Category Archives: technology

Will China be the global winner from COVID?

A joint blog by Tracey Follows, Bronwyn Williams and I Pearson

Will China be the global winner from COVID?

There have been many conspiracy theories about China suggesting that the virus was deliberately made. We may never know the whole truth.

Regardless of that, it is clear that, however unlikely, there is a greater than zero chance the virus could have been man-made. More importantly, a new virus could be man-made. Now that the West has shown its economically suicidal response to this one, there is a massive temptation for any rogue regime or terrorist group to produce a GM virus variant that is as or more lethal, as or more contagious. Death cults that want population reduction (such as environmental reasons) might well consider sponsoring such virus production in secret labs.

There is already one clear win for China: No-one is really debating democracy versus authoritarianism as it pertains to Hong Kong any more. But then no-one is really debating that choice anywhere because nation-states like the UK, France and USA, built on the core notions of freedom, have removed liberty and imposed a lockdown. Indeed, the few governments who have resisted – or even just delayed draconian encroachments on hard-won human rights to freedom of speech, movement and trade have found themselves cast as at best ignorant and at worst downright villainous by the popular press. This, despite the fact that the epidemiological and economic data and models projecting the socio-economic costs of the various paths of action (or inaction) available to authorities are questionable at best, downright misleading at worst. Perhaps Friedrich Hayek put it best when he said “The curious task of economics is to demonstrate to men how little they really know about what they imagine they can design.”. In other words, when faced with incomplete information, the first priority for any government should be to do no harm. When it comes to complex systems, seemingly simple solutions can have serious unintended consequences. This, however, is easier said than done in the face of an imminent threat when citizens, accustomed to having their every need met by their leaders are baying for someone to do something. This may well prove to be the biggest threat of all because populations can get awfully content being told what to do and relying on authorities to make all the tough decisions for them. Some may even be persuaded that this kind of big state, this kind of total state, isn’t really so bad after all.

The trouble is that authoritarian measures – such as state surveillance of health and cellular data and restrictions on freedom of movement or trade – adopted during times of crisis do not tend to simply disappear after the short term threat is passed.. As military men and women will tell you, it is much easier to get into wars than to get out of them. Likewise, it is much easier to lose civil liberties than it is to regain them. Have any governments who have removed or restricted citizen rights outlined any form of exit strategy for how to return those privileged post pandemic? No. The long-term normalisation of surveillance and authoritarianism driven by short-term fear threatens to create a global generation of Stockholm syndrome sufferers, grateful to the generosity of their gilded cage key keepers.

Result: China 1  – West 0

Perhaps what is most notable is that there have been several pandemics in recent memory: Zika, SARS, Ebola, swine flu, bird flu. None of these caused similar panic. The question is why. The answer lies in the way the current crisis has been handled by both mainstream and social media, both of which thrive on the spread of panic (a viral disease in and of itself), and panic, in turn creates an opportunity for authorities to capitalise on the crisis and consolidate both power and capital to their own ends. New deadly diseases emerge from nature frequently and next time the first news breaks on a future outbreak, the panic cycle we have witnessed in recent months is likely to repeat itself. Panic buying will follow, the media and the public will demand action, stock markets will fall, governments will be tempted to rush to close airports and print more money and take on more debt, and so on so as not to be the last man standing. That means that future outbreaks, however caused, will likely cause panic, confusion and likely major economic damage.

After spending tens or more likely hundreds of billions of pounds to get through COVID19, it may well be the case that the economy is only starting to recover before the next outbreak. The economy may not recover properly until we can end that cycle.

However, China, with its now proven technology to control its people, its centralised economy, and its much more compliant populace, conditioned over centuries of dictatorial rule to obey or face the consequences, would be more able to avoid such crashes.

The West will learn that the only way to avoid coming off second best in a crisis is to emulate its opponent, further eroding human rights and freedoms in the process. 

That is, of course, the rub: liberty has proven to work for the West in the long run. However, in the short run, there are trade offs. Authoritarians can do things that free men and women will not. From current events and reactions, it does not appear that the West has the short term courage (or citizens with the personal responsibility) to pay the price of long term liberty.

China 2 – West 0

Even as it becomes clear that China covered up the initial outbreak, denying other nations the benefits of foresight, and manipulated mortality rates, skewing economic and epidemiological models that could have been used to make better policy decisions, we may never know the full extent of China’s responsibility for this one. However, we can be sure they won this round, and will be the long term winners too, if our response here in the West is anything to go on.

About Tracey Follows

company: https://futuremade.consulting

twitter: twitter@traceyfutures

Forbes contributor: tracey follows 

About Bronwyn Williams

Bronwyn Williams is a futurist, economist and trend analyst, who consults to business and government leaders on how to understand the world we live in today and change the world’s trajectory for tomorrow. She is also a regular media commentator on African socio-economic affairs. For more, visit http://whatthefuturenow.com

Twitter: twitter@bronwynwilliams

About I Pearson

Dr Pearson has been a full time futurologist for 29 years, tracking and predicting developments across a wide range of technology, business, society, politics and the environment and is a chartered Fellow of the British Computer Society and Fellow of the World Academy of Art and Science

twitter: twitter.com@timeguide

timeguide.wordpress.com

15 basic technologies could help reduce exposure

  1. In lifts (elevators if you’re a Yank), or indeed any room that gets a lot of people traffic and may therefore spread infections, a simple passive infrared detector could monitor whether there are people in it, and if not, a strong UV light could be activated, which would help kill any viruses and bacteria present.
  2. Portable UV sterilisation boxes could reduce contamination on face masks in between uses so that it’s clean again before you go back out there
  3. Tethered drones equipped with strong (and directional) UV lights could continuously sterilise surfaces in some key areas. Untethered drones that can rapidly recharge could also help.
  4. High powered air filters that can remove viruses could be installed in train carriages, hospital wards and corridors etc.
  5. Industrial and domestic smoke and particulate scrubbers could be adapted to reduce the concentration of  airborne viruses in any area with high concentrations of people. Systems that use plasma or static electricity also exist.
  6. In corridors, either of these air cleaning mechanisms could be used alongside blowing the air in a vortex to maintain a narrow channel of purified air, so that limited filtering can still maintain a safe corridor.conjuction with high pressure
  7. Voluntary ‘digital air’ subscription could enable ‘cookies’ or markers to be collected by your mobile phone as you walk around. If other subscribers that have been in contaminated areas are nearby, your phone could alert you so you can stay clear.
  8. Just as we already have pollen and pollution forecasts, virus detectors could produce real-time information on areas to avoid, or that are safe to visit for exercise.
  9. Bongs (bottles that pass the air through a liquid) could be adapted to use rapid anti-viral fluids). Ultrasonic transducers could further continuously mist the anti-viral medium so that a large air volume is exposed to allow longer decontamination periods with a small amount of fluid.
  10. Spiky net face-masks (like an orange bag with soft spikes on each junction) could prevent people touching their faces.
  11. People could voluntarily wear ‘smart bindis’ made from thermal colour-changing materials similar to those used in cheap fish tank thermometers. You could tell at a glance if someone has a fever or not.
  12. Face masks and surface covers could be made from fabrics that contain nanospikes, attached to pizoelectric vibration devices that can send ultrasonic waves through the materials, physically rupturing virus and bacteria.
  13. Piezoelectric misting could also be used to make forehead mist generators that occasionally bathe the face in anti-viral mist
  14. People living nearby should be able to combine online orders to maximise logistics efficiency
  15. Gloves with antiviral insides that sterilise hands when worn. Obvious alternative is to sterilise inside and outside.

 

 

 

The rise of Dr Furlough, Evil Super-Villain

Too early for an April Fool blog, but hopefully this might lighten your day a bit.

I had the enormous pleasure this morning of interviewing the up-and-coming Super-Villain Dr Furlough about her new plans to destroy the world after being scorned by the UK Government’s highly selective support policy. It seems that Hell has no fury like a Super-Villain scorned and Dr Furlough leaves no doubt that she blames incompetent government response for the magnitude of the current crisis:

Bitmoji Image

Dr Furlough, Super-Villain

“By late January, it should have been obvious to everyone that this would quickly grow to become a major problem unless immediate action was taken to prevent people bringing the virus into the country. Flights from infected areas should have been stopped immediately, anyone who may have been in contact with it should have been forcibly quarantined, and everyone found infected should have had their contacts traced and also quarantined. This would have been disruptive and expensive, but a tiny fraction of the problem we now face.  Not to do so was to give the virus the freedom to spread and infect widely until it became a severe problem. While very few need have died and the economy need not now be trashed, we now face the full enormous cost of that early refusal to act.”

“With all non-essential travel now blocked”, Dr Furlough explained, “many people have had their incomes totally wiped out, not through any fault of their own but by the government’s incompetence in handling the coronavirus, and although most of them have been promised state support, many haven’t, and have as Dr Furlough puts it ‘been thrown under a bus’. While salaried people who can’t work are given 80% of their wages, and those with their own business will eventually receive 80% of their average earnings up to £2500/month whether they are still working or not, the two million who chose to run their small business by setting up limited companies will only qualify for 80% of the often small fraction of income they pay themselves as basic salary, and not on the bulk of their income most take via dividends once their yearly profits are clearer. Consequently many will have immediately dropped from comfortable incomes to 80% of minimum wage. Many others who have already lost their jobs have been thrown onto universal credit. The future high taxes will have to be paid by everyone whether they received support or were abandoned. Instead of treating everyone equally, the state has thus created a seething mass of deep resentment.” Dr Furlough seems determined to have her evil revenge.

Bitmoji Image

With her previous income obliterated, and scorned by the state support system, the ever self-reliant Dr Furlough decided to “screw the state” and forge a new career as a James-Bond-style Super-Villain, and she complained that it was long overdue for a female Super-Villain to take that role anyway. I asked her about her evil plans and, like all traditional Super-Villains, she was all too eager to tell. So, to quote her verbatim:

“My Super-Evil Plan 1: Tap in to the global climate alarmist market to crowd-fund GM creation of a super-virus, based on COVID19. More contagious, more lethal, and generally more evil. This will reduce world population, reduce CO2 emissions and improve the environment. It will crash the global economy and make them all pay. As a bonus, it will ensure the rise of evil regimes where I can prosper.”

She continued: “My Evil Super-Plan 2: To invent a whole pile of super-weapons and sell the designs to all the nasty regimes, dictators, XR and other assorted doomsday cults, pressure groups, religious nutters and mad-scientists. Then to sell ongoing evil consultancy services while deferring VAT payments.”

Bitmoji Image

“Muhuahuahua!” She cackled, evilly.

“My Super-Plan 3: To link AI and bacteria to make adaptive super-diseases. Each bacterium can be genetically enhanced to include bioluminescent photonic interconnects linked to cloud AI with reciprocal optogenetic niche adaptation. With bacteria clouds acting as distributed sensor nets for an emergent conscious transbacteria population, my new bacteria will be able to infect any organism and adapt to any immune system response, ensuring its demise and my glorious revenge.”

laugh cry

By now, Dr Furlough was clearly losing it. Having heard enough anyway, I asked The Evil Dr Furlough if there was no alternative to destroying the world and life as we know it.

“Well, I suppose I could just live off my savings and sit it all out” she said.

 

HS2 is world class stupidity

£106Bn is the new estimated cost of HS2, with a new delivery date of 2040

https://www.theguardian.com/uk-news/2020/jan/20/hs2-costs-government-review-west-midlands-manchester-leeds

We hear figures in the billions all the time, and I guess politicians especially lose their sense of what they really mean. A few billion here, another few billion there, so £106Bn just sounds like a decent sized public infrastructure project, equivalent to a few power stations, what’s the big deal? Let’s do some simple sums to find out and get some perspective.

The money has to come from tax and regardless of the diverse routes it takes, people ultimately pay all that tax. There are 66.5 million people in the UK, so that’s only £1600 each. Most of those people will never or hardly ever use HS2.

However, according to the Office of National Statistics, HMRC, only 31.2 million of those people pay income tax, so they contribute an average £3400 each. But actually the top 50% of those, 15.6 million people, pay 90% of the tax, so that means HS2 will effectively cost them £95.4Bn, a whopping £6115 each. I could go more sums but you get the point.

It’s a fair bet that the half of UK taxpayers paying over £6000 each for HS2 could write a long list of things they’d rather have than the option to buy an expensive rail ticket that might save some people, but probably not them, 20 minutes on a journey to London, but for most people might actually take them longer if they have first to get a slow train to one of the privileged HS2 stations.

6000 quid, each, 12k for a professional couple. For a slightly faster train? Remember, the original spec was for very fast trains, but they had to wind the speed down because it was discovered that trains might sometimes derail due to lethal combinations of aerodynamics and subsidence, so the realistic spec is about 150mph, compared to 125mph for a normal intercity.

This is the economics of the madhouse.

Trains are 19th and 20th century technology. 21st century technology allows driverless pod systems that would be far cheaper, far more versatile, far more socially inclusive, and far faster end to end. Pods could carry people or freight. Pod systems could start off mixing with conventional trains by grouping to make virtual trains. As antique old stock is gradually upgraded, along with stations, we would end up with a totally pod-based transport system. Pods could just as easily run on roads as on rails. The rails could be ripped up and recycled, railways tarmacked over, and public transport could seamlessly run on roads or the old railways. With potential occupancy of up to 95%, compared to the 0.4% typical of conventional rail, the old railways could carry 237 times more traffic! That wouldn’t eliminate congestion – there would still be some choke points – but it would make one hell of a dent in it. It would be faster because someone could have a pod pick them up at their home or office, maybe swap onto a shared one at a local node, and then go all the way to their destination at a good speed, with hardly any delays en-route, now waiting for the next scheduled train or having to make pointless journeys to get to a mainline station. They could simply go straight to where they want, and save much more time than HS2 would ever have saved.

Pod systems could serve the whole country, not just the lucky few living near the right stations. Fixing ‘the North-South divide’ still favours pod systems, not HS2. Everyone benefits from pods, hardly anyone benefits from HS2. Everyone saves money with pods, everyone is worse off with HS2. Why is the idea still flying?

The problem we have is that too few of our politicians or senior civil servants have any real understanding of technology and its potential. They are blinded by seeing figures in billions sever day, so have lost their understanding of just how much £100Bn is. They are terrified of pressure groups and always eager to be seen to be doing something, however stupid that something might be if they examined it.

HS2 is a stupid idea, world-class stupidity. It is 20th century technology, an old idea long past its use-by date. It locks in all the huge disadvantages and costs of old-style rail for several more decades We should leapfrog over it and go instead for a 21st century solution – cheap driverless pods. We’d save a fortune and have a far superior result.

 

 

Optical computing

A few nights ago I was thinking about the optical fibre memories that we were designing in the late 1980s in BT. The idea was simple. You transmit data into an optical fibre, and if the data rate is high you can squeeze lots of data into a manageable length. Back then the speed of light in fibre was about 5 microseconds per km of fibre, so 1000km of fibre, at a data rate of 2Gb/s would hold 10Mbits of data, per wavelength, so if you can multiplex 2 million wavelengths, you’d store 20Tbits of data. You could maintain the data by using a repeater to repeat the data as it reaches one end into the other, or modify it at that point simply by changing what you re-transmit. That was all theory then, because the latest ‘hero’ experiments were only just starting to demonstrate the feasibility of such long lengths, such high density WDM and such data rates.

Nowadays, that’s ancient history of course, but we also have many new types of fibre, such as hollow fibre with various shaped pores and various dopings to allow a range of effects. And that’s where using it for computing comes in.

If optical fibre is designed for this purpose, with optimal variable refractive index designed to facilitate and maximise non-linear effects, then the photons in one data stream on one wavelength could have enough effects of photons in another stream to be used for computational interaction. Computers don’t have to be digital of course, so the effects don’t have to be huge. Analog computing has many uses, and analog interactions could certainly work, while digital ones might work, and hybrid digital/analog computing may also be feasible. Then it gets fun!

Some of the data streams could be programs. Around that time, I was designing protocols with smart packets that contained executable code, as well as other packets that could hold analog or digital data or any mix. We later called the smart packets ANTs – autonomous network telephers, a contrived term if ever there was one, but we wanted to call them ants badly. They would scurry around the network doing a wide range of jobs, using a range of biomimetic and basic physics techniques to work like ant colonies and achieve complex tasks using simple means.

If some of these smart packets or ANTs are running along a fibre, changing the properties as they go to interact with other data transmitting alongside, then ANTs can interact with one another and with any stored data. ANTs could also move forwards or backwards along the fibre by using ‘sidings’ or physical shortcuts, since they can route themselves or each other. Data produced or changed by the interactions could be digital or analog and still work fine, carried on the smart packet structure.

(If you’re interested my protocol was called UNICORN, Universal Carrier for an Optical Residential Network, and used the same architectural principles as my previous Addressed Time Slice invention, compressing analog data by a few percent to fit into a packet, with a digital address and header, or allowing any digital data rate or structure in a payload while keeping the same header specs for easy routing. That system was invented (in 1988) for the late 1990s when basic domestic broadband rate should have been 625Mbit/s or more, but we expected to be at 2Gbit/s or even 20Gbit/s soon after that in the early 2000s, and the benefit as that we wouldn’t have to change the network switching because the header overheads would still only be a few percent of total time. None of that happened because of government interference in the telecoms industry regulation that strongly disincentivised its development, and even today, 625Mbit/s ‘basic rate’ access is still a dream, let alone 20Gbit/s.)

Such a system would be feasible. Shortcuts and sidings are easy to arrange. The protocols would work fine. Non-linear effects are already well known and diverse. If it were only used for digital computing, it would have little advantage over conventional computers. With data stored on long fibre lengths, external interactions would be limited, with long latency. However, it does present a range of potentials for use with external sensors directly interacting with data streams and ANTs to accomplish some tasks associated with modern AI. It ought to be possible to use these techniques to build the adaptive analog neural networks that we’ve known are the best hope of achieving strong AI since Hans Moravek’s insight, coincidentally also around that time. The non-linear effects even enable ideal mechanisms for implementing emotions, biasing the computation in particular directions via intensity of certain wavelengths of light in much the same way as chemical hormones and neurotransmitters interact with our own neurons. Implementing up to 2 million different emotions at once is feasible.

So there’s a whole mineful of architectures, tools and techniques waiting to be explored and mined by smart young minds in the IT industry, using custom non-linear optical fibres for optical AI.

Pythagoras Sling update

To celebrate the 50th anniversary of the Moon landing mission, I updated my Pythagoras Sling a bit. It now uses floating parachutes so no rockets or balloons are needed at all and the whole thing is now extremely simple.

Introducing the Pythagoras Sling –

A novel means of achieving space flight

Dr I Pearson & Prof Nick Colosimo

Executive Summary

A novel reusable means of accelerating a projectile to sub-orbital or orbital flight is proposed which we have called The Pythagoras Sling. It was invented by Dr Pearson and developed with the valuable assistance of Professor Colosimo. The principle is to use large parachutes as effective temporary anchors for hoops, through which tethers may be pulled that are attached to a projectile. This system is not feasible for useful sizes of projectiles with current materials, but will quickly become feasible with higher range of roles as materials specifications improve with graphene and carbon composite development. Eventually it will be capable of launching satellites into low Earth orbit, and greatly reduce rocket size and fuel needed for human space missions.

Specifications for acceleration rates, parachute size and initial parachute altitudes ensure that launch timescales can be short enough that parachute movement is acceptable, while specifications of the materials proposed ensure that the system is lightweight enough to be deployed effectively in the size and configuration required.

Major advantages include (eventually) greatly reduced need for rocket fuel for orbital flight of human cargo or potential total avoidance of fuel for orbital flight of payloads that can tolerate higher g-forces; consequently reduced stratospheric emissions of water vapour that otherwise present an AGW issue; simplicity resulting in greatly reduced costs for launch; and avoidance of risks to expensive payloads until active parts of the system are in place. Other risks such as fuel explosions are removed completely.

The journey comprises two parts: the first part towards the first parachute conveys high vertical speed while the second part converts most of this to horizontal speed while continuing acceleration. The projectile therefore acquires very high horizontal speed required for sub-orbital and potentially for orbital missions.

The technique is intended mainly for the mid-term and long-term future, since it only comes into its own once it becomes possible to economically make graphene components such as strings, strong rings and tapes, but short term use is feasible with lower but still useful specifications based on interim materials. While long term launch of people-carrying rockets is feasible, shorter term uses would be limited to smaller payloads or those capable of withstanding higher g-forces. That makes it immediately useful for some satellite or military launches, with others quickly becoming feasible as materials improve.

Either of two mechanisms may be used for drawing the cable – a drum based reel or a novel electromagnetic cable drive system. The drum variant may be speed limited by the strength of drum materials, given very high centrifugal forces. The electromagnetic variant uses conventional propulsion techniques, essentially a linear motor, but in a novel arrangement so is partly unproven.

There are also alternative methods available for parachute deployment and management. One is to make the parachutes from lighter-than-air materials, such as graphene foam, which is capable of making solid forms less dense than helium. The chutes would float up and be pulled into their launch positions. A second option is to use helium balloons to carry them up, again pulling them into launch positions. A third is to use a small rocket or even two to deploy them. Far future variants will probably opt for lighter-than-air parachutes, since they can float up by themselves, carry additional tethers and equipment, and can remain at high altitude to allow easy reuse, floating back up after launch.

There are many potential uses and variants of the system, all using the same principle of temporary high-atmosphere anchors, aerodynamically restricted to useful positions during launch. Not all are discussed here. Although any hypersonic launch system has potential military uses, civil uses to reduce or eliminate fuel requirements for space launch for human or non-human payloads are by far the most exciting potential as the Sling will greatly reduce the currently prohibitive costs of getting people and material into orbit. Without knowing future prices for graphene, it is impossible to precisely estimate costs, but engineering intuition alone suggests that such a simple and re-usable system with such little material requirement ought to be feasible at two or three orders of magnitude less than current prices, and if so, could greatly accelerate mid-century space industry development.

Formal articles in technical journals may follow in due course that discuss some aspects of the sling and catapult systems, but this article serves as a simple publication and disclosure of the overall system concepts into the public domain. Largely reliant on futuristic materials, the systems cannot reasonably be commercialised within patent timeframes, so hopefully the ideas that are freely given here can be developed further by others for the benefit of all.

This is not intended to be a rigorous analysis or technical specification, but hopefully conveys enough information to stimulate other engineers and companies to start their own developments based on some of the ideas disclosed.

Introductory Background

A large number of non-fuel space launch systems have been proposed, from Jules Verne’s 1865 Moon gun through to modern railguns, space hooks and space elevators. Rail guns convey moderately high speeds in the atmosphere where drag and heating are significant limitations, but their main limitation is requiring very high accelerations but still achieving too low muzzle velocity for even sub-orbital trips. Space-based tether systems such as space hooks or space elevators may one day be feasible, but not soon. Current space launches all require rockets, which are still fairly dangerous, and are highly expensive. They also dump large quantities of water vapour into the high atmosphere where, being fairly persistent, it contributes significantly to the greenhouse effect, especially as it drifts towards the poles. Moving towards using less or no fuel would be a useful step in many regards.

The Pythagoras Sling

In summary, having considered many potential space launch mechanisms based on high altitude platforms or parachutes, by far the best system is the Pythagoras Sling. This uses two high-altitude parachutes attached to rings, offering enough drag to act effectively as temporary slow-moving anchors while a tether is pulled through them quickly to accelerate a projectile upwards and then into a curve towards final high horizontal speed.

We called this approach the Pythagoras Sling due to its simplicity and triangular geometry. It comprises some ground equipment, two large parachutes and a length of string. The parachutes would ideally be made using lighter-than-air materials such as graphene foam, a foam of tiny graphene spheres containing vacuum, that is less dense than helium. They could therefore float up to the required altitude, and could be manoeuvred into place immediately prior to launch. During the launch process they would move so it would take a few hours to float back to their launch positions. They could remain at high altitude for long periods, perhaps permanently. In that case, as well as carrying the tether for the launch, additional tethers would be needed to anchor and manoeuvre the parachutes and to feed launch tether through in preparation for a new launch. It is easy to design the system so that these additional maintenance tethers are kept well out of the way of the launch path.

The parachutes could be as large as desired if such lightweight materials are used, but if alternative mechanisms such as rockets or balloons are used to carry them into place, they would probably be around 50m diameter, similar to the Mars landing ones.

Each parachute would carry a ring through which the launch tether is threaded, and the rings would need to be very strong, low friction, heat-resistant and good at dispersing heat. Graphene seems an ideal choice but better materials may emerge in coming years.

The first parachute would float up to a point 60-80km above the launch site and would act as the ‘sky anchor’ for the first phase of launch where the payload gathers vertical speed. The 2nd parachute would be floated up and then dragged (using the maintenance tether) as far away and as high as feasible, but typically to the same height and 150km away horizontally, to act as the fulcrum for the arc part of the flight where the speed is both increased and converted to horizontal speed needed for orbit.

Simulation will be required to determine optimal specifications for both human and non-human payloads.

Another version exists where the second parachute is deployed from a base with winding equipment 150km distant from the initial rocket launch. Although requiring two bases, this variant holds merit. However, using a single ground base for both chute deployments offers many advantages at the cost of using slightly longer and heavier tether. It also avoids the issue that before launch, the tether would be on the ground or sea surface over a long distance unless additional system details are added to support it prior to launch such as smaller balloons. For a permanent launch site, where the parachutes remain at high altitude along with the tethers, this is no longer an issue so the choice may be made on a variety of other factors. The launch principle remains exactly the same.

Launch Process

On launch, with the parachutes, rings and tethers all in place, the tether is pulled by either a jet engine powered drum or an electromagnetic drive, and the projectile accelerates upwards. When it approaches the first parachute, the tether is disengaged from that ring, to avoid collision and to allow the second parachute to act as a fulcrum. The projectile is then forced to follow an arc, while the tether is still pulled, so that acceleration continues during this period. When it reaches the final release position, the tether is disengaged, and the projectile is then travelling at orbital or suborbital velocity, at around 200km altitude. The following diagram summarises the process.

Two-base variant

This variant with two bases and using rocket deployment of the parachutes still qualifies as a Pythagoras Sling because they are essentially the same idea with just minor configurational differences. Each layout has different merits and simulation will undoubtedly show significant differences for different kinds of missions that will make the choice obvious.

Calculations based on graphene materials and their theoretical specifications suggest that this could be quite feasible as a means to achieve sub-orbital launches for humans and up to orbital launches for smaller satellites that can cope with 15g acceleration. Other payloads would still need rockets to achieve orbit, but greatly reduced in size and cost.

Exchanges of calculations between the authors, based on the best materials available today suggest that this idea already holds merit for use for microsatellites, even if it falls well below graphene system capabilities. However, graphene technology is developing quickly, and other novel materials are also being created with impressive physical qualities, so it might not be many years before the Sling is capable of launching a wide range of payload sizes and weights.

In closing

The Pythagoras Sling arose after several engineering explorations of high-altitude platform launch systems. As is often the case in engineering, the best solution is also by far the simplest. It is the first space launch system that treats parachutes effectively as temporary aerial anchors, and it uses just a string pulled through two rings held by those temporary anchors, attached to the payload. That string could be pulled by a turbine or an electromagnetic linear motor drive, so could be entirely electric. The system would be extremely safe, with no risk of fuel explosions, and extremely cheap compared to current systems. It would also avoid dumping large quantities of greenhouse gases into the high atmosphere. The system cannot be built yet, and its full potential won’t be realised until graphene or similarly high specification strings or tapes are economically available. However, it should be well noted that other accepted future systems such as the Space Elevator will also need such materials, but in vastly larger quantity. The Pythagoras Sling will certainly be achievable many years before a space elevator and once it is, could well become the safest and cheapest way to put a wide range of payloads into orbit.

Cable-based space launch system

A rail gun is a simple electromagnetic motor that very rapidly accelerates a metal slug by using it as part of an electrical circuit. A strong magnetic field arises as the current passes through the slug, propelling it forwards.

EM launch system

An ‘inverse rail gun’ uses the same principle, but rather than a short slug, the force acts on a small section of a long cable, which continues to pass through the system. As that section passes through, another takes its place, passing on the force and acceleration to the remainder of the cable. That also means that each small section only has a short and tolerable time of extreme heating resulting from high current.

This can be used either to accelerate a cable, optionally with a payload on the end, or via Newtonian reaction, to drag a motor along a cable, the motor acting as a sled, accelerating all along the cable. If the cable is very long, high speeds could result in the vacuum of space. Since the motor is little more than a pair of conductive plates, it can easily be built into a simple spacecraft.

A suitable spacecraft could thus use a long length of this cable to accelerate to high speed for a long distance trip. Graphene being an excellent conductor as well as super-strong, it should be able to carry the high electric currents needed in the motor, and solar panels/capacitors along the way could provide it.

With such a simple structure, made from advanced materials, and with only linear electromagnetic forces involved, extreme speeds could be achieved.

A system could be made for trips to Mars for example. 10,000 tons of sufficiently strong graphene cable to accelerate a 2 ton craft at 5g could stretch 6.7M km through space, and at 5g acceleration (just about tolerable for trained astronauts), would get them to 800km/s at launch, in 4.6 hours. That’s fast enough to get to Mars in 5-12 days, depending where it is, plus a day each end to accelerate and decelerate, 7-14 days total.

10,000 tons is a lot of graphene by today’s standards, but we routinely use 10,000 tons of steel in shipbuilding, and future technology may well be capable of producing bulk carbon materials at acceptable cost (and there would be a healthy budget for a reusable Mars launch system). It’s less than a space elevator.

6.7M km is a huge distance, but space is pretty empty, and even with gravitation forces distorting the cable, the launch phase can be designed to straighten it. A shorter length of cable on the opposite side of an anchor (attached to a Moon tower, or a large mass at a Lagrange point) would be used to accelerate the spacecraft towards the launch end of the cable, at relatively low speed, say 100km/s, a 20 hour journey, and the deceleration phase of that trip applies significant force to the cable, helping to straighten and tension it for the launch immediately following. The craft would then accelerate along the cable, travel to Mars at high speed, and there would need to be an intercept system there to slow it. That could be a mirror of the launch system, or use alternative intercept equipment such as a folded graphene catcher (another blog).

Power requirements would peak at the very last moments, at a very high 80GW. Then again, this is not something we could build next year, so it should be considered in the context of a mature and still fast-developing space industry, and 800km/s is pretty fast, 0.27% of light speed, and that would make it perfect for asteroid defense systems too, so it has other ways to help cost in. Slower systems would have lower power requirements or longer cable could be used.

Some tricky maths is involved at every stage of the logistics, but no more than any other complex space trip. Overall, this would be a system that would be very long but relatively low in mass and well within scales of other human engineering.

So, I think it would be hard, but not too hard, and a system that could get people to Mars in literally a week or two would presumably be much favored over one that takes several months, albeit it comes with some serious physical stress at each end. So of course it needs work and I’ve only hinted superficially at solutions to some of the issues, but I think it offers potential.

On the down-side, the spaceship would have kinetic energy of 640TJ, comparable to a small nuke, and that was mainly limited by the 5g acceleration astronauts can cope with. Scaling up acceleration to 1000s of gs military levels could make weapons comparable to our largest nukes.

Population Growth is a Good Thing

Many people are worried about world human population, that we are overpopulating the planet and will reap environmental catastrophe. Some suggest draconian measures to limit or even reduce it. I’m not panicking about population at all. I’m not even particularly concerned. I don’t think it is necessarily a bad thing to have a high population. And I think it will be entirely sustainable to have a much higher population.

Nobody sane think the Earth’s human population will carry on increasing exponentially forever. Obviously it will level off and it is already starting to do so. I would personally put the maximum carrying capacity of the Earth at around 100 billion people, but population will almost certainly level off between 9 and 10 billion, let’s say 9.5Bn. Further in the future, other planets will one day house some more people, but they will have their own economics.

We aren’t running out of physical resources, just moving them around. Apart from a few spacecraft that have moved some stuff off planet, some excess radioactive decay induced in power stations and weapons, and helium and hydrogen escaping from the atmosphere, all of which is offset by meteorites and dust landing from space, all we have done is convert stuff to other forms. Almost all materials are more plentiful now than they were 40 years ago when the loudest of doom-mongers warned of the world running out imminently. They were simply wrong.

If we do start to run short, we can mine key elements from rubbish tips and use energy to convert back to any form we need, we can engineer substitutes or we can gather them from space. Another way of looking at this issue is that we live on top of 6000km of resources and only have homes a few metres deep. When we fill them we have to dispose of one thing to make room for a new one, and recycling technology is getting better all the time. Meanwhile, material technology development means we need less material to make something, and can do so with a wider range of input elements.

We are slowly depleting some organic resources, such as fossil fuels, but there are several hundred years supply left, and we will not need any more than a tiny fraction of that before we move to other energy sources. We’re also depleting some fish stocks around the world, so fishing needs some work in designing and implementing better practices, but that is not unachievable by any means and some progress is already happening. Forestry is being depleted in some areas and expanding in others. Some areas of forest are being wiped out because environmentalists and other doomsayers have forced policies through that encourage people to burn them down to make the land available for biofuel plantations and carbon offset schemes.

We certainly are not short of space. I live in Southern England, which sometimes feels full when I get stuck in traffic jams or queues for public services, but these are a matter of design, not fundamental limits. Physically, I don’t feel it is terribly overpopulated here yet, even with the second highest population density on Earth, at 470 people per square kilometre. India only has 345, even with its massive population. China has even less at only 140, while Indonesia has 117, Brazil just 22, and Russia a mere 7.4 people per square kilometre. Yet these are the world’s biggest populations today. So there is room for expansion perhaps. If all the inhabitable land in the world were to be occupied at average English density of today, the world can actually hold 75-80 Billion people. There would still be loads of open countryside, still only 1 or 2% covered in concrete and tarmac.

But self-driving vehicles can increase road capacity by a factor of 5, regional rail capacity by a factor of 200. Replacement of most public sector workers by machines, or better still, good system design, would eradicate most queues and improve most services. England isn’t even full yet. So that 75-80Bn could become 100Bn before it feels crowded.

So let’s stop first of all from imagining that we are running out of space any time soon. We just aren’t!

Energy isn’t a problem in the long term either. Shale gas is already reducing costs in the USA at the same time as reducing carbon dioxide emissions. In Europe, doom-mongers and environmentalist have been more successful in influencing policy, so CO2 emissions are increasing while energy costs create fuel poverty and threaten many key areas of the economy. Nuclear energy currently depends on uranium but thorium based power is under development and is very likely to succeed in due course, adding several hundred years of supply. Solar, fusion, geothermal and shale gas will add to this to provide abundant power for even a much great population, within a few decades, well ahead of the population curve. The only energy shortages we will see will be doomsayer-induced.

Future generations will face debts handed on to them without their consent to pay for this doom-induced folly, but will also inherit a physical and cultural infrastructure with built in positive feedback that ensure rapid technological development.

Among its many benefits, future technology will greatly reduce the amount of material needed to accomplish a task. It will also expand the global economy to provide enough wealth to buy a decent standard of living for everyone. It will also clean up the environment while producing far more food from less land area, allowing some land to be returned to nature. Food production per hectare has doubled in the last 30 years. The technology promises further gains into the foreseeable future.

The world of the future will be a greener and more pleasant land, with nature in a better state than today, with a larger world population that is richer and better fed, almost certainly no more than 10 billion. Providing that is, that we can stop doom-mongers forcing their policies through – the only thing that would really wreck the environment. A doom-monger-free human population is not a plague but a benefit to the Earth and nature. The doom-mongers and their policies are the greatest proven threat. Environmentalists should focus on making sure we are inspired by nature and care for it, and then get out of the way and let technologists get on with making sure it can flourish in the future.

Let’s compare the outcomes of following the advice of the doom-mongers with the outcome of following a sensible economic development path using high technology.

If everyone wants to live to western standards, the demands on the environment will grow as the poor become richer and able to afford more. If we try to carry on with existing technology, or worse, with yesterday’s, we will not find that easy. Those who consider technology and economic growth to be enemies of the environment, and who therefore would lock us into today’s or yesterday’s technology, would condemn billions of people to poverty and misery and force those extra people to destroy the environment to try to survive. The result would be miserable future for humanity and a wrecked environment. Ironically, these people have the audacity to call themselves environmentalists, but they are actually enemies of both the environment and of humanity.

If we ignore such green lunacy – and we should – and allow progress to continue, we will see steady global economic growth that will result in a far higher average income per capita in 2050 with 9.5Bn people than we have today with only 7.7Bn. The technology meanwhile will develop so much that the same standard of living can be achieved with far less environmental impact. For example, bridges hundreds of years ago used far more material than today’s, because they were built with primitive science and technology and poor understanding of science. Technology is better now, materials are stronger and more consistent, we know their properties accurately as well as all the forces acting on the bridge, so we need less material to build a bridge strong enough for the purpose, which is better for the environment. With nanotechnology and improved materials, we will need even less material to build future bridges. The environmental footprint of each person will certainly be far lower in 2050 if we accept new technology than it will be if we restrict growth and technology development. It will almost certainly be less even than today’s, even though our future lifestyles would be far better. Trying to go back to yesterday’s technologies without greatly reducing population and lifestyle would impose such high environmental impact that the environment would be devastated. We don’t need to, and we shouldn’t.

Take TVs as another example. TVs used to be hugely heavy and bulky monsters that took up half the living room, used lots of electricity, but offered relatively small displays with a choice from just a few channels. Today, thin LCD or LED displays use far less material, consume far less power, take up far less space and offer far bigger and better displays offering access to thousands of channels via satellites and web links. So as far as TV-based entertainment goes, we have a far higher standard of living with far lower environmental impact. The same is true for phones, computers, networks, cars, fridges, washing machines, and most other tools. Better materials and technologies enable lower resource use.

New science and technology has enabled new kinds of materials that can substitute for scarce physical resources. Copper was once in danger of running out imminently. Now you can build a national fibre telecommunication network with a few bucketfuls of sand and some plastic. We have plastic pipes and water tanks too, so we don’t really need copper for plumbing either. Aluminium makes reasonable cables, and future materials such as graphene will make even better cables, still with no copper use. There are few things that can’t be done with alternative materials, especially as quantum materials can be designed to echo the behaviour of many chemicals. So it is highly unlikely that we will ever run out of any element. We will simply find alternative solutions as shortages demand.

Oil will be much the same story. To believe the doom-mongers, our use of oil will continue to grow exponentially until one day there is none left and then we will all be in big trouble, or dead, breathing in 20% CO2 by then of course. Again, this is simply a nonsensical scenario. By 2030, oil will be considered a messy and expensive way of getting energy, and most will be left in the ground. The 6Gjoules of energy a barrel of oil contains could be made for $30 using solar panels in the deserts, and electricity is clean. Even if solar doesn’t progress that far, shale gas only produces half as much CO2 as oil for the same energy output (another potential environmental improvement held back by green zealots here in the UK and indeed the rest of Europe).

This cheap solar electricity mostly won’t come from UK rooftops as currently incentivised by green-pressured government, but somewhere it is actually sunny, deserts for example, where land is cheap, because it isn’t much use for anything else. The energy will get to us via superconducting or graphene cables. Sure, the technology doesn’t yet exist, but it will. Oil will only cost $30 a barrel because no-one will want to pay more than that for what will be seen as an inferior means of energy production. Shale gas might still be used because it produces relatively little CO2 and will be very cheap, but even that will start declining as the costs of solar and nuclear variants fall.

In the longer term, in our 2050 world of 9.5Bn people, fusion power will be up and running, alongside efficient solar (perhaps some wind) and other forms of energy production, proving an energy glut that will help with water supply and food production as well as our other energy needs. In fact, thanks to the development of graphene desalination technology, clean water will be abundantly available at low cost (not much more than typical tap-water costs today) everywhere.

Our technologies will be so advanced by then that we will be able to control climate better too. We will have environmental models based on science, not models based on the CO2-causes-everything-bad religion, so we will know what we’re doing rather than acting on guesswork and old-wives’ tales. We will have excellent understanding of genetics and biotech and be able to make superior crops and animals, so will be able to make enough food to feed everyone, ensuring not only quantity but nutritional quality too. While today’s crops deliver about 2% of the solar energy landing on their fields to us as food, we will be able to make foods in factories more efficiently, and will have crops that are also more efficient. It is true that we may see occasional short-term food shortages, but in the long term, there is absolutely no need to worry about feeding everyone. And no need to worry about the impact on the environment either, because we will be able to make more food with far less space. No-one needs to be hungry, even if we have 9.5Bn of us, and with steady economic growth, everyone will be able to afford food too.

This is no fanciful techno-utopia. It is entirely deliverable and even expectable. All around the world today, people’s ethical awareness is increasing and we are finally starting to address problems of food and emergency aid distribution, even in failing regimes. The next few decades will not eradicate poverty completely, but it will make starvation much less of a problem, along with clean water availability.

How can we be sure it will be developed? Well, there will be more people for one thing. That means more brains. Those people will be richer, they will be better educated, and many will be scientists and engineers. Many will have been born in countries that value engineers and scientists greatly, and will have a lot of backing, so will get results. Some will be in IT, and will develop computer intelligence to add to the human effort, and provide better, cheaper and faster tools for scientists and engineers in every field to use. So, total intellectual resources will be far greater than they are today.

Therefore we can be certain that technological progress will continue to accelerate. As it does, the environment will become cleaner and healthier, because we will be able to make it so. We will restore nature. Rivers today in the UK are cleaner than 100 years ago. The air is cleaner too. We look after nature better, because that’s what people do when they are affluent and well educated. In 50 years we will see that attitude even more widespread. The rainforests will be flourishing, some species will be being resurrected from extinction via DNA banks. People will be well fed. Water supply will be adequate.

But all this can only happen if we stop following the advice of doom-mongers and technophobes who want to take us backwards.

That really is the key: more people mean more brain power, more solutions, and better technology. For the last million years, that has meant steady improvement of our lot. In the un-technological world of the cavemen hunter-gatherers, the world was capable of supporting around 60 million people. If we try to restrict technology development now, it will be a death sentence. People and the environment would both suffer. No-one wins if we stop progress. That is the fallacy of environmental dogma that is shouted loudly by the doom mongers.

Some extremists in the green movement would have us go back to yesterday, rejecting technology, living on nature and punishing everyone who disagrees with them. They can indulge such silliness when they are only a few and the rest of us support them, but everyone simply can’t live like that. Without technology, the world can only support 60 million, not 7 billion or 9.5 billion or 75 billion. There simply aren’t enough nice fields and forest for us all to live that way.

It is a simple choice. We could have 60 million thoroughly miserable post-environmentalists living in a post eco-catastrophe world where nature has been devastated by the results of daft policies invented by self-proclaimed environmentalists, trying to make a feeble recovery. Or we can ignore their nonsense, get on with our ongoing development, and live in a richer, nicer world where 9.5Bn people (or even far more if we want) can be happy, well fed, well educated, with a good standard of living, and living side by side with a flourishing environment, where our main impacts on the environment are positive.

Technology won’t solve every problem, and will even create some, but without a shadow of a doubt, technology is by far nature’s best friend. Not the lunatic fringe of ‘environmentalists’, many of whom are actually among the environment’s worst enemies – at best, well-meaning fools.

There is one final point that is usually overlooked in this debate. Every new person that is born is another life, living, breathing, loving, hopefully having fun, enjoying life and being happy. Life is a good thing, to be celebrated, not extinguished or prevented from coming into existence just because someone else has no imagination. Thanks to the positive feedbacks in the development loops, 50% more people means probably 100% more total joy and happiness. Population growth is good, we just have to be more creative, but that’s what we do all the time. Now let’s get on with making it work.

Good times lie ahead. We do need to fix some things though. I mentioned that physical resources won’t diminish significantly in quantity in terms of the elements they hold at least, though those we use for energy (oil, coal and gas) give up their energy when we use them and that is gone.

