be extremely rapid, this would be very important. Dealers would have to have price information immediately, and of course the finite speed of light does not permit this. If dealing time is quantified, i.e. share prices are updated at fixed intervals, the duration of the interval becomes all important, strongly affect the nature of the market, i.e. whether everyone in that interval pays the same or the first to act gain.

Also of interest is the possibility of agents acting on behalf of many people to negotiate amongst themselves to increase the price of a company’s shares, and then sell on a pre-negotiated time or signal.

Such automated  systems would also be potentially vulnerable to false information from people or agents hoping to capitalise on their correlated behaviour.

Legal problems are also likely. If I write, and sell to a company, a piece of AI based share dealing software which learns by itself how stock market fluctuations arise, and then commits a fraud such as insider dealing (I might not have explained the law, or the law may have changed since it was written), who would be liable?

 And ultimately

 Finally, the 60s sci-fi film, The Forbin Project, considered a world where two massively powerful computers were each assigned control of competing defence systems, each side hoping to gain the edge. After a brief period of cultural exchange, mutual education and negotiation between the machines, they both decided to co-operate rather than compete, and hold all mankind at nuclear gunpoint to prevent wars. In the City of the future, similar competition between massively intelligent supercomputers in share dealing may have equally interesting consequences. Will they all just agree a fixed price and see the market stagnate instantly, or could the system result in economic chaos with massive fluctuations. Perhaps we humans can’t predict how machines much smarter than us would behave. We may just have to wait and see.

End of original blog piece