Category Archives: technology

Optical computing

A few nights ago I was thinking about the optical fibre memories that we were designing in the late 1980s in BT. The idea was simple. You transmit data into an optical fibre, and if the data rate is high you can squeeze lots of data into a manageable length. Back then the speed of light in fibre was about 5 microseconds per km of fibre, so 1000km of fibre, at a data rate of 2Gb/s would hold 10Mbits of data, per wavelength, so if you can multiplex 2 million wavelengths, you’d store 20Tbits of data. You could maintain the data by using a repeater to repeat the data as it reaches one end into the other, or modify it at that point simply by changing what you re-transmit. That was all theory then, because the latest ‘hero’ experiments were only just starting to demonstrate the feasibility of such long lengths, such high density WDM and such data rates.

Nowadays, that’s ancient history of course, but we also have many new types of fibre, such as hollow fibre with various shaped pores and various dopings to allow a range of effects. And that’s where using it for computing comes in.

If optical fibre is designed for this purpose, with optimal variable refractive index designed to facilitate and maximise non-linear effects, then the photons in one data stream on one wavelength could have enough effects of photons in another stream to be used for computational interaction. Computers don’t have to be digital of course, so the effects don’t have to be huge. Analog computing has many uses, and analog interactions could certainly work, while digital ones might work, and hybrid digital/analog computing may also be feasible. Then it gets fun!

Some of the data streams could be programs. Around that time, I was designing protocols with smart packets that contained executable code, as well as other packets that could hold analog or digital data or any mix. We later called the smart packets ANTs – autonomous network telephers, a contrived term if ever there was one, but we wanted to call them ants badly. They would scurry around the network doing a wide range of jobs, using a range of biomimetic and basic physics techniques to work like ant colonies and achieve complex tasks using simple means.

If some of these smart packets or ANTs are running along a fibre, changing the properties as they go to interact with other data transmitting alongside, then ANTs can interact with one another and with any stored data. ANTs could also move forwards or backwards along the fibre by using ‘sidings’ or physical shortcuts, since they can route themselves or each other. Data produced or changed by the interactions could be digital or analog and still work fine, carried on the smart packet structure.

(If you’re interested my protocol was called UNICORN, Universal Carrier for an Optical Residential Network, and used the same architectural principles as my previous Addressed Time Slice invention, compressing analog data by a few percent to fit into a packet, with a digital address and header, or allowing any digital data rate or structure in a payload while keeping the same header specs for easy routing. That system was invented (in 1988) for the late 1990s when basic domestic broadband rate should have been 625Mbit/s or more, but we expected to be at 2Gbit/s or even 20Gbit/s soon after that in the early 2000s, and the benefit as that we wouldn’t have to change the network switching because the header overheads would still only be a few percent of total time. None of that happened because of government interference in the telecoms industry regulation that strongly disincentivised its development, and even today, 625Mbit/s ‘basic rate’ access is still a dream, let alone 20Gbit/s.)

Such a system would be feasible. Shortcuts and sidings are easy to arrange. The protocols would work fine. Non-linear effects are already well known and diverse. If it were only used for digital computing, it would have little advantage over conventional computers. With data stored on long fibre lengths, external interactions would be limited, with long latency. However, it does present a range of potentials for use with external sensors directly interacting with data streams and ANTs to accomplish some tasks associated with modern AI. It ought to be possible to use these techniques to build the adaptive analog neural networks that we’ve known are the best hope of achieving strong AI since Hans Moravek’s insight, coincidentally also around that time. The non-linear effects even enable ideal mechanisms for implementing emotions, biasing the computation in particular directions via intensity of certain wavelengths of light in much the same way as chemical hormones and neurotransmitters interact with our own neurons. Implementing up to 2 million different emotions at once is feasible.

So there’s a whole mineful of architectures, tools and techniques waiting to be explored and mined by smart young minds in the IT industry, using custom non-linear optical fibres for optical AI.

Pythagoras Sling update

To celebrate the 50th anniversary of the Moon landing mission, I updated my Pythagoras Sling a bit. It now uses floating parachutes so no rockets or balloons are needed at all and the whole thing is now extremely simple.

Introducing the Pythagoras Sling –

A novel means of achieving space flight

Dr I D Pearson & Prof Nick Colosimo

 

Executive Summary

A novel reusable means of accelerating a projectile to sub-orbital or orbital flight is proposed which we have called The Pythagoras Sling. It was invented by Dr Pearson and developed with the valuable assistance of Professor Colosimo. The principle is to use large parachutes as effective temporary anchors for hoops, through which tethers may be pulled that are attached to a projectile. This system is not feasible for useful sizes of projectiles with current materials, but will quickly become feasible with higher range of roles as materials specifications improve with graphene and carbon composite development. Eventually it will be capable of launching satellites into low Earth orbit, and greatly reduce rocket size and fuel needed for human space missions.

Specifications for acceleration rates, parachute size and initial parachute altitudes ensure that launch timescales can be short enough that parachute movement is acceptable, while specifications of the materials proposed ensure that the system is lightweight enough to be deployed effectively in the size and configuration required.

Major advantages include (eventually) greatly reduced need for rocket fuel for orbital flight of human cargo or potential total avoidance of fuel for orbital flight of payloads that can tolerate higher g-forces; consequently reduced stratospheric emissions of water vapour that otherwise present an AGW issue; simplicity resulting in greatly reduced costs for launch; and avoidance of risks to expensive payloads until active parts of the system are in place. Other risks such as fuel explosions are removed completely.

The journey comprises two parts: the first part towards the first parachute conveys high vertical speed while the second part converts most of this to horizontal speed while continuing acceleration. The projectile therefore acquires very high horizontal speed required for sub-orbital and potentially for orbital missions.

The technique is intended mainly for the mid-term and long-term future, since it only comes into its own once it becomes possible to economically make graphene components such as strings, strong rings and tapes, but short term use is feasible with lower but still useful specifications based on interim materials. While long term launch of people-carrying rockets is feasible, shorter term uses would be limited to smaller payloads or those capable of withstanding higher g-forces. That makes it immediately useful for some satellite or military launches, with others quickly becoming feasible as materials improve.

Either of two mechanisms may be used for drawing the cable – a drum based reel or a novel electromagnetic cable drive system. The drum variant may be speed limited by the strength of drum materials, given very high centrifugal forces. The electromagnetic variant uses conventional propulsion techniques, essentially a linear motor, but in a novel arrangement so is partly unproven.

There are also alternative methods available for parachute deployment and management. One is to make the parachutes from lighter-than-air materials, such as graphene foam, which is capable of making solid forms less dense than helium. The chutes would float up and be pulled into their launch positions. A second option is to use helium balloons to carry them up, again pulling them into launch positions. A third is to use a small rocket or even two to deploy them. Far future variants will probably opt for lighter-than-air parachutes, since they can float up by themselves, carry additional tethers and equipment, and can remain at high altitude to allow easy reuse, floating back up after launch.