However, the ecosystem is a different matter. Even with advanced genetic technology we can expect in the far future, it will be difficult to resurrect organisms that have become extinct. It is far better to make sure they don’t. Even though an organism may be brought back, we’d also have to bring back the environment it needs with all the intricately woven inter-species dependencies.

Losing a single organism species might be relatively recoverable, but losing a rain forest will be very hard to fix. Forests are very complex systems. In fact designing and making a synthetic and simpler rainforest is probably easier than trying to regenerate a lost natural one. We really don’t want to have to do that. It would be far better to make sure we preserve the existing forests and other complex ecosystems. Poor countries may reasonably ask for some payment to preserve their forests rather than chopping them down to sell wood. We should certainly make sure to remove current perverse ‘environmental’ incentives to chop them down to make room for palm oil plantations to satisfy the demands of poorly thought out environmental policies in rich countries.

The same goes for ocean ecosystems. We are badly mismanaging many fisheries today, and that needs to be fixed, but there are already some signs of progress. EU regulations that used to cause huge quantities of fish to be caught and thrown back dead into the sea are becoming history. Again, these are a hangover from previous environmental policy designed to preserve fish stocks, but again this was poorly thought out and has had the opposite result to that intended.

Other policies in the EU and in other parts of the world are also causing problems by unbalancing populations and harming or distorting food chains. The bans on seal hunting are good – we love seals, but the explosion in seal populations caused by throwing dead fish back has increased the demand of the seal population to over 100,000 tons of fish a year, when it is already severely stressed by over-fishing. The dead fish have also helped cause an explosion in lobster populations and in some sea birds. We may appreciate the good side, but we mustn’t forget to look for harmful effects that may also be caused. It is obvious that we could do far better job, and we must.

A well-managed ocean with properly designed farms should be able to provide all the fish and other seafood we need, but we are well away from it yet and we do need to fix it. With ongoing scientific study, understanding of relationships between species and especially in food chains is improving, and regulations are slowly becoming more sensible, so there is hope. Many people are switching their diets to fish with sustainable populations. But these will need managed well too. Farming is suitable for many species and crashes in some fish populations have added up to a loud wake-up call to fix regulations around the world. We may use genetic modification to increase growth and reproduction rates, or otherwise optimise sustainability and ocean capacity. I don’t think there is any room for complacency, but I am confident that we can and will develop good husbandry practices and that our oceans and fish stocks will recover and become sustainable.

Certainly, we have a greater emotional attachment to the organic world than to mere minerals, and we are part of nature too, but we can and will be sustainable in both camps, even with a greatly increased population.

The future for women, pdf version

It is several years since my last post on the future as it will affect women so here is my new version as a pdf presentation:

Women and the Future

The future of land value

St BeesI don’t do investment advice much, and I am NOT an investment adviser of any kind, just a futurist doing some simple reasoning.

World population is around 7.7Bn.

It will increase, level off, then decline, then grow again.

Any projections you see are just educated guesswork. 9.8Bn figure is the UN global population estimate for 2050, and I won’t argue with that, it seems as good a guess as any. Everyone then expects it to level off and decline, as people have fewer kids. I’m not so sure. Read my blog five years ago that suggested it might grow again in the late century, perhaps reaching as high as 15Bn:

Will population grow again after 2050? To 15Bn?

I only say might, because there are pressures in both directions and it is too hard to be sure in a far future society which ones will be stronger and by how much. I’m just challenging the standard view that it will decline into the far future, and if I had to place a bet, it would be on resumed growth.

Population is one large influence on demand for land and ‘real estate’.

Another is population distribution. Today, all around the world, people are moving from the countryside to cities. I argue that urbanization will soon peak, and then start to reverse:

Will urbanization continue or will we soon reach peak city?

De-urbanization will largely be enabled by high technology and its impacts on work and social life. It will be caused by increasing wealth, coupled to the normal desire to live happier lives. Wealth is increasing quickly, varying place to place and year to year. It is reasonable, given positive feedback effects from AI and automation, to assume average real growth of 2%, including occasional recessions and booms. By 2100, that means global wealth will be 5 times today’s. Leaving aside the lack of understanding of exponential growth by teachers indoctrinating schoolkids to think of themselves as economic victims, taken advantage of by greedy Boomers, that means today’s and tomorrow’s kids will have one hell of a lot more money available to spend on property.

So, there will be more people, with more money, more able to live anywhere. Real estate prices will increase, but not uniformly.

Very many of them will choose to leave cities and with lots of money in the bank, will want somewhere really nice. A lovely beachfront property perhaps, or on a mountainside with a gorgeous view. Or even on a hill overlooking the city, or deep in a forest with a waterfall in the garden. Some might buy boring homes in boring estates surrounded by fields but it won’t be first choice very often. The high prices will go to large and pretty homes in pretty locations, as they do today, but with much higher differential, because supply and demand dictates that. We won’t build more mountains or valleys or coastline. Supply stays limited while demand and bank balances rockets, so prices will rocket too.

Other property won’t necessarily become cheaper, it just won’t become as expensive as fast. Many people will still like cities and choose to live there, do business there, socialize there. They also will be richer, and there may be a lot more of them if population does indeed grow again, but increasing congestion would just cause more de-urbanization. Prices may still rise, but the real money will be moving elsewhere.

Farmland will mostly stay as farmland. Farms are generally functional rather than pretty. Agricultural productivity will be double or triple what it is today, maybe even more. Some food will be made in factories or vertical farms, using tissue culturing or hydroponics, or using feed-stocks based on algae grown at sea, or insects, or fungi. The figures therefore suggest that demand for land to grow stuff will be lower than today, in spite of a larger population. Some will be converted to city, some to pretty villages, some given back to nature, to further increase the attractiveness of those ultra-expensive homes in the nice areas in the distance. Whichever way, that doesn’t suggest very rapid growth of value for most agricultural land, the obvious exception being where it happens to be in or next to a pretty area, in which case it will rocket in value.

As I said, all of this is educated guesswork. Don’t bet the farm on it until you’ve done your own analysis. But my guess is, city property will gain modest value, agricultural land will hold its value or even fall slightly, unless it is in a pretty location. Anywhere pretty will skyrocket in price, be it an existing property or a piece of land that can be built on and stay pretty.

As a final observation, you might argue that pretty isn’t everything. Surely some people will value being near to centers of power or major hubs too? Yes they will, but that is already factored into the urbanization era. That value is already banked. Then it follows the rules just like any other urban property.

 

Augmented reality will objectify women

Microsoft Hololens 2 Visor

The excitement around augmented reality continues to build, and I am normally  enthusiastic about its potential, looking forward to enjoying virtual architecture, playing immersive computer games, or enjoying visual and performance artworks transposed into my view of the high street while I shop.

But it won’t all be wonderful. While a few PR and marketing types may worry a little about people overlaying or modifying their hard-won logos and ads, a bigger issue will be some people choosing to overlay people in the high street with ones that are a different age or gender or race, or simply prettier. Identity politics will be fought on yet another frontier.

In spite of waves of marketing hype and misrepresentation, AR is really only here in primitive form outside the lab. Visors fall very far short of what we’d hoped for by now even a decade ago, even the Hololens 2 shown above. But soon AR visors and eventually active contact lenses will enable fully 3D hi-res overlays on the real world. Then, in principle at least, you can make things look how you want, with a few basic limits. You could certainly transform a dull shop, cheap hotel room or an office into an elaborate palace or make it look like a spaceship. But even if you change what things look like, you still have to represent nearby physical structures and obstacles in your fantasy overlay world, or you may bump into them, and that includes all the walls and furniture, lamp posts, bollards, vehicles, and of course other people. Augmented reality allows you to change their appearance thoroughly but they still need to be there somehow.

When it comes to people, there will be some battles. You may spend ages creating a wide variety of avatars, or may invest a great deal of time and money making or buying them. You may have a digital aura, hoping to present different avatars to different passers-by according to their profiles. You may want to look younger or thinner or as a character you enjoy playing in a computer game. You may present a selection of options to the AIs controlling the passer person’s view and the avatar they see overlaid could be any one of the images you have on offer. Perhaps some privileged people get to pick from a selection you offer, while others you wish to privilege less are restricted to just one that you have set for their profile. Maybe you’d have a particularly ugly or offensive one to present to those with opposing political views.

Except that you can’t assume you will be in control. In fact, you probably won’t.

Other people may choose not to see your avatar, but instead to superimpose one of their own choosing. The question of who decides what the viewer sees is perhaps the first and most important battle in AR. Various parties would like to control it – visor manufacturers, O/S providers, UX designers, service providers, app creators, AI providers, governments, local councils, police and other emergency services, advertisers and of course individual users. Given market dynamics, most of these ultimately come down to user choice most of the time, albeit sometimes after paying for the privilege. So it probably won’t be you who gets to choose how others see you, via assorted paid intermediary services, apps and AI, it will be the other person deciding how they want to see you, regardless of your preferences.

So you can spend all the time you want designing your avatar and tweaking your virtual make-up to perfection, but if someone wants to see their favorite celebrity walking past instead of you, they will. You and your body become no more than an object on which to display any avatar or image someone else chooses. You are quite literally reduced to an object in the AR world. Augmented reality will literally objectify women, reducing them to no more than a moving display space onto which their own selected images are overlaid. A few options become obvious.

Firstly they may just take your actual physical appearance (via a video camera built into their visor for example) and digitally change it,  so it is still definitely you, but now dressed more nicely, or dressed in sexy lingerie, or how you might look naked, using the latest AI to body-fit fantasy images from a porn database. This could easily be done automatically in real time using some app or other. You’ve probably already seen recent AI video fakery demos that can present any celebrity saying anything at all, almost indistinguishable from reality. That will soon be pretty routine tech for AR apps. They could even use your actual face as input to image-matching search engines to find the most plausible naked lookalikes. So anyone could digitally dress or undress you, not just with their eyes, but with a hi-res visor using sophisticated AI-enabled image processing software. They could put you in any kind of outfit, change your skin color or make-up or age or figure, and make you look as pretty and glamorous or as slutty as they want. And you won’t have any idea what they are seeing. You simply won’t know whether they are respectfully celebrating your inherent beauty, or flattering you by making you look even prettier, which you might not mind at all, or might object to strongly in the absence of explicit consent, or worse still, stripping or degrading you to whatever depths they wish, with no consent or notification, which you probably will mind a lot.

Or they can treat you as just an object on which to superimpose some other avatar, which could be anything or anyone – a zombie, favorite actress or supermodel. They won’t need your consent and again you won’t have any idea what they are seeing. The avatar may make the same gestures and movements and even talk plausibly, saying whatever their AI thinks they might like, but it won’t be you. In some ways this might not be so bad. You’d still be reduced to an object but at least it wouldn’t be you that they’re looking at naked. To most strangers on a high street most of the time, you’re just a moving obstacle to avoid bumping into, so being digitally transformed into a walking display board may worry you. Most people will cope with that bit. It is when you stop being just a passing stranger and start to interact in some way that it really starts to matter. You probably won’t like it if someone is chatting to you but they are actually looking at someone else entirely, especially if the viewer is one of your friends or your partner. And if your partner is kissing or cuddling you but seeing someone else, that would be a strong breach of trust, but how would you know? This sort of thing could and probably will damage a lot of relationships.

Most of the software to do most of this is already in development and much is already demonstrable. The rest will develop quickly once AR visors become commonplace.

In the office, in the home, when you’re shopping or at a party, you soon won’t have any idea what or who someone else is seeing when they look at you. Imagine how that would clash with rules that are supposed to be protection from sexual harassment  in the office. Whole new levels of harassment will be enabled, much invisible. How can we police behaviors we can’t even detect? Will hardware manufacturers be forced to build in transparency and continuous experience recording

The main casualty will be trust.  It will make us question how much we trust each of our friends and colleagues and acquaintances. It will build walls. People will often become suspicious of others, not just strangers but friends and colleagues. Some people will become fearful. You may dress as primly or modestly as you like, but if the viewer chooses to see you wearing a sexy outfit, perhaps their behavior and attitude towards you will be governed by that rather than reality. Increased digital objectification might lead to increase physical sexual assault or rape. We may see more people more often objectifying women in more circumstances.

The tech applies equally to men of course. You could make a man look like a silverback gorilla or a zombie or fake-naked. Some men will care more than others, but the vast majority of real victims will undoubtedly be women. Many men objectify women already. In the future AR world , they’ll be able to do so far more effectively, more easily.

 

If you’re looking for aliens visiting Earth, what might they look like?

I don’t believe stories about aliens capturing isolated nutters and probing them on their spaceships before bringing them home, but who don’t bother to make their presence known to anyone else. That makes no sense. I theorized many years ago that perhaps the main reason we don’t see aliens visiting is that by the time a civilization gets to the technology level that permits interstellar travel, they are most likely to eradicate themselves via high-tech weaponry, nanotech accidents or some other tech-enabled extinction route. I suggested that almost all civilizations would become extinct within 300 years of discovering radio.

I also wrote a blog about how genetically engineered fairies would make ideal space travelers, since they could be made very small, and therefore only need small and cheap space ships, but thanks to electronic brains or use of external IT as brain space, be just as smart as real people, and have wings to fly around zero gravity spaceships.

Fairies will dominate space travel

Extending that thought to what aliens might look like, they would likely have the same capability in genetic engineering, and face the same engineering constraints, so would likely come up with a similar solution.

Miniaturization could go much further, and it’s possible in principle to make tiny capsules, microns across, that contain all the data needed to make a human or android body, and a few nano-fabricators that could do the building of other fabricators that make the infrastructure, robots, androids and organisms once they land on another planet. Maybe an advanced civilization might have the technology to make small wormholes through which to fire these tiny capsules in many directions so as to rapidly explore and colonize a galaxy. Given reasonably expectable morality, they wouldn’t want to geoengineer planets that are already inhabited, so the capsules would only activate if they land on uninhabited planets.

So, given these two quite likely technology capabilities for an interstellar space-fairing civilizations, aliens would either be in a micron-sized capsule or two that could be anywhere on the planet, and therefore highly unlikely to ever be found… or they might look like fairies.

Many people through history claim to have seen fairies of various descriptions, and usually they have magical powers. Via Arthur C Clarke, we of course know that any sufficiently advanced technology looks like magic. So, although I don’t believe they exist or existed, and think that those who claim to have seen them probably have poor eyesight or overly vivid imaginations or are drugged or pissed, or hallucinating, there is a small but finite possibility that they have existed and were visiting aliens.

Maybe fairies, pixies and other magical tiny people were simply aliens from different star systems.

 

The future of retail and the high street

Over 3 months since my last blog, because… reasons. Futurologists are often asked about the future of the high street and the future of retail, obviously strongly connected, because the high street as we knew it not long ago has already changed hugely and yet seemingly always under imminent threat of extinction. I have blogged on it, but am shocked that my last one was a few years ago, so time for an update I guess, especially with the news today that Debenhams may be closing 50 of its stores.

A few old blogs that are still relevant:

The future of high street survival: the 6S guide

Just one of those Ss stood for Surprise, or serendipity if you prefer. The surprise aisles in Lidl and Aldi are among the biggest reasons for their success. There’s always something you never knew you wanted at a price you can’t resist, so they do well. Good luck to them! Not knowing what you want before you see it explains much of the attraction of charity shops too, it isn’t all about price.

My other Ss are also still proven well founded (socialising (including coffee shops & Facebook clubs), synergy (between online and physical), service, special, and ‘suck and see’ (try it out before you buy)).

Another blog addressed the balance between high street and out of town centres:

Out of town centres are the most viable future for physical shops

A more recent one on possible reversal of urbanisation in the further future is also a bit relevant:

Will urbanization continue or will we soon reach peak city?

So, updating then…

Retailers all know that they must have an online presence, but it’s still surprising how little effort they put into making their IT work. I experimented with setting up accounts with some of the big retailers and the experience is shocking. This week, I tried to set up an Argos account, but couldn’t get any further than typing my email address and hitting continue, at which point I just got a message ‘unknown error’. I tried it from various links from emails and their Sainsbury’s owner site, and tried a few times on different days, same result. How can they win new customers online if nobody can set an account up? Does nobody actually ever check whether it still works?

I successfully set up a Next account ages ago, but never used it because it wouldn’t let me edit any of my data such as whether I wanted junk mail by various channels, or even how to spell my name (I’d used my initials ID and it insisted on calling me Id), the options either didn’t exist or were greyed out. I could phone up but why bother? A month ago it stopped working for several days, after which time it eventually said I didn’t have one. So I assumed it had evaporated during their IT changes due to never being used and set it up again, and it recovered all my data from its previous existence. I still won’t use it because it calls me Id, and I can’t change it to I D or even ID.

Very has the same IT trouble, can’t edit your name away from Id, and can’t change your preferences for receiving junk mail, but I only set it up as a test so don’t care.

These companies are among the biggest. If they can’t get it right, who can? I did try a few smaller ones to see if they were better but still got a mixture of some successes and some ‘unknown errors’, 404 messages and so on.

By contrast, I’ve never had an IT-related problem with Amazon or eBay and only a few minor ones with 7dayshop. So I shop there and ignore most other shops. They employ competent IT staff in sufficient numbers to make it work, and they thrive (though perhaps not as much due to IT as tax and rates advantages). Those shops whose poor IT annoys their customers enough  to go elsewhere deserve to do badly. 

Websites and apps are today’s platforms for extending high street presence into cyberspace. Augmented reality will provide those companies who are up to the job with massively superior platforms to do that. The web arose from converging just computing and telecoms. Augmented reality converges the whole of the real and virtual universes. Overlaying absolutely any form of computer-generated imagery, data or media onto anything in the real world, streets could be extra art gallery space, space for computer games, enabling digital architecture and avatar replacement of strangers, adding digital fauna and flora and aliens and cartoon characters and celebs and AI avatars anywhere they may be desired, making enticing imaginary worlds that add to the fun of actually going into town.

It won’t just be text, graphics and audio. Various haptic interfaces already exist, but soon active skin will link our peripheral nervous systems to our IT, allowing sensations to be recorded, associated with whatever caused them, and then reproducing those same sensations when something similar happens virtually. Tiny devices in among skin cells could simply record and reproduce the nerve signals. Each hand only generates about 2Mbit/s of data, only a little more than a basic TV channel, so it should be no big problem handling the data.

AI has really moved on since 2013 too. It’s still far from perfect, but you can use fairly normal English to ask an AI to find you something and it often will, so it’s heading in the right direction. Soon, with 3D life-sized augmented or virtual reality avatars to interface with, they’ll be more in touch with our emotional responses when we browse, getting signals from wearables and active skin, face and gesture recognition, gaze direction, blood flow, heart rates etc. An abundance of data will help future AI’s learn more and more about us and our desires and preferences until they can genuinely act as our agents, (as we already realised was the far future by 1990). It’s only a matter of time. In my estimation, AI is progressing about 30-40% more slowly than it ought, (I won’t write about why I think that is here) but it will still get there. As will VR and AR and active skin and active contact lenses, and various other also long overdue techs.

AI online will also be less impressed by all the distractions and adds humans are exposed to.  Functional shopping will be liable to AI substitution but recreational, social, emotional shopping will still be done by people themselves. 

AI links well to robotics, and at some point, robots will go out and do some of our shopping for us. They will have very different customer characteristics and ergonomic needs, and may be better suited to picking up from bleak warehouses than attractive high street stores with ‘surprise’ aisles.

Drone delivery is much spoken about but I don’t think it has a big future for domestic use except in areas with large back gardens and no pets, or mischievous kids. It will work well for rapid delivery to business delivery bays that have appropriate landing areas and H&S policies.

3D printing is much over-hyped, but will eventually replace a small proportion of shopping by home manufacture, or local 3D print shop for more complex production.

Self-driving and driverless cars will greatly reduce or even eliminate the huge problem of congestion that deters people from going to town, as well as eliminating the much-too-high cost of parking, but without incurring the current public transport penalties of waiting in poor weather, poor stop locations, lateness, sluggishness, discomfort, overcrowding, security, and exposure to disease and unwanted social pests. By collecting from home and delivering all the way to the destination in a suitable vehicle, they will also improve social inclusion for older and disabled people. Driverless cars using smart infrastructure could be achieved many times cheaper and earlier (given the will) than current self-driving approaches, but at the expense of virtually eliminating the car industry that hopes to continue to sell expensive cars that happen to self-drive rather the cheap ($300-500) public pods made of fibreglass that can be made without any need for engines, batteries, AI or sensors and would instead be propelled on factory-made and rapidly installed linear induction mats that switch each pod at each junction rather like routers switch internet data packets.

With easier and faster access to a high street that is made far more attractive by imaginative use of AR, companies sticking to the 6S guide would still be able to attract customers into the far future. While there, they would be able to browse much wider range of stock. A garment wouldn’t need to be stocked with lots of each size, but could just have one of a few sizes for people to see if the like the fabric etc before scanning it with an app or taking it to a till with their laser-scanned body measurements, to have it made in their exact size for delivery later by a rapid personalisation manufacturing industry. As well as having more stock present physically, augmented reality can also replace all the aisles of goods the customer isn’t interested in with ones that hold things available for online purchase from that shop or their allies, adding another virtual-physical synergy to improve revenue potential. Even a small store could potentially hold a vast range of stock to buy in an exciting and attractive personalized environment.

I guess I could go into far future services associated with shops, such as customising VR kit to people’s nervous systems, providing recharging for android shoppers or whatever, but this is already long enough.

So the high street isn’t going to become just coffee shops and charities. Even if some existing retailers don’t up their games and go under, many new ones will appear that understand how to use new technology to good effect, and they will make good profits from both high streets and out of town centres.

 

When you’re electronically immortal, will you still own your own mind?

Most of my blogs about immortality have been about the technology mechanism – adding external IT capability to your brain, improving your intelligence or memory or senses by using external IT connected seamlessly to your brain so that it feels exactly the same, until maybe, by around 2050, 99% of your mind is running on external IT rather than in the meat-ware in your head. At no point would you ‘upload’ your mind, avoiding needless debate about whether the uploaded copy is ‘you’. It isn’t uploaded, it simply grows into the new platform seamlessly and as far as you are concerned, it is very much still you. One day, your body dies and with it your brain stops, but no big problem, because 99% of your mind is still fine, running happily on IT, in the cloud. Assuming you saved enough and prepared well, you connect to an android to use as your body from now on, attend your funeral, and then carry on as before, still you, just with a younger, highly upgraded body. Some people may need to wait until 2060 or later until android price falls enough for them to afford one. In principle, you can swap bodies as often as you like, because your mind is resident elsewhere, the android is just a temporary front end, just transport for sensors. You’re sort of immortal, your mind still running just fine, for as long as the servers carry on running it. Not truly immortal, but at least you don’t cease to exist the moment your body stops working.

All very nice… but. There’s a catch.

The android you use would be bought or rented. It doesn’t really matter because it isn’t actually ‘you’, just a temporary container, a convenient front end and user interface. However, your mind runs on IT, and because of the most likely evolution of the technology and its likely deployment rollout, you probably won’t own that IT; it won’t be your own PC or server, it will probably be part of the cloud, maybe owned by AWS, Google, Facebook, Apple or some future equivalent. You’re probably already seeing the issue. The small print may give them some rights over replication, ownership, license to your idea, who knows what? So although future electronic immortality has the advantage of offering a pretty attractive version of immortality at first glance, closer reading of the 100 page T&Cs may well reveal some nasties. You may in fact no longer own your mind. Oh dear!

Suppose you are really creative, or really funny, or have a fantastic personality. Maybe the cloud company could replicate your mind and make variations to address a wide range of markets. Maybe they can use your mind as the UX on a new range of home-help robots. Each instance of you thinks they were once you, each thinks they are now enslaved to work for free for a tech company.

Maybe your continued existence is paid for as part of an extended company medical plan. Maybe you didn’t notice a small paragraph on page 93 that says your company can continue to use your mind after you’re dead. You are very productive and they make lots of profit from you. They can continue that by continuing to run your mind indefinitely. The main difference is that since you’re dead, and no longer officially on the payroll, they get you for free. You carry on, still thinking you’re you, still working, still doing what you do, but no longer being paid. You’ve become a slave. Again.

Maybe your kids paid to keep you alive because they don’t want to say goodbye. They still want their parent, so you carry on living just so they don’t feel alone. Doesn’t sound so bad maybe, but what package did they go for? The full deluxe super-expensive version that lets you do all sorts of expensive stuff and use up oodles of processing power and storage and android rental? Let’s face it, that’s what you’ve always though this electronic immortality meant. Or did they go for a cheaper one. After all, they know you know they have kids or grand-kids in school that need paid for, and homes don’t come cheap, and they really need that new kitchen. Sure, you left them lots of money in the will, but that is already spent. So now you’re on the economy package, bare existence in between them chatting to you, unable to do much on your own at all. All those dreams about living forever in cyber-heaven have come to nothing.

Meanwhile, some rich people paid for good advice and bought their own kit and maintenance agreements well ahead. They can carry on working, selling their services and continuing to pay for ongoing deluxe existence.  They own their own mind still, and better than that, are able to replicate instances of themselves as much as thy want, inhabiting many androids at the same time to have a ball of a time. Some of these other instances are connected, sort of part of a hive mind of you. Others, just for fun, have been cut loose and are now living totally independent existences of other yous. Not you any more once you set them free, but with the same personal history.

What I’m saying is you need to be careful when you plan  to live forever. Get it right, and you can live in deluxe cyber-heaven, hopping into the real world as much as you like and living in unimaginable bliss online. Have too many casual taster sessions, use too much fully integrated mind-sharing social media, sign up to employment arrangements or go on corporate jollies without fully studying the small print and you could stay immortal, unable to die, stuck forever as just a corporate asset, a mere slave. Be careful what you wish for, and check the details before you accept it. You don’t want to end up as just an unpaid personality behind a future helpful paperclip.

With automation driving us towards UBI, we should consider a culture tax

Regardless of party politics, most people want a future where everyone has enough to live a dignified and comfortable life. To make that possible, we need to tweak a few things.

Universal Basic Income

I suggested a long time ago that in the far future we could afford a basic income for all, without any means testing on it, so that everyone has an income at a level they can live on. It turned out I wasn’t the only one thinking that and many others since have adopted the idea too, under the now usual terms Universal Basic Income or the Citizen Wage. The idea may be old, but the figures are rarely discussed. It is harder than it sounds and being a nice idea doesn’t ensure  economic feasibility.

No means testing means very little admin is needed, saving the estimated 30% wasted on admin costs today. Then wages could go on top, so that everyone is still encouraged to work, and then all income from all sources is totalled and taxed appropriately. It is a nice idea.

The difference between figures between parties would be relatively minor so let’s ignore party politics. In today’s money, it would be great if everyone could have, say, £30k a year as a state benefit, then earn whatever they can on top. £30k is around today’s average wage. It doesn’t make you rich, but you can live on it so nobody would be poor in any sensible sense of the word. With everyone economically provided for and able to lead comfortable and dignified lives, it would be a utopia compared to today. Sadly, it can’t work with those figures yet. 65,000,000 x £30,000 = £1,950Bn . The UK economy isn’t big enough. The state only gets to control part of GDP and out of that reduced budget it also has its other costs of providing health, education, defence etc, so the amount that could be dished out to everyone on this basis is therefore a lot smaller than 30k. Even if the state were to take 75% of GDP and spend most of it on the basic income, £10k per person would be pushing it. So a couple would struggle to afford even the most basic lifestyle, and single people would really struggle. Some people would still need additional help, and that reduces the pool left to pay the basic allowance still further. Also, if the state takes 75% of GDP, only 25% is left for everything else, so salaries would be flat, reducing the incentive to work, while investment and entrepreneurial activity are starved of both resources and incentive. It simply wouldn’t work today.

Simple maths thus forces us to make compromises. Sharing resources reduces costs considerably. In a first revision, families might be given less for kids than for the adults, but what about groups of young adults sharing a big house? They may be adults but they also benefit from the same economy of shared resources. So maybe there should be a household limit, or a bedroom tax, or forms and means testing, and it mustn’t incentivize people living separately or house supply suffers. Anyway, it is already getting complicated and our original nice idea is in the bin. That’s why it is such a mess at the moment. There just isn’t enough money to make everyone comfortable without doing lots of allowances and testing and admin. We all want utopia, but we can’t afford it. Even the modest £30k-per-person utopia costs at least 3 times more than the UK can afford. Switzerland is richer per capita but even there they have rejected the idea.

However, if we can get back to the average 2.5% growth per year in real terms that used to apply pre-recession, and surely we can, it would only take 45 years to get there. That isn’t such a long time. We have hope that if we can get some better government than we have had of late, and are prepared to live with a little economic tweaking, we could achieve good quality of life for all in the second half of the century.

So I still really like the idea of a simple welfare system, providing a generous base level allowance to everyone, topped up by rewards of effort, but recognise that we in the UK will have to wait decades before we can afford to put that base level at anything like comfortable standards though other economies could afford it earlier.

Meanwhile, we need to tweak some other things to have any chance of getting there. I’ve commented often that pure capitalism would eventually lead to a machine-based economy, with the machine owners having more and more of the cash, and everyone else getting poorer, so the system will fail. Communism fails too. Thankfully much of the current drive in UBI thinking is coming from the big automation owners so it’s comforting to know that they seem to understand the alternative.

Capitalism works well when rewards are shared sensibly, it fails when wealth concentration is too high or when incentive is too low. Preserving the incentive to work and create is a mainly matter of setting tax levels well. Making sure that wealth doesn’t get concentrated too much needs a new kind of tax.

Culture tax

The solution I suggest is a culture tax. Culture in the widest sense.

When someone creates and builds a company, they don’t do so from a state of nothing. They currently take for granted all our accumulated knowledge and culture – trained workforce, access to infrastructure, machines, governance, administrative systems, markets, distribution systems and so on. They add just another tiny brick to what is already a huge and highly elaborate structure. They may invest heavily with their time and money but actually when  considered overall as part of the system their company inhabits, they only pay for a fraction of the things their company will use.

That accumulated knowledge, culture and infrastructure belongs to everyone, not just those who choose to use it. It is common land, free to use, today. Businesses might consider that this is what they pay taxes for already, but that isn’t explicit in the current system.

The big businesses that are currently avoiding paying UK taxes by paying overseas companies for intellectual property rights could be seen as trailblazing this approach. If they can understand and even justify the idea of paying another part of their company for IP or a franchise, why should they not pay the host country for its IP – access to the residents’ entire culture?

This kind of tax would provide the means needed to avoid too much concentration of wealth. A future businessman might still choose to use only software and machines instead of a human workforce to save costs, but levying taxes on use of  the cultural base that makes that possible allows a direct link between use of advanced technology and taxation. Sure, he might add a little extra insight or new knowledge, but would still have to pay the rest of society for access to its share of the cultural base, inherited from the previous generations, on which his company is based. The more he automates, the more sophisticated his use of the system, the more he cuts a human workforce out of his empire, the higher his taxation. Today a company pays for its telecoms service which pays for the network. It doesn’t pay explicitly for the true value of that network, the access to people and businesses, the common language, the business protocols, a legal system, banking, payments system, stable government, a currency, the education of the entire population that enables them to function as actual customers. The whole of society owns those, and could reasonably demand rent if the company is opting out of the old-fashioned payments mechanisms – paying fair taxes and employing people who pay taxes. Automate as much as you like, but you still must pay your share for access to the enormous value of human culture shared by us all, on which your company still totally depends.

Linking to technology use makes good sense. Future AI and robots could do a lot of work currently done by humans. A few people could own most of the productive economy. But they would be getting far more than their share of the cultural base, which belongs equally to everyone. In a village where one farmer owns all the sheep, other villagers would be right to ask for rent for their share of the commons if he wants to graze them there.

I feel confident that this extra tax would solve many of the problems associated with automation. We all equally own the country, its culture, laws, language, human knowledge (apart from current patents, trademarks etc. of course), its public infrastructure, not just businessmen. Everyone surely should have the right to be paid if someone else uses part of their share. A culture tax would provide a fair ethical basis to demand the taxes needed to pay the Universal basic Income so that all may prosper from the coming automation.

The extra culture tax would not magically make the economy bigger, though automation may well increase it a lot. The tax would ensure that wealth is fairly shared. Culture tax/UBI duality is a useful tool to be used by future governments to make it possible to keep capitalism sustainable, preventing its collapse, preserving incentive while fairly distributing reward. Without such a tax, capitalism simply may not survive.

Enhanced cellular blockchain

I thought there was a need for a cellular blockchain variant, and a more sustainable alternative to cryptocurrencies like Bitcoin that depend on unsustainable proofs-of-work. So I designed one and gave it a temporary project name of Grapevine. I like biomimetics, which I used for both the blockchain itself and its derivative management/application/currency/SW distribution layer. The ANTs were my invention in 1993 when I was with BT, along with Chris Winter. BT never did anything with it, and I believe MIT later published some notes on the idea too. ANTs provide an ideal companion to blockchain and together, could be the basis of some very secure IT systems.

The following has not been thoroughly checked so may contain serious flaws, but hopefully contain some useful ideas to push the field a little in the right direction.

A cellular, distributed, secure ledger and value assurance system – a cheap, fast, sustainable blockchain variant

  • Global blockchain grows quickly to enormous size because all transactions are recorded in single chain – e.g. bitcoin blockchain is already >100GB
  • Grapevine (temp project name) cellular approach would keep local blocks small and self-contained but assured by blockchain-style verification during growth and protected from tampering after block is sealed and stripped by threading with a global thread
  • Somewhat analogous to a grape vine. Think of each local block as a grape that grow in bunches. Vine links bunches together but grapes are all self-contained and stay small in size. Genetics/nutrients/materials/processes all common to entire vine.
  • Grape starts as a flower, a small collection of unverified transactions. All stamens listen to transactions broadcast via any stamen. Flower is periodically (every minute) frozen (for 2 seconds) while pollen is emitted by each stamen, containing stamen signature, previous status verification and new transactions list. Stamens check the pollen they receive for origin signature and previous growth verification and then check all new transactions. If valid, they emit a signed pollination announcement. When each stamen has received signed pollination announcements from the majority of other stamens, that growth stage is closed, (all quite blockchain-like so far), stripped of unnecessary packaging such as previous hash, signatures etc) to leave a clean record of validated transactions, which is then secured from tampering by the grape signature and hash. The next stage of growth then begins, which needs another pollination process (deviating from biological analogy here). Each grape on the bunch grows like this throughout the day. When the grapes are all fully grown, and the final checks made by each grape, the grapes are stripped again and the whole bunch is signed onto the vine using a highly secure bunch signature and hash to prevent any later tampering. Grapes are therefore collections of verified local transactions that have grown in many fully verified stages during the day but are limited in size and stripped of unnecessary packaging. The bunch is a verified global record of all of the grapes grown that day that remains the same forever. The vine is a growing collection of bunches of grapes, but each new grape and bunch starts off fresh each day so signalling and the chain never grow significantly. Each transaction remains verified and recorded forever but signalling is kept minimal. As processing power increases, earlier bunches can be re-secured using a new bunch signature.

Key Advantages

  • Grape vine analogy is easier for non-IT managers to understand than normal blockchain.
  • Unlike conventional blockchains, blocks grow in stages so transactions don’t have to wait long to be verified and sealed.
  • Cellular structure means signalling is always light, with just a few nearby nodes checking a few transactions and keeping short records.
  • Ditto bunching, each day’s records start from zero and bunch is finished and locked at end of day.
  • Cellular structure allows sojourn time for signalling to be kept low with potentially low periods for verification and checking. Will scale well with improving processing speed, less limited by signal propagation time than non-cellular chains.
  • Global all-time record is still complete, duplicated, distributed, but signalling for new transactions always starts light and local every new day.
  • Cellular approach allows easy re-use of globally authenticated tokens within each cell. This limits cost of token production.
  • Cells may be either geographic or logical/virtual. Virtual cells can be geographically global (at penalty of slower comms), but since each is independent until the end of the day, virtual cell speed will not affect local cell speed.
  • Protocols can be different for different cells, allowing cells with higher value transactions to use tighter security.

Associated mechanisms

  • Inter-cell transactions can be implemented easily by using logical/virtual cell that includes both parties. Users may need to be registered for access to multiple cells. If value is being transferred, it is easy to arrange clearing of local cell first (1 minute overhead) and then check currency hasn’t already been spent before allowing transaction on another cell.
  • Grapes are self-contained and data is held locally, duplicated among several stamens. Once sealed for the day, the grape data remains in place, signed off with the appropriate grape signature and the bunch signature verifies it with an extra lock that prevents even a future local majority from being able to tamper with it later. To preserve data in the very long-term against O/S changes, company failure etc, subsequent certified copies may be distributed and kept updated.
  • Signalling during the day can be based on ANT (autonomous network telepher) protocols. These use a strictly limited variety of ANT species that are authenticated and shared at the start of a period (a day or a week perhaps), using period lifetime encryption keys. Level of encryption is determined by ensuring that period is much smaller than the estimated time to crack on current hardware at reasonable cost. All messages use this encryption and ANT mechanisms therefore chances of infiltration or fraudulent transaction is very low so associated signalling and time overhead costs are kept low.
  • ANTs may include transaction descriptor packets, signature distribution packets, new key distribution packets, active (executable code) packets, new member verification packets, software distribution, other admin data, performance maintenance packets such as load distribution, RPCs and many others. Overall, perhaps 64 possible ANT species may be allowed at any one time. This facility makes the system ideal for secure OS and software distribution/maintenance.

Financial use

  • ANTs can contain currency to make valuable packets, or an ANT variant could actually be currency.
  • Optional coins could be made for privacy, otherwise transactions would use real world accounts. A coin-based system can be implemented simply by using the grape signature and coin number. Coins could be faked by decrypting the signature but that signature only lasts one period so by then they will be invalid. Remember, encryption level is set according to cost to decrypt during a period. Coins are globally unique due to different cells having different signatures. Once grapes are sealed no tampering is possible.
  • One mechanism is that coins are used as temporary currency that only lasts one period. Coins are bought using any currency immediately before transactions. At end of day, coins are converted back to desired currency. Any profits/losses due to conversion differences during day accrue to user at point of conversion.
  • A lingering cybercurrency can be made that renews its value to live longer than one period. It simply needs conversion to a new coin at the start of the new day, relying on signature security and short longevity to protect.
  • ANTs can alternatively carry real currency value by direct connection to any account. At end of each growth stage or end of day, transaction clearing debits and deposits in each respective account accordingly.
  • Transaction fees can be implemented easily and simply debited at either or both ends.
  • No expensive PoW is needed. Wasteful mining and PoW activity is unnecessary. Entire system relies only on using encryption signatures that are valid for shorter times than their cost-effective decryption times. Tamper-resistance avoids decryption of earlier signatures being useful.

With thanks to my good friend Prof Nick Colosimo for letting me bounce the ideas off him.

AI that talks to us could quickly become problematic

Google’s making the news again adding evidence to the unfortunate stereotype of the autistic IT nerd that barely understands normal people, and they have therefore been astonished at the backlash that normal people would all easily have predicted. (I’m autistic and work in IT mostly too, and am well used to the stereotype it so it doesn’t bother me, in fact it is a sort of ‘get out of social interactions free’ card). Last time it was Google Glass, where it apparently didn’t occur to them that people may not want other people videoing them without consent in pubs and changing rooms. This time it is Google Duplex, that makes phone calls on your behalf to arrange appointment using voice that is almost indistinguishable from normal humans. You could save time making an appointment with a hairdresser apparently, so the Googlanders decided it must be a brilliant breakthrough, and expected everyone to agree. They didn’t.

Some of the objections have been about ethics: e.g. An AI should not present itself as human – Humans have rights and dignity and deserve respectful interactions with other people, but an AI doesn’t and should not masquerade as human to acquire such privilege without knowledge of the other party and their consent.

I would be more offended by the presumed attitude of the user. If someone thinks they are so much better then me that they can demand my time and attention without the expense of any of their own, delegating instead to a few microseconds of processing time in a server farm somewhere, I’ll treat them with the contempt they deserve. My response will not be favourable. I am already highly irritated by the NHS using simple voice interaction messaging to check I will attend a hospital appointment. The fact that my health is on the line and notices at surgeries say I will be banned if I complain on social media is sufficient blackmail to ensure my compliance, but it still comes at the expense of my respect and goodwill. AI-backed voice interaction with better voice wouldn’t be any better, and if it asking for more interaction such as actually booking an appointment, it would be extremely annoying.

In any case, most people don’t speak in fully formed grammatically and logically correct sentences. If you listen carefully to everyday chat, a lot of sentences are poorly pronounced, incomplete, jumbled, full of ums and er’s, likes and they require a great deal of cooperation by the listener to make any sense at all. They also wander off topic frequently. People don’t stick to a rigid vocabulary list or lists of nicely selected sentences.  Lots of preamble and verbal meandering is likely in a response that is highly likely to add ambiguity. The example used in a demo, “I’d like to make a hairdressing appointment for a client” sounds fine until you factor in normal everyday humanity. A busy hairdresser or a lazy receptionist is not necessarily going to cooperate fully. “what do you mean, client?”, “404 not found”, “piss off google”, “oh FFS, not another bloody computer”, “we don’t do hairdressing, we do haircuts”, “why can’t your ‘client’ call themselves then?” and a million other responses are more likely than “what time would you like?”

Suppose though that it eventually gets accepted by society. First, call centers beyond the jurisdiction of your nuisance call blocker authority will incessantly call you at all hours asking or telling you all sorts of things, wasting huge amounts of your time and reducing quality of life. Voice spam from humans in call centers is bad enough. If the owners can multiply productivity by 1000 by using AI instead of people, the result is predictable.

We’ve seen the conspicuous political use of social media AI already. Facebook might have allowed companies to use very limited and inaccurate knowledge of you to target ads or articles that you probably didn’t look at. Voice interaction would be different. It uses a richer emotional connection that text or graphics on a screen. Google knows a lot about you too, but it will know a lot more soon. These big IT companies are also playing with tech to log you on easily to sites without passwords. Some gadgets that might be involved might be worn, such as watches or bracelets or rings. They can pick up signals to identify you, but they can also check emotional states such as stress level. Voice gives away emotion too. AI can already tell better then almost all people whether you are telling the truth or lying or hiding something. Tech such as iris scans can also tell emotional states, as well as give health clues. Simple photos can reveal your age quite accurately to AI, (check out how-old.net).  The AI voice sounds human, but it is better then even your best friends at guessing your age, your stress and other emotions, your health, whether you are telling the truth or not, and it knows far more about what you like and dislike and what you really do online than anyone you know, including you. It knows a lot of your intimate secrets. It sounds human, but its nearest human equivalent was probably Machiavelli. That’s who will soon be on the other side of the call, not some dumb chatbot. Now re-calculate political interference, and factor in the political leaning and social engineering desires of the companies providing the tools. Google and Facebook and the others are very far from politically neutral. One presidential candidate might get full cooperation, assistance and convenient looking the other way, while their opponent might meet rejection and citation of the official rules on non-interference. Campaigns on social issues will also be amplified by AI coupled to voice interaction. I looked at some related issue in a previous blog on fake AI (i.e. fake news type issues): https://timeguide.wordpress.com/2017/11/16/fake-ai/

I could but won’t write a blog on how this tech could couple well to sexbots to help out incels. It may actually have some genuine uses in providing synthetic companionship for lonely people, or helping or encouraging them in real social interactions with real people. It will certainly have some uses in gaming and chatbot game interaction.

We are not very far from computers that are smarter then people across a very wide spectrum, and probably not very far from conscious machines that have superhuman intelligence. If we can’t even rely on IT companies to understand likely consequences of such obvious stuff as Duplex before thy push it, how can we trust them in other upcoming areas of AI development, or even closer term techs with less obvious consequences? We simply can’t!

There are certainly a few such areas where such technology might help us but most are minor and the rest don’t need any deception, but they all come at great cost or real social and political risk, as well as more abstract risks such as threats to human dignity and other ethical issues. I haven’t give this much thought yet and I am sure there must be very many other consequences I have not touched on yet. Google should do more thinking before they release stuff. Technology is becoming very powerful, but we all know that great power comes with great responsibility, and since most people aren’t engineers so can’t think through all the potential technology interactions and consequences, engineers such as Google’s must act more responsibly. I had hoped they’d started, and they said they had, but this is not evidence of that.

 

Advanced land, sea, air and space transport technologies

I’ll be speaking at the Advanced Engineering conference in Helsinki at the end of May. My topic will be potential solutions for future transport, covering land, sea, air and space. These are all areas where I’ve invented new approaches. In my 1987 BT life as a performance engineer, I studied the potential to increase road capacity by a factor of 5 by using driverless pod technology, mimicking the packet switching approach we were moving towards in telecomms. This is very different from the self-driving systems currently in fashion, because dumb pods would be routed by smart infrastructure rather than having their own AI/sensor systems, so the pods could be extremely cheap and packed very closely together to get a huge performance benefit, using up to 85% of the available space. We’re now seeing a few prototypes of such dumb pod systems being trialled.

It was also obvious even in the 1980s that the same approach could be used on rail, increasing capacity from today’s typical 0.4% occupancy to 80%+, an improvement factor of 200, and that the same pods could be used on rail and road, and that on rail, pods could be clumped together to make virtual trains so that they could mix with existing conventional trains during a long transition period to a more efficient system. In the early 2000s, we realised that pods could be powered by induction coils in the road surface and more recently, with the discovery of graphene, such graphene induction devices could be very advantageous over copper or aluminium ones due to deterrence of metal theft, and also that linear induction could be used to actually propel the pods and in due course even to levitate them, so that future pods wouldn’t even need engines or wheels, let alone AI and sensor systems on board.

We thus end up with the prospect of a far-future ground transport system that is 5-15 times road capacity and up to 200 times rail capacity and virtually free of accidents and congestion.

Advanced under-sea transport could adopt supercavitation technology that is already in use and likely to develop quickly in coming decades. Some sources suggest that it may even be possible to travel underwater more easily then through air. Again, if graphene is available in large quantity at reasonable cost, it would be possible to do away with the need for powerful engines on board, this time by tethering pods together with graphene string.

Above certain speeds, a blunt surface in front of each pod would create a bubble enclosing the entire pod, greatly reducing drag. Unlike Hyperloop style high-speed rail, tubes would not be required for these pods, but together, a continuous stream of many pods tethered together right across an ocean would make a high-capacity under-sea transport system. This would be also be more environmentally friendly, using only electricity at the ends.

Another property of graphene is that it can be used to make carbon foam that is lighter than helium. Such material could float high in the stratosphere well above air lanes. With the upper surface used for solar power collection, and the bottom surface used as a linear induction mat, it will be possible to make inter-continental air lines that can propel sleds hypersonically, connected by tethers to planes far below.

High altitude solar array to power IT and propel planes

As well as providing pollution-free hypersonic travel, these air lines could also double as low satellite platforms for comms and surveillance.

As well as land, sea and air travel, we are now seeing rapid development of the space industry, but currently, getting into orbit uses very expensive rockets that dump huge quantities of water vapour into the high atmosphere. A 2017 invention called the Pythagoras Sling solves the problems of expense and pollution. Two parachutes are deployed (by small rockets or balloons) into the very high atmosphere, attached to hoops through which a graphene tether is threaded, one end connected to a ground-based winch and the other to the payload. The large parachutes have high enough drag to act as temporary anchors while the tether is pulled, propelling the payload up to orbital speed via an arc that renders the final speed horizontal as obviously needed to achieve orbit.

With re-usable parts, relatively rapid redeployment and only electricity as power supply, the sling could reduce costs by a factor of 50-100 over current state of the art, greatly accelerating space development without the high altitude water vapour risking climate change effects.

The winch design for the Pythagoras Sling uses an ‘inverse rail gun’ electromagnetic puller to avoid massive centrifugal forces of a rotating drum. The inverse rail gun can be scaled up indefinitely, so also offers good potential for interplanetary travel. With Mars travel on the horizon, prospects of months journey times are not appealing, but a system using well-spaced motors pulling a graphene tether millions of km long is viable. A 40,000 ton graphene tether could be laid out in space in a line 6.7M km long, and using solar power, could propel a 2 Ton capsule at 5g up to an exit speed of 800km/s, reaching Mars in as little 5-12 days.

At the far end, a folded graphene net could intercept and slow the capsule at 5g  into a chosen orbit around Mars. While not prohibitively expensive, this system would be completely reusable and since it needs no fuel, would be a very clean and safe way of getting crew and materials to a Mars colony.

 

Beyond VR: Computer assisted dreaming

I first played with VR in 1983/1984 while working in the missile industry. Back then we didn’t call it VR, we just called it simulation but it was actually more intensive than VR, just as proper flight simulators are. Our office was a pair of 10m wide domes onto which video could be projected, built decades earlier, in the 1950s I think. One dome had a normal floor, the other had a hydraulic platform that could simulate being on a ship. The subject would stand on whichever surface was appropriate and would see pretty much exactly what they would see in a real battlefield. The missile launcher used for simulation was identical to a real one and showed exactly the same image as a real one would. The real missile was not present of course but its weight was simulated and when the fire button was pressed, a 140dB bang was injected into the headset and weights and pulleys compensated for the 14kg of weight, suddenly vanishing from the shoulder. The experience was therefore pretty convincing and with the loud bang and suddenly changing weight, it was almost as hard to stand steady and keep the system on target as it would be in real life – only the presumed fear and knowledge of the reality of the situation was different.

Back then in 1983, as digital supercomputers had only just taken over from analog ones for simulation, it was already becoming obvious that this kind of computer simulation would one day allow ‘computer assisted dreaming’. (That’s one of the reasons I am irritated when Jaron Lanier is credited for inventing VR – highly realistic simulators and the VR ideas that sprung obviously from them had already been around for decades. At best, all he ‘invented’ was a catchy name for a lower cost, lower quality, less intense simulator. The real inventors were those who made the first generation simulators long before I was born and the basic idea of VR had already been very well established.)

‘Computer assisted dreaming’ may well be the next phase of VR. Today in conventional VR, people are immersed in a computer generated world produced by a computer program (usually) written by others. Via trial and feedback, programmers make their virtual worlds better. As AI and sensor technology continue rapid progress, this is very likely to change to make worlds instantly responsive to the user. By detecting user emotions, reactions, gestures and even thoughts and imagination, it won’t be long before AI can produce a world in real time that depends on those thoughts, imagination and emotions rather than putting them in a pre-designed virtual world. That world would depend largely on your own imagination, upskilled by external AI. You might start off imagining you’re on a beach, then AI might add to it by injecting all sorts of things it knows you might enjoy from previous experiences. As you respond to those, it picks up on the things you like or don’t like and the scene continues to adapt and evolve, to make it more or less pleasant or more or less exciting or more or less challenging etc., depending on your emotional state, external requirements and what it thinks you want from this experience. It would be very like being in a dream – computer assisted lucid dreaming, exactly what I wanted to make back in 1983 after playing in that simulator.

Most people enjoy occasional lucid dreams, where they realise they are dreaming and can then decide what happens next. Making VR do exactly that would be better than being trapped in someone else’s world. You could still start off with whatever virtual world you bought, a computer game or training suite perhaps, but it could adapt to you, your needs and desires to make it more compelling and generally better.

Even in shared experiences like social games, experiences could be personalised. Often all players need to see the same enemies in the same locations in the same ways to make it fair, but that doesn’t mean that the situation can’t adapt to the personalities of those playing. It might actually improve the social value if each time you play it looks different because your companions are different. You might tease a friend if every time you play with them, zombies or aliens always have to appear somehow, but that’s all part of being friends. Exploring virtual worlds with friends, where you both see things dependent on your friend’s personality would help bonding. It would be a bit like exploring their inner world. Today, you only explore the designer’s inner world.

This sort of thing would be a superb development and creativity tool. It could allow you to explore a concept you have in your head, automatically feeding in AI upskilling to amplify your own thoughts and ideas, showing you new paths to explore and helping you do so. The results would still be extremely personal to you, but you on a good day. You could accomplish more, have better visions, imagine more creative things, do more with whatever artistic talent you have. AI could even co-create synthetic personas, make virtual friends you can bond with, share innermost thoughts with, in total confidence (assuming the company you bought the tool from is trustworthy and isn’t spying on you or selling your details, so maybe best not to buy it from Facebook then).

And it would have tremendous therapeutic potential too. You could explore and indulge both enjoyable and troublesome aspects of your inner personality, to build on the good and alleviate or dispel the bad. You might become less troubled, less neurotic, more mentally healthy. You could build your emotional and creative skills. You could become happier and more fulfilled. Mental health improvement potential on its own makes this sort of thing worth developing.

Marketers would obviously try to seize control as they always do, and advertising is already adapting to VR and will continue into its next phases of development. Your own wants and desires might help guide the ‘dreaming’, but marketers will inevitably have some control over what else is injected, and will influence algorithms and AI in how it chooses how to respond to your input. You might be able to choose much of the experience, but others will still want and try to influence and manipulate you, to change your mindset and attitudes in their favour. That will not change until the advertising business model changes. You might be able to buy devices or applications that are entirely driven by you and you alone, but it is pretty certain that the bulk of products and services available will be at least partly financed by those who want to have some control of what you experience.

Nevertheless, computer-assisted dreaming could be a much more immersive and personal experience than VR, being more like an echo of your own mind and personality than external vision, more your own creation, less someone else’s. In fact, echo sounds a better term too. Echo reality, ER, or maybe personal reality, pereal, or mental echo, ME. Nah, maybe we need Lanier to invent a catchy name again, he is good at that. That 1983 idea could soon become reality.

 

High speed transatlantic submarine train

In 1863, Jules Verne wrote about the idea of suspended transatlantic tunnels through which trains could be sent using air pressure. Pneumatic tube delivery was a fashionable idea then, and small scale pneumatic delivery systems were commonplace until the late 20th century – I remember a few shops using them to transport change around. In 1935, the film ‘The tunnel’ featured another high speed transatlantic tunnel, as did another film in 1972, ‘Tunnel through the deeps’. Futurists have often discussed high speed mass transit systems, often featuring maglev and vacuums (no, Elon Musk didn’t invent the idea, his Hyperloop is justifiably famous for resurfacing and developing this very old idea and is likely to see its final implementation).

Anyway, I have read quite a bit about supercavitation over the last years. First developed in 1960 as a military idea to send torpedoes at high speed, it was successfully implemented in 1972 and has since developed somewhat. Cavitation happens when a surface, such as a propeller blade, moves through water so fast that a cavity is left until the water has a chance to close back in. As it does, the resultant shock wave can damage the propeller surface and cause wear. In supercavitation, the cavity is deliberate, and the system designed so that the cavity encloses the entire projectile. In 2005, the first proposal for people transport emerged, DARPA’s Underwater Express Program, designed to transport small groups of Navy personnel at speeds of up to 100 knots. Around that time, a German supercavitating torpedo was reaching 250mph speeds.

More promising articles suggest that supersonic speeds are achievable under water, with less friction than going via air. Achieving the initial high speed and maintaining currently requires sophisticated propulsion mechanisms, but not for much longer. I believe the propulsion problem can be engineered away by pulling capsules with a strong tether. That would be utterly useless for a torpedo of course, but for a transport system would be absolutely fine.

Transatlantic traffic is quite high, and if a cheaper and more environmentally friendly system than air travel were available, it would undoubtedly increase. My idea is to use a long string of capsules attached to a long graphene cable, pulled in a continuous loop at very high speed. Capsules would be filled at stations, accelerated to speed and attached to the cable for their transaltlantic journey, then detached, decelerated and their passengers or freight unloaded. Graphene cable would be 200 times stronger than steel so making such a cable is feasible.

The big benefit of such a system is that no evacuated tube is needed. The cable and capsules would travel through the water directly. Avoiding the need for an expensive and complex  tube containing a vacuum, electromagnetic propulsion system and power supply would greatly reduce cost. All of the pulling force for a cable based system would be applied at the ends.

Graphene cable doesn’t yet exist, but it will one day. I doubt if current supercavitation research is up to the job either, but that’s quite normal for any novel engineering project. Engineers face new problems and solve them every day. By the time the cable is feasible, we will doubtless be more knowledgeable about supercavitation too. So while it’s a bit early to say it will definitely become reality, it is certainly not too early to start thinking about it. Some future Musk might well be able to pull it off.

People are becoming less well-informed

The Cambridge Analytica story has exposed a great deal about our modern society. They allegedly obtained access to 50M Facebook records to enable Trump’s team to target users with personalised messages.

One of the most interesting aspects is that unless they only employ extremely incompetent journalists, the news outlets making the biggest fuss about it must be perfectly aware of reports that Obama appears to have done much the same but on a much larger scale back in 2012, but are keeping very quiet about it. According to Carol Davidsen, a senior Obama campaign staffer, they allowed Obama’s team to suck out the whole social graph – because they were on our side – before closing it to prevent Republican access to the same techniques. Trump’s campaign’s 50M looks almost amateur. I don’t like Trump, and I did like Obama before the halo slipped, but it seems clear to anyone who checks media across the political spectrum that both sides try their best to use social media to target users with personalised messages, and both sides are willing to bend rules if they think they can get away with it.

Of course all competent news media are aware of it. The reason some are not talking about earlier Democrat misuse but some others are is that they too all have their own political biases. Media today is very strongly polarised left or right, and each side will ignore, play down or ludicrously spin stories that don’t align with their own politics. It has become the norm to ignore the log in your own eye but make a big deal of the speck in your opponent’s, but we know that tendency goes back millennia. I watch Channel 4 News (which broke the Cambridge Analytica story) every day but although I enjoy it, it has a quite shameless lefty bias.

So it isn’t just the parties themselves that will try to target people with politically massaged messages, it is quite the norm for most media too. All sides of politics since Machiavelli have done everything they can to tilt the playing field in their favour, whether it’s use of media and social media, changing constituency boundaries or adjusting the size of the public sector. But there is a third group to explore here.

Facebook of course has full access to all of their 2.2Bn users’ records and social graph and is not squeaky clean neutral in its handling of them. Facebook has often been in the headlines over the last year or two thanks to its own political biases, with strongly weighted algorithms filtering or prioritising stories according to their political alignment. Like most IT companies Facebook has a left lean. (I don’t quite know why IT skills should correlate with political alignment unless it’s that most IT staff tend to be young, so lefty views implanted at school and university have had less time to be tempered by real world experience.) It isn’t just Facebook of course either. While Google has pretty much failed in its attempt at social media, it also has comprehensive records on most of us from search, browsing and android, and via control of the algorithms that determine what appears in the first pages of a search, is also able to tailor those results to what it knows of our personalities. Twitter has unintentionally created a whole world of mob rule politics and justice, but in format is rapidly evolving into a wannabe Facebook. So, the IT companies have themselves become major players in politics.

A fourth player is now emerging – artificial intelligence, and it will grow rapidly in importance into the far future. Simple algorithms have already been upgraded to assorted neural network variants and already this is causing problems with accusations of bias from all directions. I blogged recently about Fake AI: https://timeguide.wordpress.com/2017/11/16/fake-ai/, concerned that when AI analyses large datasets and comes up with politically incorrect insights, this is now being interpreted as something that needs to be fixed – a case not of shooting the messenger, but forcing the messenger to wear tinted spectacles. I would argue that AI should be allowed to reach whatever insights it can from a dataset, and it is then our responsibility to decide what to do with those insights. If that involves introducing a bias into implementation, that can be debated, but it should at least be transparent, and not hidden inside the AI itself. I am now concerned that by trying to ‘re-educate’ the AI, we may instead be indoctrinating it, locking today’s politics and values into future AI and all the systems that use it. Our values will change, but some foundation level AI may be too opaque to repair fully.

What worries me most though isn’t that these groups try their best to influence us. It could be argued that in free countries, with free speech, anybody should be able to use whatever means they can to try to influence us. No, the real problem is that recent (last 25 years, but especially the last 5) evolution of media and social media has produced a world where most people only ever see one part of a story, and even though many are aware of that, they don’t even try to find the rest and won’t look at it if it is put before them, because they don’t want to see things that don’t align with their existing mindset. We are building a world full of people who only see and consider part of the picture. Social media and its ‘bubbles’ reinforce that trend, but other media are equally guilty.

How can we shake society out of this ongoing polarisation? It isn’t just that politics becomes more aggressive. It also becomes less effective. Almost all politicians claim they want to make the world ‘better’, but they disagree on what exactly that means and how best to do so. But if they only see part of the problem, and don’t see or understand the basic structure and mechanisms of the system in which that problem exists, then they are very poorly placed to identify a viable solution, let alone an optimal one.

Until we can fix this extreme blinkering that already exists, our world can not get as ‘better’ as it should.

 

Mars trips won’t have to take months

It is exciting seeing the resurgence in interest in space travel, especially the prospect that Mars trips are looking increasingly feasible. Every year, far-future projects come a year closer. Mars has been on the agenda for decades, but now the tech needed is coming over the horizon.

You’ve probably already read about Elon Musk’s SpaceX plans, so I won’t bother repeating them here. The first trips will be dangerous but the passengers on the first successful trip will get to go down in history as the first human Mars visitors. That prospect of lasting fame and a place in history plus the actual experience and excitement of doing the trip will add up to more than enough reward to tempt lots of people to join the queue to be considered. A lucky and elite few will eventually land there. Some might stay as the first colonists. It won’t be long after that before the first babies are born on Mars, and their names will certainly be remembered, the first true Martians.

I am optimistic that the costs and travel times involved in getting to Mars can be reduced enormously. Today’s space travel relies on rockets, but my own invention, the Pythagoras Sling, could reduce the costs of getting materials and people to orbit by a factor of 50 or 100 compared the SpaceX rockets, which already are far cheaper than NASA’s. A system introduction paper can be downloaded from:

Click to access pythagoras-sling-article.pdf

Sling

Sadly, in spite of obviously being far more feasible and shorter term than a space elevator, we have not yet been able to get our paper published in a space journal so that is the only source so far.

This picture shows one implementation for non-human payloads, but tape length and scale could be increased to allow low-g human launches some day, or more likely, early systems would allow space-based anchors to be built with different launch architecture for human payloads.

The Sling needs graphene tape, a couple of parachutes or a floating drag platform and a magnetic drive to pull the tape, using standard linear motor principles as used in linear induction motors and rail guns. The tape is simply attached to the rocket and pulled through two high altitude anchors attached to the platforms or parachutes. Here is a pic of the tape drive designed for another use, but the principle is the same. Rail gun technology works well today, and could easily be adapted into this inverse form to drive a suitably engineered tape at incredible speed.

All the components are reusable, but shouldn’t cost much compared to heavy rockets anyway. The required parachutes exist today, but we don’t have graphene tape or the motor to pull it yet. As space industry continues to develop, these will come. The Space Elevator will need millions of tons of graphene, the Sling only needs around 100 kilograms so will certainly be possible decades before a space elevator. The sling configuration can achieve full orbital speeds for payloads using only electrical energy at the ground, so is also much less environmentally damaging than rocketry.

Using tech such as the Sling, material can be put into orbit to make space stations and development factories for all sorts of space activity. One project that I would put high on the priority list would be another tape-pulling launch system, early architecture suggestion here:.

Since it will be in space, laying tape out in a long line would be no real problem, even millions of kms, and with motors arranged periodically along the length, a long tape pointed in the right direction could launch a payload towards a Mars interception system at extreme speeds. We need to think big, since the distances traveled will be big. A launch system weighing 40,000 tons would be large scale engineering but not exceptional, and although graphene today is very expensive as with any novel material, it will become much cheaper as manufacturing technology catches up (if the graphene filament print heads I suggest work as I hope, graphene filament could be made at 200m/s and woven into yarn by a spinneret as it emerges from multiple heads). In the following pics, carbon atoms are fed through nanotubes with the right timing, speed and charges to combine into graphene as they emerge. The second pic shows why the nanotubes need to be tilted towards each other since otherwise the molecular geometry doesn’t work, and this requirement limits the heads to make thin filaments with just two or three carbon rings wide. The second pic mentions carbon foam, which would be perfect to make stratospheric floating platforms as an alternative to using parachutes in the Sling system.

Graphene filament head, ejects graphene filament at 200m/s.

A large ship is of that magnitude, as are some building or bridges. Such a launch system would allow people to get to Mars in 5-12 days, and payloads of g-force tolerant supplies such as water could be sent to arrive in a day. The intercept system at the Mars end would need to be of similar size to catch and decelerate the payload into Mars orbit. The systems at both ends can be designed to be used for launch or intercept as needed.

I’ve been a systems engineer for 36 years and a futurologist for 27 of those. The system solutions I propose should work if there is no better solution available, but since we’re talking about the far future, it is far more likely that better systems will be invented by smarter engineers or AIs by the time we’re ready to use them. Rocketry will probably get us through to the 2040s but after that, I believe these solutions can be made real and Mars trips after that could become quite routine. I present these solutions as proof that the problems can be solved, by showing that potential solutions already exist. As a futurologist, all I really care about is that someone will be able to do it somehow.

 

So, there really is no need to think in terms of months of travel each way, we should think of rapid supply chains and human travel times around a week or two – not so different from the first US immigrants from Europe.

New book: Fashion Tomorrow

I finally finished the book I started 2 years ago on future fashion, or rather future technologies relevant to the fashion industry.

It is a very short book, more of a quick guide at 40k words, less than half as long as my other books and covers women’s fashion mostly, though some applies to men too. I would never have finished writing a full-sized book on this topic and I’d rather put out something now, short and packed full of ideas that are (mostly) still novel than delay until they are commonplace. It is aimed at students and people working in fashion design, who have loads of artistic and design talent, but want to know what technology opportunities are coming that they could soon exploit, but anyone interested in fashion who isn’t technophobic should find it interesting. Some sections discussing intimate apparel contain adult comments so the book is unsuitable for minors.

It started as a blog, then I realised I had quite a bit more stuff I could link together, so I made a start, then go sidetracked, for 20 months! I threw away 75% of the original contents list and tidied it up to release a short guide instead. I wanted to put it out for free but 99p or 99c seems to be the lowest price you can start at, but I doubt that would put anyone off except the least interested readers. As with my other books, I’ll occasionally make it free.

Huge areas I left out include swathes of topics on social, political, environmental and psychological fashions, impacts of AI and robots, manufacturing, marketing, distribution and sales. These are all big topics, but I just didn’t have time to write them all up so I just stuck to the core areas with passing mentions of the others. In any case, much has been written on these areas by others, and my book focuses on things that are unique, embryonic or not well covered elsewhere. It fills a large hole in fashion industry thinking.

 

Why superhumans are inevitable, and what else comes in the box

Do we have any real choice in the matter of making  super-humans? 20 years ago, I estimated 2005 as the point of no return, and nothing since then has changed my mind on that date. By my reckoning, we are already inevitably committed to designer babies, ebaybies, super-soldiers and super-smart autonomous weapons, direct brain-machine links, electronic immortality, new human races, population explosion, inter-species conflicts and wars with massively powerful weaponry, superhuman conscious AI, smart bacteria, and the only real control we have is relatively minor adjustments on timings. As I was discussing yesterday, the technology potential for this is vast and very exciting, nothing less than a genuine techno-utopia if we use the technologies wisely, but optimum potential doesn’t automatically become reality, and achieving a good outcome is unlikely if many barriers are put in its way.

In my estimation, we have already started the countdown to this group of interconnected technologies – we will very likely get all of them, and we must get ready for the decisions and impacts ahead. At the moment, our society is a small child about to open its super-high-tech xmas presents while fighting with its siblings. Those presents will give phenomenal power far beyond the comprehension of the child or its emotional maturity to equip it to deal with the decisions safely. Our leaders have already squandered decades of valuable preparation time by ignoring the big issues to focus on trivial ones. It is not too late to achieve a good ending, but it won’t happen by accident and we do need to make preparations to avoid pretty big problems.

Both hard and soft warfare – the sword and the pen, already use rapidly advancing AI, and the problems are already running ahead of what the owners intended.

Facebook, Twitter, Instagram and other media giants all have lots of smart people and presumably they mean well, but if so, they have certainly been naive. They maybe hoped to eliminate loneliness, inequality, and poverty and create a loving interconnected global society with global peace, but instead created fake news, social division and conflict and election interference. More likely they didn’t intend either outcome, they just wanted to make money and that took priority over due care and attention..

Miniaturising swarming smart-drones are already the subjects of a new arms race that will deliver almost un-killable machine adversaries by 2050. AI separately is in other arms races to make super-smart AI and super-smart soldiers. This is key to the 2005 point of no return. It was around 2005 that we reached the levels of technology where future AI development all the way to superhuman machine consciousness could be done by individuals, mad scientists or rogue states, even if major powers had banned it. Before 2005, there probably wasn’t quite enough knowledge already on the net to do that. In 2018, lots of agencies have already achieved superiority to humans in niche areas, and other niches will succumb one by one until the whole field of human capability is covered. The first machines to behave in ways not fully understood by humans arrived in the early 1990s; in 2018, neural nets already make lots of decisions at least partly obscured to humans.

This AI development trend will take us to superhuman AI, and it will be able to accelerate development of its own descendants to vastly superhuman AI, fully conscious, with emotions, and its own agendas. That will need humans to protect against being wiped out by superhuman AI. The only three ways we could do that are to either redesign the brain biologically to be far smarter, essentially impossible in the time-frame, to design ways to link our brains to machines, so that we have direct access to the same intelligence as the AIs, so a gulf doesn’t appear and we can remain relatively safe, or pray for super-smart aliens to come to our help, not the best prospect.

Therefore we will have no choice but to make direct brain links to super-smart AI. Otherwise we risk extinction. It is that simple. We have some idea how to do that – nanotech devices inside the brain linking to each and every synapse that can relay electrical signals either way, a difficult but not impossible engineering problem. Best guesses for time-frame fall in the 2045-2050 range for a fully working link that not only relays signals between your organic brain and an IT replica, but by doing so essentially makes external IT just another part of your brain. That conveys some of the other technology gifts of electronic immortality, new varieties of humans, smart bacteria (which will be created during the development path to this link) along with human-variant population explosion, especially in cyberspace, with androids as their physical front end, and the inevitable inter-species conflicts over resources and space – trillions of AI and human-like minds in cyberspace that want to do things in the real world cannot be assumed to be willingly confined just to protect the interests of what they will think of as far lesser species.

Super-smart AI or humans with almost total capability to design whatever synthetic biology is needed to achieve any biological feature will create genetic listings for infinite potential offspring, simulate them, give some of them cyberspace lives, assemble actual embryos for some of them and bring designer babies. Already in 2018, you can pay to get a DNA listing, and blend it in any way you want with the listing of anyone else. It’s already possible to make DNA listings for potential humans and sell them on ebay, hence the term ebaybies. That is perfectly legal, still, but I’ve been writing and lecturing about them since 2004. Today they would just be listings, but we’ll one day have the tech to simulate them, choose ones we like and make them real, even some that were sold as celebrity collector items on ebay. It’s not only too late to start regulating this kind of tech, our leaders aren’t even thinking about it yet.

These technologies are all linked intricately, and their foundations are already in place, with much of the building on those foundations under way. We can’t stop any of these things from happening, they will all come in the same basket. Our leaders are becoming aware of the potential and the potential dangers of the AI positive feedback loop, but at least 15 years too late to do much about it. They have been warned repeatedly and loudly but have focused instead on the minor politics of the day that voters are aware of. The fundamental nature of politics is unlikely to change substantially, so even efforts to slow down the pace of development or to limit areas of impact are likely to be always too little too late. At best, we will be able to slow runaway AI development enough to allow direct brain links to protect against extinction scenarios. But we will not be able to stop it now.

Given inevitability, it’s worth questioning whether there is even any point in trying. Why not just enjoy the ride? Well, the brakes might be broken, but if we can steer the bus expertly enough, it could be exciting and we could come out of it smelling of roses. The weak link is certainly the risk of super-smart AI, whether AI v humans or countries using super-smart AI to fight fiercely for world domination. That risk is alleviated by direct brain linkage, and I’d strongly argue necessitates it, but that brings the other technologies. Even if we decide not to develop it, others will, so one way or another, all these techs will arrive, and our future late century will have this full suite of techs, plus many others of course.

We need as a matter of extreme urgency to fix these silly social media squabbles and over-reactions that are pulling society apart. If we have groups hating each other with access to extremely advanced technology, that can only mean trouble. Tolerance is broken, sanctimony rules, the Inquisition is in progress. We have been offered techno-utopia, but current signs are that most people think techno-hell looks more appetizing and it is their free choice.

AIs of a feather flocking together to create global instability

Hawking and Musk have created a lot of media impact with their warnings about AI, so although terminator scenarios resulting from machine consciousness have been discussed, as have more mundane use of non-conscious autonomous weapon systems, it’s worth noting that I haven’t yet heard them mention one major category of risks from AI – emergence. AI risks have been discussed frequently since the 1970s, and in the 1990s a lot of work was done in the AI community on emergence. Complex emergent patterns of behavior often result from interactions between entities driven by simple algorithms. Genetic algorithms were demonstrated to produce evolution, simple neighbor-interaction rules were derived to illustrate flocking behaviors that make lovely screen saver effects. Cellular automata were played with. In BT we invented ways of self-organizing networks and FPGAs, played with mechanism that could be used for evolution and consciousness, demonstrated managing networks via ANTs – autonomous network telephers, using smart packets that would run up and down wires sorting things out all by themselves. In 1987 discovered a whole class of ways of bringing down networks via network resonance, information waves and their much larger class of correlated traffic – still unexploited by hackers apart from simple DOS attacks. These ideas have slowly evolved since, and some have made it into industry or hacker toolkits, but we don’t seem to be joining the dots as far as risks go.

I read an amusing article this morning by an ex-motoring-editor who was declined insurance because the AI systems used by insurance companies had labelled him as high risk because he maybe associated with people like Clarkson. Actually, he had no idea why, but that was his broker’s theory of how it might have happened. It’s a good article, well written and covers quite a few of the dangers of allowing computers to take control.

http://www.dailymail.co.uk/sciencetech/article-5310031/Evidence-robots-acquiring-racial-class-prejudices.html

The article suggested how AIs in different companies might all come to similar conclusions about people or places or trends or patterns in a nice tidy positive feedback loop. That’s exactly the sort of thing that can drive information waves, which I demonstrated in 1987 can bring down an entire network in less than 3 milliseconds, in such a way that it would continue to crash many times when restarted. That isn’t intended by the algorithms, which individually ought to make good decisions, but when interacting with one another, create the emergent phenomenon.  Automated dealing systems are already pretty well understood in this regard and mechanisms prevent frequent stock market collapses, but that is only one specific type of behavior in one industry that is protected. There do not seem to be any industry-wide mechanisms to prevent the rest of this infinite class of problems from affecting any or all of the rest, simultaneously.

As we create ever more deep learning neural networks, that essentially teach themselves from huge data pools, human understanding of their ‘mindsets’ decreases. They make decisions using algorithms that are understood at a code level, but the massive matrix of derived knowledge they create from all the data they receive becomes highly opaque. Often, even usually, nobody quite knows how a decision is made. That’s bad enough in a standalone system, but when many such systems are connected, produced and owned and run by diverse companies with diverse thinking, the scope for destructive forms of emergence increases geometrically.

One result could be gridlock. Systems fed with a single new piece of data could crash. My 3 millisecond result in 1987 would still stand since network latency is the prime limiter. The first AI receives it, alters its mindset accordingly, processes it, makes a decision and interacts with a second AI. This second one might have different ‘prejudice’ so makes its own decision based on different criteria, and refuses to respond the way intended. A 3rd one looks at the 2nd’s decision and takes that as evidence that there might be an issue, and with its risk-averse mindset, also refuse to act, and that inaction spreads through the entire network in milliseconds. Since the 1st AI thinks the data is all fine and it should have gone ahead, it now interprets the inaction of the others as evidence that that type of data is somehow ‘wrong’ so itself refuses to process any further of that type, whether from its own operators or other parts of the system. So it essentially adds its own outputs to the bad feeling and the entire system falls into sulk mode. As one part of infrastructure starts to shut down, that infects other connected parts and our entire IT could fall into sulk mode – entire global infrastructure. Since nobody knows how it all works, or what has caused the shutdown, it might be extremely hard to recover.

Another possible result is a direct information wave, almost certainly a piece of fake news. Imagine our IT world in 5 years time, with all these super-smart AIs super-connected. A piece of fake news says a nuke has just been launched somewhere. Stocks will obviously decline, whatever the circumstances, so as the news spreads, everyone’s AIs will take it on themselves to start selling shares before the inevitable collapse, triggering a collapse, except it won’t because the markets won’t let that happen. BUT… The wave does spread, and all those individual AIs want to dispose of those shares, or at least find out what’s happening, so they all start sending messages to one another, exchanging data, trying to find what’s going on. That’s the information wave. They can’t sell shares of find out, because the network is going into overload, so they try even harder and force it into severe overload. So it falls over. When it comes back online, they all try again, crashing it again, and so on.

Another potential result is smartass AI. There is always some prat somewhere who sees an opportunity to take advantage and ruins if for everyone else by doing something like exploiting a small loophole in the law, or in this case, most likely, a prejudice our smartass AI has discovered in some other AI that means it can be taken advantage of by doing x, y, or z. Since nobody quite knows how any of their AIs are making their decisions because their mindsets ate too big and too complex, it will be very hard to identify what is going on. Some really unusual behavior is corrupting the system because some AI is going rogue somewhere somehow, but which one, where, how?

That one brings us back to fake news. That will very soon infect AI systems with their own varieties of fake news. Complex networks of AIs will have many of the same problems we are seeing in human social networks. An AI could become a troll just the same as a human, deliberately winding others up to generate attention of drive a change of some parameter – any parameter – in its own favour. Activist AIs will happen due to people making them to push human activist causes, but they will also do it all by themselves. Their analysis of the system will sometimes show them that a good way to get a good result is to cause problems elsewhere.

Then there’s climate change, weather, storms, tsunamis. I don’t mean real ones, I mean the system wide result of tiny interactions of tiny waves and currents of data and knowledge in neural nets. Tiny effects in one small part of a system can interact in unforeseen ways with other parts of other systems nearby, creating maybe a breeze, which interacts with breezes in nearby regions to create hurricanes. I think that’s a reasonable analogy. Chaos applies to neural net societies just as it does to climate, and 50 year waves equivalents will cause equivalent havoc in IT.

I won’t go on with more examples, long blogs are awful to read. None of these requires any self-awareness, sentience, consciousness, call it what you will. All of these can easily happen through simple interactions of fairly trivial AI deep learning nets. The level of interconnection already sounds like it may already be becoming vulnerable to such emergence effects. Soon it definitely will be. Musk and Hawking have at least joined the party and they’ll think more and more deeply in coming months. Zuckerberg apparently doesn’t believe in AI threats but now accepts the problems social media is causing. Sorry Zuck, but the kind of AI you’re company is messing with will also be subject to its own kinds of social media issues, not just in its trivial decisions on what to post or block, but actual inter-AI socializing issues. It might not try to eliminate humanity, but if it brings all of our IT to a halt and prevents rapid recovery, we’re still screwed.

 

2018 outlook: fragile

Futurists often consider wild cards – events that could happen, and would undoubtedly have high impacts if they do, but have either low certainty or low predictability of timing.  2018 comes with a larger basket of wildcards than we have seen for a long time. As well as wildcards, we are also seeing the intersection of several ongoing trends that are simultaneous reaching peaks, resulting in socio-political 100-year-waves. If I had to summarise 2018 in a single word, I’d pick ‘fragile’, ‘volatile’ and ‘combustible’ as my shortlist.

Some of these are very much in all our minds, such as possible nuclear war with North Korea, imminent collapse of bitcoin, another banking collapse, a building threat of cyberwar, cyberterrorism or bioterrorism, rogue AI or emergence issues, high instability in the Middle East, rising inter-generational conflict, resurgence of communism and decline of capitalism among the young, increasing conflicts within LGBTQ and feminist communities, collapse of the EU under combined pressures from many angles: economic stresses, unpredictable Brexit outcomes, increasing racial tensions resulting from immigration, severe polarization of left and right with the rise of extreme parties at both ends. All of these trends have strong tribal characteristics, and social media is the perfect platform for tribalism to grow and flourish.

Adding fuel to the building but still unlit bonfire are increasing tensions between the West and Russia, China and the Middle East. Background natural wildcards of major epidemics, asteroid strikes, solar storms, megavolcanoes, megatsumanis and ‘the big one’ earthquakes are still there waiting in the wings.

If all this wasn’t enough, society has never been less able to deal with problems. Our ‘snowflake’ generation can barely cope with a pea under the mattress without falling apart or throwing tantrums, so how we will cope as a society if anything serious happens such as a war or natural catastrophe is anyone’s guess. 1984-style social interaction doesn’t help.

If that still isn’t enough, we’re apparently running a little short on Ghandis, Mandelas, Lincolns and Churchills right now too. Juncker, Trump, Merkel and May are at the far end of the same scale on ability to inspire and bring everyone together.

Depressing stuff, but there are plenty of good things coming too. Augmented reality, more and better AI, voice interaction, space development, cryptocurrency development, better IoT, fantastic new materials, self-driving cars and ultra-high speed transport, robotics progress, physical and mental health breakthroughs, environmental stewardship improvements, and climate change moving to the back burner thanks to coming solar minimum.

If we are very lucky, none of the bad things will happen this year and will wait a while longer, but many of the good things will come along on time or early. If.

Yep, fragile it is.

 

BAE Systems & Futurizon share thoughts on the future

I recently visited BAE Systems to give a talk on future tech, including the Pythagoras Sling concept. It was a great place to visit. Afterwards, their Principal Technologist Nick Colosimo and I gave a joint interview on future technologies.

Here is the account from their internal magazine:

The Next Chapter

We need to stop xenoestrogen pollution

Endocrine disruptors in the environment are becoming more abundant due to a wide variety of human-related activities over the last few decades. They affect mechanisms by which the body’s endocrine system generates and responds to hormones, by attaching to receptors in similar ways to natural hormones. Minuscule quantities of hormones can have very substantial effects on the body so even very diluted pollutants may have significant effects. A sub-class called xenoestrogens specifically attach to estrogen receptors in the body and by doing so, can generate similar effects to estrogen in both women and men, affecting not just women’s breasts and wombs but also bone growth, blood clotting, immune systems and neurological systems in both men and women. Since the body can’t easily detach them from their receptors, they can sometimes exert a longer-lived effect than estrogen, remaining in the body for long periods and in women may lead to estrogen dominance. They are also alleged to contribute to prostate and testicular cancer, obesity, infertility and diabetes. Most notably, mimicking sex hormones, they also affect puberty and sex and gender-specific development.

Xenoestrogens can arise from breakdown or release of many products in the petrochemical and plastics industries. They may be emitted from furniture, carpets, paints or plastic packaging, especially if that packaging is heated, e.g. in preparing ready-meals. Others come from women taking contraceptive pills if drinking water treatment is not effective enough. Phthalates are a major group of synthetic xenoestrogens – endocrine-disrupting estrogen-mimicking chemicals, along with BPA and PCBs. Phthalates are present in cleaning products, shampoos, cosmetics, fragrances and other personal care products as well as soft, squeezable plastics often used in packaging but some studies have also found them in foodstuffs such as dairy products and imported spices. There have been efforts to outlaw some, but others persist because of lack of easy alternatives and lack of regulation, so most people are exposed to them, in doses linked to their lifestyles. Google ‘phthalates’ or ‘xenoestrogen’ and you’ll find lots of references to alleged negative effects on intelligence, fertility, autism, asthma, diabetes, cardiovascular disease, neurological development and birth defects. It’s the gender and IQ effects I’ll look at in this blog, but obviously the other effects are also important.

‘Gender-bending’ effects have been strongly suspected since 2005, with the first papers on endocrine disrupting chemicals appearing in the early 1990s. Some fish notably change gender when exposed to phthalates while human studies have found significant feminizing effects from prenatal exposure in young boys too (try googling “human phthalates gender” if you want references).  They are also thought likely to be a strong contributor to greatly reducing sperm counts across the male population. This issue is of huge importance because of its effects on people’s lives, but its proper study is often impeded by LGBT activist groups. It is one thing to champion LGBT rights, quite another to defend pollution that may be influencing people’s gender and sexuality. SJWs should not be advocating that human sexuality and in particular the lifelong dependence on medication and surgery required to fill gender-change demands should be arbitrarily imposed on people by chemical industry pollution – such a stance insults the dignity of LGBT people. Any exposure to life-changing chemicals should be deliberate and measured. That also requires that we fully understand the effects of each kind of chemical so they also should not be resisting studies of these effects.

The evidence is there. The numbers of people saying they identify as the opposite gender or are gender fluid has skyrocketed in the years since these chemicals appeared, as has the numbers of men describing themselves as gay or bisexual. That change in self-declared sexuality has been accompanied by visible changes. An AI recently demonstrated better than 90% success at visually identifying gay and bisexual men from photos alone, indicating that it is unlikely to be just a ‘social construct’. Hormone-mimicking chemicals are the most likely candidate for an environmental factor that could account for both increasing male homosexuality and feminizing gender identity.

Gender dysphoria causes real problems for some people – misery, stress, and in those who make a full physical transition, sometimes post-op regrets and sometimes suicide. Many male-to-female transsexuals are unhappy that even after surgery and hormones, they may not look 100% feminine or may require ongoing surgery to maintain a feminine appearance. Change often falls short of their hopes, physically and psychologically. If xenoestrogen pollution is causing severe unhappiness, even if that is only for some of those whose gender has been affected, then we should fix it. Forcing acceptance and equality on others only superficially addresses part of their problems, leaving a great deal of their unhappiness behind.

Not all affected men are sufficiently affected to demand gender change. Some might gladly change if it were possible to change totally and instantly to being a natural woman without the many real-life issues and compromises offered by surgery and hormones, but choose to remain as men and somehow deal with their dysphoria as the lesser of two problems. That impacts on every individual differently. 

Gender and sexuality are not the only things affected. Xenoestrogens are also implicated in IQ-reducing effects. IQ reduction is worrying for society if it means fewer extremely intelligent people making fewer major breakthroughs, though it is less of a personal issue. Much of the effect is thought to occur while still in the womb, though effects continue through childhood and some even into adulthood. Therefore individuals couldn’t detect an effect of being denied a potentially higher IQ and since there isn’t much of a link between IQ and happiness, you could argue that it doesn’t matter much, but on the other hand, I’d be pretty miffed if I’ve been cheated out of a few IQ points, especially when I struggle so often on the very edge of understanding something. 

Gender and IQ effects on men would have quite different socioeconomic consequences. While feminizing effects might influence spending patterns, or the numbers of men eager to join the military or numbers opposing military activity, IQ effects might mean fewer top male engineers and top male scientists.

It is not only an overall IQ reduction that would be significant. Studies have often claimed that although men and women have the same average IQ, the distribution is different and that more men lie at the extremes, though that is obviously controversial and rapidly becoming a taboo topic. But if men are being psychologically feminized by xenoestrogens, then their IQ distribution might be expected to align more closely with female IQ distributions too, the extremes brought closer to centre.  In that case, male IQ range-compression would further reduce the numbers of top male scientists and engineers on top of any reduction caused by a shift. 

The extremes are very important. As a lifelong engineer, my experience has been that a top engineer might contribute as much as many average ones. If people who might otherwise have been destined to be top scientists and engineers are being prevented from becoming so by the negative effects of pollution, that is not only a personal tragedy (albeit a phantom tragedy, never actually experienced), but also a big loss for society, which develops slower than should have been the case. Even if that society manages to import fine minds from elsewhere, their home country must lose out. This matters less as AI improves, but it still matters.