There are many potential uses and variants of the system, all using the same principle of temporary high-atmosphere anchors, aerodynamically restricted to useful positions during launch. Not all are discussed here. Although any hypersonic launch system has potential military uses, civil uses to reduce or eliminate fuel requirements for space launch for human or non-human payloads are by far the most exciting potential as the Sling will greatly reduce the currently prohibitive costs of getting people and material into orbit. Without knowing future prices for graphene, it is impossible to precisely estimate costs, but engineering intuition alone suggests that such a simple and re-usable system with such little material requirement ought to be feasible at two or three orders of magnitude less than current prices, and if so, could greatly accelerate mid-century space industry development.

Formal articles in technical journals may follow in due course that discuss some aspects of the sling and catapult systems, but this article serves as a simple publication and disclosure of the overall system concepts into the public domain. Largely reliant on futuristic materials, the systems cannot reasonably be commercialised within patent timeframes, so hopefully the ideas that are freely given here can be developed further by others for the benefit of all.

This is not intended to be a rigorous analysis or technical specification, but hopefully conveys enough information to stimulate other engineers and companies to start their own developments based on some of the ideas disclosed.

Introductory Background

A large number of non-fuel space launch systems have been proposed, from Jules Verne’s 1865 Moon gun through to modern railguns, space hooks and space elevators. Rail guns convey moderately high speeds in the atmosphere where drag and heating are significant limitations, but their main limitation is requiring very high accelerations but still achieving too low muzzle velocity for even sub-orbital trips. Space-based tether systems such as space hooks or space elevators may one day be feasible, but not soon. Current space launches all require rockets, which are still fairly dangerous, and are highly expensive. They also dump large quantities of water vapour into the high atmosphere where, being fairly persistent, it contributes significantly to the greenhouse effect, especially as it drifts towards the poles. Moving towards using less or no fuel would be a useful step in many regards.

The Pythagoras Sling

In summary, having considered many potential space launch mechanisms based on high altitude platforms or parachutes, by far the best system is the Pythagoras Sling. This uses two high-altitude parachutes attached to rings, offering enough drag to act effectively as temporary slow-moving anchors while a tether is pulled through them quickly to accelerate a projectile upwards and then into a curve towards final high horizontal speed.

 

We called this approach the Pythagoras Sling due to its simplicity and triangular geometry. It comprises some ground equipment, two large parachutes and a length of string. The parachutes would ideally be made using lighter-than-air materials such as graphene foam, a foam of tiny graphene spheres containing vacuum, that is less dense than helium. They could therefore float up to the required altitude, and could be manoeuvred into place immediately prior to launch. During the launch process they would move so it would take a few hours to float back to their launch positions. They could remain at high altitude for long periods, perhaps permanently. In that case, as well as carrying the tether for the launch, additional tethers would be needed to anchor and manoeuvre the parachutes and to feed launch tether through in preparation for a new launch. It is easy to design the system so that these additional maintenance tethers are kept well out of the way of the launch path.

The parachutes could be as large as desired if such lightweight materials are used, but if alternative mechanisms such as rockets or balloons are used to carry them into place, they would probably be around 50m diameter, similar to the Mars landing ones.

Each parachute would carry a ring through which the launch tether is threaded, and the rings would need to be very strong, low friction, heat-resistant and good at dispersing heat. Graphene seems an ideal choice but better materials may emerge in coming years.

The first parachute would float up to a point 60-80km above the launch site and would act as the ‘sky anchor’ for the first phase of launch where the payload gathers vertical speed. The 2nd parachute would be floated up and then dragged (using the maintenance tether) as far away and as high as feasible, but typically to the same height and 150km away horizontally, to act as the fulcrum for the arc part of the flight where the speed is both increased and converted to horizontal speed needed for orbit.

Simulation will be required to determine optimal specifications for both human and non-human payloads.

Another version exists where the second parachute is deployed from a base with winding equipment 150km distant from the initial rocket launch. Although requiring two bases, this variant holds merit. However, using a single ground base for both chute deployments offers many advantages at the cost of using slightly longer and heavier tether. It also avoids the issue that before launch, the tether would be on the ground or sea surface over a long distance unless additional system details are added to support it prior to launch such as smaller balloons. For a permanent launch site, where the parachutes remain at high altitude along with the tethers, this is no longer an issue so the choice may be made on a variety of other factors. The launch principle remains exactly the same.

Launch Process

On launch, with the parachutes, rings and tethers all in place, the tether is pulled by either a jet engine powered drum or an electromagnetic drive, and the projectile accelerates upwards. When it approaches the first parachute, the tether is disengaged from that ring, to avoid collision and to allow the second parachute to act as a fulcrum. The projectile is then forced to follow an arc, while the tether is still pulled, so that acceleration continues during this period. When it reaches the final release position, the tether is disengaged, and the projectile is then travelling at orbital or suborbital velocity, at around 200km altitude. The following diagram summarises the process.

Two-base variant

This variant with two bases and using rocket deployment of the parachutes still qualifies as a Pythagoras Sling because they are essentially the same idea with just minor configurational differences. Each layout has different merits and simulation will undoubtedly show significant differences for different kinds of missions that will make the choice obvious.

Calculations based on graphene materials and their theoretical specifications suggest that this could be quite feasible as a means to achieve sub-orbital launches for humans and up to orbital launches for smaller satellites that can cope with 15g acceleration. Other payloads would still need rockets to achieve orbit, but greatly reduced in size and cost.

Exchanges of calculations between the authors, based on the best materials available today suggest that this idea already holds merit for use for microsatellites, even if it falls well below graphene system capabilities. However, graphene technology is developing quickly, and other novel materials are also being created with impressive physical qualities, so it might not be many years before the Sling is capable of launching a wide range of payload sizes and weights.

In closing

The Pythagoras Sling arose after several engineering explorations of high-altitude platform launch systems. As is often the case in engineering, the best solution is also by far the simplest. It is the first space launch system that treats parachutes effectively as temporary aerial anchors, and it uses just a string pulled through two rings held by those temporary anchors, attached to the payload. That string could be pulled by a turbine or an electromagnetic linear motor drive, so could be entirely electric. The system would be extremely safe, with no risk of fuel explosions, and extremely cheap compared to current systems. It would also avoid dumping large quantities of greenhouse gases into the high atmosphere. The system cannot be built yet, and its full potential won’t be realised until graphene or similarly high specification strings or tapes are economically available. However, it should be well noted that other accepted future systems such as the Space Elevator will also need such materials, but in vastly larger quantity. The Pythagoras Sling will certainly be achievable many years before a space elevator and once it is, could well become the safest and cheapest way to put a wide range of payloads into orbit.

Cable-based space launch system

A rail gun is a simple electromagnetic motor that very rapidly accelerates a metal slug by using it as part of an electrical circuit. A strong magnetic field arises as the current passes through the slug, propelling it forwards.

EM launch system

An ‘inverse rail gun’ uses the same principle, but rather than a short slug, the force acts on a small section of a long cable, which continues to pass through the system. As that section passes through, another takes its place, passing on the force and acceleration to the remainder of the cable. That also means that each small section only has a short and tolerable time of extreme heating resulting from high current.