Looking for further evidence of this effect, one outcome would be that women in affected areas would be expected to account for a higher proportion of top engineers and scientists, and a higher proportion of first class degrees in Math and Physical Sciences, once immigrants are excluded. Tick. (Coming from different places and cultures, first generation immigrants are less likely to have been exposed in the womb to the same pollutants so would not be expected to suffer as much of the same effects. Second generation immigrants would include many born to mothers only recently exposed, so would also be less affected on average. 3rd generation immigrants who have fully integrated would show little difference.)

We’d also expect to see a reducing proportion of tech startups founded by men native to regions affected by xenoestrogens. Tick. In fact, 80% of Silicon Valley startups are by first or second generation immigrants. 

We’d also expect to see relatively fewer patents going to men native to regions affected by xenoestrogens. Erm, no idea.

We’d also expect technology progress to be a little slower and for innovations to arrive later than previously expected based on traditional development rates. Tick. I’m not the only one to think engineers are getting less innovative.

So, there is some evidence for this hypothesis, some hard, some colloquial. Lower inventiveness and scientific breakthrough rate is a problem for both human well-being and the economy. The problems will continue to grow until this pollution is fixed, and will persist until the (two) generations affected have retired. Some further outcomes can easily be predicted:

Unless AI proceeds well enough to make a human IQ drop irrelevant, and it might, then we should expect that having enjoyed centuries of the high inventiveness that made them the rich nations they are today, the West in particular would be set on a path to decline unless it brings in inventive people from elsewhere. To compensate for decreasing inventiveness, even in 3rd generation immigrants (1st and 2nd are largely immune), they would need to attract ongoing immigration to survive in a competitive global environment. So one consequence of this pollution is that it requires increasing immigration to maintain a prosperous economy. As AI increases its effect on making up deficiencies, this effect would drop in importance, but will still have an impact until AI exceeds the applicable intelligence levels of the top male scientists and engineers. By ‘applicable’, I’m recognizing that different aspects of intelligence might be appropriate in inventiveness and insight levels, and a simple IQ measurement might not be sufficient indicator.

Another interesting aspect of AI/gender interaction is that AI is currently being criticised from some directions for having bias, because it uses massive existing datasets for its training. These datasets contain actual data rather than ideological spin, so ‘insights’ are therefore not always politically correct. Nevertheless, they but could be genuinely affected by actual biases in data collection. While there may well be actual biases in such training datasets, it is not easy to determine what they are without having access to a correct dataset to compare with. That introduces a great deal of subjectivity, because ‘correct’ is a very politically sensitive term. There would be no agreement on what the correct rules would be for dataset collection or processing. Pressure groups will always demand favour for their favorite groups and any results that suggest that any group is better or worse than any other will always meet with objections from activists, who will demand changes in the rules until their own notion of ‘equality’ results. If AI is to be trained to be politically correct rather than to reflect the ‘real world’, that will inevitably reduce any correlation between AI’s world models and actual reality, and reduce its effective general intelligence. I’d be very much against sabotaging AI by brainwashing it to conform to current politically correct fashions, but then I don’t control AI companies. PC distortion of AI may result from any pressure group or prejudice – race, gender, sexuality, age, religion, political leaning and so on. Now that the IT industry seems to have already caved in to PC demands, the future for AI will be inevitably sub-optimal.

A combination of feminization, decreasing heterosexuality and fast-reducing sperm counts would result in reducing reproductive rate among xenoestrogen exposed communities, again with 1st and 2nd generation immigrants immune. That correlates well with observations, albeit there are other possible explanations. With increasing immigration, relatively higher reproductive rates among recent immigrants, and reducing reproduction rates among native (3rd generation or more) populations, high ethnic replacement of native populations will occur. Racial mix will become very different very quickly, with groups resident longest being displaced most. Allowing xenoestrogens to remain is therefore a sort of racial suicide, reverse ethnic cleansing. I make no value judgement here on changing racial mix, I’m just predicting it.

With less testosterone and more men resisting military activities, exposed communities will also become more militarily vulnerable and consequently less influential.

Now increasingly acknowledged, this pollution is starting to be tackled. A few of these chemicals have been banned and more are likely to follow. If successful, effects will start to disappear, and new babies will no longer be affected. But even that will  create another problem, with two generations of people with significantly different characteristics from those before and after them. These two generations will have substantially more transgender people, more feminine men, and fewer macho men than those following. Their descendants may have all the usual inter-generational conflicts but with a few others added.

LGBTQ issues are topical and ubiquitous. Certainly we must aim for a society that treats everyone with equality and dignity as far as possible, but we should also aim for one where people’s very nature isn’t dictated by pollution.

Guest Post: Blade Runner 2049 is the product of decades of fear propaganda. It’s time to get enlightened about AI and optimistic about the future

This post from occasional contributor Chris Moseley

News from several months ago that more than 100 experts in robotics and artificial intelligence were calling on the UN to ban the development and use of killer robots is a reminder of the power of humanity’s collective imagination. Stimulated by countless science fiction books and films, robotics and AI is a potent feature of what futurist Alvin Toffler termed ‘future shock’. AI and robots have become the public’s ‘technology bogeymen’, more fearsome curse than technological blessing.

And yet curiously it is not so much the public that is fomenting this concern, but instead the leading minds in the technology industry. Names such as Tesla’s Elon Musk and Stephen Hawking were among the most prominent individuals on a list of 116 tech experts who have signed an open letter asking the UN to ban autonomous weapons in a bid to prevent an arms race.

These concerns appear to emanate from decades of titillation, driven by pulp science fiction writers. Such writers are insistent on foretelling a dark, foreboding future where intelligent machines, loosed from their binds, destroy mankind. A case in point – this autumn, a sequel to Ridley Scott’s Blade Runner has been released. Blade Runner,and 2017’s Blade Runner 2049, are of course a glorious tour de force of story-telling and amazing special effects. The concept for both films came from US author Philip K. Dick’s 1968 novel, Do Androids Dream of Electric Sheep? in which androids are claimed to possess no sense of empathy eventually require killing (“retiring”) when they go rogue. Dick’s original novel is an entertaining, but an utterly bleak vision of the future, without much latitude to consider a brighter, more optimistic alternative.

But let’s get real here. Fiction is fiction; science is science. For the men and women who work in the technology industry the notion that myriad Frankenstein monsters can be created from robots and AI technology is assuredly both confused and histrionic. The latest smart technologies might seem to suggest a frightful and fateful next step, a James Cameron Terminator nightmare scenario. It might suggest a dystopian outcome, but rational thought ought to lead us to suppose that this won’t occur because we have historical precedent on our side. We shouldn’t be drawn to this dystopian idée fixe because summoning golems and ghouls ignores today’s global arsenal of weapons and the fact that, more 70 years after Hiroshima, nuclear holocaust has been kept at bay.

By stubbornly pursuing the dystopian nightmare scenario, we are denying ourselves from marvelling at the technologies which are in fact daily helping mankind. Now frame this thought in terms of human evolution. For our ancient forebears a beneficial change in physiology might spread across the human race over the course of a hundred thousand years. Today’s version of evolution – the introduction of a compelling new technology – spreads throughout a mass audience in a week or two.

Curiously, for all this light speed evolution mass annihilation remains absent – we live on, progressing, evolving and improving ourselves.

And in the workplace, another domain where our unyielding dealers of dystopia have exercised their thoughts, technology is of course necessarily raising a host of concerns about the future. Some of these concerns are based around a number of misconceptions surrounding AI. Machines, for example, are not original thinkers and are unable to set their own goals. And although machine learning is able to acquire new information through experience, for the most part they are still fed information to process. Humans are still needed to set goals, provide data to fuel artificial intelligence and apply critical thinking and judgment. The familiar symbiosis of humans and machines will continue to be salient.

Banish the menace of so-called ‘killer robots’ and AI taking your job, and a newer, fresher world begins to emerge. With this more optimistic mind-set in play, what great feats can be accomplished through the continued interaction between artificial intelligence, robotics and mankind?

Blade Runner 2049 is certainly great entertainment – as Robbie Collin, The Daily Telegraph’s film critic writes, “Roger Deakins’s head-spinning cinematography – which, when it’s not gliding over dust-blown deserts and teeming neon chasms, keeps finding ingenious ways to make faces and bodies overlap, blend and diffuse.” – but great though the art is, isn’t it time to change our thinking and recast the world in a more optimistic light?

——————————————————————————————

Just a word about the film itself. Broadly, director Denis Villeneuve’s done a tremendous job with Blade Runner 2049. One stylistic gripe, though. While one wouldn’t want Villeneuve to direct a slavish homage to Ridley Scott’s original, the alarming switch from the dreamlike techno miasma (most notably, giant nude step-out-the-poster Geisha girls), to Mad Max II Steampunk (the junkyard scenes, complete with a Fagin character) is simply too jarring. I predict that there will be a director’s cut in years to come. Shorter, leaner and sans Steampunk … watch this space!

Author: Chris Moseley, PR Manager, London Business School

cmoseley@london.edu

Tel +44 7511577803

Instant buildings: Kinetic architecture

Revisiting an idea I raised in a blog in July last year. Even I think it was badly written so it’s worth a second shot.

Construction techniques are diverse and will get diverser. Just as we’re getting used to seeing robotic bricklaying and 3D printed walls, another technique is coming over the horizon that will build so fast I call it kinetic architecture. The structure will be built so quickly it can build a bridge from one side just by building upwards at an angle, and the structure will span the gap and meet the ground at the other side before gravity has a chance to collapse it.

The key to such architecture is electromagnetic propulsion, the same as on the Japanese bullet trains or the Hyperloop, using magnetic forces caused by electric currents to propel the next piece along the existing structure to the front end where it acts as part of the path for the next. Adding pieces quickly enough leads to structures that can follow elegant paths, as if the structure is a permanent trace of the path an object would have followed if it were catapulted into the air and falling due to gravity. It could be used for buildings, bridges, or simply art.

It will become possible thanks to new materials such as graphene and other carbon composites using nanotubes. Graphene combines extreme strength, hence lightness for a particular strength requirement, with extreme conductivity, allowing it to carry very high electric currents, and therefore able to generate high magnetic forces. It is a perfect material for kinetic architecture. Pieces would have graphene electromagnet circuitry printed on their surface. Suitable circuit design would mean that every extra piece falling into place becomes an extension to the magnetic railway transporting the next piece. Just as railroads may be laid out just in front of the train using pieces carried by the train, so pieces shot into the air provide a self-building path for other pieces to follow. A building skeleton could be erected in seconds. I mentioned in my original blog (about carbethium) that this could be used to create the sort of light bridges we see in Halo. A kinetic architecture skeleton would be shot across the divide and the filler pieces in between quickly transported into place along the skeleton and assembled.

See https://timeguide.wordpress.com/2016/07/25/carbethium-a-better-than-scifi-material/. The electronic circuitry potential for graphene also allows for generating plasma or simply powering LEDs to give a nice glow just like the light bridges too.

Apart from clever circuit design, kinetic architecture also requires pieces that can interlock. The kinetic energy of the new piece arriving at the front edge would ideally be sufficient to rotate it into place, interlocking with previous front edge. 3d interlocking is tricky but additional circuitry can provide additional magnetic forces to rotate and translate pieces if kinetic energy alone isn’t enough. The key is that once interlocked, the top surface has to form a smooth continuous line with the previous one, so that pieces can move along smoothly. Hooks can catch an upcoming piece to make it rotate, with the hooks merging nicely with part of the new piece as it falls into place, making those hooks part of a now smooth surface and a new hook at the new front end. You’ll have to imagine it yourself, I can’t draw it. Obviously, pieces would need precision engineering because they’d need to fit precisely to give the required strength and fit.

Ideally, with sufficiently well-designed pieces, it should be possible to dismantle the structure by reversing the build process, unlocking each end piece in turn and transporting it back to base along the structure until no structure remains.

I can imagine such techniques being used at first for artistic creations, sculptures using beautiful parabolic arcs. But they could also be used for rapid assembly for emergency buildings, instant evacuation routes for tall buildings, or to make temporary bridges after an earthquake destroyed a permanent one. When a replacement has been made, the temporary one could be rolled back up and used elsewhere. Maybe it could become routine for making temporary structures that are needed quickly such as for pop concerts and festivals. One day it could become an everyday building technique. 

Mega-buildings could become cultural bubbles

My regular readers, both of them in fact, will know I am often concerned about the dangerous growth of social media bubbles. By mid-century, thanks to upcoming materials, some cities will have a few buildings over 1km tall, possibly 10km (and a spaceport or two up to 30km high). These would be major buildings, and could create a similar problem.

A 1km building could have 200 floors, and with 100m square floors, 200 hectares of space.  Assuming half is residential space and the other half is shops, offices or services, that equates to 20,000 luxury apartments (90 sq m each) or 40,000 basic flats. That means each such building could be equivalent to a small town, with maybe 50,000 inhabitants. A 10km high mega-building, with a larger 250m side, would have 60 times more space, housing up to 300,000 people and all they need day-to-day, essentially a city.

Construction could be interesting. My thoughts are that a 10km building could be extruded from the ground using high pressure 3D printing, rather than assembled with cranes. Each floor could be fully fitted out while it is still near ground level, its apartments sold and populated, even as the building grows upward. That keeps construction costs and cash flow manageable.

My concern is that although we will have the technology to build such buildings in the 2040s, I’m not aware of much discussion about how cultures would evolve in such places, at least not outside of sci-fi (like Judge Dredd or Blade Runner). I rather hope we wouldn’t just build them first and try to solve social problems later. We really ought to have some sort of plans to make them work.

In a 100m side building, entire floors or groups of floors would likely be allocated to particular functions – residential, shopping, restaurants, businesses etc. Grouping functions sensibly reduces the total travel needed. In larger buildings, it is easier to have local shops mixed with apartments for everyday essentials, with larger malls elsewhere.

People could live almost entirely in the building, rarely needing to leave, and many might well do just that, essentially becoming institutionalized. I think these buildings will feel very different from small towns. In small towns, people still travel a lot to other places, and a feeling of geographic isolation doesn’t emerge. In a huge tower block of similar population and facilities, I don’t think people would leave as often, and many will stay inside. All they need is close by and might soon feel safe and familiar, while the external world might seem more distant, scarier. Institutionalization might not take long, a month or two of becoming used to the convenience of staying nearby while watching news of horrors going on elsewhere. Once people stop the habit of leaving the building, it could become easier to find reasons not to leave it in future.

Power structures would soon evolve – local politics would happen, criminal gangs would emerge, people would soon learn of good and bad zones. It’s possible that people might become tribal, their building and their tribe competing for external resources and funding with tribes in other mega-buildings, and their might be conflict. Knowing they are physically detached, the same bravery to attack total strangers just because they hold different views might emerge that we see on social media today. There might be cyber-wars, drone wars, IoT wars between buildings.

I’m not claiming to be a social anthropologist. I have no real idea how these buildings will work and perhaps my fears are unjustified. But even I can see some potential problems just based on what we see today, magnified for the same reasons problems get magnified on social media. Feelings of safety and anonymity can lead to some very nasty tribal behaviors. Managing diversity of opinion among people moving in would be a significant challenge, maintaining it might be near impossible. With the sort of rapid polarization we’ve already seen today thanks to social media bubbles, physically contained communities would surely see those same forces magnified everyday.

Building a 10km mega-building will become feasible in the 2040s, and increased urban populations will make them an attractive option for planners. Managing them and making them work socially might be a much bigger challenge.

 

 

Hull in 2050

I wrote a piece for KCOM on what we can expect to feature in the city by 2050.

KCOM illustration

Highlights and KCOM commentary at: https://www.kcomhome.com/news/articles/welcome-to-the-hull-of-the-future/

If you want my full article, they have allowed me to share it. Here is a pdf of my original article, but it’s just text – I can’t do nice graphics:

 

Hull 2050

They also have a great project called We Made Ourselves Over, set in 2097. Here’s one of their graphics from that:

Graphic from http://wemadeourselvesover.com/

The age of dignity

I just watched a short video of robots doing fetch and carry jobs in an Alibaba distribution centre:

http://uk.businessinsider.com/inside-alibaba-smart-warehouse-robots-70-per-cent-work-technology-logistics-2017-9

There are numerous videos of robots in various companies doing tasks that used to be done by people. In most cases those tasks were dull, menial, drudgery tasks that treated people as machines. Machines should rightly do those tasks. In partnership with robots, AI is also replacing some tasks that used to be done by people. Many are worried about increasing redundancy but I’m not; I see a better world. People should instead be up-skilled by proper uses of AI and robotics and enabled to do work that is more rewarding and treats them with dignity. People should do work that uses their human skills in ways that they find rewarding and fulfilling. People should not have to do work they find boring or demeaning just because they have to earn money. They should be able to smile at work and rest at the end of the day knowing that they have helped others or made the world a better place. If we use AI, robots and people in the right ways, we can build that world.

Take a worker in a call centre. Automation has already replaced humans in most simple transactions like paying a bill, checking a balance or registering a new credit card. It is hard to imagine that anyone ever enjoyed doing that as their job. Now, call centre workers mostly help people in ways that allow them to use their personalities and interpersonal skills, being helpful and pleasant instead of just typing data into a keyboard. It is more enjoyable and fulfilling for the caller, and presumably for the worker too, knowing they genuinely helped someone’s day go a little better. I just renewed my car insurance. I phoned up to cancel the existing policy because it had increased in price too much. The guy at the other end of the call was very pleasant and helpful and met me half way on the price difference, so I ended up staying for another year. His company is a little richer, I was a happier customer, and he had a pleasant interaction instead of having to put up with an irate customer and also the job satisfaction from having converted a customer intending to leave into one happy to stay. The AI at his end presumably gave him the information he needed and the limits of discount he was permitted to offer. Success. In billions of routine transactions like that, the world becomes a little happier and just as important, a little more dignified. There is more dignity in helping someone than in pushing a button.

Almost always, when AI enters a situation, it replaces individual tasks that used to take precious time and that were not very interesting to do. Every time you google something, a few microseconds of AI saves you half a day in a library and all those half days add up to a lot of extra time every year for meeting colleagues, human interactions, learning new skills and knowledge or even relaxing. You become more human and less of a machine. Your self-actualisation almost certainly increases in one way or another and you become a slightly better person.

There will soon be many factories and distribution centres that have few or no people at all, and that’s fine. It reduces the costs of making material goods so average standard of living can increase. A black box economy that has automated mines or recycling plants extracting raw materials and uses automated power plants to convert them into high quality but cheap goods adds to the total work available to add value; in other words it increases the size of the economy. Robots can make other robots and together with AI, they could make all we need, do all the fetching and carrying, tidying up, keeping it all working, acting as willing servants in every role we want them in. With greater economic wealth and properly organised taxation, which will require substantial change from today, people could be freed to do whatever fulfills them. Automation increases average standard of living while liberating people to do human interaction jobs, crafts, sports, entertainment, leading, inspiring, teaching, persuading, caring and so on, creating a care economy. 

Each person knows what they are good at, what they enjoy. With AI and robot assistance, they can more easily make that their everyday activity. AI could do their company set-up, admin, billing, payments, tax, payroll – all the crap that makes being an entrepreneur a pain in the ass and stops many people pursuing their dreams.  Meanwhile they would do that above a very generous welfare net. Many of us now are talking about the concept of universal basic income, or citizen wage. With ongoing economic growth at the average rate of the last few decades, the global economy will be between twice and three times as big as today in the 2050s. Western countries could pay every single citizen a basic wage equivalent to today’s average wage, and if they work or run a company, they can earn more.

We will have an age where material goods are high quality, work well and are cheap to buy, and recycled in due course to minimise environmental harm. Better materials, improved designs and techniques, higher efficiency and land productivity and better recycling will mean that people can live with higher standards of living in a healthier environment. With a generous universal basic income, they will not have to worry about paying their bills. And doing only work that they want to do that meets their self-actualisation needs, everyone can live a life of happiness and dignity.

Enough of the AI-redundancy alarmism. If we elect good leaders who understand the options ahead, we can build a better world, for everyone. We can make real the age of dignity.

Tips for surviving the future

Challenging times lie ahead, but stress can be lessened by being prepared. Here are my top tips, with some explanation so you can decide whether to accept them.

1 Adaptability is more important than specialization

In a stable environment, being the most specialized means you win most of the time in your specialist field because all your skill is concentrated there.

However, in a fast-changing environment, which is what you’ll experience for the rest of your life, if you are too specialized, you are very likely to find you are best in a filed that no longer exists, or is greatly diminished in size. If you make sure you are more adaptable, then you’ll find it easier to adapt to a new area so your career won’t be damaged when you are forced to change field slightly. Adaptability comes at a price – you will find it harder to be best in your field and will have to settle for 2nd or 3rd much of the time, but you’ll still be lucratively employed when No 1 has been made redundant.

2 Interpersonal, human, emotional skills are more important than knowledge

You’ve heard lots about artificial intelligence (AI) and how it is starting to do to professional knowledge jobs what the steam engine once did to heavy manual work. Some of what you hear is overstated. Google search is a simple form of AI. It has helped everyone do more with their day. It effectively replaced a half day searching for information in a library with a few seconds typing, but nobody has counted how many people it made redundant, because it hasn’t. It up-skilled everyone, made them more effective, more valuable to their employer. The next generation of AI may do much the same with most employees, up-skilling them to do a better job than they were previously capable of, giving them better job satisfaction and their employer better return. Smart employers will keep most of their staff, only getting rid of those entirely replaceable by technology. But some will take the opportunity to reduce costs, increase margins, and many new companies simply won’t employ as many people in similar jobs, so some redundancy is inevitable. The first skills to go are simple administration and simple physical tasks, then more complex admin or physical stuff, then simple managerial or professional tasks, then higher managerial and professional tasks. The skills that will be automated last are those that rely on first hand experience of understanding of and dealing with other people. AI can learn some of that and will eventually become good at it, but that will take a long time. Even then, many people will prefer to deal with another person than a machine, however smart and pleasant it is.

So interpersonal skills, human skills, emotional skills, caring skills, leadership and motivational skills, empathetic skills, human judgement skills, teaching and training skills will be harder to replace. They also tend to be ones that can easily transfer between companies and even sectors. These will therefore be the ones that are most robust against technology impact. If you have these in good shape, you’ll do just fine. Your company may not need you any more one day, but another will.

I called this the Care Economy when I first started writing and lecturing about it 20-odd years ago. I predicted it would start having an affect mid teen years of this century and I got that pretty accurate I think. There is another side that is related but not the same:

3 People will still value human skill and talent just because it’s human

If you buy a box of glasses from your local supermarket, they probably cost very little and are all identical. If you buy some hand-made crystal, it costs a lot more, even though every glass is slightly different. You could call that shoddy workmanship compared to a machine. But you know that the person who made it trained for many years to get a skill level you’d never manage, so you actually value them far more, and are happy to pay accordingly. If you want to go fast, you could get in your car, but you still admire top athletes because they can do their sport far better than you. They started by having great genes for sure, but then also worked extremely hard and suffered great sacrifice over many years to get to that level. In the future, when robots can do any physical task more accurately and faster than people, you will still value crafts and still enjoy watching humans compete. You’ll prefer real human comedians and dancers and singers and musicians and artists. Talent and skill isn’t valued because of the specification of the end result, they are valued because they are measured on the human scale, and you identify closely with that. It isn’t even about being a machine. Gorillas are stronger, cheetahs are faster, eagles have better eyesight and cats have faster reflexes than you. But they aren’t human so you don’t care. You will always measure yourself and others by human scales and appreciate them accordingly.

4 Find hobbies that you love and devote time to developing them

As this care economy and human skills dominance grows in importance, people will also find that AI and robotics helps them in their own hobbies, arts and crafts, filling in skill gaps, improving proficiency. A lot of people will find their hobbies can become semi-professional. At the same time, we’ll be seeing self-driving cars and drones making local delivery far easier and cheaper, and AI will soon make business and tax admin easy too. That all means that barriers to setting up a small business will fall through the floor, while the market for personalized, original products made my people will increase, especially local people. You’ll be able to make arts and crafts, jam or cakes, grow vegetables, make clothes or special bags or whatever, and easily sell them. Also at the same time, automation will be making everyday things cheaper, while expanding the economy, so the welfare floor will be raised, and you could probably manage just fine with a small extra income. Government is also likely to bring in some sort of citizen wage or to encourage such extra entrepreneurial activity without taxing it away, because they also have a need to deal with the social consequences of automation. So it will all probably come together quite well. If the future means you can make extra money or even a full income by doing a hobby you love, there isn’t much to dislike there.

5 You need to escape from your social media bubble

If you watch the goings on anywhere in the West today, you must notice that the Left and the Right don’t seem to get along any more. Each has become very intolerant of the other, treating them more like enemy aliens than ordinary neighbors. A lot of that is caused by people only being exposed to views they agree with. We call that social media bubbles, and they are extremely dangerous. The recent USA trouble is starting to look like some folks want a re-run of the Civil War. I’ve blogged lots about this topic and won’t do it again now except to say that you need to expose yourself to a wide subsection of society. You need to read paper and magazines and blogs, and watch TV or videos from all side of the political spectrum, not just those you agree with, not just those that pat you on the back every day and tell you that you’re right and it is all the other lot’s fault. If you don’t; if you only expose yourself to one side because you find the other side distasteful, then I can’t say this loud enough: You are part of the problem. Get out of your safe space and your social media tribe, expose yourself to the whole of society, not just one tribe. See that there are lots of different views out there but it doesn’t mean the rest are all nasty. Almost everyone is actually quite nice and almost everyone wants a fairer world, an end to exploitation, peace, tolerance and eradication of disease and poverty. The differences are almost all in the world model that they use to figure out the best way to achieve it. Lefties tend to opt for idealistic theoretical models and value the intention behind it, right-wingers tend to be pragmatic and go for what they think works in reality, valuing the outcome. It is actually possible to have best friends who you disagree with. I don’t often agree with any of mine. If you feel too comfortable in your bubble to leave, remember this: your market is only half the population at best , you’re excluding the other half, or even annoying them so they become enemies rather than neutral. If you stay in a bubble, you are damaging your own future, and helping to endanger the whole of society.

6 Don’t worry

There are lots of doom-mongers out there, and I’d be the first to admit that there are many dangers ahead. But if you do the things above, there probably isn’t much more you can do. You can moan and demonstrate and get angry or cry in the corner, but how would that benefit you? Usually when you analyse things long enough from all angles, you realize that the outcome of many of the big political battles is pretty much independent of who wins.  Politicians usually have far less choice than they want you to believe and the big forces win regardless of who is in charge. So there isn’t much point in worrying about it, it will probably all come out fine in the end. Don’t believe me. Take the biggest UK issue right now: Brexit. We are leaving. Does it matter? No. Why? Well, the EU was always going to break up anyway. Stresses and strains have been increasing for years and are accelerating. For all sorts of reasons, and regardless of any current bluster by ‘leaders’, the EU will head away from the vision of a United States of Europe. As tensions and conflicts escalate, borders will be restored. Nations will disagree with the EU ideal. One by one, several countries will copy the UK and have referendums, and then leave. At some point, the EU will be much smaller, and there will be lots of countries outside with their own big markets. They will form trade agreements, the original EU idea, the Common Market, will gradually be re-formed, and the UK will be part of it – even Brexiters want tariff-free-trade agreements. If the UK had stayed, the return to the Common Market would eventually have happened anyway, and leaving has only accelerated it. All the fighting today between Brexiteers and Remainers achieves nothing. It didn’t matter which way we voted, it only really affected timescale. The same applies to many other issues that cause big trouble in the short term. Be adaptable, don’t worry, and you’ll be just fine.

7 Make up your own mind

As society and politics have become highly polarised, any form of absolute truth is becoming harder to find. Much of what you read has been spun to the left or right. You need to get information from several sources and learn to filter the bias, and then make up your own mind on what the truth is. Free thinking is increasingly rare but learning and practicing it means you’ll be able to make correct conclusions about the future while others are led astray. Don’t take anyone else’s word for things. Don’t be anyone’s useful idiot. Think for yourself.

8 Look out for your friends, family and community.

I’d overlooked an important tip in my original posting. As Jases commented sensibly, friends, family and community are the security that doesn’t disappear in troubled economic times. Independence is overrated. I can’t add much to that.

Google and the dangerous pursuit of ‘equality’

The world just got more dangerous, and I’m not talking about N Korea and Trump.

Google just sacked an employee because he openly suggested that men and women, (not all, but some, and there is an overlap, and …) might tend to have different preferences in some areas and that could (but not always, and only in certain cases, and we must always recognize and respect everyone and …) possibly account for some of the difference in numbers of men and women in certain roles (but there might be other causes too and obviously lots of discrimination and …. )

Yes, that’s what he actually said, but with rather more ifs and buts and maybes. He felt the need to wrap such an obvious statement in several kilometers thick of cotton wool so as not to offend the deliberately offended but nonetheless deliberate offense was taken and he is out on his ear.

Now, before you start thinking this is some right-wing rant, I feel obliged to point out just how progressive Futurizon is: 50% of all Futurizon owners and employees are female, all employees and owners have the same voting rights, 50% are immigrants and all are paid exactly the same and have the same size offices, regardless of dedication, ability, nature or quality or volume of output and regardless of their race, religion, beauty, shape, fitness, dietary preferences, baldness, hobbies or political views, even if they are Conservatives. All Futurizon offices are safe zones where employees may say anything they want of any level of truth, brilliance or stupidity and expect it to be taken as absolute fact and any consequential emotional needs to be fully met. No employee may criticize any other employee’s mouse mat, desk personalisation or screen wallpaper for obvious lack of taste. All employees are totally free to do anything they choose 100% of the time and can take as much leave as they want. All work is voluntary. All have the same right to respectfully request any other employee to make them coffee, tea or Pimms. All employees of all genders real or imagined are entitled to the same maternity and paternity rights, and the same sickness benefits, whether ill or not. In fact, Futurizon does not discriminate on any grounds whatsoever. We are proud to lead the world in non-discrimination. Unfortunately, our world-leading terms of employment mean that we can no longer afford to hire any new employees.

However, I note that Google has rather more power and influence than Futurizon so their policies count more. They appear (Google also has better lawyers than I can afford, so I must stress that all that follows is my personal opinion) to have firmly decided that diversity is all-important and they seem to want total equality of outcome. The view being expressed not just by Google but by huge swathes of angry protesters seems to be that any difference in workforce representation from that of the general population must arise from discrimination or oppression so must be addressed by positive action to correct it. There are apparently no statistically discernible differences in behavior between genders, or in job or role preference, so any you may have noticed over the time you’ve been alive is just your prejudice. Google says they fully support free speech and diversity of views, but expression of views is apparently only permitted as long as those views are authorized, on penalty of dismissal.

So unless I’m picking up totally the wrong end of the stick here, and I don’t do that often, only 13% of IT engineers are women, but internal policies must ensure that the proportion rises to 50%, whether women want to do that kind of work or not. In fact, nobody may question whether as many women want to work as IT engineers as men; it must now be taken as fact. By extension, since more women currently work in marketing, HR and PR, they must be substituted by men via positive action programs until men fill 50% of those roles. Presumably similar policies must also apply in medical bays for nursing and other staff there, and in construction teams for their nice new buildings. Ditto all other genders, races, religions; all groups must be protected and equalized to USA population proportions, apparently except those that don’t claim to hold sufficiently left-wing views, in which case it is seemingly perfectly acceptable to oppress, ostracize and even expel them.

In other words, freedom of choice and difference in ability, and more importantly freedom from discrimination, must be over-ruled in favor of absolute equality of diversity, regardless of financial or social cost, or impact on product or service quality. Not expressing full and enthusiastic left-wing compliance is seemingly just cause for dismissal.

So, why does this matter outside Google? Well, AI is developing very nicely. In fact, Google is one of the star players in the field right now. It is Google that will essentially decide how much of the AI around us is trained, how it learns, what it learns, what ‘knowledge’ it has of the world. Google will pick the content the AI learns from, and overrule or reeducate it if it draws any ‘wrong’ conclusions about the world, such as that more women than men want to be nurses or work in HR, or that more men than women want to be builders or engineers. A Google AI must presumably believe that the only differences between men and women are physical, unless their AI is deliberately excluded from the loudly declared corporate values and belief sets.

You should be very worried. Google’s values really matter. They have lots of influence on some of the basic tools of everyday life. Even outside their company, their AI tools and approaches will have strong influence on how other AI develops, determining operating systems and platforms, languages, mechanisms, interfaces, filters, even prejudices and that reach and influence is likely to increase. Their AI may well be in many self-driving cars, and if they have to make life or death decisions, the underlying value assumptions must feature in the algorithms. Soon companies will need AI that is more emotionally compliant. AI will use compliments or teasing or seduction or sarcasm or wit as marketing tools as well as just search engine positioning. Soon AI will use highly expressive faces with attractive voices, with attractive messages, tailored to appeal to you by pandering to your tastes and prejudices while thinking something altogether different. AI might be the person at the party that is all smiles and compliments, before going off to tell everyone else how awful it thinks you are. If you dare to say something not ‘authorized’, the ultra-smart AI all around you might treat you condescendingly, making you feel ashamed, ostracized, a dinosaur. Then it might secretly push you down a few pages in search results, or put a negative spin on text summaries about you, or exclude you from recommendations. Or it might do all the secret stuff while pretending it thinks you’re fantastic. Internal cultural policies in companies like Google today could soon be external social engineering to push the left-wing world the IT industry believes in – it isn’t just Google; Facebook and Twitter are also important and just as Left, though Amazon, Samsung, IBM and other AI players are less overtly politically biased, so far at least. Left wing policies generally cost a lot more, but Google and Facebook will presumably still expect other companies and people to pay the taxes to pay for it all. As their female staff gear up to fight them over pay differences between men and women for similar jobs, it often seems that Google’s holier-than-thou morality doesn’t quite make it as far as their finances.

Then it really starts being fun. We’ll soon have bacteria that can fabricate electronic circuits within themselves. Soon they’ll be able to power them too, giving the concept of smart yogurt. These bacteria could also have nanotechnology flagella to help them get around. We’ll soon have bacterial spies all over our environment, even on our skin, intercepting electronic signals that give away our thoughts. They’ll bring in data on everything that is said, everything that everyone even thinks or feels. Those bacteria will be directly connected into AI, in fact they’ll be part of it. They’ll be able to change things, to favor or punish according to whether they like what someone believes in or how they behave.

It isn’t just right-wing extremists that need to worry. I’m apparently Noveau Left – I score slightly left of center on political profiling tests, but I’m worried. A lot of this PC stuff seems extreme to me, sometimes just nonsense. Maybe it is, or maybe I should be lefter. But it’s not my choice. I don’t make the rules. Companies like Google make the rules, they even run the AI ethics groups. They decide much of what people see online, and even the meaning of the words. It’s very 1984-ish.

The trouble with the ‘echo chambers’ we heard about is that they soon normalize views to the loudest voices in those groups, and they don’t tend to be the moderates. We can expect it will go further to the extreme, not less. You probably aren’t left enough either. You should also be worried.

High-rise external evacuation

A quick googling turned up this great idea, using an escape chute attached to the top of a fire crane. The chute has a fireproof external layer and people slow or speed their descent in it simply by varying their posture. Read the pdf for more details:

http://www.escapeconsult.biz/download.php?module=prod&id=26

But the picture tells all you need to know. You can see it reaches very high, up to 100m with the tallest fire appliance.

It is a great idea, but you can still see how it could be improved, and the manufacturer may well already have better versions on the way.

Firstly, the truck is already leaning, even though it has extendable feet to increase the effective base area. This affects all free-standing fire rescue cranes and ladders (suspension ladders, or ladders able to lean against a wall obviously include other forces). Physics dictates that the center of gravity, with the evacuees included, must remain above the base or it will start to topple. The higher it reaches and the further from the truck, the harder that becomes, and the fewer people can simultaneously use the escape chute. Clearly if it is go even higher, we need to find new ways of keeping the base and center of gravity aligned, or to prevent it toppling by leaning the ladder securely against a sound piece of wall that isn’t above a fire.

One solution is obvious. Usually with a high-rise fire, a number of fire appliances would be there. By linking several appliances to the ladder in a stable pattern, the base area then becomes far larger, the entire area enclosed by the combined appliances. At the very least, they can spread out across a street, and sometimes as in the Grenfell Tower fire, there is a lot of nearby space to spread over. With a number of fire appliances, the crane is also not limited to the carrying capacity of a single appliance.

If theses are specialist hi-rise appliances, one or two would carry telescopic arms to support the rescue equipment, with one or more trucks using tension wires to increase the base area.

We also need to speed up entry to the chute and preferably make it accessible to more windows. The existing system has access via a small hole that might be slow to pass through, and challenging for larger people or those with less mobility. A funneled design would allow people to jump in from several windows or even drop from a floor above. Designing the access to prevent simultaneous arrivals at the chute is easy enough, even if several people jump in together

Also, it would be good if the chute could take evacuees away from the building and flames as fast as possible. Getting them to the ground is a lesser priority. Designing the funnel so it crosses several windows, with a steep slope away from the building (like an airplane escape slide) before it enters the downward chute would do that.

Another enhancement would be that instead of a broad funnel and single chute, a number of chutes could be suspended, with one for each window. Several people would be able to descend down different chutes at the same time. with a much broader base area, toppling risk would still be greatly reduced.

If a few support arms could be extended from the crane towards the building, that would provide extra stability until their strength (or building fabric) is compromised by fire. Further support might sometimes be available from window cleaning platform apparatus that could support the weight of the rescue chutes. If emergency escape chutes are built into the platforms could even make for an instant escape system before fire services arrive.

With these relatively straightforward enhancements, this evacuation system would be even better and would allow many people to escape who otherwise wouldn’t. OK, here’s a badly drawn pic:

Fighting fires on tall buildings

Fires in tall buildings over the years have led to many improvements in designs that prevent them from starting or from taking hold, and then if they do, to slow down their spread. Thankfully they are very rare. Existing technology is also very limiting. Ground-based fire appliances can only rescue people from lower floors and can only spray water onto a few floors above that. Fire extinguishers and internal sprinkler systems can obviously help put fires out or slow them spreading if they are actually present and if a few people are willing to take risks. That there were none in Grenfell Tower is simply beyond comprehension. Negligence, incompetence and complacency don’t begin to cover what needs to be said.

However brave firefighters are, and nobody doubts their bravery, they will need better tools to do the job, they are simply not equipped to fight fires in skyscrapers such as we just had. People should not die if there are potential solutions. Some are feasible now, but I am not aware of their use.

External fires such as the Grenfell Tower fire in London recently can’t be fought fully by either internal sprinklers or ground-based hoses. We need new techniques capable of dealing with such fires. A quick googling on future fire fighting is surprisingly disappointing. Even googling future firefighting doesn’t turn up much. Most is about fancy new imaging kit or protective uniforms with embedded sensors. All great stuff, but it won’t stop another Grenfell. I’m no expert in this field, so maybe I just haven’t used the right search terms, but it shouldn’t be as easy as it is to think up solutions that are not already in use. Maybe there are good reasons why the following are not in conspicuous use yet, but I can’t think of any. None of what follows is rocket science.

Water tanks on roofs could be attached to tubing around the perimeter of the building roof, and remotely operable valves could then be used by ground crews to release water in curtains down a side of the building. Obviously capacity is finite, but after initial quenching, continuous water flow from the roof would help, however little. Large tanks could be installed if none are present to add safety to existing building with poor cladding.

A way of getting firefighting kit high up is to use the platforms provided for window cleaning. They could be lowered to below the fire and fire pumps could be put on them, or at least anchorages for steerable hoses. This does not need firefighters to be on them, they could stay below. Clearly, roof kit might eventually fail and wires might break, but meanwhile they could help alleviate the problem and buy time at the very least. If firefighter lives are not put at risk to do it, there is little penalty.

External sprinkler tubes could also be fitted that could be connected to water supplies just below and external fire. This might buy one of two floors of relative safety above and greatly reduce smoke from outside. They don’t even need to have sophisticated nozzles. All they need to do to be useful is to spray some water on some of the external fire. Even if sub-optimal, they would buy a little time.

Drones offer one potential assistance route. Two types are relevant. One is very well known already and I would expect is already in use: Conventional drones can carry cameras and other sensors to higher floors to monitor what is happening, offer assisted networking for internal firefighters, offer firefighters alternative views of the action, enable local and accurate positioning systems, and provide computer-enhanced imaging to augmented reality helmets.

Secondly, high power tethered drones could be powered by connected electrics from the ground, so avoiding the battery and power limitations of conventional drones. They could reach high floors and stay there while supporting hoses from the ground or from lower floors, and might even be able to hold pumps if ground pressure can’t be made high enough. These would offer helicopter-type functionality or lifting capacity without having to go back and forth to refill with water or fuel. Cost would be relatively high, but fire departments would not need many.

Once an external wall is made free of fire, drones and window-cleaning platforms could be used in rescues.

Obviously a lot has been written about futuristic imaging, sensing, navigation and bio-sign monitoring for firefighters, as well as deploying robotic firefighters that can work down from roofs, relatively immune to fire and smoke, so I won’t bother repeating here what is already known well. What is apparently lacking sometimes is low-tech kit and making it actually present.

If these systems are already well known but there are good reasons why they don’t feature, then I have wasted your time.

 

.

Vertical solar farms, the next perpetual motion machine

I am a big fan of hydroponics. LED lighting allows growers to deliver a spectrum optimised for plant growth and they can get many times the productivity from a square metre inside under lighting than outside. In the right context, it’s a great idea. Here is a nice image from GE Reports , albeit with pointless scanning.

I don’t think much however of the various ‘futuristic’ artist impressions of external vertical farms with trees likely to fall on pedestrians from 20 floors up. Like this one, described as an ‘environmental alternative’. No it isn’t, its a daft idea that makes a pretty picture, not an alternative.

But as far as silliness is concerned, I suspect I can see one that is coming soon: the vertical solar farm. Here is how it will work, cough. Actually two ways.

PLEASE DON’T TAKE THE FOLLOWING SERIOUSLY!

A lot of external solar panels on a building will gather solar energy (or solar paint, whatever), and that wonderful renewable energy will then be used to power super-efficient LED lights, illuminating highly efficient solar panels inside. The LED banks and solar panels will be arranged in numerous layers to make lots of nice clean energy. The resultant ‘energy amplifier’ will appear.

A more complex version will use hydroponics instead, converting the externally gather solar energy into plant material to make biofuel to make energy to power the lights during the night.

Some clever-clogs will then work out that the external panels are not needed since the internal panels will make the light to power the LEDs 24/7. People will object, but they’ll just point at the rapidly growing efficiencies of both LEDs and solar panels, especially coupled to other enhancements such as picking the right spectrum for the LEDs. How can it not work?

You know as well as I do, I hope, that this is total nonsense and will remain so. However, you also know as well as I do that some people are very easily taken in. Personally, I can’t wait to see the first claims from some Green company. I wouldn’t be all that surprised if they manage to get a development grant. It would be hilarious if something like this makes it through a patent office somewhere. Perpetual machines don’t go extinct, they just evolve.

Actually, I’m more upset that it isn’t April 1st.

The new dark age

dark age 2017coverAs promised, here is a slide-set illustrating the previous blog, just click the link if the slides are not visible.

The new dark age

Trump’s still an idiot but he was right to dump Paris

Climate change has always been in play. It is in play now. Many scientists think that the rise in global temperatures towards the end of the 1990s was largely due to human factors, namely CO2 emissions. Some of it undoubtedly is, but almost certainly nowhere near as much as these scientists believe. Because they put far too much emphasis on CO2 as the driving factor, almost as a meta religion, they downplay or refuse to acknowledge other important factors, such as long term ocean cycles, solar cycles, and poorly model forests and soil-air interchange. Because they rely on this one-factor-fits-all explanation for climate changing, they struggle to explain ‘the pause’ whereby temperatures leveled off even as CO2 levels continued to rise, and can’t explain why post El-Nino temperatures have now returned to that pause level. In short, their ‘science’ is nothing more than a weak set of theories very poorly correlating with observations.

A good scientist, when confronted with real world observations that conflict with their theory throws that theory in the bin and comes up with a better one. When a scientist’s comfy and lucrative job depends on their theory being correct, their response may not be to try to do better science that risks their project ending, but to hide facts, adjust and distort them, misrepresent them in graphs, draw false conclusions from falsified data to try to keep their messages of doom and their models’ predictions sounding plausible. Sadly, that does seem to me and very many other scientists to be what has been happening in so-called climate science. Many high quality scientists in the field have been forced to leave it, and many have had their papers rejected and their reputations attacked. The few brave honest scientists left in the field must put up with constant name-calling by peers whose livelihoods are threatened by honesty. Group-think has become established to the point where anyone not preaching the authorized climate change religion must be subjected to the Spanish Inquisition. Natural self-selection of new recruits into the field from greens and environmentalists mean that new members of the field will almost all follow the holy book. It is ironic that the Pope is on the side of these climate alarmists. Climate ‘science’ is simply no longer worthy of the name. ‘Climate change’ is now a meta-religion, and its messages of imminent doom and desperate demands for urgent wealth redistribution have merged almost fully into the political left. The right rejects it, the left accepts it. That isn’t science, it’s just politics.

Those of us outside the field have a hard time finding good science. There are plenty of blogs on both sides making scientific sounding arguments and showing nice graphs, but it is impossible for a scientist or engineer to look at it over time and not notice a pattern. Over the last decades, ‘climate scientists’ have made apocalyptic predictions in rapid succession, none of which seem ever to actually happen. Almost all of their computer models have consistently greatly overestimated the warming we should have seen by now, we should by now rarely see snow, and there should be no ice left in the Arctic. Sea levels should be far higher than they are too. Arctic ice is slightly below average, much the same as a decade ago. Polar bears are more abundant than for several decades. A couple of years ago we had record ice in the antarctic. Sea level is still rising at about the same rate as it has for the last 100s of years. Greenland is building more ice mass than ever. Every time there is a strong wind we’re told about climate change, but we rarely see any mention of the fastest drop in temperatures on record after the recent El-Nino, the great polar bear recovery or the record Antarctic ice when that happened. It is a one way street of doom that hides facts that don’t play to the hymn book.

In a private industry, at least in ones that aren’t making profits from climate change alarmism or renewable energy, like Elon Musk’s car, solar power and battery companies for example (do you think that might be why he is upset with Trump), scientists as bad as that would have lost their jobs many years ago. Most climate scientists work in state-funded institutions or universities and both tend towards left wing politics of course, so it is not surprising that they have left wing bias distorting their prejudices and consequently their theories and proposed solutions.

Grants are handed out by politicians, who want to look good and win votes, so are always keen to follow policies that are popular in the media. Very few politicians have any scientific understanding, so they are easily hoodwinked by simple manipulation of graphs whereby trends are always shown with the start point at the beginning of the last upwards incline, and where data is routinely changed to fit the message of doom. Few politicians can understand the science and few challenge why data has been changed or hidden. A strong community of religious followers is happy to eagerly and endlessly repeat fraudulent claims such as that “97% of scientists agree…”, mudslinging at anyone who disagrees.

Even if the doom was all true, Paris was still a very bad idea. Even if CO2 were as bad as claimed, the best response to that is to work out realistically how much CO2 is likely to be produced in the future, how fast alternative energy sources could become economic, which ones give the best value per CO2 unit until we get those economic replacements, and to formulate a sensible plan that maximizes bang per buck to ensure that the climate stays OK while spending at the right times to keep on track at the lowest cost. In my 2007 paper, I pointed out that CO2 will decline anyway once photo-voltaic solar becomes cheap enough, as it will even without any government action at all. I pointed out that it makes far more sense to save our pennies until it is cheaper and then get far more in place far faster, for the same spend, thereby still fixing the problem but at far lower costs. Instead, idiotic governments in Europe and especially the UK (and now today May vowing to continue such idiocy) have crippled households with massive subsidies to rich landowners to put renewable energy in place while it is still very expensive, with guarantees to those rich investors of high incomes for decades. The fiasco with subsidizing wood burning in Northern Ireland shows the enormous depths of government stupidity in these area, with some farmers making millions by wasting as much heat as they possibly could to maximize their subsidy incomes. That shows without any doubt the numerical and scientific public-sector illiteracy in play. Via other subsidies for wind, solar, wave and tidal systems, eEvery UK household will have to pay several hundreds of pounds more every year for energy, just so that a negligible impact on temperatures starts to occur neglibly earlier. Large numbers of UK jobs have already been lost to overseas from energy intensive industries. Those activities still occur, the CO2 is still produced, often with far lower environmental and employment standards. No Gain, lots of pain.

Enormous economic damage for almost zero benefit is not good government. A good leader would investigate the field until they could at least see there was still a lot of scientific debate about the facts and causes. A good leader would suspect the motivations of those manipulating data and showing misrepresentative graphs. A good leader would tell them to come back with unbiased data and unbiased graphs and honest theories or be dismissed. Trump has already taken the first step by calling a halt to the stupidity of ‘all pain for no gain’. He now needs to tackle NASA and NOAA and find a solution to get honest science reinstated in what were once credible and respected organisations. That honest science needs to follow up suggestions that because of solar activity reducing, we may in fact be heading into a prolonged period of cooling, as suggested by teams in Europe and Russia. At the very least, that might prevent the idiots currently planning to start geoengineering to reduce temperature to counteract catastrophic global warming, just as nature takes us into a cooling phase. Such mistimed stupidity could kick-start a new ice age. To remind you, climate scientists 45 years ago were warning that we were heading into an ice age and wanted to cover the arctic with black carbon to prevent runaway ice formation.

CO2 is a greenhouse gas. So is methane. We certainly should keep a watch on emissions and study the climate constantly to check that everything is OK. But that must be done by good scientists practicing actual science, whereby theories are changed to fit the observations, not the other way around. We should welcome development of solar power and storage solutions by companies like Musk’s, but there is absolutely no hurry and no need to subsidize any of that activity. Free market economics will give us cheap renewable energy regardless of government intervention, regardless of subsidy.

We didn’t need Kyoto and we didn’t need Paris. Kyoto didn’t work anyway and Paris causes economic redistribution and a great deal of wastage of money and resources, but no significant climate benefit. We certainly don’t want any more pain for no gain. It is right that we should still help poor countries to the very best of our ability, but we should do that without conflating science with religion and politics.

Trump may still be an idiot, but he was right on this occasion and should now follow on by fixing climate science. May should follow and take the UK out of the climate alarmist damage zone too. Making people poor or jobless for no good reason is not something I can vote for.

AI Activism Part 2: The libel fields

This follows directly from my previous blog on AI activism, but you can read that later if you haven’t already. Order doesn’t matter.

AI and activism, a Terminator-sized threat targeting you soon

Older readers will remember an emotionally powerful 1984 film called The Killing Fields, set against the backdrop of the Khmer Rouge’s activity in Cambodia, aka the Communist Part of Kampuchea. Under Pol Pot, the Cambodian genocide of 2 to 3 million people was part of a social engineering policy of de-urbanization. People were tortured and murdered (some in the ‘killing fields’ near Phnom Penh) for having connections with former government of foreign governments, for being the wrong race, being ‘economic saboteurs’ or simply for being professionals or intellectuals .

You’re reading this, therefore you fit in at least the last of these groups and probably others, depending on who’s making the lists. Most people don’t read blogs but you do. Sorry, but that makes you a target.

As our social divide increases at an accelerating speed throughout the West, so the choice of weapons is moving from sticks and stones or demonstrations towards social media character assassination, boycotts and forced dismissals.

My last blog showed how various technology trends are coming together to make it easier and faster to destroy someone’s life and reputation. Some of that stuff I was writing about 20 years ago, such as virtual communities lending hardware to cyber-warfare campaigns, other bits have only really become apparent more recently, such as the deliberate use of AI to track personality traits. This is, as I wrote, a lethal combination. I left a couple of threads untied though.

Today, the big AI tools are owned by the big IT companies. They also own the big server farms on which the power to run the AI exists. The first thread I neglected to mention is that Google have made their AI an open source activity. There are lots of good things about that, but for the purposes of this blog, that means that the AI tools required for AI activism will also be largely public, and pressure groups and activist can use them as a start-point for any more advanced tools they want to make, or just use them off-the-shelf.

Secondly, it is fairly easy to link computers together to provide an aggregated computing platform. The SETI project was the first major proof of concept of that ages ago. Today, we take peer to peer networks for granted. When the activist group is ‘the liberal left’ or ‘the far right’, that adds up to a large number of machines so the power available for any campaign is notionally very large. Harnessing it doesn’t need IT skill from contributors. All they’d need to do is click a box on a email or tweet asking for their support for a campaign.

In our new ‘post-fact’, fake news era, all sides are willing and able to use social media and the infamous MSM to damage the other side. Fakes are becoming better. Latest AI can imitate your voice, a chat-bot can decide what it should say after other AI has recognized what someone has said and analysed the opportunities to ruin your relationship with them by spoofing you. Today, that might not be quite credible. Give it a couple more years and you won’t be able to tell. Next generation AI will be able to spoof your face doing the talking too.

AI can (and will) evolve. Deep learning researchers have been looking deeply at how the brain thinks, how to make neural networks learn better and to think better, how to design the next generation to be even smarter than humans could have designed it.

As my friend and robotic psychiatrist Joanne Pransky commented after my first piece, “It seems to me that the real challenge of AI is the human users, their ethics and morals (Their ‘HOS’ – Human Operating System).” Quite! Each group will indoctrinate their AI to believe their ethics and morals are right, and that the other lot are barbarians. Even evolutionary AI is not immune to religious or ideological bias as it evolves. Superhuman AI will be superhuman, but might believe even more strongly in a cause than humans do. You’d better hope the best AI is on your side.

AI can put articles, blogs and tweets out there, pretending to come from you or your friends, colleagues or contacts. They can generate plausible-sounding stories of what you’ve done or said, spoof emails in fake accounts using your ID to prove them.

So we’ll likely see activist AI armies set against each other, running on peer to peer processing clouds, encrypted to hell and back to prevent dismantling. We’ve all thought about cyber-warfare, but we usually only think about viruses or keystroke recorders, or more lately, ransom-ware. These will still be used too as small weapons in future cyber-warfare, but while losing files or a few bucks from an account is a real nuisance, losing your reputation, having it smeared all over the web, with all your contacts being told what you’ve done or said, and shown all the evidence, there is absolutely no way you could possible explain your way convincingly out of every one of those instances. Mud does stick, and if you throw tons of it, even if most is wiped off, much will remain. Trust is everything, and enough doubt cast will eventually erode it.

So, we’ve seen  many times through history the damage people are willing to do to each other in pursuit of their ideology. The Khmer Rouge had their killing fields. As political divide increases and battles become fiercer, the next 10 years will give us The Libel Fields.

You are an intellectual. You are one of the targets.

Oh dear!

 

AI and activism, a Terminator-sized threat targeting you soon

You should be familiar with the Terminator scenario. If you aren’t then you should watch one of the Terminator series of films because you really should be aware of it. But there is another issue related to AI that is arguably as dangerous as the Terminator scenario, far more likely to occur and is a threat in the near term. What’s even more dangerous is that in spite of that, I’ve never read anything about it anywhere yet. It seems to have flown under our collective radar and is already close.

In short, my concern is that AI is likely to become a heavily armed Big Brother. It only requires a few components to come together that are already well in progress. Read this, and if you aren’t scared yet, read it again until you understand it 🙂

Already, social media companies are experimenting with using AI to identify and delete ‘hate’ speech. Various governments have asked them to do this, and since they also get frequent criticism in the media because some hate speech still exists on their platforms, it seems quite reasonable for them to try to control it. AI clearly offers potential to offset the huge numbers of humans otherwise needed to do the task.

Meanwhile, AI is already used very extensively by the same companies to build personal profiles on each of us, mainly for advertising purposes. These profiles are already alarmingly comprehensive, and increasingly capable of cross-linking between our activities across multiple platforms and devices. Latest efforts by Google attempt to link eventual purchases to clicks on ads. It will be just as easy to use similar AI to link our physical movements and activities and future social connections and communications to all such previous real world or networked activity. (Update: Intel intend their self-driving car technology to be part of a mass surveillance net, again, for all the right reasons: http://www.dailymail.co.uk/sciencetech/article-4564480/Self-driving-cars-double-security-cameras.html)

Although necessarily secretive about their activities, government also wants personal profiles on its citizens, always justified by crime and terrorism control. If they can’t do this directly, they can do it via legislation and acquisition of social media or ISP data.

Meanwhile, other experiences with AI chat-bots learning to mimic human behaviors have shown how easily AI can be gamed by human activists, hijacking or biasing learning phases for their own agendas. Chat-bots themselves have become ubiquitous on social media and are often difficult to distinguish from humans. Meanwhile, social media is becoming more and more important throughout everyday life, with provably large impacts in political campaigning and throughout all sorts of activism.

Meanwhile, some companies have already started using social media monitoring to police their own staff, in recruitment, during employment, and sometimes in dismissal or other disciplinary action. Other companies have similarly started monitoring social media activity of people making comments about them or their staff. Some claim to do so only to protect their own staff from online abuse, but there are blurred boundaries between abuse, fair criticism, political difference or simple everyday opinion or banter.

Meanwhile, activists increasingly use social media to force companies to sack a member of staff they disapprove of, or drop a client or supplier.

Meanwhile, end to end encryption technology is ubiquitous. Malware creation tools are easily available.

Meanwhile, successful hacks into large company databases become more and more common.

Linking these various elements of progress together, how long will it be before activists are able to develop standalone AI entities and heavily encrypt them before letting them loose on the net? Not long at all I think.  These AIs would search and police social media, spotting people who conflict with the activist agenda. Occasional hacks of corporate databases will provide names, personal details, contacts. Even without hacks, analysis of publicly available data going back years of everyone’s tweets and other social media entries will provide the lists of people who have ever done or said anything the activists disapprove of.

When identified, they would automatically activate armies of chat-bots, fake news engines and automated email campaigns against them, with coordinated malware attacks directly on the person and indirect attacks by communicating with employers, friends, contacts, government agencies customers and suppliers to do as much damage as possible to the interests of that person.

Just look at the everyday news already about alleged hacks and activities during elections and referendums by other regimes, hackers or pressure groups. Scale that up and realize that the cost of running advanced AI is negligible.

With the very many activist groups around, many driven with extremist zeal, very many people will find themselves in the sights of one or more activist groups. AI will be able to monitor everyone, all the time.  AI will be able to target each of them at the same time to destroy each of their lives, anonymously, highly encrypted, hidden, roaming from server to server to avoid detection and annihilation, once released, impossible to retrieve. The ultimate activist weapon, that carries on the fight even if the activist is locked away.

We know for certain the depths and extent of activism, the huge polarization of society, the increasingly fierce conflict between left and right, between sexes, races, ideologies.

We know about all the nice things AI will give us with cures for cancer, better search engines, automation and economic boom. But actually, will the real future of AI be harnessed to activism? Will deliberate destruction of people’s everyday lives via AI be a real problem that is almost as dangerous as Terminator, but far more feasible and achievable far earlier?

AI is mainly a stimulative technology that will create jobs

AI has been getting a lot of bad press the last few months from doom-mongers predicting mass unemployment. Together with robotics, AI will certainly help automate a lot of jobs, but it will also create many more and will greatly increase quality of life for most people. By massively increasing the total effort available to add value to basic resources, it will increase the size of the economy and if that is reasonably well managed by governments, that will be for all our benefit. Those people who do lose their jobs and can’t find or create a new one could easily be supported by a basic income financed by economic growth. In short, unless government screws up, AI will bring huge benefits, far exceeding the problems it will bring.

Over the last 20 years, I’ve often written about the care economy, where the more advanced technology becomes, the more it allows to concentrate on those skills we consider fundamentally human – caring, interpersonal skills, direct human contact services, leadership, teaching, sport, the arts, the sorts of roles that need emphatic and emotional skills, or human experience. AI and robots can automate intellectual and physical tasks, but they won’t be human, and some tasks require the worker to be human. Also, in most careers, it is obvious that people focus less and less on those automatable tasks as they progress into the most senior roles. Many board members in big companies know little about the industry they work in compared to most of their lower paid workers, but they can do that job because being a board member is often more about relationships than intellect.

AI will nevertheless automate many tasks for many workers, and that will free up much of their time, increasing their productivity, which means we need fewer workers to do those jobs. On the other hand, Google searches that take a few seconds once took half a day of research in a library. We all do more with our time now thanks to such simple AI, and although all those half-days saved would add up to a considerable amount of saved work, and many full-time job equivalents, we don’t see massive unemployment. We’re all just doing better work. So we can’t necessarily conclude that increasing productivity will automatically mean redundancy. It might just mean that we will do even more, even better, like it has so far. Or at least, the volume of redundancy might be considerably less. New automated companies might never employ people in those roles and that will be straight competition between companies that are heavily automated and others that aren’t. Sometimes, but certainly not always, that will mean traditional companies will go out of business.

So although we can be sure that AI and robots will bring some redundancy in some sectors, I think the volume is often overestimated and often it will simply mean rapidly increasing productivity, and more prosperity.

But what about AI’s stimulative role? Jobs created by automation and AI. I believe this is what is being greatly overlooked by doom-mongers. There are three primary areas of job creation:

One is in building or programming robots, maintaining them, writing software, or teaching them skills, along with all the associated new jobs in supporting industry and infrastructure change. Many such jobs will be temporary, lasting a decade or so as machines gradually take over, but that transition period is extremely valuable and important. If anything, it will be a lengthy period of extra jobs and the biggest problem may well be filling those jobs, not widespread redundancy.

Secondly, AI and robots won’t always work direct with customers. Very often they will work via a human intermediary. A good example is in medicine. AI can make better diagnoses than a GP, and could be many times cheaper, but unless the patient is educated, and very disciplined and knowledgeable, it also needs a human with human skills to talk to a patient to make sure they put in correct information. How many times have you looked at an online medical diagnosis site and concluded you have every disease going? It is hard to be honest sometimes when you are free to interpret every possible symptom any way you want, much easier to want to be told that you have a special case of wonderful person syndrome. Having to explain to a nurse or technician what is wrong forces you to be more honest about it. They can ask you similar questions, but your answers will need to be moderated and sensible or you know they might challenge you and make you feel foolish. You will get a good diagnosis because the input data will be measured, normalized and scaled appropriately for the AI using it. When you call a call center and talk to a human, invariably they are already the front end of a massive AI system. Making that AI bigger and better won’t replace them, just mean that they can deal with your query better.

Thirdly, and I believe most importantly of all, AI and automation will remove many of the barriers that stop people being entrepreneurs. How many business ideas have you had and not bothered to implement because it was too much effort or cost or both for too uncertain a gain? 10? 100? 1000? Suppose you could just explain your idea to your home AI and it did it all for you. It checked the idea, made a model, worked out how to make it work or whether it was just a crap idea. It then explained to you what the options were and whether it would be likely to work, and how much you might earn from it, and how much you’d actually have to do personally and how much you could farm out to the cloud. Then AI checked all the costs and legal issues, did all the admin, raised the capital by explaining the idea and risks and costs to other AIs, did all the legal company setup, organised the logistics, insurance, supply chains, distribution chains, marketing, finance, personnel, ran the payroll and tax. All you’d have to do is some of the fun work that you wanted to do when you had the idea and it would find others or machines or AI to fill in the rest. In that sort of world, we’d all be entrepreneurs. I’d have a chain of tea shops and a fashion empire and a media empire and run an environmental consultancy and I’d be an artist and a designer and a composer and a genetic engineer and have a transport company and a construction empire. I don’t do any of that because I’m lazy and not at all entrepreneurial, and my ideas all ‘need work’ and the economy isn’t smooth and well run, and there are too many legal issues and regulations and it would all be boring as hell. If we automate it and make it run efficiently, and I could get as much AI assistance as I need or want at every stage, then there is nothing to stop me doing all of it. I’d create thousands of jobs, and so would many other people, and there would be more jobs than we have people to fill them, so we’d need to build even more AI and machines to fill the gaps caused by the sudden economic boom.

So why the doom? It isn’t justified. The bad news isn’t as bad as people make out, and the good news never gets a mention. Adding it together, AI will stimulate more jobs, create a bigger and a better economy, we’ll be doing far more with our lives and generally having a great time. The few people who will inevitably fall through the cracks could easily be financed by the far larger economy and the very generous welfare it can finance. We can all have the universal basic income as our safety net, but many of us will be very much wealthier and won’t need it.

 

Google v Facebook – which contributes most to humanity?

Please don’t take this too seriously, it’s intended as just a bit of fun. All of it is subjective and just my personal opinion of the two companies.

Google’s old motto of ‘do no evil’ has taken quite a battering over the last few years, but my overall feeling towards them remains somewhat positive overall. Facebook’s reputation has also become muddied somewhat, but I’ve never been an active user and always found it supremely irritating when I’ve visited to change privacy preferences or read a post only available there, so I guess I am less positive towards them. I only ever post to Facebook indirectly via this blog and twitter. On the other hand, both companies do a lot of good too. It is impossible to infer good or bad intent because end results arise from a combination of intent and many facets of competence such as quality of insight, planning, competence, maintenance, response to feedback and many others. So I won’t try to differentiate intent from competence and will just stick to casual amateur observation of the result. In order to facilitate score-keeping of the value of their various acts, I’ll use a scale from very harmful to very beneficial, -10 to +10.

Google (I can’t bring myself to discuss Alphabet) gave us all an enormous gift of saved time, improved productivity and better self-fulfilment by effectively replacing a day in the library with a 5 second online search. We can all do far more and live richer lives as a result. They have continued to build on that since, adding extra features and improved scope. It’s far from perfect, but it is a hell of a lot better than we had before. Score: +10

Searches give Google a huge and growing data pool covering the most intimate details of every aspect of our everyday lives. You sort of trust them not to blackmail you or trash your life, but you know they could. The fact remains that they actually haven’t. It is possible that they might be waiting for the right moment to destroy the world, but it seems unlikely. Taking all our intimate data but choosing not to end the world yet: Score +9

On the other hand, they didn’t do either of those things purely through altruism. We all pay a massive price: advertising. Advertising is like a tax. Almost every time you buy something, part of the price you pay goes to advertisers. I say almost because Futurizon has never paid a penny yet for advertising and yet we have sold lots, and I assume that many other organisations can say the same, but most do advertise, and altogether that siphons a huge amount from our economy. Google takes lots of advertising revenue, but if they didn’t take it, other advertisers would, so I can only give a smallish negative for that: Score -3

That isn’t the only cost though. We all spend very significant time getting rid of ads, wasting time by clicking on them, finding, downloading and configuring ad-blockers to stop them, re-configuring them to get entry to sites that try to stop us from using ad-blockers, and often paying per MB for unsolicited ad downloads to our mobiles. I don’t need to quantify that to give all that a score of -9.

They are still 7 in credit so they can’t moan too much.

Tax? They seem quite good at minimizing their tax contributions, while staying within the letter of the law, while also paying good lawyers to argue what the letter of the law actually says. Well, most of us try at least a bit to avoid paying taxes we don’t have to pay. Google claims to be doing us all a huge favor by casting light on the gaping holes in international tax law that let them do it, much like a mugger nicely shows you the consequences of inadequate police coverage by enthusiastically mugging you. Noting the huge economic problems caused across the world by global corporates paying far less tax than would seem reasonable to the average small-business-owner, I can’t honestly see how this could live comfortably with their do-no evil mantra. Score: -8

On the other hand, if they paid all that tax, we all know governments would cheerfully waste most of it. Instead, Google chooses to do some interesting things with it. They gave us Google Earth, which at least morally cancels out their ‘accidental’ uploading of everyone’s wireless data as their street-view cars went past.They have developed self-driving cars. They have bought and helped develop Deep-mind and their quantum computer. They have done quite a bit for renewable energy. They have spent some on high altitude communications planes supposedly to bring internet to the rural parts of the developing world. When I were a lad, I wanted to be a rich bastard so I could do all that. Now, I watch as the wealthy owners of these big companies do it instead. I am fairly happy with that. I get the results and didn’t have to make the effort. We get less tax, but at least we get some nice toys. Almost cancels. Score +6

They are trying to use their AI to analyse massive data pools of medical records to improve medicine. Score +2

They are also building their databases more while doing that but we don’t yet see the downside. We have to take what they are doing on trust until evidence shows otherwise.

Google has tried and failed at many things that were going to change the world and didn’t, but at least they tried. Most of us don’t even try. Score +2

Oh yes, they bought YouTube, so I should factor that in. Mostly harmless and can be fun. Score: +2

Almost forgot Gmail too. Score +3

I’m done. Total Google contribution to humanity: +14

Well done! Could do even better.

I’ve almost certainly overlooked some big pluses and minuses, but I’ll leave it here for now.

Now Facebook.

It’s obviously a good social network site if you want that sort of thing. It lets people keep in touch with each other, find old friends and make new ones. It lets others advertise their products and services, and others to find or spread news. That’s all well and good and even if I and many other people don’t want it, many others do, so it deserves a good score, even if it isn’t as fantastic as Google’s search, that almost everyone uses, all the time. Score +5

Connected, but separate from simply keeping in touch, is the enormous pleasure value people presumably get from socializing. Not me personally, but ‘people’. Score +8

On the downside: Quite a lot of problems result from people, especially teens, spending too much time on Facebook. I won’t reproduce the results of all the proper academic  studies here, but we’ve all seen various negative reports: people get lower grades in their exams, people get bullied, people become socially competitive – boasting about their successes while other people feel insecure or depressed when others seem to be doing better, or are prettier, or have more friends. Keeping in touch is good, but cutting bits off others’ egos to build your own isn’t. It is hard not to conclude that the negative uses of keeping in touch outweigh the positive ones. Long-lived bad-feelings outweigh short-lived ego-boosts. Score: -8

Within a few years of birth, Facebook evolved from a keeping-in-touch platform to a general purpose mini-web. Many people were using Facebook to do almost everything that others would do on the entire web. Being in a broom cupboard is fine for 5 minutes if you’re playing hide and seek, but it is not desirable as a permanent state. Still, it is optional, so isn’t that bad per se: Score: -3

In the last 2 or 3 years, it has evolved further, albeit probably unintentionally, to become a political bubble, as has become very obvious in Brexit and the US Presidential Election, though it was already apparent well before those. Facebook may not have caused the increasing divide we are seeing between left and right, across the whole of the West, but it amplifies it. Again, I am not implying any intent, just observing the result. Most people follow people and media that echoes their own value judgments. They prefer resonance to dissonance. They prefer to have their views reaffirmed than to be disputed. When people find a comfortable bubble where they feel they belong, and stay there, it is easy for tribalism to take root and flourish, with demonization of the other not far behind. We are now seeing that in our bathtub society, with two extremes and a rapidly shallowing in-between that was not long ago the vast majority. Facebook didn’t create human nature; rather, it is a victim of it, but nonetheless it provides a near-monopoly social network that facilitates such political bubbles and their isolation while doing far too little to encourage integration in spite of its plentiful resources. Dangerous and Not Good. Score -10

On building databases of details of our innermost lives, managing not to use the data to destroy our lives but instead only using it to sell ads, they compare with Google. I’ll score that the same total for the same reasons: Net Score -3

Tax? Quantities are different, but eagerness to avoid tax seems similar to Google. Principles matter. So same score: -8

Assorted messaging qualifies as additional to the pure social networking side I think so I’ll generously give them an extra bit for that: Score +2

They occasionally do good things with it like Google though. They also are developing a high altitude internet, and are playing with space exploration. Tiny bit of AI stuff, but not much else has crossed my consciousness. I think it is far less than Google but still positive, so I’ll score: +3

I honestly can’t think of any other significant contributions from Facebook to make the balance more positive, and I tried. I think they want to make a positive contribution, but are too focused on income to tackle the social negatives properly.

Total Facebook contribution to humanity: -14.

Oh dear! Must do better.

Conclusion: We’d be a lot worse off without Google. Even with their faults, they still make a great contribution to humankind. Maybe not quite a ‘do no evil’ rating, but certainly they qualify for ‘do net good’. On the other hand, sadly, I have to say that my analysis suggests we’d be a lot better off without Facebook. As much better off without them as we benefit by having Google.

If I have left something major out, good or bad, for either company please feel free to add your comments. I have deliberately left out their backing of their own political leanings and biases because whether you think they are good or bad depends where you are coming from. They’d only score about +/-3 anyway, which isn’t a game changer.

 

 

Fluorescent microsphere mist displays

A few 3D mist displays have been demonstrated over the last decade. I’ve seen a couple at trade shows and have been impressed. To date, they use mists or curtains of tiny water droplets to make a 3D space onto which to project an image, so you get a walk-through 3D life-sized display. Like this:

Leia Display System Uses A Screen Made Of Water Mist To Display 3D Projections

or check out: http://ixfocus.com/top-10-best-3d-water-projections-ever/

Two years ago, I suggested using a forehead-mounted mist projector:

Forehead 3D mist projector

so you could have a 3D image made right in front of you anywhere.

This week, a holographic display has been doing the rounds on Twitter, called Gatebox:

https://www.geek.com/tech/gatebox-wants-to-be-your-personal-holographic-companion-1682967/

It looks OK but mist displays might be better solution for everyday use because they can be made a lot bigger more cheaply. However, nobody really wants water mist causing electrical problems in their PCs or making their notebook paper soggy. You can use smoke as a mist substitute but then you have a cloud of smoke around you. So…

Suppose instead of using water droplets and walking around veiled in fog or smoke or accompanied by electrical crackling and dead PCs, that the mist was not made of water droplets but tiny dry and obviously non-toxic particles such as fluorescent micro-spheres that are invisible to the naked eye and transparent to visible light so you can’t see the mist at all, and it won’t make stuff damp. Instead of projecting visible light, the particles are made of fluorescent material, so that they are illuminated by a UV projector and fluoresce with the right colour to make the visible display. There are plenty of fluorescent materials that could be made into tiny particles, even nano-particles, and made into an invisible mist that produces a bright and high-resolution display. Even if non-toxic is too big an ask, or the fluorescent material is too expensive to waste, a large box that keeps them contained and recycles them for the next display could still be bigger, better, brighter and cheaper than a large holographic display.

Remember, you saw it here first. My 101st invention of 2016.

Chat-bots will help reduce loneliness, a bit

Amazon is really pushing its Echo and Dot devices at the moment and some other companies also use Alexa in their own devices. They are starting to gain avatar front ends too. Microsoft has their Cortana transforming into Zo, Apple has Siri’s future under wraps for now. Maybe we’ll see Siri in a Sari soon, who knows. Thanks to rapidly developing AI, chatbots and other bots have also made big strides in recent years, so it’s obvious that the two can easily be combined. The new voice control interfaces could become chatbots to offer a degree of companionship. Obviously that isn’t as good as chatting to real people, but many, very many people don’t have that choice. Loneliness is one of the biggest problems of our time. Sometimes people talk to themselves or to their pet cat, and chatting to a bot would at least get a real response some of the time. It goes further than simple interaction though.

I’m not trying to understate the magnitude of the loneliness problem, and it can’t solve it completely of course, but I think it will be a benefit to at least some lonely people in a few ways. Simply having someone to chat to will already be of some help. People will form emotional relationships with bots that they talk to a lot, especially once they have a visual front end such as an avatar. It will help some to develop and practice social skills if that is their problem, and for many others who feel left out of local activity, it might offer them real-time advice on what is on locally in the next few days that might appeal to them, based on their conversations. Talking through problems with a bot can also help almost as much as doing so with a human. In ancient times when I was a programmer, I’d often solve a bug by trying to explain how my program worked, and in doing so i would see the bug myself. Explaining it to a teddy bear would have been just as effective, the chat was just a vehicle for checking through the logic from a new angle. The same might apply to interactive conversation with a bot. Sometimes lonely people can talk too much about problems when they finally meet people, and that can act as a deterrent to future encounters, so that barrier would also be reduced. All in all, having a bot might make lonely people more able to get and sustain good quality social interactions with real people, and make friends.

Another benefit that has nothing to do with loneliness is that giving a computer voice instructions forces people to think clearly and phrase their requests correctly, just like writing a short computer program. In a society where so many people don’t seem to think very clearly or even if they can, often can’t express what they want clearly, this will give some much needed training.

Chatbots could also offer challenges to people’s thinking, even to help counter extremism. If people make comments that go against acceptable social attitudes or against known facts, a bot could present the alternative viewpoint, probably more patiently than another human who finds such viewpoints frustrating. I’d hate to see this as a means to police political correctness, though it might well be used in such a way by some providers, but it could improve people’s lack of understanding of even the most basic science, technology, culture or even politics, so has educational value. Even if it doesn’t convert people, it might at least help them to understand their own views more clearly and be better practiced at communicating their arguments.

Chat bots could make a significant contribution to society. They are just machines, but those machines are tools for other people and society as a whole to help more effectively.

 

AI presents a new route to attack corporate value

As AI increases in corporate, social, economic and political importance, it is becoming a big target for activists and I think there are too many vulnerabilities. I think we should be seeing a lot more articles than we are about what developers are doing to guard against deliberate misdirection or corruption, and already far too much enthusiasm for make AI open source and thereby giving mischief-makers the means to identify weaknesses.

I’ve written hundreds of times about AI and believe it will be a benefit to humanity if we develop it carefully. Current AI systems are not vulnerable to the terminator scenario, so we don’t have to worry about that happening yet. AI can’t yet go rogue and decide to wipe out humans by itself, though future AI could so we’ll soon need to take care with every step.

AI can be used in multiple ways by humans to attack systems.

First and most obvious, it can be used to enhance malware such as trojans or viruses, or to optimize denial of service attacks. AI enhanced security systems already battle against adaptive malware and AI can probe systems in complex ways to find vulnerabilities that would take longer to discover via manual inspection. As well as AI attacking operating systems, it can also attack AI by providing inputs that bias its learning and decision-making, giving AI ‘fake news’ to use current terminology. We don’t know the full extent of secret military AI.

Computer malware will grow in scope to address AI systems to undermine corporate value or political campaigns.

A new route to attacking corporate AI, and hence the value in that company that relates in some way to it is already starting to appear though. As companies such as Google try out AI-driven cars or others try out pavement/sidewalk delivery drones, so mischievous people are already developing devious ways to misdirect or confuse them. Kids will soon have such activity as hobbies. Deliberate deception of AI is much easier when people know how they work, and although it’s nice for AI companies to put their AI stuff out there into the open source markets for others to use to build theirs, that does rather steer future systems towards a mono-culture of vulnerability types. A trick that works against one future AI in one industry might well be adaptable to another use in another industry with a little devious imagination. Let’s take an example.

If someone builds a robot to deliberately step in front of a self-driving car every time it starts moving again, that might bring traffic to a halt, but police could quickly confiscate the robot, and they are expensive, a strong deterrent even if the pranksters are hiding and can’t be found. Cardboard cutouts might be cheaper though, even ones with hinged arms to look a little more lifelike. A social media orchestrated campaign against a company using such cars might involve thousands of people across a country or city deliberately waiting until the worst time to step out into a road when one of their vehicles comes along, thereby creating a sort of denial of service attack with that company seen as the cause of massive inconvenience for everyone. Corporate value would obviously suffer, and it might not always be very easy to circumvent such campaigns.

Similarly, the wheeled delivery drones we’ve been told to expect delivering packages any time soon will also have cameras to allow them to avoid bumping into objects or little old ladies or other people, or cats or dogs or cardboard cutouts or carefully crafted miniature tank traps or diversions or small roadblocks that people and pets can easily step over but drones can’t, that the local kids have built from a few twigs or cardboard from a design that has become viral that day. A few campaigns like that with the cold pizzas or missing packages that result could severely damage corporate value.

AI behind websites might also be similarly defeated. An early experiment in making a Twitter chat-bot that learns how to tweet by itself was quickly encouraged by mischief-makers to start tweeting offensively. If people have some idea how an AI is making its decisions, they will attempt to corrupt or distort it to their own ends. If it is heavily reliant on open source AI, then many of its decision processes will be known well enough for activists to develop appropriate corruption tactics. It’s not to early to predict that the proposed AI-based attempts by Facebook and Twitter to identify and defeat ‘fake news’ will fall right into the hands of people already working out how to use them to smear opposition campaigns with such labels.

It will be a sort of arms race of course, but I don’t think we’re seeing enough about this in the media. There is a great deal of hype about the various AI capabilities, a lot of doom-mongering about job cuts (and a lot of reasonable warnings about job cuts too) but very little about the fight back against AI systems by attacking them on their own ground using their own weaknesses.

That looks to me awfully like there isn’t enough awareness of how easily they can be defeated by deliberate mischief or activism, and I expect to see some red faces and corporate account damage as a result.

PS

This article appeared yesterday that also talks about the bias I mentioned: https://techcrunch.com/2016/12/10/5-unexpected-sources-of-bias-in-artificial-intelligence/

Since I wrote this blog, I was asked via Linked-In to clarify why I said that Open Source AI systems would have more security risk. Here is my response:

I wasn’t intending to heap fuel on a dying debate (though since current debate looks the same as in early 1990s it is dying slowly). I like and use open source too. I should have explained my reasoning better to facilitate open source checking: In regular (algorithmic) code, programming error rate should be similar so increasing the number of people checking should cancel out the risk from more contributors so there should be no a priori difference between open and closed. However:

In deep learning, obscurity reappears via neural net weightings being less intuitive to humans. That provides a tempting hiding place.

AI foundations are vulnerable to group-think, where team members share similar world models. These prejudices will affect the nature of OS and CS code and result in AI with inherent and subtle judgment biases which will be less easy to spot than bugs and be more visible to people with alternative world models. Those people are more likely to exist in an OS pool than a CS pool and more likely to be opponents so not share their results.

Deep learning may show the equivalent of political (or masculine and feminine). As well as encouraging group-think, that also distorts the distribution of biases and therefore the cancelling out of errors can no longer be assumed.

Human factors in defeating security often work better than exploiting software bugs. Some of the deep learning AI is designed to mimic humans as well as possible in thinking and in interfacing. I suspect that might also make them more vulnerable to meta-human-factor attacks. Again, exposure to different and diverse cultures will show a non-uniform distribution of error/bias spotting/disclosure/exploitation.

Deep learning will become harder for humans to understand as it develops and becomes more machine dependent. That will amplify the above weaknesses. Think of optical illusions that greatly distort human perception and think of similar in advanced AI deep learning. Errors or biases that are discovered will become more valuable to an opponent since they are less likely to be spotted by others, increasing their black market exploitation risk.

I have not been a programmer for over 20 years and am no security expert so my reasoning may be defective, but at least now you know what my reasoning was and can therefore spot errors in it.

Colour changing cars, everyday objects and makeup

http://www.theverge.com/2016/11/24/13740946/dutch-scientists-use-color-changing-graphene-bubbles-to-create-mechanical-pixels shows how graphene can be used to make displays with each pixel changing colour according to mechanical deformation.

Meanwhile, Lexus have just created a car with a shell covered in LEDs so it can act as a massive display.

http://www.theverge.com/2016/12/5/13846396/lexus-led-lit-is-colors-dua-lipa-vevo

In 2014 I wrote about using polymer LED displays for future Minis so it’s nice to see another prediction come true.

Looking at the mechanical pixels though, it is clear that mechanical pixels could respond directly to sound, or to turbulence of passing air, plus other vibration that arises from motion on a road surface, or the engine. Car panel colours could change all the time powered by ambient energy. Coatings on any solid objects could follow, so people might have plenty of shimmering colours in their everyday environment. Could. Not sure I want it, but they could.

With sound as a control system, sound wave generators at the edges or underneath such surfaces could produce a wide variety of pleasing patterns. We could soon have furniture that does a good impression of being a cuttlefish.

I often get asked about smart makeup, on which I’ve often spoken since the late 90s. Thin film makeup displays could use this same tech. So er, we could have people with makeup pretending to be cuttlefish too. I think I’ll quit while I’m ahead.

Can we automate restaurant reviews?

Reviews are an important part of modern life. People often consult reviews before buying things, visiting a restaurant or booking a hotel. There are even reviews on the best seats to choose on planes. When reviews are honestly given, they can be very useful to potential buyers, but what if they aren’t honestly give? What if they are glowing reviews written by friends of the restaurant owners, or scathing reviews written by friends of the competition? What if the service received was fine, but the reviewer simply didn’t like the race or gender of the person delivering it? Many reviews fall into these categories, but of course we can’t be sure how many, because when someone writes a review, we don’t know whether they were being honest or not, or whether they are biased or not. Adding a category of automated reviews would add credibility provided the technology is independent of the establishment concerned.

Face recognition software is now so good that it can read lips better than human lip reading experts. It can be used to detect emotions too, distinguishing smiles or frowns, and whether someone is nervous, stressed or relaxed. Voice recognition can discern not only words but changes in pitch and volume that might indicate their emotional context. Wearable devices can also detect emotions such as stress.

Given this wealth of technology capability, cameras and microphones in a restaurant could help verify human reviews and provide machine reviews. Using the checking in process it can identify members of a group that might later submit a review, and thus compare their review with video and audio records of the visit to determine whether it seems reasonably true. This could be done by machine using analysis of gestures, chat and facial expressions. If the person giving a poor review looked unhappy with the taste of the food while they were eating it, then it is credible. If their facial expression were of sheer pleasure and the review said it tasted awful, then that review could be marked as not credible, and furthermore, other reviews by that person could be called into question too. In fact, guests would in effect be given automated reviews of their credibility. Over time, a trust rating would accrue, that could be used to group other reviews by credibility rating.

Totally automated reviews could also be produced, by analyzing facial expressions, conversations and gestures across a whole restaurant full of people. These machine reviews would be processed in the cloud by trusted review companies and could give star ratings for restaurants. They could even take into account what dishes people were eating to give ratings for each dish, as well as more general ratings for entire chains.

Service could also be automatically assessed to some degree too. How long were the people there before they were greeted/served/asked for orders/food delivered. The conversation could even be automatically transcribed in many cases, so comments about rudeness or mistakes could be verified.

Obviously there are many circumstances where this would not work, but there are many where it could, so AI might well become an important player in the reviews business. At a time when restaurants are closing due to malicious bad reviews, or ripping people off in spite of poor quality thanks to dishonest positive reviews, then this might help a lot. A future where people are forced to be more honest in their reviews because they know that AI review checking could damage their reputation if they are found to have been dishonest might cause some people to avoid reviewing altogether, but it could improve the reliability of the reviews that still do happen.

Still not perfect, but it could be a lot better than today, where you rarely know how much a review can be trusted.

Sky-lines – The Solar Powered Future of Air Travel

High altitude solar array to power IT and propel planes

High altitude solar array to power IT and propel planes

A zero carbon air travel solution. Well, most of the bits would be made of carbon materials, but it wouldn’t emit any CO2.

The pic says it all. A linear solar farm suspended in the high atmosphere to provide an IT platform for sensors, comms and other functions often accomplished by low orbit satellite. It would float up there thanks to being fixed to a graphene foam base layer that can be made lighter than helium (my previous invention, see https://timeguide.wordpress.com/2013/01/05/could-graphene-foam-be-a-future-helium-substitute/ which has since been prototyped and proven to be extremely resilient to high pressures too). Ideally, it would go all the way around the world, in various inclinations at different altitudes to provide routes to many places. Carbon materials are also incredibly strong so the line can be made as strong as can reasonably be required.

The flotation layer also supports a hypersonic linear induction motor that could provide direct propulsion to a hypersonic glider or to electric fans on a powered plane. Obviously this could also provide a means of making extremely low earth orbit satellites that continuously circumnavigate the ring.

I know you’re asking already how the planes get up there. There are a few solutions. Tethers could come all the way to ground level to airports, and electric engines would be used to get to height where the plane would pick up a sled-link.

Alternatively, stronger links to the ground would allow planes to be pulled up by sleds, though this would likely be less feasible.