This can be used either to accelerate a cable, optionally with a payload on the end, or via Newtonian reaction, to drag a motor along a cable, the motor acting as a sled, accelerating all along the cable. If the cable is very long, high speeds could result in the vacuum of space. Since the motor is little more than a pair of conductive plates, it can easily be built into a simple spacecraft.

A suitable spacecraft could thus use a long length of this cable to accelerate to high speed for a long distance trip. Graphene being an excellent conductor as well as super-strong, it should be able to carry the high electric currents needed in the motor, and solar panels/capacitors along the way could provide it.

With such a simple structure, made from advanced materials, and with only linear electromagnetic forces involved, extreme speeds could be achieved.

A system could be made for trips to Mars for example. 10,000 tons of sufficiently strong graphene cable to accelerate a 2 ton craft at 5g could stretch 6.7M km through space, and at 5g acceleration (just about tolerable for trained astronauts), would get them to 800km/s at launch, in 4.6 hours. That’s fast enough to get to Mars in 5-12 days, depending where it is, plus a day each end to accelerate and decelerate, 7-14 days total.

10,000 tons is a lot of graphene by today’s standards, but we routinely use 10,000 tons of steel in shipbuilding, and future technology may well be capable of producing bulk carbon materials at acceptable cost (and there would be a healthy budget for a reusable Mars launch system). It’s less than a space elevator.

6.7M km is a huge distance, but space is pretty empty, and even with gravitation forces distorting the cable, the launch phase can be designed to straighten it. A shorter length of cable on the opposite side of an anchor (attached to a Moon tower, or a large mass at a Lagrange point) would be used to accelerate the spacecraft towards the launch end of the cable, at relatively low speed, say 100km/s, a 20 hour journey, and the deceleration phase of that trip applies significant force to the cable, helping to straighten and tension it for the launch immediately following. The craft would then accelerate along the cable, travel to Mars at high speed, and there would need to be an intercept system there to slow it. That could be a mirror of the launch system, or use alternative intercept equipment such as a folded graphene catcher (another blog).

Power requirements would peak at the very last moments, at a very high 80GW. Then again, this is not something we could build next year, so it should be considered in the context of a mature and still fast-developing space industry, and 800km/s is pretty fast, 0.27% of light speed, and that would make it perfect for asteroid defense systems too, so it has other ways to help cost in. Slower systems would have lower power requirements or longer cable could be used.

Some tricky maths is involved at every stage of the logistics, but no more than any other complex space trip. Overall, this would be a system that would be very long but relatively low in mass and well within scales of other human engineering.

So, I think it would be hard, but not too hard, and a system that could get people to Mars in literally a week or two would presumably be much favored over one that takes several months, albeit it comes with some serious physical stress at each end. So of course it needs work and I’ve only hinted superficially at solutions to some of the issues, but I think it offers potential.

On the down-side, the spaceship would have kinetic energy of 640TJ, comparable to a small nuke, and that was mainly limited by the 5g acceleration astronauts can cope with. Scaling up acceleration to 1000s of gs military levels could make weapons comparable to our largest nukes.

Population Growth is a Good Thing

Many people are worried about world human population, that we are overpopulating the planet and will reap environmental catastrophe. Some suggest draconian measures to limit or even reduce it. I’m not panicking about population at all. I’m not even particularly concerned. I don’t think it is necessarily a bad thing to have a high population. And I think it will be entirely sustainable to have a much higher population.

Nobody sane think the Earth’s human population will carry on increasing exponentially forever. Obviously it will level off and it is already starting to do so. I would personally put the maximum carrying capacity of the Earth at around 100 billion people, but population will almost certainly level off between 9 and 10 billion, let’s say 9.5Bn. Further in the future, other planets will one day house some more people, but they will have their own economics.

We aren’t running out of physical resources, just moving them around. Apart from a few spacecraft that have moved some stuff off planet, some excess radioactive decay induced in power stations and weapons, and helium and hydrogen escaping from the atmosphere, all of which is offset by meteorites and dust landing from space, all we have done is convert stuff to other forms. Almost all materials are more plentiful now than they were 40 years ago when the loudest of doom-mongers warned of the world running out imminently. They were simply wrong.

If we do start to run short, we can mine key elements from rubbish tips and use energy to convert back to any form we need, we can engineer substitutes or we can gather them from space. Another way of looking at this issue is that we live on top of 6000km of resources and only have homes a few metres deep. When we fill them we have to dispose of one thing to make room for a new one, and recycling technology is getting better all the time. Meanwhile, material technology development means we need less material to make something, and can do so with a wider range of input elements.

We are slowly depleting some organic resources, such as fossil fuels, but there are several hundred years supply left, and we will not need any more than a tiny fraction of that before we move to other energy sources. We’re also depleting some fish stocks around the world, so fishing needs some work in designing and implementing better practices, but that is not unachievable by any means and some progress is already happening. Forestry is being depleted in some areas and expanding in others. Some areas of forest are being wiped out because environmentalists and other doomsayers have forced policies through that encourage people to burn them down to make the land available for biofuel plantations and carbon offset schemes.

We certainly are not short of space. I live in Southern England, which sometimes feels full when I get stuck in traffic jams or queues for public services, but these are a matter of design, not fundamental limits. Physically, I don’t feel it is terribly overpopulated here yet, even with the second highest population density on Earth, at 470 people per square kilometre. India only has 345, even with its massive population. China has even less at only 140, while Indonesia has 117, Brazil just 22, and Russia a mere 7.4 people per square kilometre. Yet these are the world’s biggest populations today. So there is room for expansion perhaps. If all the inhabitable land in the world were to be occupied at average English density of today, the world can actually hold 75-80 Billion people. There would still be loads of open countryside, still only 1 or 2% covered in concrete and tarmac.

But self-driving vehicles can increase road capacity by a factor of 5, regional rail capacity by a factor of 200. Replacement of most public sector workers by machines, or better still, good system design, would eradicate most queues and improve most services. England isn’t even full yet. So that 75-80Bn could become 100Bn before it feels crowded.

So let’s stop first of all from imagining that we are running out of space any time soon. We just aren’t!

Energy isn’t a problem in the long term either. Shale gas is already reducing costs in the USA at the same time as reducing carbon dioxide emissions. In Europe, doom-mongers and environmentalist have been more successful in influencing policy, so CO2 emissions are increasing while energy costs create fuel poverty and threaten many key areas of the economy. Nuclear energy currently depends on uranium but thorium based power is under development and is very likely to succeed in due course, adding several hundred years of supply. Solar, fusion, geothermal and shale gas will add to this to provide abundant power for even a much great population, within a few decades, well ahead of the population curve. The only energy shortages we will see will be doomsayer-induced.

Future generations will face debts handed on to them without their consent to pay for this doom-induced folly, but will also inherit a physical and cultural infrastructure with built in positive feedback that ensure rapid technological development.

Among its many benefits, future technology will greatly reduce the amount of material needed to accomplish a task. It will also expand the global economy to provide enough wealth to buy a decent standard of living for everyone. It will also clean up the environment while producing far more food from less land area, allowing some land to be returned to nature. Food production per hectare has doubled in the last 30 years. The technology promises further gains into the foreseeable future.