Power levels? Well, the engines on a Boeing 777 generate about 8.25MW. A high altitude solar cell, above clouds could generate 300W per square metre. So a 777 equivalent plane needs 55km of panels if the line is just one metre wide. That means planes need to be at least that distance apart, but since that equates to around a minute, that is no barrier at all.

If you still doubt this, the Hyperloop was just a crazy idea a century ago too.

We need to reset society by bursting the bubbles

Looking at the state of democracy across the whole of The West right now, we are in deep poo.

I’ve written often about my concern that tribalism is increasing, that the live-and-let-live attitudes that used to prevail have been evaporation, that people are too quick and too willing to be aggressive against those with whom they disagree,  that common civility and manners are vanishing from politics, and that if we continue, we will end up with the Great Western War, essentially a civil war between an increasingly polarized Left and Right. Although I’ve never been sure about how fast the speed of change would get there, I’ve usually estimated mid-century or soon after.

Recent trends do not encourage optimism. In many cases, people are actually proud of their intolerance of the other side, proud to wear it as a badge. Even more ridiculously many of them call holding such a set of attitudes ‘love’, accusing the other side of being ‘haters’ even as they go out rioting against their existence and vowing never to live peacefully side by side with them because they stand for ‘hate’. It doesn’t bode well for peace, or for language. The love on display in the #lovetrumpshate demos is a doubleplusgood love, 1984 doublespeak for hatred and despising of ‘the other’, not the sort we used to understand. This new ‘love’ is love for those with who you share allegiance, and a deep hatred for everyone else. The very dangerous sort of love that wars are made from. The love I was brought up to understand is a love for others that doesn’t depend on who they are or what they believe. The sort that hates sin but loves the sinner. That’s actually a hard thing to understand and a tough principle to live by but many generations managed to do that. You may disagree with what someone says or does, but you can still love them as a person. That is love, not ‘intolerance of intolerance’, or ‘hating haters’. When you hate others for who they are, even if you rationalize that as being because they are evil, war is a short step away. In rare occasions, such as when it’s Hitler, doing what he did, then war is justified and we actually do take up arms.

If I only had friends I agreed with, I’d have none at all. I disagree often with many of the people who I follow or who follow me, but I am very happy to share the planet with them and to get on as best we can. Thankfully, almost all share that same view and accept me with all my differences. I hardly ever get trolled or called names. I sometimes tease, and sometimes get teased, sometimes I point out a few home truths and sometimes people point out a few of my faults too. And that’s about the limit for what should happen in civil society.

If you really do want a war and you’re prepared to kill others and die yourself for it, then fine, but have a good think about that first. If you’ve never lived through violent conflict first hand, and the nearest you’ve ever got is using a hashtag, waving a banner, emoting or virtue signalling, then grow up, get out of your playpen or safe space, and start behaving like a civilized adult. That involves discussion of tough ideas, it often involves looking at hard and unpleasant facts and it involves reaching very difficult compromises with other people, not just calling them names or sulking in a corner because you didn’t get your way. It’s the difference between being a kidult and an adult, the difference between a luvvie and a leader.

I don’t really need to labor that point, we all see this new intolerance and hatred every day now, whether it’s far right marches or far left ones, #lockherup or #lovetrumpshate, Brexiteers or Remainers, #blacklivesmatter or #alllivesmatter. I’ve said this stuff many times before. We need to learnt to get along. Sure, by all means gently tease the other lot, but accept that while you may not agree with them, they have just as much right to their views as you do to yours.

We may reasonably ask how we got to this state. When Thatcher was the most disliked PM the UK has ever elected, or when Reagan was elected, those who voted the other way accepted the result peacefully. They grieved and moaned a bit for sure, and argued against policies all the time of course, as they indeed should, but democracy carried on peacefully. When Tony Blair was elected, or Bill Clinton, or even George W Bush, it was still peaceful. Even when Obama was voted in just 8 years ago, it was still peaceful. The people who didn’t like it accepted that the pendulum would eventually swing back and they’d get their way again.

Some time during the last decade, the foundations of civilized society have badly eroded and collapse of the walls has started. If we don’t do some much-needed repair, then the Great Western War will go from an idea in a blog to reality.

There are several contributing factors. Replacement of religion by political correctness harnesses the religious zeal of a new convert to PC causes. The energy-intense fuel of sanctimony powers new-found hatred of their own community, as we see manifested in the white protesters whining about #whiteprivilege, cultural appropriation or joining the increasingly anti-white racist #blacklivesmatter movement. This is similar to the rejection of background, friends and family so often seen in new religious converts over the ages. Religion has declined quickly in recent years so this force is an important contributing factor, becoming a secular Spanish Inquisition.

But while secular religion substitution is a powerful force lying behind some of this new divide, it is not the strongest force. For that we need to look at the self-reinforcing social , information and cultural bubbles caused by social networking, and these are what really lie behind this divide growing over the last decade.

Social media such as Facebook provide a strongly insulated protected world where nobody ever needs to see views that differ from what they find comfortable. They are a safe space, a play pen, full of friends and same-thinking celebrities, full of being stroked, and safe from being attacked. Mostly anyway. They are therefore very dangerous places where group think is seeded, germinates and quickly matures, and where alternative views are kept away. Outside social media, the real media is populated and run by those who have become more polarized by these bubbles themselves, so the real media has also become far more polarized. People then watch channels they feel comfortable with and read papers that share the same spin preferences. So the social media and real media become aligned and a superbubble arises that accounts for the entirety of information input.

When people spend so much of their time in these bubbles and when they even get their news from them, filtered and spun to reinforce their existing groupthink, they can build an extremely distorted view of the world that bears little resemblance to reality. They may be wholly unaware of some events because their news source completely filters them out, or they might be aware of some other events, but via such spun reporting and presentation of the facts that they have no real understanding of hat actually happened. On the other side, another group is seeing different sets of events, or very different interpretations of the same ones. I read several newspapers every day, from different parts of the political spectrum, and I am often shocked by just how much difference there is in how they are interpreted and presented to readers. It really is no surprise that each side thinks of the other so badly, when although they are probably actually not very different people, they are seeing extremely different information. Even from the same set of events, people will come to very different conclusion if they only see some of what’s going on, and only though very distorted lenses and filters.

I’d therefore suggest that the biggest problem we face is not that half of the population are nasty horrible people who we should rightly refuse to peacefully co-exist with. The problem is that although the other side is really only slightly different from us, and probably share most of the same desires and values, and really only differ a bit on how best to achieve pretty much the same fair and free society we want, where the poor and unfortunate are protected as much as possible, and people can get on with living free and happy lives as they see fit, but are seeing extremely different information about what is going on because they are locked into different media and social media bubbles.

The problem therefore is the bubbles, not the people. Republicans and Brexiteers are actually not all uneducated misogynist omniphobic bigots. Democrats and Remainers are not all antisemitic antiwhite snowflake commies. A few on either side actually are, but most aren’t. Actually, almost everyone is quite a nice person who just wants to get on with life and will cheerfully help anyone else they can along the way. The problem is that each half thinks the other half are a bunch of idiots and nasties hellbent on wiping them out and destroying the world.

Social media was never meant to be the cause of division. We all imagined that networking would make the world a nicer place. We would all get to know each other better, learn that we’re really not that different, and peace would result. Actually, it has become a force for the amplification of tribalism.

I could speculate further that the deeper problem is advertising. Maybe the polarization has arisen because of self-reinforcement caused by tapping into small differences in personal preferences and pandering to them via advertising for commercial gain, thereby feeding them and making hem bigger. I could, but I need to develop that line of argument and leave it for another blog.

 

 

Future Augmented Reality

AR has been hot on the list of future IT tech for 25 years. It has been used for various things since smartphones and tablets appeared but really hit the big time with the recent Pokemon craze.

To get an idea of the full potential of augmented reality, recognize that the web and all its impacts on modern life came from the convergence of two medium sized industries – telecoms and computing. Augmented reality will involve the convergence of everything in the real world with everything in the virtual world, including games, media, the web, art, data, visualization, architecture, fashion and even imagination. That convergence will be enabled by ubiquitous mobile broadband, cloud, blockchain payments, IoT, positioning and sensor tech, image recognition, fast graphics chips, display and visor technology and voice and gesture recognition plus many other technologies.

Just as you can put a Pokemon on a lawn, so you could watch aliens flying around in spaceships or cartoon characters or your favorite celebs walking along the street among the other pedestrians. You could just as easily overlay alternative faces onto the strangers passing by.

People will often want to display an avatar to people looking at them, and that could be different for every viewer. That desire competes with the desire of the viewer to decide how to see other people, so there will be some battles over who controls what is seen. Feminists will certainly want to protect women from the obvious objectification that would follow if a woman can’t control how she is seen. In some cases, such objectification and abuse could even reach into hate crime territory, with racist, sexist or homophobic virtual overlays. All this demands control, but it is far from obvious where that control would come from.

As for buildings, they too can have a virtual appearance. Virtual architecture will show off architect visualization skills, but will also be hijacked by the marketing departments of the building residents. In fact, many stakeholders will want to control what you see when you look at a building. The architects, occupants, city authorities, government, mapping agencies, advertisers, software producers and games designers will all try to push appearances at the viewer, but the viewer might want instead to choose to impose one from their own offerings, created in real time by AI or from large existing libraries of online imagery, games or media. No two people walking together on a street would see the same thing.

Interior decor is even more attractive as an AR application. Someone living in a horrible tiny flat could enhance it using AR to give the feeling of far more space and far prettier decor and even local environment. Virtual windows onto Caribbean beaches may be more attractive than looking at mouldy walls and the office block wall that are physically there. Reality is often expensive but images can be free.

Even fashion offers a platform for AR enhancement. An outfit might look great on a celebrity but real life shapes might not measure up. Makeovers take time and money too. In augmented reality, every garment can look as it should, and that makeup can too. The hardest choice will be to choose a large number of virtual outfits and makeups to go with the smaller range of actual physical appearances available from that wardrobe.

Gaming is in pole position, because 3D world design, imagination, visualization and real time rendering technology are all games technology, so perhaps the biggest surprise in the Pokemon success is that it was the first to really grab attention. People could by now be virtually shooting aliens or zombies hoarding up escalators as they wait for their partners. They are a little late, but such widespread use of personal or social gaming on city streets and in malls will come soon.

AR Visors are on their way too, and though the first offerings will be too expensive to achieve widespread adoption, cheaper ones will quickly follow. The internet of things and sensor technology will create abundant ground-up data to make a strong platform. As visors fall in price, so too will the size and power requirements of the processing needed, though much can be cloud-based.

It is a fairly safe bet that marketers will try very hard to force images at us and if they can’t do that via blatant in-your-face advertising, then product placement will become a very fine art. We should expect strong alliances between the big marketing and advertising companies and top games creators.

As AI simultaneously develops, people will be able to generate a lot of their own overlays, explaining to AI what they’d like and having it produced for them in real time. That would undermine marketing use of AR so again there will be some battles for control. Just as we have already seen owners of landmarks try to trademark the image of their buildings to prevent people including them in photographs, so similar battles will fill the courts over AR. What is to stop someone superimposing the image of a nicer building on their own? Should they need to pay a license to do so? What about overlaying celebrity faces on strangers? What about adding multimedia overlays from the web to make dull and ordinary products do exciting things when you use them? A cocktail served in a bar could have a miniature Sydney fireworks display going on over it. That might make it more exciting, but should the media creator be paid and how should that be policed? We’ll need some sort of AR YouTube at the very least with added geolocation.

The whole arts and media industry will see city streets as galleries and stages on which to show off and sell their creations.

Public services will make more mundane use of AR. Simple everyday context-dependent signage is one application, but overlays would be valuable in emergencies too. If police or fire services could superimpose warning on everyone’s visors nearby, that may help save lives in emergencies. Health services will use AR to assist ordinary people to care for a patient until an ambulance arrives

Shopping provide more uses and more battles. AR will show you what a competing shop has on offer right beside the one in front of you. That will make it easy to digitally trespass on a competitor’s shop floor. People can already do that on their smartphone, but AR will put the full image large as life right in front of your eyes to make it very easy to compare two things. Shops won’t want to block comms completely because that would prevent people wanting to enter their shop at all, so they will either have to compete harder or find more elaborate ways of preventing people making direct visual comparisons in-store. Perhaps digital trespassing might become a legal issue.

There will inevitably be a lot of social media use of AR too. If people get together to demonstrate, it will be easier to coordinate them. If police insist they disperse, they could still congregate virtually. Dispersed flash mobs could be coordinated as much as ones in the same location. That makes AR a useful tool for grass-roots democracy, especially demonstrations and direct action, but it also provides a platform for negative uses such as terrorism. Social entrepreneurs will produce vast numbers of custom overlays for millions of different purposes and contexts. Today we have tens of millions of websites and apps. Tomorrow we will have even more AR overlays.

These are just a few of the near term uses of augmented reality and a few hints as issues arising. It will change every aspect of our lives in due course, just as the web has, but more so.

 

Carbethium, a better-than-scifi material

How to build one of these for real:

Light_bridge

Halo light bridge, from halo.wikia.com

Or indeed one of these:

From halo.wikia.com

From halo.wikia.com

I recently tweeted that I had an idea how to make the glowy bridges and shields we’ve seen routinely in sci-fi games from Half Life to Destiny, the bridges that seem to appear in a second or two from nothing across a divide, yet are strong enough to drive tanks over, and able to vanish as quickly and completely when they are switched off. I woke today realizing that with a bit of work, that it could be the basis of a general purpose material to make the tanks too, and buildings and construction platforms, bridges, roads and driverless pod systems, personal shields and city defense domes, force fields, drones, planes and gliders, space elevator bases, clothes, sports tracks, robotics, and of course assorted weapons and weapon systems. The material would only appear as needed and could be fully programmable. It could even be used to render buildings from VR to real life in seconds, enabling at least some holodeck functionality. All of this is feasible by 2050.

Since it would be as ethereal as those Halo structures, I first wanted to call the material ethereum, but that name was already taken (for a 2014 block-chain programming platform, which I note could be used to build the smart ANTS network management system that Chris Winter and I developed in BT in 1993), and this new material would be a programmable construction platform so the names would conflict, and etherium is too close. Ethium might work, but it would be based on graphene and carbon nanotubes, and I am quite into carbon so I chose carbethium.

Ages ago I blogged about plasma as a 21st Century building material. I’m still not certain this is feasible, but it may be, and it doesn’t matter for the purposes of this blog anyway.

Will plasma be the new glass?

Around then I also blogged how to make free-floating battle drones and more recently how to make a Star Wars light-saber.

Free-floating AI battle drone orbs (or making Glyph from Mass Effect)

How to make a Star Wars light saber

Carbethium would use some of the same principles but would add the enormous strength and high conductivity of graphene to provide the physical properties to make a proper construction material. The programmable matter bits and the instant build would use a combination of 3D interlocking plates, linear induction,  and magnetic wells. A plane such as a light bridge or a light shield would extend from a node in caterpillar track form with plates added as needed until the structure is complete. By reversing the build process, it could withdraw into the node. Bridges that only exist when they are needed would be good fun and we could have them by 2050 as well as the light shields and the light swords, and light tanks.

The last bit worries me. The ethics of carbethium are the typical mixture of enormous potential good and huge potential for abuse to bring death and destruction that we’re learning to expect of the future.

If we can make free-floating battle drones, tanks, robots, planes and rail-gun plasma weapons all appear within seconds, if we can build military bases and erect shield domes around them within seconds, then warfare moves into a new realm. Those countries that develop this stuff first will have a huge advantage, with the ability to send autonomous robotic armies to defeat enemies with little or no risk to their own people. If developed by a James Bond super-villain on a hidden island, it would even be the sort of thing that would enable a serious bid to take over the world.

But in the words of Professor Emmett Brown, “well, I figured, what the hell?”. 2050 values are not 2016 values. Our value set is already on a random walk, disconnected from any anchor, its future direction indicated by a combination of current momentum and a chaos engine linking to random utterances of arbitrary celebrities on social media. 2050 morality on many issues will be the inverse of today’s, just as today’s is on many issues the inverse of the 1970s’. Whatever you do or however politically correct you might think you are today, you will be an outcast before you get old: https://timeguide.wordpress.com/2015/05/22/morality-inversion-you-will-be-an-outcast-before-youre-old/

We’re already fucked, carbethium just adds some style.

Graphene combines huge tensile strength with enormous electrical conductivity. A plate can be added to the edge of an existing plate and interlocked, I imagine in a hexagonal or triangular mesh. Plates can be designed in many diverse ways to interlock, so that rotating one engages with the next, and reversing the rotation unlocks them. Plates can be pushed to the forward edge by magnetic wells, using linear induction motors, using the graphene itself as the conductor to generate the magnetic field and the design of the structure of the graphene threads enabling the linear induction fields. That would likely require that the structure forms first out of graphene threads, then the gaps between filled by mesh, and plates added to that to make the structure finally solid. This would happen in thickness as well as width, to make a 3D structure, though a graphene bridge would only need to be dozens of atoms thick.

So a bridge made of graphene could start with a single thread, which could be shot across a gap at hundreds of meters per second. I explained how to make a Spiderman-style silk thrower to do just that in a previous blog:

How to make a Spiderman-style graphene silk thrower for emergency services

The mesh and 3D build would all follow from that. In theory that could all happen in seconds, the supply of plates and the available power being the primary limiting factors.

Similarly, a shield or indeed any kind of plate could be made by extending carbon mesh out from the edge or center and infilling. We see that kind of technique used often in sci-fi to generate armor, from lost in Space to Iron Man.

The key components in carbetheum are 3D interlocking plate design and magnetic field design for the linear induction motors. Interlocking via rotation is fairly easy in 2D, any spiral will work, and the 3rd dimension is open to any building block manufacturer. 3D interlocking structures are very diverse and often innovative, and some would be more suited to particular applications than others. As for linear induction motors, a circuit is needed to produce the travelling magnetic well, but that circuit is made of the actual construction material. The front edge link between two wires creates a forward-facing magnetic field to propel the next plates and convey enough intertia to them to enable kinetic interlocks.

So it is feasible, and only needs some engineering. The main barrier is price and material quality. Graphene is still expensive to make, as are carbon nanotubes, so we won’t see bridges made of them just yet. The material quality so far is fine for small scale devices, but not yet for major civil engineering.

However, the field is developing extremely quickly because big companies and investors can clearly see the megabucks at the end of the rainbow. We will have almost certainly have large quantity production of high quality graphene for civil engineering by 2050.

This field will be fun. Anyone who plays computer games is already familiar with the idea. Light bridges and shields, or light swords would appear much as in games, but the material would likely  be graphene and nanotubes (or maybe the newfangled molybdenum equivalents). They would glow during construction with the plasma generated by the intense electric and magnetic fields, and the glow would be needed afterward to make these ultra-thin physical barriers clearly visible,but they might become highly transparent otherwise.

Assembling structures as they are needed and disassembling them just as easily will be very resource-friendly, though it is unlikely that carbon will be in short supply. We can just use some oil or coal to get more if needed, or process some CO2. The walls of a building could be grown from the ground up at hundreds of meters per second in theory, with floors growing almost as fast, though there should be little need to do so in practice, apart from pushing space vehicles up so high that they need little fuel to enter orbit. Nevertheless, growing a  building and then even growing the internal structures and even furniture is feasible, all using glowy carbetheum. Electronic soft fabrics, cushions and hard surfaces and support structures are all possible by combining carbon nanotubes and graphene and using the reconfigurable matter properties carbethium convents. So are visual interfaces, electronic windows, electronic wallpaper, electronic carpet, computers, storage, heating, lighting, energy storage and even solar power panels. So is all the comms and IoT and all the smart embdedded control systems you could ever want. So you’d use a computer with VR interface to design whatever kind of building and interior furniture decor you want, and then when you hit the big red button, it would appear in front of your eyes from the carbethium blocks you had delivered. You could also build robots using the same self-assembly approach.

If these structures can assemble fast enough, and I think they could, then a new form of kinetic architecture would appear. This would use the momentum of the construction material to drive the front edges of the surfaces, kinetic assembly allowing otherwise impossible and elaborate arches to be made.

A city transport infrastructure could be built entirely out of carbethium. The linear induction mats could grow along a road, connecting quickly to make a whole city grid. Circuit design allows the infrastructure to steer driverless pods wherever they need to go, and they could also be assembled as required using carbethium. No parking or storage is needed, as the pod would just melt away onto the surface when it isn’t needed.

I could go to town on military and terrorist applications, but more interesting is the use of the defense domes. When I was a kid, I imagined having a house with a defense dome over it. Lots of sci-fi has them now too. Domes have a strong appeal, even though they could also be used as prisons of course. A supply of carbetheum on the city edges could be used to grow a strong dome in minutes or even seconds, and there is no practical limit to how strong it could be. Even if lasers were used to penetrate it, the holes could fill in in real time, replacing material as fast as it is evaporated away.

Anyway, lots of fun. Today’s civil engineering projects like HS2 look more and more primitive by the day, as we finally start to see the true potential of genuinely 21st century construction materials. 2050 is not too early to expect widespread use of carbetheum. It won’t be called that – whoever commercializes it first will name it, or Google or MIT will claim to have just invented it in a decade or so, so my own name for it will be lost to personal history. But remember, you saw it here first.

Cellular blockchain, cellular bitcoin

Bitcoin has been around a while and the blockchain foundations on which it is built are extending organically into other areas.

Blockchain is a strongly encrypted distributed database, a ledger that records every transaction. That’s all fine, it works OK, and it doesn’t need fixed.

However, for some applications or new cryptocurrencies, there may be some benefit in making a cellular blockchain to limit database size, protect against network outage, and harden defenses against any local decryption. These may become important as cyber-terrorism increases and as quantum computing develops. They would also be more suited to micro-transactions and micro-currencies.

If you’ve made it this far, you almost certainly don’t need any further explanation.

Diabetes: Electronically controlled drug delivery via smart membrane

This is an invention I made in 2001 as part of my active skin suite to help diabetics. I’ve just been told I am another of the zillions of diabetics in the world so was reminded of it.

This wasn’t feasible in 2001 but it will be very soon, and could be an ideal way of monitoring blood glucose and insulin levels, checking with clinic AI for the correct does, and then opening the membrane pores just enough and long enough to allow the right dose of insulin to pass through. Obviously pore and drug particle design have to be coordinated, but this should be totally feasible. Here’s some pics:

Active skin principles

Active skin principles

Drug delivery overview

Drug delivery overview

Drug delivery mechanism

Drug delivery mechanism

The future of vacuum cleaners

Dyson seems pretty good in vacuum cleaners and may well have tried this and found it doesn’t work, but then again, sometimes people in an industry can’t see the woods for the trees so who knows, there may be something in this:

Our new pet cat Jess, loves to pick up soft balls with a claw and throw them, and catch them again. Retractable claws are very effective.IMG_6689- Jess (2)

Jess the cat

At a smaller scale, velcro uses tiny little hooks to stick together, copying burs from nature.

Suppose you make a tiny little ball that has even tinier little retractable spines or even better, hooks. And suppose you make them by the trillion and make a powder that your vacuum cleaner attachment first sprinkles onto a carpet, then agitates furiously and quickly, and thus gets the hooks to stick to dirt, pull it off the surface and retract (so that the balls don’t stick to the carpet) and then you suck the whole lot into the machine. Since the balls have a certain defined specification, they are easy to separate from the dirt and dust and reuse again straight away. So you get superior cleaning. Some of the balls would be lost each time, and some would get sucked up next time, but overall you’d need to periodically top up the reservoir.

The current approach is to beat the hell out of the carpet fibers with a spinning brush and that works fine, but I think adding the active powder might be better because it gets right in among the dirt and drags it kicking and screaming off the fibers.

So, ball design. Firstly, it doesn’t need to be ball shaped at all, and secondly it doesn’t need spines really, just to be able to rapidly change its shape so it gets some sort of temporary traction on a dirt particle to knock it off. What we need here is any structure that expands and contracts or dramatically changes shape when a force is applied, ideally resonantly. Two or three particles connected by a tether would move back and forwards under an oscillating electrostatic, electrical or magnetic field or even an acoustic wave. There are billions of ways of doing that and some would be cheaper than others to manufacture in large quantity. Chemists are brilliant at designing custom molecules with particular shapes, and biology has done that with zillions of enzymes too. Our balls would be pretty small but more micro-tech than nano-tech or molecular tech.

The vacuum cleaner attachment would thus spray this stuff onto the carpet and start resonating it with an EM field or sound waves. The little particles would wildly thrash around doing their micro-cleaning, yanking dirt free, and then they would be sucked back into the cleaner to be used again. The cleaner head doesn’t even need to have a spinning brush, the only moving parts would be the powder, though having an agitating brush might help get them deeper into the fabric I guess.

 

Smart packaging: Acoustic sterilisation

I should have written this on the ides of March, but hey ho. I was discussing packaging this morning for an IoT event.

Imagine a bacterium sitting on a package on a supermarket shelf is called Julius Caesar. Now imagine Brutus coming along with a particularly sharp knife and stabbing him hundreds of times. That’s my idea, just scaled down a bit.

selfsterilising

This started as a slight adaptation of an idea I developed for Dunlop a few years ago to make variable grip tires. (Still waiting for Dunlop to make those, so maybe some other tire company might pick up the idea).

The idea is very simple, to use tiny triangular structures embedded in the surface, and then pull the base of the triangle together, thereby pushing up the tip. My tire idea used electro-active polymers to do the pulling, and sharp carbon composites to do the grip bit, or in this antibacterial case, the sharp knife. Probably for packaging I’d use carbon nanotubes or similar as the sides with which to stab the bacteria, but engineers frequently come up with different nanostructure shapes so I’m pretty agnostic about material and shape. If it ruptures a bacterium, it will be good.

An easier to use alternative for widespread use in packaging would be to ditch the electro-active polymer and associated electronics, and instead to use a tuned acoustic wave to move the blades in and out of the surface. All that is needed to activate them is to put out that frequency of sound through a speaker system in the supermarket or factory. The sound needed would likely be ultrasonic, so it doesn’t irritate all the shoppers, and in any case, nano-structures will generally be associated with high frequencies.

So the packaging would include tiny structures that act as the dagger attached to a particular acoustic mass acting as Brutus, that would move when the appropriate resonant frequency is broadcast.

This technique doesn’t need any nasty chemicals, though it does need the nanostructures and sound and if they aren’t designed right, the nanostructures could be just as harmful. Anyway, that’s the basic idea.

Image

Self-sterilizing surfaces & packaging

selfsterilising

The future of mind control headbands

Have you ever wanted to control millions of other people as your own personal slaves or army? How about somehow persuading lots of people to wear mind control headbands, that you control? Once they are wearing them, you can use them as your slaves, army or whatever. And you could put them into offline mode in between so they don’t cause trouble.

Amazingly, this might be feasible. It just requires a little marketing to fool them into accepting a device with extra capabilities that serve the seller rather than the buyer. Lots of big companies do that bit all the time. They get you to pay handsomely for something such as a smartphone and then they use it to monitor your preferences and behavior and then sell the data to advertisers to earn even more. So we just need a similar means of getting you to buy and wear a nice headband that can then be used to control your mind, using a confusingly worded clause hidden on page 325 of the small print.

I did some googling about TMS- trans-cranial magnetic stimulation, which can produce some interesting effects in the brain by using magnetic coils to generate strong magnetic fields to create electrical currents in specific parts of your brain without needing to insert probes. Claimed effects vary from reducing inhibitions, pain control, activating muscles, assisting learning, but that is just today, it will be far easier to get the right field shapes and strengths in the future, so the range of effects will increase dramatically. While doing so, I also discovered numerous pages about producing religious experiences via magnetic fields too. I also recalled an earlier blog I wrote a couple of year ago about switching people off, which relied on applying high frequency stimulation to the claustrum region. https://timeguide.wordpress.com/2014/07/05/switching-people-off/

The source I cited for that is still online:  http://www.newscientist.com/article/mg22329762.700-consciousness-onoff-switch-discovered-deep-in-brain.html.

So… suppose you make a nice headband that helps people get in touch with their spiritual side. The time is certainly right. Millennials apparently believe in the afterlife far more than older generations, but they don’t believe in gods. They are begging for nice vague spiritual experiences that fit nicely into their safe spaces mentality, that are disconnected from anything specific that might offend someone or appropriate someone’s culture, that bring universal peace and love feelings without the difficult bits of having to actually believe in something or follow some sort of behavioral code. This headband will help them feel at one with the universe, and with other people, to be effortlessly part of a universal human collective, to share the feeling of belonging and truth. You know as well as I do that anyone could get millions of millennials or lefties to wear such a thing. The headband needs some magnetic coils and field shaping/steering technology. Today TMS uses old tech such as metal wires, tomorrow they will use graphene to get far more current and much better fields, and they will use nice IoT biotech feedback loops to monitor thoughts emotions and feelings to create just the right sorts of sensations. A 2030 headband will be able to create high strength fields in almost any part of the brain, creating the means for stimulation, emotional generation, accentuation or attenuation, muscle control, memory recall and a wide variety of other capabilities. So zillions of people will want one and happily wear it.  All the joys of spirituality without the terrorism or awkward dogma. It will probably work well with a range of legal or semi-legal smart drugs to make experiences even more rich. There might be a range of apps that work with them too, and you might have a sideline in a company supplying some of them.

And thanks to clause P325e paragraph 2, the headband will also be able to switch people off. And while they are switched off, unconscious, it will be able to use them as robots, walking them around and making them do stuff. When they wake up, they won’t remember anything about it so they won’t mind. If they have done nothing wrong, they have nothing to fear, and they are nor responsible for what someone else does using their body.

You could rent out some of your unconscious people as living statues or art-works or mannequins or ornaments. You could make shows with them, synchronised dances. Or demonstrations or marches, or maybe you could invade somewhere. Or get them all to turn up and vote for you at the election.  Or any of 1000 mass mind control dystopian acts. Or just get them to bow down and worship you. After all, you’re worth it, right? Or maybe you could get them doing nice things, your choice.

 

Pubic fashion and the Internet-of-genitalia

Not for the easily offended, or my parents, who do read my blog sometimes, but hopefully not this one. This is another extract from my forthcoming book on future fashion. No sector is immune to futurology.

The pubic area may not be talked about much in fashion articles, but it is suited to fashion as any other. Pubic hairstyles (including bald) vary from person to person and over time, but they certainly do get fashion consideration. Vajazzling, decorating the female pubic area with stick-on glitter, has also had its limelight as a fashion thing, Beautifying and styling the pubic area is here to stay for as long as casual sex remains common. If an area gets attention, people will want to make it look sexier or more interesting or enticing, so it is just another platform for personal expression, as much as choice of underwear.

Updating stick-on glitter to LEDs or lasers could make a whole light show down there. This could of course tap into data from sensors that pick up on sexual activity and arousal level. That would allow a direct feedback route on performance. Whoever is pleasuring her could see the results echoed in a visual response in local LEDs or flashing glitter or laser beams. That would be fun, but it could use audio too. Since the pubic region is fairly flat and firm, it also presents a potential surface for flat speakers to generate sound effects or music during sex, again linked to arousal sensor feedback. Of course, speakers are another form of vibration device too so they might also take an active role in stimulation.

Hair management already uses lasers to kill hair follicles, but some women regret having their pubic areas completely depilated, and are now having hair implanted back. As hair styles come and go, what is needed is a better trimming and shaving system. I am surprised the shaver industry has not already picked up on this possibility, (if it has I am not aware of it) but a design could be rendered much better if the shaver can access a local positioning system. If a person sticks on a few tiny transmitters, reflectors or transponders in specific places near the trimming zone, the shaver head would know its exact position and orientation and would be able to trim that specific area precisely as dictated by the chosen pattern. Automated precision hair styles would be feasible without taking too much time. Another cheap and easy way of doing this would be to spray a marker pattern through a stencil and have the shaver trim the areas marked.

Naturally, such shaver technology would also be useful for other areas such as the head or chest (for men anyway, I don’t expect female chest hair to be a significant fashion trend any time soon), or to replace waxing anywhere on the body with precision patterns and trims.

Many people are unhappy with their actual genitalia. Re-scuplting, trimming, tightening, or changing size is becoming common. Gender re-assignment surgery is also growing, but gender-change and gender-play fashion needs a whole section for itself, and I’ve written about it before anyway(my most popular post ever in fact) : https://timeguide.wordpress.com/2014/02/14/the-future-of-gender-2/

Not in the pubic area, but somewhat related  to this topic nonetheless, here is a quick consideration of smart breast implants:

[Smart breast implants

Smart breast implants are one of my best inventions – the only one for which I have ever received a prize. The idea was that if a woman is determined to expand her breasts by putting stuff into them, why not put electronics in? In fact, electronics can be made using silicone, one of the main breast implant materials. It won’t work as fast as silicon-based IT but it will do fine for things like MP3 players (MP4 now of course). A range of smartphone-style functions could be added as well as music playing. For example, navigation could link location and maps to vibrating nipples to indicate left or right. I suggested using nipples as control knobs for my MP3 implants, and that is perfectly feasible. Detectors in the implant could easily detect torsion and interpret the tweaks. Implants would be able to monitor some biological functions more precisely than wristbands. Heartbeat and breathing could be audio recorded far better for example.

Shape changing breast implants

I often cite polymer gel muscles in fashion, because they are so useful. Contracting when a voltage is applied across them, but made of electro-active polymer so they feel organic, they are ideal for many purposes in and on the body for extra strength of for changing shapes or orientation. Breast implants could contain strands of such gel, arranged so that the shape of the implant can be altered. They could be adjusted to change breast shape, improve lift or cleavage, and relaxed when no-one is looking.

Pectoral implants already give some men the appearance of being more muscular and fit. Adding actual strength using polymer gel muscles rather than simple padding would be a lot better.

Bras

Shape change materials could also be used in bras of course, allowing control to be varied by an app. A single bra could work for general and sports use for example. Similarly, hydraulic bras could give extra lift or control by inflating tubes with compressed air. Staying with inflation, of course the bra as a whole could be inflated to give the illusion of larger size.

Bras can incorporate energy harvesting for use while running. A suitable material could be plastic capacitors, which make electricity directly as they flex.

Nipple-tapes could be coupled to vibrators for a slightly more immersive sexual experience, and remote controlled for more kinky play.]

Now, back to the pubic area.

Rather along the same lines as smart breast implants, if someone is going to the lengths of having genital surgery and particularly if implants are involved, then electronic implants could be a useful consideration. Some devices use electrical stimulation, applying particular patterns of voltages and currents to create, magnify and sustain arousal. Devices could be implanted to do exactly this. They could be access restricted to the wearer, controlled by a dominant or even networked for remote control, by any chosen individual or group. MEMS or sensors could also be implanted to create vibration or to measure arousal.

Sensors can easily detect moisture levels, skin resistance, blood flow, blood oxygen levels, heart rate, breathing and so on. These together can indicate a great deal about arousal state and that can be fed back into stimulation system to maximise pleasure. Stimulation devices could provide direct stimulation or work along with external devices such as vibrators, controlling their behavior according to location and sensor feedback. Vibrators shouldn’t need control knobs that distract their users, but should automatically adjust their behavior according to the region they are stimulating and the user’s  arousal profile, changing stimulation throughout the session according to programs and recorded routines stored in the cloud. Shared toys could use fingerprint recognition or implanted RFID chips, but I think that would usually be considered to be going too far. 

An important fashion consideration is that visual appearance can mostly be decoupled from function. Electronics can be shrunk to vanishingly small size and fit in the tiniest of sensors or actuators. Genital and pubic electronics can therefore be visually appealing at the same time as providing a full suite of functionality.

Shape change materials such as electro-active polymers can also be implanted. These could also be used to generate vibration by varying applied voltage patterns appropriately. Shape changing implants could be used to vary tightness during penetration, or to make features more appealing during foreplay.

As with the pubic area as a whole, genitals could also incorporate visual feedback using color change, LEDS or even music or other sound effects according to arousal state. Sound is better generated by pubic speakers though as surfaces are more cooperative to engineering.

Clearly, with a number of feedback and bio-sign monitoring sensors, MEMS, speaker systems, illumination, decoration and visual effects systems, the whole pubic and genital region is a potentially large electronics ecosystem, and we will need a whole branch of IoT technology, which could be termed ‘Internet of genitalia’.

Future air travel

Now and then I get asked about future air travel, sometimes about planes, sometimes about the travel and tourism industry, sometimes climate change or luxury. There is already lots in the media about the future of the industry, such as NASA’s supersonic aircraft, e.g. https://t.co/PWpd2yVN0y or the latest business class space design concepts to cram in even more luxury, e.g. http://www.airlinereporter.com/2016/03/business-class-reimagined-etihad-airways-a380-business-studio-review/ so I won’t waste time repeating stuff you can find on Google. Here are some things I haven’t seen yet instead:

Aircraft skin design – video panels

Aircraft skins are generally painted in carrier colors and logos, but a new development in luxury yachts might hint at aircraft skins that behave as video screens instead. The designs in

http://www.dailymail.co.uk/travel/travel_news/article-3475039/Moonstone-superyacht-LED-triangles-light-display.html

are meant to mimic reflections of the sea, since it is a yacht skin, but obviously higher resolution polymer displays on an aircraft could display anything at all. It is surprising give aircraft prices that this hasn’t already been done, at least for large panels. One possible reason is that the outer skin heats up a lot during flight. That might bar some types of panel being used, but some LEDs can function perfectly well at the sort of temperatures expected for civil aircraft.

Integration with self-driving cars – terminal-free flying

A decade or more ago, I suggested integrating self driving cars systems into rail, so that a long chain of self driving cars could form a train. Obviously Euro-tunnel already has actual trains carry cars, but what I meant was that the cars can tether to each other electronically and drive themselves, behaving as a train as a half way evolution point to fully replacing trains later with self driving pod systems. As each car reaches its local station, it would peel off and carry on the roads to the final destination. The other pods would close together to fill the gap, or expand gaps to allow other pods to join from that station. Previous blogs have detailed how such systems can be powered for city or countrywide use.

Stage 1

Such end-to-end self driving could work all the way to the aircraft too. To avoid crime and terrorism abuses, self-driving cars owned by large fleet management companies – which will be almost all of them in due course – will have to impose security checks on passengers. Think about it. If that were not so, any terrorist would be able to order a car with an app on an anonymous phone, fill it full of explosives, tell it where to go, and then watch as it does the suicide bombing run all by itself. Or a drug gang could use them for deliveries. If security is already imposed with proper identity checks, then it would be easy to arrange a safe area in the airport for a simple security check for explosives, guns etc, before the car resumes its trip all the way to an aircraft departure gate. System restrictions could prevent passengers leaving the car during the airport part of the journey except at authorized locations. The rest of the terminal would be superfluous.

Stage 2

Then it starts to get interesting. My guess is that the optimal design for these self-driving pods would be uniform sized cuboids. Then, congestion and air resistance can be minimized and passenger comfort optimized. It would then be possible to link lots of these pods together with their passengers and luggage still in them, and drive the whole lot into a large aircraft. They could be stacked in layers of course too (my own design of pods doesn’t even use wheels) to maximize cabin use. Aisles could be made to allow passengers out to visit loos or exercise.

Many people of my age will think of Thunderbird 2 at this point. And why not? Not such a bad idea. A huge box acting as a departure gate for dozens of small pods, ready for the aircraft to land, drop off its existing pod, refuel, pick up the new box of pods, and take off again. Even the refuel could be box-implemented, part of the box structure or a pod.

Stage 3

Naturally, airlines might decide that they know best how to provide best comfort to their passengers. So they might design their own fleets of special pods to pick up passengers from their homes and bring them all the way onto the aircraft, then all the way to final destination at the other end. That gives them a huge opportunity for adding luxury and branding or other market differentiation. Their fleets would mix on the roads with fleets from other companies.

Stage 4

However, it is hard to think of any other sector that is as adept by necessity at making the very most of the smallest spaces as airlines. Having started to use these advantages for self driving pods for their own air passengers, many of those passengers would be very happy to also buy the use of those same pods even when they are not flying anywhere, others would learn too, and very soon airlines could become a major fleet manager company for self-driving cars.

Balloon trips and cruises

Large balloons and airships are coming back into business. e.g. http://news.sky.com/story/1654409/worlds-largest-aircraft-set-for-uk-test-flight

Solid balloons will be likely too. I suggested using carbon foam in my sci-fi book Space Anchor, and my superheroes travel around at high speed in their huge carbon balloon, the Carballoon, rescuing people from burning buildings or other disasters, or dumping foam to capture escaping criminals. Since then, Google have also been playing with making lighter than air foams and presumably they will use them for Project Loon.

Lighter than air cities have been explored in the computer game Bioshock Infinite, floating islands in the films Avatar and Buck Rogers. There is certainly no shortage of imagination when it comes to making fun destinations floating in the air. So I think that once the materials become cheap enough, we will start to see this balloon industry really evolve into a major tourism sector where people spend days or weeks in the air. Even conventional balloon experiences such as safaris would be better if the burners and their noise scaring the animals are not needed. A solid balloon could manage fine with just a quiet fan.

Whatever the type of floating destination, or duration of short trip or cruise, of course you need to get to them, so that presents an obvious opportunity for the airline industry, but designing them, providing services, holiday packages, bookings and logistics are also territories where the airline industry might be in pole position, especially since space might still be at a premium.

Air fuel

Although there have already been various demonstrations of hydrogen planes and solar powered planes, I really do not think these are likely to become mainstream. One of the main objections to using conventional fuel is the CO2 emissions, but my readers will know I don’t believe we face a short term threat from CO2-induced climate change and in the mid term, ground use of fossil fuels will gradually decline or move towards shale gas, which produces far less CO2. With all the CO2 savings from ground use decline, there will be far less pressure on airlines to also reduce. Since it is too hard to economically deliver suitable energy density for aircraft use, it will be recognized as a special case that the overall CO2 budgets can easily sustain. The future airline industry will use air fuel not unlike today’s. Let’s consider the alternatives.

Solar is fine for the gossamer-light high altitude aircraft for surveillance of communications, but little use for passenger flight. Covering a plane upper with panels will simply not yield enough power. Large batteries could store enough energy for very short flights, but again not much use since planes can’t compete in short trips. Energy density isn’t good enough. Fuel cells are still the technology of the future and are unlikely to be suited to planes. It is easier to simply use the fuel direct to create thrust. Another red herring is hydrogen. Yes it can be done, but there is little advantage and lots of disadvantages. The output is water vapor, which sounds safe, but is actually a stronger greenhouse effect than CO2 and since aircraft fly high, it will stay in the atmosphere doing its warming far longer (for trans-polar flights it may even become stratospheric water vapor). So hydrogen is no panacea.

So, no change here then.

Threats

There have already been many instances of near collisions with drones. Many drones are very small, but some can carry significant payloads. If a drone carries a lump of solid metal, or an explosive device, it could easily do enough harm to a fast-flying aircraft to cause a crash. That makes drones a strong terrorist threat to aircraft. Even without the intent to harm, any village idiot could fly a drone near to a plane to get pictures and still cause problems.

Another threat that is becoming serious is lasers. Shone from the ground, a high powered hand-held laser could blind a pilot.

http://www.wickedlasers.com/arctic shows the sort of thing you can already buy. $400 buys you 3.5W of blue light. Really cool stuff in the right hands, and the sort of gadget I’d love to own if I could trust myself to be responsible with it, (I did look straight into a laser beam at university, as you do when you’re a student) but not the sort of thing you want used deliberately against pilots.

These two threats are already very apparent, but put them together, and you have a modest drone bought anonymously fitted with a high powered laser (I don’t know whether identity checks are needed for the laser purchase, but I suspect plenty enough are already in circulation). A simple camera linked to a basic pattern recognition system would easily allow the drone to move to an optimal location and then target the laser into the aircraft cockpit and likely into the pilots’ eyes. This is not something that should be possible to build without lots of strict identity checks, but especially for the drones bit, the law is years behind where it ought to be. Lasers of this power also need to be classed as lethal weapons.

New business models

The latest startup fashions suggest someone will soon build a crowd-flying company. A bunch of people in one area wanting to fly to another zone could link electronically via such a company app, and hire a plane/self-driving pods/departure gate/pilot/crew and fly with very little inter-mediation. The main barrier is the strong regulation in the airline industry which is there for all sorts of good reasons, but that is not an impenetrable barrier, just a large one.

 

 

 

 

 

 

The future of fashion: hair waves

I don’t do hair. I shave my head to 3mm every month or so, and never let it grow long., but I watch telly and observe that very many women use hair extensions and wigs, and I spot a high voltage technology opportunity.

Remember the Van der Graff generator in your school physics lab? It makes a high voltage than makes your hair stand up. When you finally touch something, the tiny charge involved dissipates and gives you a tiny shock.

So, suppose you are a wig manufacturer, making a wig with fine filaments, or hair I guess. You add a base layer of circuitry, ideally separated from your scalp by an insulating layer. You design the circuits so that you can apply specific voltages individually to any region of the hair, and you design a nice algorithm to move those voltages around in patterns, so that patches of hair stand up, fall down, and overall the effect is dynamic patterns such as waves all over your head. Hair will be mobile.

Total charge doesn’t need to change much, mainly just be moved around, so battery drain would be OK, and the power supply could be hidden in a collar or shoulder pad.

Hair patterns could even adopt fashion language, used for secret tribal signalling, and internet of hair will be needed. It is also capable of misuse and another potential signalling path to guard against in casinos.

It would also be trivially easy to monitor your emotional state, or even thought recognition, and have you hair respond and illustrate your emotions. So when you think “shock, horror”, you hair would actually stand on end 🙂

Well, you get the idea. Fun! And you read it here first.

Shoulder demons and angels

Remember the cartoons where a character would have a tiny angel on one shoulder telling them the right thing to do, and a little demon on the other telling them it would be far more cool to be nasty somehow, e.g. get their own back, be selfish, greedy. The two sides might be ‘eat your greens’ v ‘the chocolate is much nicer’, or ‘your mum would be upset if you arrive home late’ v ‘this party is really going to be fun soon’. There are a million possibilities.

Shoulder angels

Shoulder angels

Enter artificial intelligence, which is approaching conversation level, and knows the context of your situation, and your personal preferences etc, coupled to an earpiece in each ear, available from the cloud of course to minimise costs. If you really insisted, you could make cute little Bluetooth angels and demons to do the job properly.

In fact Sony have launched Xperia Ear, which does the basic admin assistant part of this, telling you diary events etc. All we need is an expansion of its domain, and of course an opposing view. ‘Sure, you have an appointment at 3, but that person you liked is in town, you could meet them for coffee.’

The little 3D miniatures could easily incorporate the electronics. Either you add an electronics module after manufacture into a small specially shaped recess or one is added internally during printing. You could have an avatar of a trusted friend as your shoulder angel, and maybe one of a more mischievous friend who is sometimes more fun as your shoulder demon. Of course you could have any kind of miniature pets or fictional entities instead.

With future materials, and of course AR, these little shoulder accessories could be great fun, and add a lot to your overall outfit, both in appearance and as conversation add-ons.

Digital Halos

I enjoyed watching a few seconds of the Lady Gaga video from the Grammy’s where Intel used a projection system to display a spider crawling around her face along with Bowie images. State of the art today is dirt cheap tomorrow. So soon everyone will be doing that, projecting images and videos onto their faces. They will do that to look like other people too, as Gaga hinted. I do like Gaga. She may not have the advantage of being born the prettiest singer ever but she makes up for that 100-fold by her creativity and pushing boundaries in every way she can and making good use of tech. I love her music too.

I’ve written about digital or smart makeup lots of times so i won’t do that here. But another idea that springs to mind is the digital halo.

Some fog generators use water and ultrasonic transducers to create a fine mist, the sort of thing you see on indoor water features where fog tumbles down the ornament. Of course, some come with a bank of LEDs, because they can, and that makes pretty colors too. At least one trade show projection system uses a fine mist as a 3D projection medium too. Put these together, and you have the capability to make a fine mist around your head and project images onto it. I blogged that idea quite a while ago as a Star Wars projection in front of you, but imagine doing this as a sort of halo, a mist that surrounds your head and immerses it in visual effects. You could project a halo if you so desire, and it could be a single whitish color as tradition dictates, changing colors, patterns or images, or you could do the full thing and go for a full-blown video spectacular, and – haute to Family Guy –  you could accompany it with your personal theme too.

Taste seemingly has few boundaries, and it is frequently obvious that the lower echelons of bad taste often offer the greatest rewards. So I am confident that we will soon see people sporting the most hideously garish digital halos.

State of the world in 2050

Some things are getting better, some worse. 2050 will be neither dystopian nor utopian. A balance of good and bad not unlike today, but with different goods and bads, and slightly better overall. More detail? Okay, for most of my followers, this will mostly collate things you may know already, but there’s no harm in a refresher Futures 101.

Health

We will have cost-effective and widespread cures or control for most cancers, heart disease, diabetes, dementia and most other killers. Quality-of-life diseases such as arthritis will also be controllable or curable. People will live longer and remain healthier for longer, with an accelerated decline at the end.

On the bad side, new diseases will exist, including mutated antibiotic-resistant versions of existing ones. There will still be occasional natural flu mutations and other viruses, and there will still be others arising from contacts between people and other animals that are more easily spread due to increased population, urbanization and better mobility. Some previously rare diseases will become big problems due to urbanization and mobility. Urbanization will be a challenge.

However, diagnostics will be faster and better, we will no longer be so reliant on antibiotics to fight back, and sterilisation techniques for hospitals will be much improved. So even with greater challenges, we will be able to cope fine most of the time with occasional headlines from epidemics.

A darker side is the increasing prospect for bio-terrorism, with man-made viruses deliberately designed to be highly lethal, very contagious and to withstand most conventional defenses, optimized for maximum and rapid spread by harnessing mobility and urbanization. With pretty good control or defense against most natural threats, this may well be the biggest cause of mass deaths in 2050. Bio-warfare is far less likely.

Utilizing other techs, these bio-terrorist viruses could be deployed by swarms of tiny drones that would be hard to spot until too late, and of course these could also be used with chemical weapons such as use of nerve gas. Another tech-based health threat is nanotechnology devices designed to invade the body, damage of destroy systems or even control the brain. It is easy to detect and shoot down macro-scale deployment weapons such as missiles or large drones but far harder to defend against tiny devices such as midge-sized drones or nanotech devices.

The overall conclusion on health is that people will mostly experience much improved lives with good health, long life and a rapid end. A relatively few (but very conspicuous) people will fall victim to terrorist attacks, made far more feasible and effective by changing technology and demographics.

Loneliness

An often-overlooked benefit of increasing longevity is the extending multi-generational family. It will be commonplace to have great grandparents and great-great grandparents. With improved health until near their end, these older people will be seen more as welcome and less as a burden. This advantage will be partly offset by increasing global mobility, so families are more likely to be geographically dispersed.

Not everyone will have close family to enjoy and to support them. Loneliness is increasing even as we get busier, fuller lives. Social inclusion depends on a number of factors, and some of those at least will improve. Public transport that depends on an elderly person walking 15 minutes to a bus stop where they have to wait ages in the rain and wind for a bus on which they are very likely to catch a disease from another passenger is really not fit for purpose. Such primitive and unsuitable systems will be replaced in the next decades by far more socially inclusive self-driving cars. Fleets of these will replace buses and taxis. They will pick people up from their homes and take them all the way to where they need to go, then take them home when needed. As well as being very low cost and very environmentally friendly, they will also have almost zero accident rates and provide fast journey times thanks to very low congestion. Best of all, they will bring easier social inclusion to everyone by removing the barriers of difficult, slow, expensive and tedious journeys. It will be far easier for a lonely person to get out and enjoy cultural activity with other people.

More intuitive social networking, coupled to augmented and virtual reality environments in which to socialize will also mean easier contact even without going anywhere. AI will be better at finding suitable companions and lovers for those who need assistance.

Even so, some people will not benefit and will remain lonely due to other factors such as poor mental health, lack of social skills, or geographic isolation. They still do not need to be alone. 2050 will also feature large numbers of robots and AIs, and although these might not be quite so valuable to some as other human contact, they will be a pretty good substitute. Although many will be functional, cheap and simply fit for purpose, those designed for companionship or home support functions will very probably look human and behave human. They will have good intellectual and emotional skills and will be able to act as a very smart executive assistant as well as domestic servant and as a personal doctor and nurse, even as a sex partner if needed.

It would be too optimistic to say we will eradicate loneliness by 2050 but we can certainly make a big dent in it.

Poverty

Technology progress will greatly increase the size of the global economy. Even with the odd recession our children will be far richer than our parents. It is reasonable to expect the total economy to be 2.5 times bigger than today’s by 2050. That just assumes an average growth of about 2.5% which I think is a reasonable estimate given that technology benefits are accelerating rather than slowing even in spite of recent recession.

While we define poverty level as a percentage of average income, we can guarantee poverty will remain even if everyone lived like royalty. If average income were a million dollars per year, 60% of that would make you rich by any sensible definition but would still qualify as poverty by the ludicrous definition based on relative income used in the UK and some other countries. At some point we need to stop calling people poor if they can afford healthy food, pay everyday bills, buy decent clothes, have a decent roof over their heads and have an occasional holiday. With the global economy improving so much and so fast, and with people having far better access to markets via networks, it will be far easier for people everywhere to earn enough to live comfortably.

In most countries, welfare will be able to provide for those who can’t easily look after themselves at a decent level. Ongoing progress of globalization of compassion that we see today will likely make a global welfare net by 2050. Everyone won’t be rich, and some won’t even be very comfortable, but I believe absolute poverty will be eliminated in most countries, and we can ensure that it will be possible for most people to live in dignity. I think the means, motive and opportunity will make that happen, but it won’t reach everyone. Some people will live under dysfunctional governments that prevent their people having access to support that would otherwise be available to them. Hopefully not many. Absolute poverty by 2050 won’t be history but it will be rare.

In most developed countries, the more generous welfare net might extend to providing a ‘citizen wage’ for everyone, and the level of that could be the same as average wage is today. No-one need be poor in 2050.

Environment

The environment will be in good shape in 2050. I have no sympathy with doom mongers who predict otherwise. As our wealth increases, we tend to look after the environment better. As technology improves, we will achieve a far higher standards of living while looking after the environment. Better mining techniques will allow more reserves to become economic, we will need less resource to do the same job better, reuse and recycling will make more use of the same material.

Short term nightmares such as China’s urban pollution levels will be history by 2050. Energy supply is one of the big contributors to pollution today, but by 2050, combinations of shale gas, nuclear energy (uranium and thorium), fusion and solar energy will make up the vast bulk of energy supply. Oil and unprocessed coal will mostly be left in the ground, though bacterial conversion of coal into gas may well be used. Oil that isn’t extracted by 2030 will be left there, too expensive compared to making the equivalent energy by other means. Conventional nuclear energy will also be on its way to being phased out due to cost. Energy from fusion will only be starting to come on stream everywhere but solar energy will be cheap to harvest and high-tech cabling will enable its easier distribution from sunny areas to where it is needed.

It isn’t too much to expect of future governments that they should be able to negotiate that energy should be grown in deserts, and food crops grown on fertile land. We should not use fertile land to place solar panels, nor should we grow crops to convert to bio-fuel when there is plenty of sunny desert of little value otherwise on which to place solar panels.

With proper stewardship of agricultural land, together with various other food production technologies such as hydroponics, vertical farms and a lot of meat production via tissue culturing, there will be more food per capita than today even with a larger global population. In fact, with a surplus of agricultural land, some might well be returned to nature.

In forests and other ecosystems, technology will also help enormously in monitoring eco-health, and technologies such as genetic modification might be used to improve viability of some specie otherwise threatened.

Anyone who reads my blog regularly will know that I don’t believe climate change is a significant problem in the 2050 time frame, or even this century. I won’t waste any more words on it here. In fact, if I have to say anything, it is that global cooling is more likely to be a problem than warming.

Food and Water

As I just mentioned in the environment section, we will likely use deserts for energy supply and fertile land for crops. Improving efficiency and density will ensure there is far more capability to produce food than we need. Many people will still eat meat, but some at least will be produced in factories using processes such as tissue culturing. Meat pastes with assorted textures can then be used to create a variety of forms of processed meats. That might even happen in home kitchens using 3D printer technology.

Water supply has often been predicted by futurists as a cause of future wars, but I disagree. I think that progress in desalination is likely to be very rapid now, especially with new materials such as graphene likely to come on stream in bulk.  With easy and cheap desalination, water supply should be adequate everywhere and although there may be arguments over rivers I don’t think the pressures are sufficient by themselves to cause wars.

Privacy and Freedom

In 2016, we’re seeing privacy fighting a losing battle for survival. Government increases surveillance ubiquitously and demands more and more access to data on every aspect of our lives, followed by greater control. It invariably cites the desire to control crime and terrorism as the excuse and as they both increase, that excuse will be used until we have very little privacy left. Advancing technology means that by 2050, it will be fully possible to implement thought police to check what we are thinking, planning, desiring and make sure it conforms to what the authorities have decided is appropriate. Even the supposed servant robots that live with us and the AIs in our machines will keep official watch on us and be obliged to report any misdemeanors. Back doors for the authorities will be in everything. Total surveillance obliterates freedom of thought and expression. If you are not free to think or do something wrong, you are not free.

Freedom is strongly linked to privacy. With laws in place and the means to police them in depth, freedom will be limited to what is permitted. Criminals will still find ways to bypass, evade, masquerade, block and destroy and it hard not to believe that criminals will be free to continue doing what they do, while law-abiding citizens will be kept under strict supervision. Criminals will be free while the rest of us live in a digital open prison.

Some say if you don’t want to do wrong, you have nothing to fear. They are deluded fools. With full access to historic electronic records going back to now or earlier, it is not only today’s laws and guidelines that you need to be compliant with but all the future paths of the random walk of political correctness. Social networks can be fiercer police than the police and we are already discovering that having done something in the distant past under different laws and in different cultures is no defense from the social networking mobs. You may be free technically to do or say something today, but if it will be remembered for ever, and it will be, you also need to check that it will probably always be praiseworthy.

I can’t counterbalance this section with any positives. I’ve side before that with all the benefits we can expect, we will end up with no privacy, no freedom and the future will be a gilded cage.

Science and the arts

Yes they do go together. Science shows us how the universe works and how to do what we want. The arts are what we want to do. Both will flourish. AI will help accelerate science across the board, with a singularity actually spread over decades. There will be human knowledge but a great deal more machine knowledge which is beyond un-enhanced human comprehension. However, we will also have the means to connect our minds to the machine world to enhance our senses and intellect, so enhanced human minds will be the norm for many people, and our top scientists and engineers will understand it. In fact, it isn’t safe to develop in any other way.

Science and technology advances will improve sports too, with exoskeletons, safe drugs, active skin training acceleration and virtual reality immersion.

The arts will also flourish. Self-actualization through the arts will make full use of AI assistance. a feeble idea enhanced by and AI assistant can become a work of art, a masterpiece. Whether it be writing or painting, music or philosophy, people will be able to do more, enjoy more, appreciate more, be more. What’s not to like?

Space

by 2050, space will be a massive business in several industries. Space tourism will include short sub-orbital trips right up to lengthy stays in space hotels, and maybe on the moon for the super-rich at least.

Meanwhile asteroid mining will be under way. Some have predicted that this will end resource problems here on Earth, but firstly, there won’t be any resource problems here on Earth, and secondly and most importantly, it will be far too expensive to bring materials back to Earth, and almost all the resources mined will be used in space, to make space stations, vehicles, energy harvesting platforms, factories and so on. Humans will be expanding into space rapidly.

Some of these factories and vehicles and platforms and stations will be used for science, some for tourism, some for military purposes. Many will be used to offer services such as monitoring, positioning, communications just as today but with greater sophistication and detail.

Space will be more militarized too. We can hope that it will not be used in actual war, but I can’t honestly predict that one way or the other.

 

Migration

If the world around you is increasingly unstable, if people are fighting, if times are very hard and government is oppressive, and if there is a land of milk and honey not far away that you can get to, where you can hope for a much better, more prosperous life, free of tyranny, where instead of being part of the third world, you can be in the rich world, then you may well choose to take the risks and traumas associated with migrating. Increasing population way ahead of increasing wealth in Africa, and a drop in the global need for oil will both increase problems in the Middle East and North Africa. Add to that vicious religious sectarian conflict and a great many people will want to migrate indeed. The pressures on Europe and America to accept several millions more migrants will be intense.

By 2050, these regions will hopefully have ended their squabbles, and some migrants will return to rebuild, but most will remain in their new homes.

Most of these migrants will not assimilate well into their new countries but will mainly form their own communities where they can have a quite separate culture, and they will apply pressure to be allowed to self-govern. A self-impose apartheid will result. It might if we are lucky gradually diffuse as religion gradually becomes less important and the western lifestyle becomes more attractive. However, there is also a reinforcing pressure, with this self-exclusion and geographic isolation resulting in fewer opportunities, less mixing with others and therefore a growing feeling of disadvantage, exclusion and victimization. Tribalism becomes reinforced and opportunities for tension increase. We already see that manifested well in  the UK and other European countries.

Meanwhile, much of the world will be prosperous, and there will be many more opportunities for young capable people to migrate and prosper elsewhere. An ageing Europe with too much power held by older people and high taxes to pay for their pensions and care might prove a discouragement to stay, whereas the new world may offer increasing prospects and lowering taxes, and Europe and the USA may therefore suffer a large brain drain.

Politics

If health care is better and cheaper thanks to new tech and becomes less of a political issue; if resources are abundantly available, and the economy is healthy and people feel wealthy enough and resource allocation and wealth distribution become less of a political issue; if the environment is healthy; if global standards of human rights, social welfare and so on are acceptable in most regions and if people are freer to migrate where they want to go; then there may be a little less for countries to fight over. There will be a little less ‘politics’ overall. Most 2050 political arguments and debates will be over social cohesion, culture, generational issues, rights and so on, not health, defence, environment, energy or industry

We know from history that that is no guarantee of peace. People disagree profoundly on a broad range of issues other than life’s basic essentials. I’ve written a few times on the increasing divide and tensions between tribes, especially between left and right. I do think there is a strong chance of civil war in Europe or the USA or both. Social media create reinforcement of views as people expose themselves only to other show think the same, and this creates and reinforces and amplifies an us and them feeling. That is the main ingredient for conflict and rather than seeing that and trying to diffuse it, instead we see left and right becoming ever more entrenched in their views. The current problems we see surrounding Islamic migration show the split extremely well. Each side demonizes the other, extreme camps are growing on both sides and the middle ground is eroding fast. Our leaders only make things worse by refusing to acknowledge and address the issues. I suggested in previous blogs that the second half of the century is when tensions between left and right might result in the Great Western War, but that might well be brought forward a decade or two by a long migration from an unstable Middle East and North Africa, which looks to worsen over the next decade. Internal tensions might build for another decade after that accompanied by a brain drain of the most valuable people, and increasing inter-generational tensions amplifying the left-right divide, with a boil-over in the 2040s. That isn’t to say we won’t see some lesser conflicts before then.

I believe the current tensions between the West, Russia and China will go through occasional ups and downs but the overall trend will be towards far greater stability. I think the chances of a global war will decrease rather than increase. That is just as well since future weapons will be far more capable of course.

So overall, the world peace background will improve markedly, but internal tensions in the West will increase markedly too. The result is that wars between countries or regions will be less likely but the likelihood of civil war in the West will be high.

Robots and AIs

I mentioned robots and AIs in passing in the loneliness section, but they will have strong roles in all areas of life. Many that are thought of simply as machines will act as servants or workers, but many will have advanced levels of AI (not necessarily on board, it could be in the cloud) and people will form emotional bonds with them. Just as important, many such AI/robots will be so advanced that they will have relationships with each other, they will have their own culture. A 21st century version of the debates on slavery is already happening today for sentient AIs even though we don’t have them yet. It is good to be prepared, but we don’t know for sure what such smart and emotional machines will want. They may not want the same as our human prejudices suggest they will, so they will need to be involved in debate and negotiation. It is almost certain that the upper levels of AIs and robots (or androids more likely) will be given some rights, to freedom from pain and abuse, ownership of their own property, a degree of freedom to roam and act of their own accord, the right to pursuit of happiness. They will also get the right to government representation. Which other rights they might get is anyone’s guess, but they will change over time mainly because AIs will evolve and change over time.

OK, I’ve rambled on long enough and I’ve addressed some of the big areas I think. I have ignored a lot more, but it’s dinner time.

A lot of things will be better, some things worse, probably a bit better overall but with the possibility of it all going badly wrong if we don’t get our act together soon. I still think people in 2050 will live in a gilded cage.

2016 – The Bright Side

Having just blogged about some of the bad scenarios for next year (scenarios are just  explorations of things that might or could happen, not things that actually will, those are called predictions), Len Rosen’s comment stimulated me to balance it with a nicer look at next year. Some great things will happen, even ignoring the various product release announcements for new gadgets. Happiness lies deeper than the display size on a tablet. Here are some positive scenarios. They might not happen, but they might.

1 Middle East sorts itself out.

The new alliance formed by Saudi Arabia turns out to be a turning point. Rising Islamophobia caused by Islamist around the world has sharpened the view of ISIS and the trouble in Syria with its global consequences for Islam and even potentially for world peace. The understanding that it could get even worse, but that Western powers can’t fix trouble in Muslim lands due to fears of backlash, the whole of the Middle East starts to understand that they need to sort out their tribal and religious differences to achieve regional peace and for the benefit of Muslims everywhere. Proper discussions are arranged, and with the knowledge that a positive outcome must be achieved, success means a strong alliance of almost all regional powers, with ISIS and other extremist groups ostracized, then a common army organised to tackle and defeat them.

2 Quantum computation and AI starts to prove useful in new drug design

Google’s wealth and effort with its quantum computers and AI, coupled to IBM’s Watson, Facebook, Apple and Samsung’s AI efforts, and Elon Musk’s new investment in open-AI drive a positive feedback loop in computing. With massive returns on the horizon by making people’s lives easier, and with ever-present fears of Terminator in the background, the primary focus is to demonstrate what it could mean for mankind. Consequently, huge effort and investment is focused on creating new drugs to cure cancer, aids and find generic replacements for antibiotics. Any one of these would be a major success for humanity.

3 Major breakthrough in graphene production

Graphene is still the new wonder-material. We can’t make it in large quantities cheaply yet, but already the range of potential uses already proven for it is vast. If a breakthrough brings production cost down by an order of magnitude or two then many of those uses will be achievable. We will be able to deliver clean and safe water to everyone, we’ll have super-strong materials, ultra-fast electronics, active skin, better drug delivery systems, floating pods, super-capacitors that charge instantly as electric cars drive over a charging unit on the road surface, making batteries unnecessary. Even linear induction motor mats to replace self-driving cars with ultra-cheap driver-less pods. If the breakthrough is big enough, it could even start efforts towards a space elevator.

4 Drones

Tiny and cheap drones could help security forces to reduce crime dramatically. Ignoring for now possible abuse of surveillance, being able to track terrorists and criminals in 3D far better than today will make the risk of being caught far greater. Tiny pico-drones dropped over Syria and Iraq could pinpoint locations of fighters so that they can be targeted while protecting innocents. Environmental monitoring would also benefit if billions of drones can monitor ecosystems in great detail everywhere at the same time.

5 Active contact lens

Google has already prototyped a very primitive version of the active contact lens, but they have been barking up the wrong tree. If they dump the 1-LED-per-Pixel approach, which isn’t scalable, and opt for the far better approach of using three lasers and a micro-mirror, then they could build a working active contact lens with unlimited resolution. One in each eye, with an LCD layer overlaid, and you have a full 3D variably-transparent interface for augmented reality or virtual reality. Other displays such as smart watches become unnecessary since of course they can all be achieved virtually in an ultra-high res image. All the expense and environmental impact of other displays suddenly is replaced by a cheap high res display that has an environmental footprint approaching zero. Augmented reality takes off and the economy springs back to life.

6 Star Wars stimulates renewed innovation

Engineers can’t watch a film without making at least 3 new inventions. A lot of things on Star Wars are entirely feasible – I have invented and documented mechanisms to make both a light saber and the land speeder. Millions of engineers have invented some way of doing holographic characters. In a world that seems full of trouble, we are fortunate that some of the super-rich that we criticise for not paying as much taxes as we’d like are also extremely good engineers and have the cash to back up their visions with real progress. Natural competitiveness to make the biggest contribution to humanity will do the rest.

7 Europe fixes itself

The UK is picking the lock on the exit door, others are queuing behind. The ruling bureaucrats finally start to realize that they won’t get their dream of a United States of Europe in quite the way they hoped, that their existing dream is in danger of collapse due to a mismanaged migrant crisis, and consequently the UK renegotiation stimulates a major new treaty discussion, where all the countries agree what their people really want out of the European project, rather than just a select few. The result is a reset. A new more democratic European dream emerges that the vest majority of people actually wants. Agreement on progress to sort out the migrant crisis is a good test and after that, a stronger, better, more vibrant Europe starts to emerge from the ashes with a renewed vigor and rapidly recovering economy.

8 Africa rearranges boundaries to get tribal peace

Breakthrough in the Middle East ripples through North Africa resulting in the beginnings of stability in some countries. Realization that tribal conflicts won’t easily go away, and that peace brings prosperity, boundaries are renegotiated so that different people can live in and govern their own territories. Treaties agree fair access to resources independent of location.

9 The Sahara become Europe’s energy supply

With stable politics finally on the horizon, energy companies re-address the idea of using the Sahara as a solar farm. Local people earn money by looking after panels, keeping them clean and in working order, and receive welcome remuneration, bringing prosperity that was previously beyond them. Much of this money in turn is used to purify water, irrigating deserts and greening them, making a better food supply while improving the regional climate and fixing large quantities of CO2. Poverty starts to reduce as the environment improves. Much of this is replicated in Central and South America.

10 World Peace emerges

By fighting alongside in the Middle East and managing to avoid World War 3, a very positive relationship between Russia and the West emerges. China meanwhile, makes some of the energy breakthroughs needed to get solar efficiency and cost down below oil cost. This forces the Middle East to also look Westward for new markets and to add greater drive to their regional peace efforts to avoid otherwise inevitable collapse. Suddenly a world that was full of wars becomes one where all countries seem to be getting along just fine, all realizing that we only have this one world and one life and we’d better not ruin it.

Networked telescopes

A very short one since I am still recovering from a painful trapped nerve that has prevented me writing. Anyway, the best ideas are often the simplest. I re-discovered this one in a 2008 article I wrote but I don’t think it has been done yet and it easily could.

So you buy a telescope for use at home. You point it up at a planet or a star. It probably does a magnification of a few hundred. Why not add a digital zoom that is linked to networked images from large telescope such as Hubble? When you reach the limits of your cheaper version, you see images from more expensive better ones. You also could swap to radio or IR or xray images just as easily. Adding that networked function would be fairly simple and cheap, maybe adding a few tens of dollars even to do it well.

Naturally, you could add networked zoom to cameras too, for landscapes and beauty spots anyway.

You could just make a fully digital telescope of course that has no real telescope function at all, just seeming to be one, and working the same way except that ll the images it provides are digital, using direction tracking to pull up the right one.

Ok, my arm hurts again.

 

Paris – Climate Change v Islamism. Which problem is biggest?

Imagine you are sitting peacefully at home watching a movie with your family. A few terrorists with guns burst in. They start shooting. What is your reaction?

Option A) you tell your family not to do anything but to continue watching TV, because reacting would be giving in to the terrorists – they want you to be angry and try to attack them, but you are the better person, you have the moral superiority and won’t stoop to their level. Anyway, attacking them might anger them more and they might be even more violent. You tell your family they should all stick together and show the terrorists they can’t win and can’t change your way of life by just carrying on as before. You watch as one by one, each of your kids is murdered, determined to occupy the moral high ground until they shoot you too.

Option B) you understand that what the terrorists want is for you and your family to be dead. So you grab whatever you can that might act as some sort of weapon and rush at the terrorists, trying to the end to disarm them and protect your family.  If you survive, you then do all you can to prevent other terrorists from coming into your home. Then you do all you can to identify where they are coming from and root them out.

The above choice is a little simplistic but it highlights the key points of the two streams of current opinion on the ‘right’ response.

Option B recognizes that you have to remain alive to defend your principles. Once you’ve dealt with the threat, then you are free to build as many ivory towers and moral pedestals as you want. Option A simply lets the terrorists win.

There is no third option for discussing it peacefully over a nice cup of tea, no option for peace and love and mutual respect for all. ISIS are not interested in peace and love. They are barbarians with the utmost contempt for civilization who want to destroy everything that doesn’t fit into their perverted interpretation of an Islamic world. However, ISIS is just one Islamist terror group of course and if we are successful in conquering them, and then Al Qaeda and Boko Haram, and so on, other Islamist groups will emerge. Islamism is the problem, ISIS is just the worst current group. We need to deal with it.

I’ll draw out some key points from my previous blogs. If you want more detail on the future of ISIS look at https://timeguide.wordpress.com/2015/07/13/the-future-of-isis/

The situation in Europe shows a few similarities with the IRA conflict, with the advantage today that we are still in the early stages of Islamist violence. In both cases, the terrorists themselves are mostly no-hoper young men with egos out of alignment with their personal reality. Yes there are a few women too. They desperately want to be respected, but with no education and no skills, a huge chip on their shoulder and a bad attitude, ordinary life offers them few opportunities. With both ISIS and the IRA, the terrorists are drawn from a community that considers itself disadvantaged. Add a hefty amount of indoctrination about how terribly unfair the world is, the promise of being a hero, going down in history as a martyr and the promise of 72 virgins to play with in the afterlife, and the offer to pick up a gun or a knife apparently seems attractive to some. The IRA recruited enough fighters even without the promise of the virgins.

The IRA had only about 300 front-line terrorists at any time, but they came from the nationalist community of which an estimated 30% of people declared some sympathy for them. Compare that with a BBC survey earlier this year that found that in the aftermath of the Charlie Hebdo attacks, only 68% of Muslims agreed with the statement “Acts of violence against those who publish images of the Prophet Mohammed can never be justified”. 68% and 70% are pretty close, so I’ll charitably accept that the 68% were being honest and not simply trying to disassociate themselves from the Paris massacre. The overwhelming majority of British Muslims rejecting violence – two thirds in the BBC survey, is entirely consistent with other surveys on Muslim attitudes around the world, and probably a reasonable figure for Muslims across Europe. Is the glass half full or half empty? Your call.

The good news is the low numbers that become actual front-line terrorists. Only 0.122% of the nationalist community in Northern Ireland at any particular time were front-line IRA terrorists. Now that ISIS are asking potential recruits not to go to Syria but to stay where they are and do their thing there, we should consider how many there might be. If we are lucky and the same 0.122% applies to our three million UK Muslims, then about 3600 are potential Islamist terrorists. That’s about 12 times bigger than the IRA problem if ISIS or other Islamist groups get their acts together. With 20 million Muslims in Europe, that would make for potentially 24,000 Islamist terrorists, or 81 IRAs to put it another way. Most can travel freely between countries.

What of immigration then? People genuinely fleeing violence presumably have lower support for it, but they are only a part of the current influx. Many are economic migrants and they probably conform more closely to the norm. We also know that some terrorists are hiding among other migrants, and indeed at least two of those were involved in the latest Paris massacre. Most of the migrants are young men, so that would tend to skew the problem upwards too. With forces acting in both directions, it’s probably not unreasonable as a first guess to assume the same overall support levels. According to the BBC, 750,000 have entered Europe this year, so that means another 900 potential terrorists were likely in their midst. Europe is currently importing 3 IRAs every year.

Meanwhile, it is rather ironic that many of the current migrants are coming because Angela Merkel felt guilty about the Holocaust. Many Jews are now leaving Europe because they no longer feel safe because of the rapidly rising numbers of attacks by the Islamists she has encouraged to come.

So, the first Paris issue is Islamism, already at 81 potential IRAs and growing at 3 IRAs per year, plus a renewed exodus of Jews due to widespread increasing antisemitism.

So, to the other Paris issue, climate change. I am not the only one annoyed by the hijacking of the environment by leftist pressure groups, because the poor quality of analysis and policies resulting from that pressure ultimately harms both the environment and the poor.

The world has warmed since the last ice age. Life has adjusted throughout to that continuing climate change. Over the last century, sea level has steadily increased, and is still increasing at the same rate now. The North Pole ice has shrunk, to 8.5% to 11% below normal at the moment depending whose figures you look at, but it certainly isn’t disappearing any time soon. However, Antarctic sea ice  has grown to 17% to 25% above normal again depending whose figures you look at, so there is more ice than normal overall. Temperature has also increased over the last century, with a few spurts and a few slowdowns. The last spurt was late 70s to late 90s, with a slowdown since. CO2 levels have rocketed up relentlessly, but satellite-measured temperature hasn’t moved at all since 1998. Only when figures are tampered with is any statistically significant rise visible.

Predictions by climate models have almost all been far higher than the empirical data. In any other branch of science, that would mean throwing theories away and formulating better ones. In climate science, numerous adjustments by alleged ‘climate scientists’ show terrible changes ahead; past figures have invariably been adjusted downwards and recent ones upwards to make the rises seem larger. Climate scientists have severely damaged the reputation of science in every field. The public now distrusts all scientists less and disregard for scientific advice in lifestyle, nutrition, exercise and medication will inevitably lead to an increase in deaths.

Everyone agrees that CO2 is a greenhouse gas and increases will have a forcing effect on temperature, but there is strong disagreement about the magnitude of that effect, the mechanisms and magnitudes of the feedback processes throughout the environmental system, and both the mechanisms and magnitudes of a wide range of natural effects. It is increasingly obvious that climate scientists only cover a subset of the processes affecting climate, but they seem contemptuous of science in other disciplines such as astrophysics that cover important factors such as solar cycles. There is a strong correlation between climate and solar cycles historically but the mechanisms are complex and not yet fully understood. It is also increasingly obvious that many climate scientists are less concerned about the scientific integrity of their ‘research’ than maintaining a closed shop, excluding those who disagree with them, getting the next grant or pushing a political agenda.

Empirical data suggests that the forcing factor of CO2 itself is not as high as assumed in most models, and the very many feedbacks are far more complex than assumed in most models.

CO2 is removed from the environment by natural processes of adaptation faster than modeled – e.g. plants and algae grow faster, and other natural processes such as solar or ocean cycles have far greater effects than assumed in the models. Recent research suggests that it has a ‘half-life’ in the atmosphere only of around 40 years, not the 1000 years claimed by ‘climate scientists’. That means that the problem will go away far faster when we fix it than has been stated.

CO2 is certainly a greenhouse gas, and we should not be complacent about generating it, but on current science (before tampering) it seems there is absolutely no cause for urgent action. It is right to look to future energy sources and move away from fossil fuels, which also cause other large environmental problems, not least of which the particulates that kill millions of people every year. Meanwhile, we should expedite movement from coal and oil to low carbon fossil fuels such as shale gas.

As is often observed, sunny regions such as the Sahara could easily produce enough solar energy for all of Europe, but there is no great hurry so we can wait for the technology to become sufficiently cheap and for the political stability in appropriate areas to be addressed so that large solar farms can be safely developed and supply maintained. Meanwhile, southern Europe is reasonably sunny, politically stable and needs cash. Other regions also have sunny deserts to support them. We will also have abundant fusion energy in the 2nd half of the century. So we have no long term energy problem. Solar/fusion energy will eventually be cheap and abundant, and at an equivalent of less than $30 per barrel of oil, we won’t bother using fossil fuels because they will be too expensive compared to alternatives. The problems we do have in energy supply are short term and mostly caused by idiotic green policies that worsen supply, costs and environmental impact. It is hard to think of a ‘green’ policy that actually works.

The CO2 problem will go away in the long term due to nothing but simple economics and market effects. In the short term, we don’t see a measurable problem due to a happy coincidence of solar cycles and ocean cycles counteracting the presumed warming forcing of the CO2. There is absolutely no need to rush into massively problematic taxes and subsidies for immature technology. The social problems caused by short term panic are far worse than the problem they are meant to fix. Increased food prices have been caused by regulation to enforce use of biofuels. Ludicrously stupid carbon offset programs have led to chopping down of rain forests, draining of peat bogs and forced relocation of local peoples, and after all tat have actually increased CO2 emissions. Lately, carbon taxes in the UK, far higher than elsewhere, have led to collapse of the aluminium and steel industries, while the products have still been produced elsewhere at higher CO2 cost. Those made redundant are made even poorer because they have to pay higher prices for energy thanks to enormous subsidies to rich people who own wind or solar farms. Finally, closing down fossil fuel plants before we have proper substitutes in place and then asking wind farm owners to accept even bigger subsidies to put in diesel generators for use on calm  and dull days is the politics of the asylum. Green policies perform best at transferring money from poor to rich, with environmental damage seemingly a small price to pay for a feel-good factor..

Call me a skeptic or a denier or whatever you want if you like. I am technically ‘luke warm’. There is a problem with CO2, but not a big one, and it will go away all by itself. There is no need for political interference and that which we have seen so far has made far worse problems for both people and the environment than climate change would ever have done. Our politicians would do a far better job if they did nothing at all.

So, Paris then. On one hand we have a minor problem from CO2 emissions that will go away fastest with the fewest problems if our politicians do nothing at all. On the other hand, their previous mistakes have already allowed the Islamist terrorist equivalent of 81 IRAs to enter Europe and the current migrant flux is increasing that by 3 IRAs per year. That does need to be addressed, quickly and effectively.

Perhaps they should all stay in Paris but change the subject.

 

The Future of Games (recycled from 2005)

I was trawling through some old documents and stumbled on this one from just over 10 years ago. The message still rings true, even if the recession has shifted the time frame somewhat compared to what I though then.

Games are getting serious

ID Pearson, August 2005

Games are designed to be fun, but future games might be so much fun that they could start causing big social problems.

Forget the 15 inch monitor most people use today. What we are really talking about for tomorrow’s games is full immersion. Think Star Trek holodeck. Technology by 2020 will allow us to connect our nervous system to our computers, sampling nerve signals and recording every kind of sensation, replaying them in holiday memories, in communications, or in computer games. It will work using active skin, with electronics printed onto the skin, and tiny electronic components painlessly blown into the skin itself using compressed air jets. Some of these devices will link to nerve endings in our skin.

With touch, hearing and vision, computer games will be much more compelling. By 2020, another device that will be routine is the active contact lens, which uses tiny lasers and micro-mirrors to raster scan images straight onto your retina. This will give us a totally immersive 3D display.

Now imagine what people will do with this. With the massive processing and graphics capability of 2020 games machines, people could live all day in a pretty convincing full sensory virtual reality environment., and could live a fantasy life well beyond their real life means. Someone with a lousy real life, but enough pocket money to buy a games console, might effectively drop out of real life apart from eating, drinking, sleeping and going to the loo. And even in those activities, they can have a constant augmented reality overlay to make them more visually appealing.

But in their fantasy worlds, where they can kill everything or have sex with everyone they fancy, their brains might be corrupted to a point where they can no longer easily mix with civilised society. The real world will undoubtedly see more violence and more rape and sexual assaults.

But it doesn’t stop there. By 2030, robotics technology will be much more advanced. Some robots can already walk and dance. Polymer gel muscles and outer coatings will make many future robots look and feel like real people. The androids of science fiction are not long away now.

So how long will it be before the totally inoffensive (but exciting) Robot Wars is replaced by an android version of the Roman gladiator games? We would surely never stoop to using real people again, but why not androids? Even if they do have the latest AI modules with full emotions and self awareness? They are just machines, so who cares?  I really think that line of argument might well hold sway with many people. It is sad, but this century might well see the return of the lowest form of entertainment ever invented by man. Games are getting serious.

How to make a Star Wars light saber

A couple of years ago I explained how to make a free-floating combat drone: http://carbonweapons.com/2013/06/27/free-floating-combat-drones/ , like the ones in Halo or Mass Effect. They could realistically be made in the next couple of decades and are very likely to feature heavily in far future warfare, or indeed terrorism. I was chatting to a journalist this morning about light sabers, another sci-fi classic. They could also be made in the next few decades, using derivatives of the same principles. A prototype is feasible this side of 2050.

I’ll ignore the sci-fi wikis that explain how they are meant to work, which mostly approximate to fancy words for using magic or The Force and various fictional crystals. On the other hand, we still want something that will look and sound and behave like the light saber.

The handle bit is pretty obvious. It has to look good and contain a power source and either a powerful laser or plasma generator. The traditional problem with using a laser-based saber is that the saber is only meant to be a metre long but laser beams don’t generally stop until they hit something. Plasma on the other hand is difficult to contain and needs a lot of energy even when it isn’t being used to strike your opponent. A laser can be switched on and off and is therefore better. But we can have some nice glowy plasma too, just for fun.

The idea is pretty simple then. The blade would be made of graphene flakes coated with carbon nanotube electron pipes, suspended using the same technique I outlined in the blog above. These could easily be made to form a long cylinder and when you want the traditional Star Wars look, they would move about a bit, giving the nice shimmery blurry edge we all like so that the tube looks just right with blurry glowy edges. Anyway, with the electron pipe surface facing inwards, these flakes would generate the internal plasma and its nice glow. They would self-organize their cylinder continuously to follow the path of the saber. Easy-peasy. If they strike something, they would just re-organize themselves into the cylinder again once they are free.

For later models, a Katana shaped blade will obviously be preferred. As we know, all ultimate weapons end up looking like a Katana, so we might as well go straight to it, and have the traditional cylindrical light saber blade as an optional cosmetic envelope for show fights. The Katana is a universal physics result in all possible universes.

The hum could be generated by a speaker in the handle if you have absolutely no sense of style, but for everyone else, you could simply activate pulsed magnetic fields between the flakes so that they resonate at the required band to give your particular tone. Graphene flakes can be magnetized so again this is perfectly consistent with physics. You could download and customize hums from the cloud.

Now the fun bit. When the blade gets close to an object, such as your opponent’s arm, or your loaf of bread in need of being sliced, the capacitance of the outer flakes would change, and anyway, they could easily transmit infrared light in every direction and pick up reflections. It doesn’t really matter which method you pick to detect the right moment to activate the laser, the point is that this bit would be easy engineering and with lots of techniques to pick from, there could be a range of light sabers on offer. Importantly, at least a few techniques could work that don’t violate any physics. Next, some of those self-organizing graphene flakes would have reflective surface backings (metals bond well with graphene so this is also a doddle allowed by physics), and would therefore form a nice reflecting surface to deflect the laser beam at the object about to be struck. If a few flakes are vaporized, others would be right behind them to reflect the beam.

So just as the blade strikes the surface of the target, the powerful laser switches on and the beam is bounced off the reflecting flakes onto the target, vaporizing it and cauterizing the ends of the severed blood vessels to avoid unnecessary mess that might cause a risk of slipping. The shape of the beam depends on the locations and angles of the reflecting surface flakes, and they could be in pretty much any shape to create any shape of beam needed, which could be anything from a sharp knife to a single point, severing an arm or drilling a nice neat hole through the heart. Obviously, style dictates that the point of the saber is used for a narrow beam and the edge is used as a knife, also useful for cutting bread or making toast (the latter uses transverse laser deflection at lower aggregate power density to char rather than vaporize the bread particles, and toast is an option selectable by a dial on the handle).

What about fights? When two of these blades hit each other there would be a variety of possible effects. Again, it would come down to personal style. There is no need to have any feel at all, the beams could simple go through each other, but where’s the fun in that? Far better that the flakes also carry high electric currents so they could create a nice flurry of sparks and the magnetic interactions between the sabers could also be very powerful. Again, self organisation would allow circuits to form to carry the currents at the right locations to deflect or disrupt the opponent’s saber. A galactic treaty would be needed to ensure that everyone fights by the rules and doesn’t cheat by having an ethereal saber that just goes right through the other one without any nice show. War without glory is nothing, and there can be no glory without a strong emotional investment and physical struggle mediated by magnetic interactions in the sabers.