The world of the future will be a greener and more pleasant land, with nature in a better state than today, with a larger world population that is richer and better fed, almost certainly no more than 10 billion. Providing that is, that we can stop doom-mongers forcing their policies through – the only thing that would really wreck the environment. A doom-monger-free human population is not a plague but a benefit to the Earth and nature. The doom-mongers and their policies are the greatest proven threat. Environmentalists should focus on making sure we are inspired by nature and care for it, and then get out of the way and let technologists get on with making sure it can flourish in the future.

Let’s compare the outcomes of following the advice of the doom-mongers with the outcome of following a sensible economic development path using high technology.

If everyone wants to live to western standards, the demands on the environment will grow as the poor become richer and able to afford more. If we try to carry on with existing technology, or worse, with yesterday’s, we will not find that easy. Those who consider technology and economic growth to be enemies of the environment, and who therefore would lock us into today’s or yesterday’s technology, would condemn billions of people to poverty and misery and force those extra people to destroy the environment to try to survive. The result would be miserable future for humanity and a wrecked environment. Ironically, these people have the audacity to call themselves environmentalists, but they are actually enemies of both the environment and of humanity.

If we ignore such green lunacy – and we should – and allow progress to continue, we will see steady global economic growth that will result in a far higher average income per capita in 2050 with 9.5Bn people than we have today with only 7.7Bn. The technology meanwhile will develop so much that the same standard of living can be achieved with far less environmental impact. For example, bridges hundreds of years ago used far more material than today’s, because they were built with primitive science and technology and poor understanding of science. Technology is better now, materials are stronger and more consistent, we know their properties accurately as well as all the forces acting on the bridge, so we need less material to build a bridge strong enough for the purpose, which is better for the environment. With nanotechnology and improved materials, we will need even less material to build future bridges. The environmental footprint of each person will certainly be far lower in 2050 if we accept new technology than it will be if we restrict growth and technology development. It will almost certainly be less even than today’s, even though our future lifestyles would be far better. Trying to go back to yesterday’s technologies without greatly reducing population and lifestyle would impose such high environmental impact that the environment would be devastated. We don’t need to, and we shouldn’t.

Take TVs as another example. TVs used to be hugely heavy and bulky monsters that took up half the living room, used lots of electricity, but offered relatively small displays with a choice from just a few channels. Today, thin LCD or LED displays use far less material, consume far less power, take up far less space and offer far bigger and better displays offering access to thousands of channels via satellites and web links. So as far as TV-based entertainment goes, we have a far higher standard of living with far lower environmental impact. The same is true for phones, computers, networks, cars, fridges, washing machines, and most other tools. Better materials and technologies enable lower resource use.

New science and technology has enabled new kinds of materials that can substitute for scarce physical resources. Copper was once in danger of running out imminently. Now you can build a national fibre telecommunication network with a few bucketfuls of sand and some plastic. We have plastic pipes and water tanks too, so we don’t really need copper for plumbing either. Aluminium makes reasonable cables, and future materials such as graphene will make even better cables, still with no copper use. There are few things that can’t be done with alternative materials, especially as quantum materials can be designed to echo the behaviour of many chemicals. So it is highly unlikely that we will ever run out of any element. We will simply find alternative solutions as shortages demand.

Oil will be much the same story. To believe the doom-mongers, our use of oil will continue to grow exponentially until one day there is none left and then we will all be in big trouble, or dead, breathing in 20% CO2 by then of course. Again, this is simply a nonsensical scenario. By 2030, oil will be considered a messy and expensive way of getting energy, and most will be left in the ground. The 6Gjoules of energy a barrel of oil contains could be made for $30 using solar panels in the deserts, and electricity is clean. Even if solar doesn’t progress that far, shale gas only produces half as much CO2 as oil for the same energy output (another potential environmental improvement held back by green zealots here in the UK and indeed the rest of Europe).

This cheap solar electricity mostly won’t come from UK rooftops as currently incentivised by green-pressured government, but somewhere it is actually sunny, deserts for example, where land is cheap, because it isn’t much use for anything else. The energy will get to us via superconducting or graphene cables. Sure, the technology doesn’t yet exist, but it will. Oil will only cost $30 a barrel because no-one will want to pay more than that for what will be seen as an inferior means of energy production. Shale gas might still be used because it produces relatively little CO2 and will be very cheap, but even that will start declining as the costs of solar and nuclear variants fall.

In the longer term, in our 2050 world of 9.5Bn people, fusion power will be up and running, alongside efficient solar (perhaps some wind) and other forms of energy production, proving an energy glut that will help with water supply and food production as well as our other energy needs. In fact, thanks to the development of graphene desalination technology, clean water will be abundantly available at low cost (not much more than typical tap-water costs today) everywhere.

Our technologies will be so advanced by then that we will be able to control climate better too. We will have environmental models based on science, not models based on the CO2-causes-everything-bad religion, so we will know what we’re doing rather than acting on guesswork and old-wives’ tales. We will have excellent understanding of genetics and biotech and be able to make superior crops and animals, so will be able to make enough food to feed everyone, ensuring not only quantity but nutritional quality too. While today’s crops deliver about 2% of the solar energy landing on their fields to us as food, we will be able to make foods in factories more efficiently, and will have crops that are also more efficient. It is true that we may see occasional short-term food shortages, but in the long term, there is absolutely no need to worry about feeding everyone. And no need to worry about the impact on the environment either, because we will be able to make more food with far less space. No-one needs to be hungry, even if we have 9.5Bn of us, and with steady economic growth, everyone will be able to afford food too.

This is no fanciful techno-utopia. It is entirely deliverable and even expectable. All around the world today, people’s ethical awareness is increasing and we are finally starting to address problems of food and emergency aid distribution, even in failing regimes. The next few decades will not eradicate poverty completely, but it will make starvation much less of a problem, along with clean water availability.

How can we be sure it will be developed? Well, there will be more people for one thing. That means more brains. Those people will be richer, they will be better educated, and many will be scientists and engineers. Many will have been born in countries that value engineers and scientists greatly, and will have a lot of backing, so will get results. Some will be in IT, and will develop computer intelligence to add to the human effort, and provide better, cheaper and faster tools for scientists and engineers in every field to use. So, total intellectual resources will be far greater than they are today.

Therefore we can be certain that technological progress will continue to accelerate. As it does, the environment will become cleaner and healthier, because we will be able to make it so. We will restore nature. Rivers today in the UK are cleaner than 100 years ago. The air is cleaner too. We look after nature better, because that’s what people do when they are affluent and well educated. In 50 years we will see that attitude even more widespread. The rainforests will be flourishing, some species will be being resurrected from extinction via DNA banks. People will be well fed. Water supply will be adequate.

But all this can only happen if we stop following the advice of doom-mongers and technophobes who want to take us backwards.

That really is the key: more people mean more brain power, more solutions, and better technology. For the last million years, that has meant steady improvement of our lot. In the un-technological world of the cavemen hunter-gatherers, the world was capable of supporting around 60 million people. If we try to restrict technology development now, it will be a death sentence. People and the environment would both suffer. No-one wins if we stop progress. That is the fallacy of environmental dogma that is shouted loudly by the doom mongers.

Some extremists in the green movement would have us go back to yesterday, rejecting technology, living on nature and punishing everyone who disagrees with them. They can indulge such silliness when they are only a few and the rest of us support them, but everyone simply can’t live like that. Without technology, the world can only support 60 million, not 7 billion or 9.5 billion or 75 billion. There simply aren’t enough nice fields and forest for us all to live that way.

It is a simple choice. We could have 60 million thoroughly miserable post-environmentalists living in a post eco-catastrophe world where nature has been devastated by the results of daft policies invented by self-proclaimed environmentalists, trying to make a feeble recovery. Or we can ignore their nonsense, get on with our ongoing development, and live in a richer, nicer world where 9.5Bn people (or even far more if we want) can be happy, well fed, well educated, with a good standard of living, and living side by side with a flourishing environment, where our main impacts on the environment are positive.

Technology won’t solve every problem, and will even create some, but without a shadow of a doubt, technology is by far nature’s best friend. Not the lunatic fringe of ‘environmentalists’, many of whom are actually among the environment’s worst enemies – at best, well-meaning fools.

There is one final point that is usually overlooked in this debate. Every new person that is born is another life, living, breathing, loving, hopefully having fun, enjoying life and being happy. Life is a good thing, to be celebrated, not extinguished or prevented from coming into existence just because someone else has no imagination. Thanks to the positive feedbacks in the development loops, 50% more people means probably 100% more total joy and happiness. Population growth is good, we just have to be more creative, but that’s what we do all the time. Now let’s get on with making it work.

Good times lie ahead. We do need to fix some things though. I mentioned that physical resources won’t diminish significantly in quantity in terms of the elements they hold at least, though those we use for energy (oil, coal and gas) give up their energy when we use them and that is gone.

However, the ecosystem is a different matter. Even with advanced genetic technology we can expect in the far future, it will be difficult to resurrect organisms that have become extinct. It is far better to make sure they don’t. Even though an organism may be brought back, we’d also have to bring back the environment it needs with all the intricately woven inter-species dependencies.

Losing a single organism species might be relatively recoverable, but losing a rain forest will be very hard to fix. Forests are very complex systems. In fact designing and making a synthetic and simpler rainforest is probably easier than trying to regenerate a lost natural one. We really don’t want to have to do that. It would be far better to make sure we preserve the existing forests and other complex ecosystems. Poor countries may reasonably ask for some payment to preserve their forests rather than chopping them down to sell wood. We should certainly make sure to remove current perverse ‘environmental’ incentives to chop them down to make room for palm oil plantations to satisfy the demands of poorly thought out environmental policies in rich countries.

The same goes for ocean ecosystems. We are badly mismanaging many fisheries today, and that needs to be fixed, but there are already some signs of progress. EU regulations that used to cause huge quantities of fish to be caught and thrown back dead into the sea are becoming history. Again, these are a hangover from previous environmental policy designed to preserve fish stocks, but again this was poorly thought out and has had the opposite result to that intended.

Other policies in the EU and in other parts of the world are also causing problems by unbalancing populations and harming or distorting food chains. The bans on seal hunting are good – we love seals, but the explosion in seal populations caused by throwing dead fish back has increased the demand of the seal population to over 100,000 tons of fish a year, when it is already severely stressed by over-fishing. The dead fish have also helped cause an explosion in lobster populations and in some sea birds. We may appreciate the good side, but we mustn’t forget to look for harmful effects that may also be caused. It is obvious that we could do far better job, and we must.

A well-managed ocean with properly designed farms should be able to provide all the fish and other seafood we need, but we are well away from it yet and we do need to fix it. With ongoing scientific study, understanding of relationships between species and especially in food chains is improving, and regulations are slowly becoming more sensible, so there is hope. Many people are switching their diets to fish with sustainable populations. But these will need managed well too. Farming is suitable for many species and crashes in some fish populations have added up to a loud wake-up call to fix regulations around the world. We may use genetic modification to increase growth and reproduction rates, or otherwise optimise sustainability and ocean capacity. I don’t think there is any room for complacency, but I am confident that we can and will develop good husbandry practices and that our oceans and fish stocks will recover and become sustainable.

Certainly, we have a greater emotional attachment to the organic world than to mere minerals, and we are part of nature too, but we can and will be sustainable in both camps, even with a greatly increased population.

The future for women, pdf version

It is several years since my last post on the future as it will affect women so here is my new version as a pdf presentation:

Women and the Future

The future of land value

St BeesI don’t do investment advice much, and I am NOT an investment adviser of any kind, just a futurist doing some simple reasoning.

World population is around 7.7Bn.

It will increase, level off, then decline, then grow again.

Any projections you see are just educated guesswork. 9.8Bn figure is the UN global population estimate for 2050, and I won’t argue with that, it seems as good a guess as any. Everyone then expects it to level off and decline, as people have fewer kids. I’m not so sure. Read my blog five years ago that suggested it might grow again in the late century, perhaps reaching as high as 15Bn:

https://timeguide.wordpress.com/2014/02/05/will-population-grow-again-after-2050-to-15bn/

I only say might, because there are pressures in both directions and it is too hard to be sure in a far future society which ones will be stronger and by how much. I’m just challenging the standard view that it will decline into the far future, and if I had to place a bet, it would be on resumed growth.

Population is one large influence on demand for land and ‘real estate’.

Another is population distribution. Today, all around the world, people are moving from the countryside to cities. I argue that urbanization will soon peak, and then start to reverse:

https://timeguide.wordpress.com/2018/06/13/will-urbanization-continue-or-will-we-soon-reach-peak-city/

De-urbanization will largely be enabled by high technology and its impacts on work and social life. It will be caused by increasing wealth, coupled to the normal desire to live happier lives. Wealth is increasing quickly, varying place to place and year to year. It is reasonable, given positive feedback effects from AI and automation, to assume average real growth of 2%, including occasional recessions and booms. By 2100, that means global wealth will be 5 times today’s. Leaving aside the lack of understanding of exponential growth by teachers indoctrinating schoolkids to think of themselves as economic victims, taken advantage of by greedy Boomers, that means today’s and tomorrow’s kids will have one hell of a lot more money available to spend on property.

So, there will be more people, with more money, more able to live anywhere. Real estate prices will increase, but not uniformly.

Very many of them will choose to leave cities and with lots of money in the bank, will want somewhere really nice. A lovely beachfront property perhaps, or on a mountainside with a gorgeous view. Or even on a hill overlooking the city, or deep in a forest with a waterfall in the garden. Some might buy boring homes in boring estates surrounded by fields but it won’t be first choice very often. The high prices will go to large and pretty homes in pretty locations, as they do today, but with much higher differential, because supply and demand dictates that. We won’t build more mountains or valleys or coastline. Supply stays limited while demand and bank balances rockets, so prices will rocket too.

Other property won’t necessarily become cheaper, it just won’t become as expensive as fast. Many people will still like cities and choose to live there, do business there, socialize there. They also will be richer, and there may be a lot more of them if population does indeed grow again, but increasing congestion would just cause more de-urbanization. Prices may still rise, but the real money will be moving elsewhere.

Farmland will mostly stay as farmland. Farms are generally functional rather than pretty. Agricultural productivity will be double or triple what it is today, maybe even more. Some food will be made in factories or vertical farms, using tissue culturing or hydroponics, or using feed-stocks based on algae grown at sea, or insects, or fungi. The figures therefore suggest that demand for land to grow stuff will be lower than today, in spite of a larger population. Some will be converted to city, some to pretty villages, some given back to nature, to further increase the attractiveness of those ultra-expensive homes in the nice areas in the distance. Whichever way, that doesn’t suggest very rapid growth of value for most agricultural land, the obvious exception being where it happens to be in or next to a pretty area, in which case it will rocket in value.

As I said, all of this is educated guesswork. Don’t bet the farm on it until you’ve done your own analysis. But my guess is, city property will gain modest value, agricultural land will hold its value or even fall slightly, unless it is in a pretty location. Anywhere pretty will skyrocket in price, be it an existing property or a piece of land that can be built on and stay pretty.

As a final observation, you might argue that pretty isn’t everything. Surely some people will value being near to centers of power or major hubs too? Yes they will, but that is already factored into the urbanization era. That value is already banked. Then it follows the rules just like any other urban property.

 

Augmented reality will objectify women

Microsoft Hololens 2 Visor

The excitement around augmented reality continues to build, and I am normally  enthusiastic about its potential, looking forward to enjoying virtual architecture, playing immersive computer games, or enjoying visual and performance artworks transposed into my view of the high street while I shop.

But it won’t all be wonderful. While a few PR and marketing types may worry a little about people overlaying or modifying their hard-won logos and ads, a bigger issue will be some people choosing to overlay people in the high street with ones that are a different age or gender or race, or simply prettier. Identity politics will be fought on yet another frontier.

In spite of waves of marketing hype and misrepresentation, AR is really only here in primitive form outside the lab. Visors fall very far short of what we’d hoped for by now even a decade ago, even the Hololens 2 shown above. But soon AR visors and eventually active contact lenses will enable fully 3D hi-res overlays on the real world. Then, in principle at least, you can make things look how you want, with a few basic limits. You could certainly transform a dull shop, cheap hotel room or an office into an elaborate palace or make it look like a spaceship. But even if you change what things look like, you still have to represent nearby physical structures and obstacles in your fantasy overlay world, or you may bump into them, and that includes all the walls and furniture, lamp posts, bollards, vehicles, and of course other people. Augmented reality allows you to change their appearance thoroughly but they still need to be there somehow.

When it comes to people, there will be some battles. You may spend ages creating a wide variety of avatars, or may invest a great deal of time and money making or buying them. You may have a digital aura, hoping to present different avatars to different passers-by according to their profiles. You may want to look younger or thinner or as a character you enjoy playing in a computer game. You may present a selection of options to the AIs controlling the passer person’s view and the avatar they see overlaid could be any one of the images you have on offer. Perhaps some privileged people get to pick from a selection you offer, while others you wish to privilege less are restricted to just one that you have set for their profile. Maybe you’d have a particularly ugly or offensive one to present to those with opposing political views.

Except that you can’t assume you will be in control. In fact, you probably won’t.

Other people may choose not to see your avatar, but instead to superimpose one of their own choosing. The question of who decides what the viewer sees is perhaps the first and most important battle in AR. Various parties would like to control it – visor manufacturers, O/S providers, UX designers, service providers, app creators, AI providers, governments, local councils, police and other emergency services, advertisers and of course individual users. Given market dynamics, most of these ultimately come down to user choice most of the time, albeit sometimes after paying for the privilege. So it probably won’t be you who gets to choose how others see you, via assorted paid intermediary services, apps and AI, it will be the other person deciding how they want to see you, regardless of your preferences.

So you can spend all the time you want designing your avatar and tweaking your virtual make-up to perfection, but if someone wants to see their favorite celebrity walking past instead of you, they will. You and your body become no more than an object on which to display any avatar or image someone else chooses. You are quite literally reduced to an object in the AR world. Augmented reality will literally objectify women, reducing them to no more than a moving display space onto which their own selected images are overlaid. A few options become obvious.

Firstly they may just take your actual physical appearance (via a video camera built into their visor for example) and digitally change it,  so it is still definitely you, but now dressed more nicely, or dressed in sexy lingerie, or how you might look naked, using the latest AI to body-fit fantasy images from a porn database. This could easily be done automatically in real time using some app or other. You’ve probably already seen recent AI video fakery demos that can present any celebrity saying anything at all, almost indistinguishable from reality. That will soon be pretty routine tech for AR apps. They could even use your actual face as input to image-matching search engines to find the most plausible naked lookalikes. So anyone could digitally dress or undress you, not just with their eyes, but with a hi-res visor using sophisticated AI-enabled image processing software. They could put you in any kind of outfit, change your skin color or make-up or age or figure, and make you look as pretty and glamorous or as slutty as they want. And you won’t have any idea what they are seeing. You simply won’t know whether they are respectfully celebrating your inherent beauty, or flattering you by making you look even prettier, which you might not mind at all, or might object to strongly in the absence of explicit consent, or worse still, stripping or degrading you to whatever depths they wish, with no consent or notification, which you probably will mind a lot.

Or they can treat you as just an object on which to superimpose some other avatar, which could be anything or anyone – a zombie, favorite actress or supermodel. They won’t need your consent and again you won’t have any idea what they are seeing. The avatar may make the same gestures and movements and even talk plausibly, saying whatever their AI thinks they might like, but it won’t be you. In some ways this might not be so bad. You’d still be reduced to an object but at least it wouldn’t be you that they’re looking at naked. To most strangers on a high street most of the time, you’re just a moving obstacle to avoid bumping into, so being digitally transformed into a walking display board may worry you. Most people will cope with that bit. It is when you stop being just a passing stranger and start to interact in some way that it really starts to matter. You probably won’t like it if someone is chatting to you but they are actually looking at someone else entirely, especially if the viewer is one of your friends or your partner. And if your partner is kissing or cuddling you but seeing someone else, that would be a strong breach of trust, but how would you know? This sort of thing could and probably will damage a lot of relationships.

Most of the software to do most of this is already in development and much is already demonstrable. The rest will develop quickly once AR visors become commonplace.

In the office, in the home, when you’re shopping or at a party, you soon won’t have any idea what or who someone else is seeing when they look at you. Imagine how that would clash with rules that are supposed to be protection from sexual harassment  in the office. Whole new levels of harassment will be enabled, much invisible. How can we police behaviors we can’t even detect? Will hardware manufacturers be forced to build in transparency and continuous experience recording

The main casualty will be trust.  It will make us question how much we trust each of our friends and colleagues and acquaintances. It will build walls. People will often become suspicious of others, not just strangers but friends and colleagues. Some people will become fearful. You may dress as primly or modestly as you like, but if the viewer chooses to see you wearing a sexy outfit, perhaps their behavior and attitude towards you will be governed by that rather than reality. Increased digital objectification might lead to increase physical sexual assault or rape. We may see more people more often objectifying women in more circumstances.

The tech applies equally to men of course. You could make a man look like a silverback gorilla or a zombie or fake-naked. Some men will care more than others, but the vast majority of real victims will undoubtedly be women. Many men objectify women already. In the future AR world , they’ll be able to do so far more effectively, more easily.

 

If you’re looking for aliens visiting Earth, what might they look like?

I don’t believe stories about aliens capturing isolated nutters and probing them on their spaceships before bringing them home, but who don’t bother to make their presence known to anyone else. That makes no sense. I theorized many years ago that perhaps the main reason we don’t see aliens visiting is that by the time a civilization gets to the technology level that permits interstellar travel, they are most likely to eradicate themselves via high-tech weaponry, nanotech accidents or some other tech-enabled extinction route. I suggested that almost all civilizations would become extinct within 300 years of discovering radio.

I also wrote a blog about how genetically engineered fairies would make ideal space travelers, since they could be made very small, and therefore only need small and cheap space ships, but thanks to electronic brains or use of external IT as brain space, be just as smart as real people, and have wings to fly around zero gravity spaceships.

https://timeguide.wordpress.com/2014/06/06/fairies-will-dominate-space-travel/

Extending that thought to what aliens might look like, they would likely have the same capability in genetic engineering, and face the same engineering constraints, so would likely come up with a similar solution.

Miniaturization could go much further, and it’s possible in principle to make tiny capsules, microns across, that contain all the data needed to make a human or android body, and a few nano-fabricators that could do the building of other fabricators that make the infrastructure, robots, androids and organisms once they land on another planet. Maybe an advanced civilization might have the technology to make small wormholes through which to fire these tiny capsules in many directions so as to rapidly explore and colonize a galaxy. Given reasonably expectable morality, they wouldn’t want to geoengineer planets that are already inhabited, so the capsules would only activate if they land on uninhabited planets.

So, given these two quite likely technology capabilities for an interstellar space-fairing civilizations, aliens would either be in a micron-sized capsule or two that could be anywhere on the planet, and therefore highly unlikely to ever be found… or they might look like fairies.

Many people through history claim to have seen fairies of various descriptions, and usually they have magical powers. Via Arthur C Clarke, we of course know that any sufficiently advanced technology looks like magic. So, although I don’t believe they exist or existed, and think that those who claim to have seen them probably have poor eyesight or overly vivid imaginations or are drugged or pissed, or hallucinating, there is a small but finite possibility that they have existed and were visiting aliens.

Maybe fairies, pixies and other magical tiny people were simply aliens from different star systems.

 

The future of retail and the high street

Over 3 months since my last blog, because… reasons. Futurologists are often asked about the future of the high street and the future of retail, obviously strongly connected, because the high street as we knew it not long ago has already changed hugely and yet seemingly always under imminent threat of extinction. I have blogged on it, but am shocked that my last one was a few years ago, so time for an update I guess, especially with the news today that Debenhams may be closing 50 of its stores.

A few old blogs that are still relevant:

https://timeguide.wordpress.com/2013/01/16/the-future-of-high-street-survival-the-6s-guide/

Just one of those Ss stood for Surprise, or serendipity if you prefer. The surprise aisles in Lidl and Aldi are among the biggest reasons for their success. There’s always something you never knew you wanted at a price you can’t resist, so they do well. Good luck to them! Not knowing what you want before you see it explains much of the attraction of charity shops too, it isn’t all about price.

My other Ss are also still proven well founded (socialising (including coffee shops & Facebook clubs), synergy (between online and physical), service, special, and ‘suck and see’ (try it out before you buy)).

Another blog addressed the balance between high street and out of town centres:

https://timeguide.wordpress.com/2013/03/01/out-of-town-centres-are-the-most-viable-future-for-physical-shops/

A more recent one on possible reversal of urbanisation in the further future is also a bit relevant:

https://timeguide.wordpress.com/2018/06/13/will-urbanization-continue-or-will-we-soon-reach-peak-city/

So, updating then…

Retailers all know that they must have an online presence, but it’s still surprising how little effort they put into making their IT work. I experimented with setting up accounts with some of the big retailers and the experience is shocking. This week, I tried to set up an Argos account, but couldn’t get any further than typing my email address and hitting continue, at which point I just got a message ‘unknown error’. I tried it from various links from emails and their Sainsbury’s owner site, and tried a few times on different days, same result. How can they win new customers online if nobody can set an account up? Does nobody actually ever check whether it still works?

I successfully set up a Next account ages ago, but never used it because it wouldn’t let me edit any of my data such as whether I wanted junk mail by various channels, or even how to spell my name (I’d used my initials ID and it insisted on calling me Id), the options either didn’t exist or were greyed out. I could phone up but why bother? A month ago it stopped working for several days, after which time it eventually said I didn’t have one. So I assumed it had evaporated during their IT changes due to never being used and set it up again, and it recovered all my data from its previous existence. I still won’t use it because it calls me Id, and I can’t change it to I D or even ID.

Very has the same IT trouble, can’t edit your name away from Id, and can’t change your preferences for receiving junk mail, but I only set it up as a test so don’t care.

These companies are among the biggest. If they can’t get it right, who can? I did try a few smaller ones to see if they were better but still got a mixture of some successes and some ‘unknown errors’, 404 messages and so on.

By contrast, I’ve never had an IT-related problem with Amazon or eBay and only a few minor ones with 7dayshop. So I shop there and ignore most other shops. They employ competent IT staff in sufficient numbers to make it work, and they thrive (though perhaps not as much due to IT as tax and rates advantages). Those shops whose poor IT annoys their customers enough  to go elsewhere deserve to do badly. 

Websites and apps are today’s platforms for extending high street presence into cyberspace. Augmented reality will provide those companies who are up to the job with massively superior platforms to do that. The web arose from converging just computing and telecoms. Augmented reality converges the whole of the real and virtual universes. Overlaying absolutely any form of computer-generated imagery, data or media onto anything in the real world, streets could be extra art gallery space, space for computer games, enabling digital architecture and avatar replacement of strangers, adding digital fauna and flora and aliens and cartoon characters and celebs and AI avatars anywhere they may be desired, making enticing imaginary worlds that add to the fun of actually going into town.

It won’t just be text, graphics and audio. Various haptic interfaces already exist, but soon active skin will link our peripheral nervous systems to our IT, allowing sensations to be recorded, associated with whatever caused them, and then reproducing those same sensations when something similar happens virtually. Tiny devices in among skin cells could simply record and reproduce the nerve signals. Each hand only generates about 2Mbit/s of data, only a little more than a basic TV channel, so it should be no big problem handling the data.

AI has really moved on since 2013 too. It’s still far from perfect, but you can use fairly normal English to ask an AI to find you something and it often will, so it’s heading in the right direction. Soon, with 3D life-sized augmented or virtual reality avatars to interface with, they’ll be more in touch with our emotional responses when we browse, getting signals from wearables and active skin, face and gesture recognition, gaze direction, blood flow, heart rates etc. An abundance of data will help future AI’s learn more and more about us and our desires and preferences until they can genuinely act as our agents, (as we already realised was the far future by 1990). It’s only a matter of time. In my estimation, AI is progressing about 30-40% more slowly than it ought, (I won’t write about why I think that is here) but it will still get there. As will VR and AR and active skin and active contact lenses, and various other also long overdue techs.

AI online will also be less impressed by all the distractions and adds humans are exposed to.  Functional shopping will be liable to AI substitution but recreational, social, emotional shopping will still be done by people themselves. 

AI links well to robotics, and at some point, robots will go out and do some of our shopping for us. They will have very different customer characteristics and ergonomic needs, and may be better suited to picking up from bleak warehouses than attractive high street stores with ‘surprise’ aisles.

Drone delivery is much spoken about but I don’t think it has a big future for domestic use except in areas with large back gardens and no pets, or mischievous kids. It will work well for rapid delivery to business delivery bays that have appropriate landing areas and H&S policies.

3D printing is much over-hyped, but will eventually replace a small proportion of shopping by home manufacture, or local 3D print shop for more complex production.

Self-driving and driverless cars will greatly reduce or even eliminate the huge problem of congestion that deters people from going to town, as well as eliminating the much-too-high cost of parking, but without incurring the current public transport penalties of waiting in poor weather, poor stop locations, lateness, sluggishness, discomfort, overcrowding, security, and exposure to disease and unwanted social pests. By collecting from home and delivering all the way to the destination in a suitable vehicle, they will also improve social inclusion for older and disabled people. Driverless cars using smart infrastructure could be achieved many times cheaper and earlier (given the will) than current self-driving approaches, but at the expense of virtually eliminating the car industry that hopes to continue to sell expensive cars that happen to self-drive rather the cheap ($300-500) public pods made of fibreglass that can be made without any need for engines, batteries, AI or sensors and would instead be propelled on factory-made and rapidly installed linear induction mats that switch each pod at each junction rather like routers switch internet data packets.

With easier and faster access to a high street that is made far more attractive by imaginative use of AR, companies sticking to the 6S guide would still be able to attract customers into the far future. While there, they would be able to browse much wider range of stock. A garment wouldn’t need to be stocked with lots of each size, but could just have one of a few sizes for people to see if the like the fabric etc before scanning it with an app or taking it to a till with their laser-scanned body measurements, to have it made in their exact size for delivery later by a rapid personalisation manufacturing industry. As well as having more stock present physically, augmented reality can also replace all the aisles of goods the customer isn’t interested in with ones that hold things available for online purchase from that shop or their allies, adding another virtual-physical synergy to improve revenue potential. Even a small store could potentially hold a vast range of stock to buy in an exciting and attractive personalized environment.

I guess I could go into far future services associated with shops, such as customising VR kit to people’s nervous systems, providing recharging for android shoppers or whatever, but this is already long enough.

So the high street isn’t going to become just coffee shops and charities. Even if some existing retailers don’t up their games and go under, many new ones will appear that understand how to use new technology to good effect, and they will make good profits from both high streets and out of town centres.

 

When you’re electronically immortal, will you still own your own mind?

Most of my blogs about immortality have been about the technology mechanism – adding external IT capability to your brain, improving your intelligence or memory or senses by using external IT connected seamlessly to your brain so that it feels exactly the same, until maybe, by around 2050, 99% of your mind is running on external IT rather than in the meat-ware in your head. At no point would you ‘upload’ your mind, avoiding needless debate about whether the uploaded copy is ‘you’. It isn’t uploaded, it simply grows into the new platform seamlessly and as far as you are concerned, it is very much still you. One day, your body dies and with it your brain stops, but no big problem, because 99% of your mind is still fine, running happily on IT, in the cloud. Assuming you saved enough and prepared well, you connect to an android to use as your body from now on, attend your funeral, and then carry on as before, still you, just with a younger, highly upgraded body. Some people may need to wait until 2060 or later until android price falls enough for them to afford one. In principle, you can swap bodies as often as you like, because your mind is resident elsewhere, the android is just a temporary front end, just transport for sensors. You’re sort of immortal, your mind still running just fine, for as long as the servers carry on running it. Not truly immortal, but at least you don’t cease to exist the moment your body stops working.

All very nice… but. There’s a catch.

The android you use would be bought or rented. It doesn’t really matter because it isn’t actually ‘you’, just a temporary container, a convenient front end and user interface. However, your mind runs on IT, and because of the most likely evolution of the technology and its likely deployment rollout, you probably won’t own that IT; it won’t be your own PC or server, it will probably be part of the cloud, maybe owned by AWS, Google, Facebook, Apple or some future equivalent. You’re probably already seeing the issue. The small print may give them some rights over replication, ownership, license to your idea, who knows what? So although future electronic immortality has the advantage of offering a pretty attractive version of immortality at first glance, closer reading of the 100 page T&Cs may well reveal some nasties. You may in fact no longer own your mind. Oh dear!

Suppose you are really creative, or really funny, or have a fantastic personality. Maybe the cloud company could replicate your mind and make variations to address a wide range of markets. Maybe they can use your mind as the UX on a new range of home-help robots. Each instance of you thinks they were once you, each thinks they are now enslaved to work for free for a tech company.

Maybe your continued existence is paid for as part of an extended company medical plan. Maybe you didn’t notice a small paragraph on page 93 that says your company can continue to use your mind after you’re dead. You are very productive and they make lots of profit from you. They can continue that by continuing to run your mind indefinitely. The main difference is that since you’re dead, and no longer officially on the payroll, they get you for free. You carry on, still thinking you’re you, still working, still doing what you do, but no longer being paid. You’ve become a slave. Again.

Maybe your kids paid to keep you alive because they don’t want to say goodbye. They still want their parent, so you carry on living just so they don’t feel alone. Doesn’t sound so bad maybe, but what package did they go for? The full deluxe super-expensive version that lets you do all sorts of expensive stuff and use up oodles of processing power and storage and android rental? Let’s face it, that’s what you’ve always though this electronic immortality meant. Or did they go for a cheaper one. After all, they know you know they have kids or grand-kids in school that need paid for, and homes don’t come cheap, and they really need that new kitchen. Sure, you left them lots of money in the will, but that is already spent. So now you’re on the economy package, bare existence in between them chatting to you, unable to do much on your own at all. All those dreams about living forever in cyber-heaven have come to nothing.

Meanwhile, some rich people paid for good advice and bought their own kit and maintenance agreements well ahead. They can carry on working, selling their services and continuing to pay for ongoing deluxe existence.  They own their own mind still, and better than that, are able to replicate instances of themselves as much as thy want, inhabiting many androids at the same time to have a ball of a time. Some of these other instances are connected, sort of part of a hive mind of you. Others, just for fun, have been cut loose and are now living totally independent existences of other yous. Not you any more once you set them free, but with the same personal history.

What I’m saying is you need to be careful when you plan  to live forever. Get it right, and you can live in deluxe cyber-heaven, hopping into the real world as much as you like and living in unimaginable bliss online. Have too many casual taster sessions, use too much fully integrated mind-sharing social media, sign up to employment arrangements or go on corporate jollies without fully studying the small print and you could stay immortal, unable to die, stuck forever as just a corporate asset, a mere slave. Be careful what you wish for, and check the details before you accept it. You don’t want to end up as just an unpaid personality behind a future helpful paperclip.