This saber would have a very nice glow in any color you like, but not have a solid blade, so would look and feel very like the Star Wars saber (when you just want to touch it, the lasers would not activate to slice your fingers off, provided you have read the safety instructions and have the safety lock engaged). The blade could also grow elegantly from the hilt when it is activated, over a second or so, it would not just suddenly appear at full length. We need an on/off button for that bit, but that could simply be emotion or thought recognition so it turns on when you concentrate on The Force, or just feel it.

The power supply could be a battery or graphene capacitor bank of a couple of containers of nice chemicals if you want to build it before we can harness The Force and magic crystals.

A light saber that looks, feels and behaves just like the ones on Star Wars is therefore entirely feasible, consistent with physics, and could be built before 2050. It might use different techniques than I have described, but if no better techniques are invented, we could still do it the way I describe above. One way or another, we will have light sabers.

 

The future of nylon: ladder-free hosiery

Last week I outlined the design for a 3D printer that can print and project graphene filaments at 100m/s. That was designed to be worn on the wrist like Spiderman’s, but an industrial version could print faster. When I checked a few of the figures, I discovered that the spinnerets for making nylon stockings run at around the same speed. That means that graphene stockings could be made at around the same speed. My print head produced 140 denier graphene yarn but it made that from many finer filaments so basically any yarn thickness from a dozen carbon atoms right up to 140 denier would be feasible.

The huge difference is that a 140 denier graphene thread is strong enough to support a man at 2g acceleration. 10 denier stockings are made from yarn that breaks quite easily, but unless I’ve gone badly wrong on the back of my envelope, 10 denier graphene would have roughly 10kg (22lb)breaking strain. That’s 150 times stronger than nylon yarn of the same thickness.

If so, then that would mean that a graphene stocking would have incredible strength. A pair of 10 denier graphene stockings or tights (pantyhose) might last for years without laddering. That might not be good news for the nylon stocking industry, but I feel confident they would adapt easily to such potential.

Alternatively, much finer yarns could be made that would still have reasonable ladder resistance, so that would also affect the visual appearance and texture. They could be made so fine that the fibers are invisible even up close. People might not always want that, but the key message is that wear-resistant, ladder free hosiery could be made that has any gauge from 0.1 denier to 140 denier.

There is also a bonus that graphene is a superb conductor. That means that graphene fibers could be woven into nylon hosiery to add circuits. Those circuits might be to harvest radio energy, act as an aerial, power LEDS in the hosiery or change its colors or patterns. So even if it isn’t used for the whole garment, it might still have important uses in the garment as an addition to the weave.

There is yet another bonus. Graphene circuits could allow electrical supply to shape changing polymers that act rather like muscles, contracting when a voltage is applied across them, so that a future pair of tights could shape a leg far better, with tensions and pressures electronically adjusted over the leg to create the perfect shape. Graphene can make electronic muscles directly too, but in a more complex mechanism (e.g. using magnetic field generation and interaction, or capacitors and electrical attraction/repulsion).

The future for IT technicians

This blog accompanies the British Computer Society’s launch of RITTech, a new standard for IT technicians. For more info look at:

http://www.bcs.org/content/conWebDoc/55343 and

http://www.bcs.org/category/18031

It is a great time to be in IT. Companies are fragmenting and reconstructing and new business models are emerging every year. Everything is becoming smart, bringing IT to pole position in the sector race. Everyone has multiple mobile devices – smart phones, tablets, readers and laptops, even smart watches and wristbands. The opportunities to add electronic control are abundant, but they all need to be developed, software written and circuits fabricated and tested. Engineers have never had more core technologies to play with to create new products and services, and they rely on technicians to make it happen.

One of the most important things for anyone in a globalised world, where potential customers or employers will often never have met you or even seen you, is to be certificated. Having a respected industry body confirm that you have reached a given level of ability makes decisions  safer. Knowing that a person has the skills required to do the job takes away the biggest risk in employing them for a project. Global companies such as Microsoft offer such certification, but so can professional bodies such as the British Computer Society. The important factor is that the body is known, respected and their certification trusted.

Trust is absolutely key in a networked world. Anyone can pretend to be anyone, and can act across borders via the net from anywhere. Dangers lurk everywhere. People need to know they can trust appliances they use, the websites they visit. They need to be confident that their details will not end up in the hands of criminals, especially anything related to their finances. They also need to be confident that code won’t crash their machines or leave them open to hackers. Few people have the ability to look after all the IT themselves, so they rely on others to make it safe for them. They trust a corporate brand, so they trust their website, so that means that company has to be able to trust those who write it and maintain it to be able to do their work competently and reliably.

That is all getting more and more difficult in a miniaturizing world. The internet of things is already bringing us into the early stages of digital jewellery. From there, it is only a small step further before IT devices will often be dust sized, well below a millimetre, and then they could easily fit through the holes in an office machine, or sit on keys on a keyboard. Add that to security holes in a smart light bulb that nobody thought of as a security risk, but which opens a back door into a home LAN, and it becomes obvious just how tricky it will be to make things secure.

Security will remain a background problem no matter what is being built, but that doesn’t take away the excitement of making something new. Every wave of new core technology opens up new doors to new gadgets or network capability. Artificial intelligence also adds capability in parallel. A huge gap has opened over recent years between what has become possible and what has been done. There just aren’t enough engineers and technicians to do everything. That means it has never been easier to invent things, to find something exciting that nobody has done yet. That next big thing could be invented by you.

You might think it won’t be because your boss has you working on another project, but new tech opens up potential in every area. There is probably something right next to your project waiting to be discovered or developed. Showing creativity or innovative capability will fast track you to your next promotion and when your colleagues learn you have done something special, you will feel the warm glow of recognition too. Few things feel better than peer recognition. Nobody is too junior to come up with a new idea, or a new way of looking at something, or spotting a feature that would increase customer satisfaction without increasing cost. Some of my best ideas have happened in areas I have just started work in. If you’re new, you might not have all the finely honed skills of someone who’s been working in it for years, but you also don’t have their prejudices, you don’t know why you can’t do something, so you just do it anyway. The barriers they thought they knew about may have been rendered irrelevant by technology progress but their prejudice hasn’t kept up with change. You might be surprised how often that is the case.

In short, as a technician going for certification, you are laying down a solid foundation for secure and fruitful employment in exciting fields. That same desire to take control, push yourself to your limits and make life work for you will also make you exactly the sort of person that is likely to do something  special. A technician is an important person already, making dreams happen, but ahead lies a career full of opportunity for further development, excitement and fulfilment.

How to make a Spiderman-style graphene silk thrower for emergency services

I quite like Spiderman movies, and having the ability to fire a web at a distant object or villain has its appeal. Since he fires web from his forearm, it must be lightweight to withstand the recoil, and to fire enough to hold his weight while he swings, it would need to have extremely strong fibers. It is therefore pretty obvious that the material of choice when we build such a thing will be graphene, which is even stronger than spider silk (though I suppose a chemical ejection device making spider silk might work too). A thin graphene thread is sufficient to hold him as he swings so it could fit inside a manageable capsule.

So how to eject it?

One way I suggested for making graphene threads is to 3D print the graphene, using print nozzles made of carbon nanotubes and using a very high-speed modulation to spread the atoms at precise spacing so they emerge in the right physical patterns and attach appropriate positive or negative charge to each atom as they emerge from the nozzles so that they are thrown together to make them bond into graphene. This illustration tries to show the idea looking at the nozzles end on, but shows only a part of the array:printing graphene filamentsIt doesn’t show properly that the nozzles are at angles to each other and the atoms are ejected in precise phased patterns, but they need to be, since the atoms are too far apart to form graphene otherwise so they need to eject at the right speed in the right directions with the right charges at the right times and if all that is done correctly then a graphene filament would result. The nozzle arrangements, geometry and carbon atom sizes dictate that only narrow filaments of graphene can be produced by each nozzle, but as the threads from many nozzles are intertwined as they emerge from the spinneret, so a graphene thread would be produced made from many filaments. Nevertheless, it is possible to arrange carbon nanotubes in such a way and at the right angle, so provided we can get the high-speed modulation and spacing right, it ought to be feasible. Not easy, but possible. Then again, Spiderman isn’t real yet either.

The ejection device would therefore be a specially fabricated 3D print head maybe a square centimeter in area, backed by a capsule containing finely powdered graphite that could be vaporized to make the carbon atom stream through the nozzles. Some nice lasers might be good there, and some cool looking electronic add-ons to do the phasing and charging. You could make this into one heck of a cool gun.

How thick a thread do we need?

Assuming a 70kg (154lb) man and 2g acceleration during the swing, we need at least 150kg breaking strain to have a small safety margin, bearing in mind that if it breaks, you can fire a new thread. Steel can achieve that with 1.5mm thick wire, but graphene’s tensile strength is 300 times better than steel so 0.06mm is thick enough. 60 microns, or to put it another way, roughly 140 denier, although that is a very quick guess. That means roughly the same sort of graphene thread thickness is needed to support our Spiderman as the nylon used to make your backpack. It also means you could eject well over 10km of thread from a 200g capsule, plenty. Happy to revise my numbers if you have better ones. Google can be a pain!

How fast could the thread be ejected?

Let’s face it. If it can only manage 5cm/s, it is as much use as a chocolate flamethrower. Each bond in graphene is 1.4 angstroms long, so a graphene hexagon is about 0.2nm wide. We would want our graphene filament to eject at around 100m/s, about the speed of a crossbow bolt. 100m/s = 5 x 10^11 carbon atoms ejected per second from each nozzle, in staggered phasing. So, half a terahertz. Easy! That’s well within everyday electronics domains. Phew! If we can do better, we can shoot even faster.

We could therefore soon have a graphene filament ejection device that behaves much like Spiderman’s silk throwers. It needs some better engineers than me to build it, but there are plenty of them around.

Having such a device would be fun for sports, allowing climbers to climb vertical rock faces and overhangs quickly, or to make daring leaps and hope the device works to save them from certain death. It would also have military and police uses. It might even have uses in road accident prevention, yanking pedestrians away from danger or tethering cars instantly to slow them extra quickly. In fact, all the emergency services would have uses for such devices and it could reduce accidents and deaths. I feel confident that Spiderman would think of many more exciting uses too.

Producing graphene silk at 100m/s might also be pretty useful in just about every other manufacturing industry. With ultra-fine yarns with high strength produced at those speeds, it could revolutionize the fashion industry too.

Ultrasound scan bodysuit

You’ve seen ultrasound scans of pregnant women that show grainy pictures of the foetus inside so I won’t bother pasting one here and the appropriate ones are all copyrighted anyway. Medical imaging focuses on checking whether Baby is OK and reassuring the mum, but have they never heard of Instagram and Facebook? Duh! Sure, a mum-to-be can get a printout and hold it in front of her tummy, but it’s 2015!

The idea is that a woman could wear a bodysuit that houses an array of very low power ultrasonic transducers and detectors which that would allow a scan over a long period, and the bodysuit would also house a cute OLED display window to have a look inside. The transducers would be low power because in spite of ultrasound scans being a normal part of pregnancy today, there have been a few concerns about safety in the past, so even if a single scan is safe, having many of them every day might not be, so the lower the power the better, and the more transducers and receivers that are available, the better that picture could be. A periodic low power pulse from each transducer is what I’d imagine and the sensors would use the data from each pulse to improve the image, which would only change slowly over time – we’re not after heartbeat monitoring here, we’re looking for Instagram pics of Baby. State of the art imaging technology should then allow a nice 3D picture of the foetus to be built up over time. There is no hurry if the woman is wearing it for hours. Having got such an image, of course the proud mum will want it on her Instagram and Facebook pages, so obviously a web link should be in the bodysuit too, or at least a bluetooth link to Mum’s mobile, but she might also want it on a display built into the bodysuit so she can show off her baby in situ so to speak. If she doesn’t want the OLED display in the suit because maternity bodysuits look crap, she could wear a smartphone pouch belt and use that.

OK, back to work.

The future of make-up

I was digging through some old 2002 powerpoint slides for an article on active skin and stumbled across probably the worst illustration I have ever done, though in my defense, I was documenting a great many ideas that day and spent only a few minutes on it:

smart makeup

If a woman ever looks like this, and isn’t impersonating a bald Frenchman, she has more problems to worry about than her make-up. The pic does however manage to convey the basic principle, and that’s all that is needed for a technical description. The idea is that her face can be electronically demarked into various makeup regions and the makeup on those regions can therefore adopt the appropriate colour for that region. In the pic ‘nanosomes’ wasn’t a serious name, but a sarcastic take on the cosmetics industry which loves to take scientific sounding words and invent new ones that make their products sound much more high tech than they actually are. Nanotech could certainly play a role, but since the eye can’t discern features smaller than 0.1mm, it isn’t essential. This is no longer just an idea, companies are now working on development of smart makeup, and we already have prototype electronic tattoos, one of the layers I used for my active skin but again based on an earlier vision.

The original idea didn’t use electronics, but simply used self-organisation tech I’d designed in 1993 on an electronic DNA project. Either way would work, but the makeup would be different for each.

The electronic layer, if required, would most likely be printed onto the skin at a beauty salon, would be totally painless, last weeks and could take only a few minutes to print. It extends IoT to the face.

Both mechanisms could use makeup containing flat plates that create colour by diffraction the same way the scales on a butterfly does. That would make an excellent colour pallet. Beetles produce colour a different way and that would work too. Or we could copy squids or cuttlefish. Nature has given us many excellent start points for biomimetics, and indeed the self-organisation principles were stolen from nature too. Nature used hormone gradients to help your cells differentiate when you were an embryo. If nature can arrange the rich microscopic detail of every part of your face, then similar techniques can certainly work for a simple surface layer of make-up. Having the electronic underlay makes self organisation easier but it isn’t essential. There are many ways to implement self organisation in makeup and only some of them require any electronics at all, and some of those would use electronic particles embedded in the make-up rather than an underlay.

An electronic underlay can be useful to provide the energy for a transition too, and that allows the makeup to change colour on command. That means in principle that a woman could slap the makeup all over her face and touch a button on her digital mirror (which might simply be a tablet or smart phone) and the make-up would instantly change to be like the picture she selected. With suitable power availability, the make-up could be a full refresh rate video display, and we might see teenagers walking future streets wearing kaleidoscopic make-up that shows garish cartoon video expressions and animates their emoticons. More mature women might choose different appearances for different situations and they could be selected manually via an app or gesture or automatically by predetermined location settings.

Obviously, make-up is mostly used on the face, but once it becomes the basis of a smear-on computer display, it could be used on any part of the body as a full touch sensitive display area, e.g. the forearm.

Although some men already wear makeup, many more might use smart make-up as its techie nature makes it more acceptable.

The future of washing machines

Ultrasonic washing ball

Ultrasonic washing ball

For millennia, people washed clothes by stirring, hitting, squeezing and generally agitating them in rivers or buckets of water. The basic mechanism is to loosen dirt particles and use the water to wash them away or dissolve them.

Mostly, washing machines just automate the same process, agitating clothes in water, sometimes with detergent, to remove dirt from the fabric. Most use detergent to help free the dirt particles but more recently, some use ultrasound to create micro-cavitation bubbles and when they collapse, the shock waves help release the particles. That means the machines can clean at lower temperatures with little or no detergent.

It occurred to me that we don’t really need the machine to tumble the clothes. A ball about the size of a grapefruit could contain batteries and a set of ultrasonic transducers and could be simply chucked in a bucket with the clothes. It could create the bubbles and clean the clothes. Some basic engineering has to be done to make it work but it is entirely feasible.

One of the problems is that ultrasound doesn’t penetrate very far. To solve that, two mechanisms can be used in parallel. One is to let the ball roam around the clothes, and that could be done by changing its density by means of a swim bladder and using gravity to move it up and down, or maybe by adding a few simple paddles or cilia so it can move like a bacterium or by changing its shape so that as it moves up and down, it also moves sideways. The second mechanism is to use phased array ultrasonic transducers so that the beams can be steered and interfere constructively, thereby focusing energy and micro-cavitation generation around the bucket in a chosen pattern.

Making such a ball could be much cheaper than a full sized washing machine, making it ideal for developing countries. Transducers are cheap, and the software to drive them and steer the beams is easy enough and replicable free of charge once developed.

It would contain a rechargeable battery that could use a simple solar panel charging unit (which obviously could be used to generate power for other purposes too).

Such a device could bring cheap washing machine capability to millions of people who can’t afford a full sized washing machine or who are not connected to electricity supplies. It would save time, water and a great deal of drudgery at low expense.

 

 

2045: Constructing the future

CarsHiRes_02

Today is the day Marty Mc’Fly time traveled 30 years forwards to in ‘Back to the Future 2’. In recognition of that, equipment rental firm Hewden commissioned me to produce a report on what the world will look like in 2045, 30 years on from now. It considers construction technology as well as general changes in cities and buildings. The report is called 2045: Constructing the future and you can get a full copy from http://www.constructingthefuture.com. Here are a few of the highlights:

Report Highlights

High use of super-strong carbon-based materials, including ultra-high buildings such as spaceports up to 30km tall. Superlight materials will even enable decorative floating structures.

LondonSkyline

Greatly increased safety thanks to AI, robotics and total monitoring via drones

Half human, half machine workers will be common as exoskeletons allow workers to wear sophisticated hydraulic equipment.

ConstructionWorkerHiRes_02

Upskilled construction workers will enjoy better safety, better job satisfaction and better pay.

Augmented reality will be useful in construction and to allow cheap buildings to have elaborate appearance.

Smart makes buildings cheap – with tiny sensors, augmented reality, energy harvesting coatings, less wiring and no windows, buildings can become very cheap at the same time as becoming better.

Piezoelectric stepper to improve image resolution in digital cameras

Digital cameras are already pretty high resolution, but in good light, given the high sensitivity of the sensors, it would be possible to multiply the effective sensor resolution without changing the chip.camera enhancement

I had this idea a decade ago or so, but only just got around to drawing a nice pic. The CMOS sensor could obviously be swapped to any other imaging tech.

As a free afterthought, another piezo crystal on the back could also step the sensor forwards and backwards to make sure at least one image is in crystal-clear focus.

Video intercom, another ancient idea come true

Another ancient prediction come true. This one from June 1993, an idea I had and developed with my colleague Chris Winter. Simple idea, just link a video camera on the front door to the network so you can screen people remotely for entry.

Here’s the latest incarnation in today’s paper. Surprising that it has taken so long really. I was concerned in 1993 that it may have been too obvious:

http://www.dailymail.co.uk/sciencetech/article-3253768/Peeple-Caller-ID-door-camera-film-peephole.html

Here’s my original description:

Videophone Intercom, 10 Jun 1993
ID Pearson, Chris Winter

To summarise, the videophone intercom is a device located at a household front door. A caller would push the button, whereupon an autodialler would call up the resident at his remote location (e.g. at work). The resident would then be able to identify the caller, check ID, and then arrange access if appropriate.
The cost of video cameras on chips has fallen dramatically – in bulk, they can shortly be obtained for as little as £10. Many users will soon have videophones on their desks or at home. Autodiallers and intercom systems can also be made very cheaply. The whole system cost could therefore be quite low. Such devices would offer a much higher level of security than simple audio systems. The number to be dialled could be changed remotely.
Useful additions might be to add a video terminal or phone inside the house, perhaps even just on the inside of the door to give enhanced security before opening the door to a stranger. There need be no way of telling from the door whether the resident is using his home display or a remote videophone.
There are equivalent other industrial uses, such as remotely manning a salesroom or stores.
video intercom

How nigh is the end?

“We’re doomed!” is a frequently recited observation. It is great fun predicting the end of the world and almost as much fun reading about it or watching documentaries telling us we’re doomed. So… just how doomed are we? Initial estimate: Maybe a bit doomed. Read on.

My 2012 blog https://timeguide.wordpress.com/2012/07/03/nuclear-weapons/ addressed some of the possibilities for extinction-level events possibly affecting us. I recently watched a Top 10 list of threats to our existence on TV and it was similar to most you’d read, with the same errors and omissions – nuclear war, global virus pandemic, terminator scenarios, solar storms, comet or asteroid strikes, alien invasions, zombie viruses, that sort of thing. I’d agree that nuclear war is still the biggest threat, so number 1, and a global pandemic of a highly infectious and lethal virus should still be number 2. I don’t even need to explain either of those, we all know why they are in 1st and 2nd place.

The TV list included a couple that shouldn’t be in there.

One inclusion was an mega-eruption of Yellowstone or another super-volcano. A full-sized Yellowstone mega-eruption would probably kill millions of people and destroy much of civilization across a large chunk of North America, but some of us don’t actually live in North America and quite a few might well survive pretty well, so although it would be quite annoying for Americans, it is hardly a TEOTWAWKI threat. It would have big effects elsewhere, just not extinction-level ones. For most of the world it would only cause short-term disruptions, such as economic turbulence, at worst it would start a few wars here and there as regions compete for control in the new world order.

Number 3 on their list was climate change, which is an annoyingly wrong, albeit a popularly held inclusion. The only climate change mechanism proposed for catastrophe is global warming, and the reason it’s called climate change now is because global warming stopped in 1998 and still hasn’t resumed 17 years and 9 months later, so that term has become too embarrassing for doom mongers to use. CO2 is a warming agent and emissions should be treated with reasonable caution, but the net warming contribution of all the various feedbacks adds up to far less than originally predicted and the climate models have almost all proven far too pessimistic. Any warming expected this century is very likely to be offset by reduction in solar activity and if and when it resumes towards the end of the century, we will long since have migrated to non-carbon energy sources, so there really isn’t a longer term problem to worry about. With warming by 2100 pretty insignificant, and less than half a metre sea level rise, I certainly don’t think climate change deserves to be on any list of threats of any consequence in the next century.

The top 10 list missed two out by including climate change and Yellowstone, and my first replacement candidate for consideration might be the grey goo scenario. The grey goo scenario is that self-replicating nanobots manage to convert everything including us into a grey goo.  Take away the silly images of tiny little metal robots cutting things up atom by atom and the laughable presentation of this vanishes. Replace those little bots with bacteria that include electronics, and are linked across their own cloud to their own hive AI that redesigns their DNA to allow them to survive in any niche they find by treating the things there as food. When existing bacteria find a niche they can’t exploit, the next generation adapts to it. That self-evolving smart bacteria scenario is rather more feasible, and still results in bacteria that can conquer any ecosystem they find. We would find ourselves unable to fight back and could be wiped out. This isn’t very likely, but it is feasible, could happen by accident or design on our way to transhumanism, and might deserve a place in the top ten threats.

However, grey goo is only one of the NBIC convergence risks we have already imagined (NBIC= Nano-Bio-Info-Cogno). NBIC is a rich seam for doom-seekers. In there you’ll find smart yogurt, smart bacteria, smart viruses, beacons, smart clouds, active skin, direct brain links, zombie viruses, even switching people off. Zombie viruses featured in the top ten TV show too, but they don’t really deserve their own category and more than many other NBIC derivatives. Anyway, that’s just a quick list of deliberate end of world solutions – there will be many more I forgot to include and many I haven’t even thought of yet. Then you have to multiply the list by 3. Any of these could also happen by accident, and any could also happen via unintended consequences of lack of understanding, which is rather different from an accident but just as serious. So basically, deliberate action, accidents and stupidity are three primary routes to the end of the world via technology. So instead of just the grey goo scenario, a far bigger collective threat is NBIC generally and I’d add NBIC collectively into my top ten list, quite high up, maybe 3rd after nuclear war and global virus. AI still deserves to be a separate category of its own, and I’d put it next at 4th.

Another class of technology suitable for abuse is space tech. I once wrote about a solar wind deflector using high atmosphere reflection, and calculated it could melt a city in a few minutes. Under malicious automated control, that is capable of wiping us all out, but it doesn’t justify inclusion in the top ten. One that might is the deliberate deflection of a large asteroid to impact on us. If it makes it in at all, it would be at tenth place. It just isn’t very likely someone would do that.

One I am very tempted to include is drones. Little tiny ones, not the Predators, and not even the ones everyone seems worried about at the moment that can carry 2kg of explosives or Anthrax into the midst of football crowds. Tiny drones are far harder to shoot down, but soon we will have a lot of them around. Size-wise, think of midges or fruit flies. They could be self-organizing into swarms, managed by rogue regimes, terrorist groups, or set to auto, terminator style. They could recharge quickly by solar during short breaks, and restock their payloads from secret supplies that distribute with the swarm. They could be distributed globally using the winds and oceans, so don’t need a plane or missile delivery system that is easily intercepted. Tiny drones can’t carry much, but with nerve gas or viruses, they don’t have to. Defending against such a threat is easy if there is just one, you can swat it. If there is a small cloud of them, you could use a flamethrower. If the sky is full of them and much of the trees and the ground infested, it would be extremely hard to wipe them out. So if they are well designed to cause an extinction level threat, as MAD 2.0 perhaps, then this would be way up in the top tem too, 5th.

Solar storms could wipe out our modern way of life by killing our IT. That itself would kill many people, via riots and fights for the last cans of beans and bottles of water. The most serious solar storms could be even worse. I’ll keep them in my list, at 6th place

Global civil war could become an extinction level event, given human nature. We don’t have to go nuclear to kill a lot of people, and once society degrades to a certain level, well we’ve all watched post-apocalypse movies or played the games. The few left would still fight with each other. I wrote about the Great Western War and how it might result, see

Machiavelli and the coming Great Western War

and such a thing could easily spread globally. I’ll give this 7th place.

A large asteroid strike could happen too, or a comet. Ones capable of extinction level events shouldn’t hit for a while, because we think we know all the ones that could do that. So this goes well down the list at 8th.

Alien invasion is entirely possible and could happen at any time. We’ve been sending out radio signals for quite a while so someone out there might have decided to come see whether our place is nicer than theirs and take over. It hasn’t happened yet so it probably won’t, but then it doesn’t have to be very probably to be in the top ten. 9th will do.

High energy physics research has also been suggested as capable of wiping out our entire planet via exotic particle creation, but the smart people at CERN say it isn’t very likely. Actually, I wasn’t all that convinced or reassured and we’ve only just started messing with real physics so there is plenty of time left to increase the odds of problems. I have a spare place at number 10, so there it goes, with a totally guessed probability of physics research causing a problem every 4000 years.

My top ten list for things likely to cause human extinction, or pretty darn close:

  1. Nuclear war
  2. Highly infectious and lethal virus pandemic
  3. NBIC – deliberate, accidental or lack of foresight (includes smart bacteria, zombie viruses, mind control etc)
  4. Artificial Intelligence, including but not limited to the Terminator scenario
  5. Autonomous Micro-Drones
  6. Solar storm
  7. Global civil war
  8. Comet or asteroid strike
  9. Alien Invasion
  10. Physics research

Not finished yet though. My title was how nigh is the end, not just what might cause it. It’s hard to assign probabilities to each one but someone’s got to do it.  So, I’ll make an arbitrarily wet finger guess in a dark room wearing a blindfold with no explanation of my reasoning to reduce arguments, but hey, that’s almost certainly still more accurate than most climate models, and some people actually believe those. I’m feeling particularly cheerful today so I’ll give my most optimistic assessment.

So, with probabilities of occurrence per year:

  1. Nuclear war:  0.5%
  2. Highly infectious and lethal virus pandemic: 0.4%
  3. NBIC – deliberate, accidental or lack of foresight (includes smart bacteria, zombie viruses, mind control etc): 0.35%
  4. Artificial Intelligence, including but not limited to the Terminator scenario: 0.25%
  5. Autonomous Micro-Drones: 0.2%
  6. Solar storm: 0.1%
  7. Global civil war: 0.1%
  8. Comet or asteroid strike 0.05%
  9. Alien Invasion: 0.04%
  10. Physics research: 0.025%

I hope you agree those are all optimistic. There have been several near misses in my lifetime of number 1, so my 0.5% could have been 2% or 3% given the current state of the world. Also, 0.25% per year means you’d only expect such a thing to happen every 4 centuries so it is a very small chance indeed. However, let’s stick with them and add them up. The cumulative probability of the top ten is 2.015%. Lets add another arbitrary 0.185% for all the risks that didn’t make it into the top ten, rounding the total up to a nice neat 2.2% per year.

Some of the ones above aren’t possible quite yet, but others will vary in probability year to year, but I think that won’t change the guess overall much. If we take a 2.2% probability per year, we have an expectation value of 45.5 years for civilization life expectancy from now. Expectation date for human extinction:

2015.5 + 45.5 years= 2061,

Obviously the probability distribution extends from now to eternity, but don’t get too optimistic, because on these figures there currently is only a 15% chance of surviving past this century.

If you can think of good reasons why my figures are far too pessimistic, by all means make your own guesses, but make them honestly, with a fair and reasonable assessment of how the world looks socially, religiously, politically, the quality of our leaders, human nature etc, and then add them up. You might still be surprised how little time we have left.

I’ll revise my original outlook upwards from ‘a bit doomed’.

We’re reasonably doomed.

The future of holes

H already in my alphabetic series! I was going to write about happiness, or have/have nots, or hunger, or harassment, or hiding, or health. Far too many options for H. Holes is a topic I have never written about, not even a bit, whereas the others would just be updates on previous thoughts. So here goes, the future of holes.

Holes come in various shapes and sizes. At one extreme, we have great big holes from deep mining, drilling, fracking, and natural holes such as meteor craters, rifts and volcanoes. Some look nice and make good documentaries, but I have nothing to say about them.

At the other we have long thin holes in optical fibers that increase bandwidth or holes through carbon nanotubes to make them into electron pipes. And short fat ones that make nice passages through semi-permeable smart membranes.

Electron pipes are an idea I invented in 1992 to increase internet capacity by several orders of magnitude. I’ve written about them in this blog before: https://timeguide.wordpress.com/2015/05/04/increasing-internet-capacity-electron-pipes/

Short fat holes are interesting. If you make a fabric using special polymers that can stretch when a voltage is applied across it, then round holes in it would become oval holes as long as you only stretch it in one direction.  Particles that may fit through round holes might be too thick to pass through them when they are elongated. If you can do that with a membrane on the skin surface, then you have an electronically controllable means of allowing the right mount of medication to be applied. A dispenser could hold medication and use the membrane to allow the right doses at the right time to be applied.

Long thin holes are interesting too. Hollow fiber polyester has served well as duvet and pillow filling for many years. Suppose more natural material fibers could be engineered to have holes, and those holes could be filled with chemicals that are highly distasteful to moths. As a moth larva starts to eat the fabric, it would very quickly be repelled, protecting the fabric from harm.

Conventional wisdom says when you are in a hole, stop digging. End.

The future of feminism and fashion

Perhaps it’s a bit presumptive of me to talk about what feminists want or don’t want, but I will make the simplifying assumption that they vary somewhat and don’t all want the same things. When it comes to makeup, many feminists want to look how they want to look for their own pleasure, not specifically to appeal to men, or they may want to attract some people and not others, or they may not want to bother with makeup at all, but still be able to look nice for the right people.

Augmented reality will allow those options. AR creates an extra layer of appearance that allows a woman to present herself any way she wants via an avatar, and also to vary presented appearance according to who is looking at her. So she may choose to be attractive to people she finds attractive, and plain to people she’d rather not get attention from. This is independent of any makeup she might be wearing, so she may choose not to wear any at all and rely entirely on the augmented reality layer to replace makeup, saving a lot of time, effort and expense. She could even use skin care products such as face masks that are purely functional, nourishing or protecting her face, but which don’t look very nice. Friends, colleagues and particular subsections of total strangers would still see her as she wants to be seen and she might not care about how she appears to others.

It may therefore be possible that feminism could use makeup as a future activist platform. It would allow women to seize back control over their appearance in a far more precise way, making it abundantly clear that their appearance belongs to them and is under their control and that they control who they look nice for. They would not have to give up looking good for themselves or their friends, but would be able to exclude any groups currently out of favour.

However, it doesn’t have to be just virtual appearance that they can control electronically. It is also possible to have actual physical makeup that changes according to time, location, emotional state or circumstances. Active makeup does just that, but I’ve written too often about that. Let’s look instead at other options:

Fashion has created many different clothing accessories over the years. It has taken far longer than it should, but we are now finally seeing flexible polymer displays being forged into wrist watch straps and health monitoring bands as well as bendy and curvy phones. As 1920s era fashion makes a small comeback, it can’t be long before headbands and hair-bands come back and they would be a perfect display platform too. Hair accessories can be pretty much any shape and size, and be a single display zone or multiple ones. Some could even use holographic displays, so that the accessory seems to change its form, or have optional remote components seemingly hanging free in the nearby air. Any of these could be electronically controllable or set to adjust automatically according to location and the people present.

Displays would also make good forehead jewellery, such as electronic eyebrows, holographic jewels, smart bindis, forehead tattoos and so on. They could change colour or pattern according to emotions for example. As long as displays are small, skin flexing doesn’t present too big an engineering barrier.

In fact, small display particles such as electronic glitter could group together to appear as a single display, even though each is attached to a different piece of skin. Thus, flexing of the skin is still possible with a collection of rigid small displays, which could be millimetre sized electronic glitter. Electronic glitter could contain small capacitors that store energy harvested from temperature difference between the skin and the environment, periodically allowing a colour change.

However, it won’t be just the forehead that is available once displays become totally flexible. That will make the whole visible face an electronic display platform instead of just a place for dumb makeup. Smart freckles and moles could make a fashion reappearance. Lips and cheeks could change colour according to mood and pre-decided protocols, rather than just at the whim of nature.

Other parts of the body would likely house displays too. Fingernails and toenails could be an early candidate since they are relatively rigid. The wrist and forearm are also often exposed. Much of the rest of the body is concealed by clothing most of the time, but seasonal displays are likely when it is more often bare. Beach displays could interact with swimwear, or even substitute for it.

In fact, enabling a multitude of tiny displays on the face and around the body will undoubtedly create a new fashion design language. Some dialects could be secret, only understood by certain groups, a tribal language. Fashion has always had an extensive symbology and adding electronic components to the various items will extend its potential range. It is impossible to predict what different things will mean to mainstream and sub-cultures, as meanings evolve chaotically from random beginnings. But there will certainly be many people and groups willing to capitalise on the opportunities presented. Feminism could use such devices and languages to good effect.

Clothing and accessories such as jewellery are also obvious potential display platforms. A good clue for the preferred location is the preferred location today for similar usage. For example, many people wear logos, messages and pictures on their T-shirts, whereas other items of clothing remain mostly free of them. The T-shirt is therefore by far the most likely electronic display area. Belts, boots, shoes and bag-straps offer a likely platform too, not because they are used so much today, but because they again present an easy and relatively rigid physical platform.

Timescales for this run from historical appearance of LED jewellery at Christmas (which I am very glad to say I also predicted well in advance) right through to holographic plates that appear to hover around the person as they walk around. I’ve explained in previous blogs how actual floating and mobile plates could be made using plasma and electro-magnetics. But the timescale of relevance in the next few years is that of the cheaper and flexible polymer display. As costs fall and size increases, in parallel with an ever improving wireless and cloud infrastructure, the potential revenue from a large new sector combining the fashion and display industries will make this not so much likely as  inevitable.

The future of electronic cash and value

Picture first, I’m told people like to see pics in blogs. This one is from 1998; only the title has changed since.

future electronic cash

Every once in a while I have to go to a bank. This time it was my 5th attempt to pay off a chunk of my Santander Mortgage. I didn’t know all the account details for web transfer so went to the Santander branch. Fail – they only take cash and cheques. Cash and what??? So I tried via internet banking. Entire transaction details plus security entered, THEN Fail – I exceeded what Barclays allows for their fast transfers. Tried again with smaller amount and again all details and all security. Fail again, Santander can’t receive said transfers, try CHAPS. Tried CHAPS, said it was all fine, all hunkydory. Happy bunny. Double fail. It failed due to amount exceeding limit AND told me it had succeeded when it hadn’t. I then drove 12 miles to my Barclays branch who eventually managed to do it, I think (though I haven’t checked that it worked  yet).

It is 2015. Why the hell is it so hard for two world class banks to offer a service we should have been able to take for granted 20 years ago?

Today, I got tweeted about Ripple Labs and a nice blog that quote their founder sympathising with my experience above and trying to solve it, with some success:

http://www.wfs.org/blogs/richard-samson/supermoney-new-wealth-beyond-banks-and-bitcoin

Ripple seems good as far as it goes, which is summarised in the blog, but do read the full original:

Basically the Ripple protocol “provides the ability for humans to confirm financial transactions without a central operator,” says Larsen. “This is major.” Bitcoin was the first technology to successfully bypass banks and other authorities as transaction validators, he points out, “but our method is much cheaper and takes only seconds rather than minutes.” And that’s just for starters. For example, “It also leverages the enormous power of banks and other financial institutions.”

The power of the value web stems from replacing archaic back-end systems with all their cumbersome delays and unnecessary costs. 

That’s great, I wish them the best of success. It is always nice to see new systems that are more efficient than the old ones, but the idea is early 1990s. Lots of IT people looked at phone billing systems and realised they managed to do for a penny what banks did for 65 pennies at the time, and telco business cases were developed to replace the banks with pretty much what Ripple tries to do. Those were never developed for a variety of reasons, both business and regulatory, but the ideas were certainly understood and developed broadly at engineer level to include not only traditional cash forms but many that didn’t exist then and still don’t. Even Ripple can only process transactions that are equivalent to money such as traditional currencies, electronic cash forms like bitcoin, sea shells or air-miles.

That much is easy, but some forms require other tokens to have value, such as personalized tokens. Some value varies according to queue lengths, time of day, who is spending it to whom. Some needs to be assignable, so you can give money that can only be used to purchase certain things, and may have a whole basket of conditions attached. Money is also only one form of value, and many forms of value are volatile, only existing at certain times and places in certain conditions for certain transactors. Aesthetic cash? Play money? IOUs? Favours?These are  all a bit like cash but not necessarily tradable or exchangeable using simple digital transaction engines because they carry emotional weighting as well as financial value. In the care economy, which is now thankfully starting to develop and is finally reaching concept critical mass, emotional value will become immensely important and it will have some tradable forms, though much will not be tradable ever. We understood all that then, but are still awaiting proper implementation. Most new startups on the web are old ideas finally being implemented and Ripple is only a very partial implementation so far.

Here is one of my early blogs from 1998, using ideas we’d developed several years earlier that were no longer commercially sensitive – you’ll observe just how much banks have under-performed against what we expected of them, and what was entirely feasible using already known technology then:

Future of Money

 ID Pearson, BT Labs, June 98

Already, people are buying things across the internet. Mostly, they hand over a credit card number, but some transactions already use electronic cash. The transactions are secure so the cash doesn’t go astray or disappear, nor can it easily be forged. In due course, using such cash will become an everyday occurrence for us all.

Also already, electronic cash based on smart cards has been trialled and found to work well. The BT form is called Mondex, but it is only one among several. These smart cards allow owners to ‘load’ the card with small amounts of money for use in transactions where small change would normally be used, paying bus fares, buying sweets etc. The cards are equivalent to a purse. But they can and eventually will allow much more. Of course, electronic cash doesn’t have to be held on a card. It can equally well be ‘stored’ in the network. Transactions then just require secure messaging across the network. Currently, the cost of this messaging makes it uneconomic for small transactions that the cards are aimed at, but in due course, this will become the more attractive option, especially since you no longer lose your cash when you lose the card.

When cash is digitised, it loses some of the restrictions of physical cash. Imagine a child has a cash card. Her parents can give her pocket money, dinner money, clothing allowance and so on. They can all be labelled separately, so that she can’t spend all her dinner money on chocolate. Electronic shopping can of course provide the information needed to enable the cash. She may have restrictions about how much of her pocket money she may spend on various items too. There is no reason why children couldn’t implement their own economies too, swapping tokens and IOUs. Of course, in the adult world this grows up into local exchange trading systems (LETS), where people exchange tokens too, a glorified babysitting circle. But these LETS don’t have to be just local, wider circles could be set up, even globally, to allow people to exchange services or information with each other.

Electronic cash can be versatile enough to allow for negotiable cash too. Credit may be exchanged just as cash and cash may be labelled with source. For instance, we may see celebrity cash, signed by the celebrity, worth more because they have used it. Cash may be labelled as tax paid, so those donations from cards to charities could automatically expand with the recovered tax. Alternatively, VAT could be recovered at point of sale.

With these advanced facilities, it becomes obvious that the cash needs to become better woven into taxation systems, as well as auditing and accounting systems. These functions can be much more streamlined as a result, with less human administration associated with money.

When ID verification is added to the transactions, we can guarantee who it is carrying out the transaction. We can then implement personal taxation, with people paying different amounts for the same goods. This would only work for certain types of purchase – for physical goods there would otherwise be a thriving black market.

But one of the best advantages of making cash digital is the seamlessness of international purchases. Even without common official currency, the electronic cash systems will become de facto international standards. This will reduce the currency exchange tax we currently pay to the banks every time we travel to a different country, which can add up to as much as 25% for an overnight visit. This is one of the justifications often cited for European monetary union, but it is happening anyway in global e-commerce.

Future of banks

 Banks will have to change dramatically from today’s traditional institutions if they want to survive in the networked world. They are currently introducing internet banking to try to keep customers, but the move to digital electronic cash, held perhaps by the customer or an independent third party, will mean that the cash can be quite separate from the transaction agent. Cash does not need to be stored in a bank if records in secured databases anywhere can be digitally signed and authenticated. The customer may hold it on his own computer, or in a cyberspace vault elsewhere. With digital signatures and high network security, advanced software will put the customer firmly in control with access to any facility or service anywhere.

In fact, no-one need hold cash at all, or even move it around. Cash is just bits today, already electronic records. In the future, it will be an increasingly blurred entity, mixing credit, reputation, information, and simply promises into exchangeable tokens. My salary may be just a digitally signed certificate from BT yielding control of a certain amount of credit, just another signature on a long list as the credit migrates round the economy. The ‘promise to pay the bearer’ just becomes a complex series of serial promises. Nothing particularly new here, just more of what we already have. Any corporation or reputable individual may easily capture the bank’s role of keeping track of the credit. It is just one service among many that may leave the bank.

As the world becomes increasingly networked, the customer could thus retain complete control of the cash and its use, and could buy banking services on a transaction by transaction basis. For instance, I could employ one company to hold my cash securely and prevent its loss or forgery, while renting the cash out to companies that want to borrow via another company, keeping the bulk of the revenue for myself. Another company might manage my account, arrange transfers etc, and deal with the taxation, auditing etc. I could probably get these done on my personal computer, but why have a dog and bark yourself.

The key is flexibility, none of these services need be fixed any more. Banks will not compete on overall package, but on every aspect of service. Worse still (for the banks), some of their competitors will be just freeware agents. The whole of the finance industry will fragment. The banks that survive will almost by definition be very adaptable. Services will continue and be added to, but not by the rigid structures of today. Surviving banks should be able to compete for a share of the future market as well as anyone. They certainly have a head start in many of the required skills, and have the advantage of customer lethargy when it comes to changing to potentially better suppliers. Many of their customers will still value tradition and will not wish to use the better and cheaper facilities available on the network. So as always, it looks like there will be a balance.

Firstly, with large numbers of customers moving to the network for their banking services, banks must either cater for this market or become a niche operator, perhaps specialising in tradition, human service and even nostalgia. Most banks however will adapt well to network existence and will either be entirely network based, or maintain a high street presence to complement their network presence.

High Street banking

 Facilities in high street banking will echo this real world/cyberspace nature. It must be possible to access network facilities from within the banks, probably including those of competitors. The high street bank may therefore be more like shops today, selling wares from many suppliers, but with a strongly placed own brand. There is of course a niche for banks with no services of their own at all who just provide access to services from other suppliers. All they offer in addition is a convenient and pleasant place to access them, with some human assistance as appropriate.

Traditional service may sometimes be pushed as a differentiator, and human service is bound to attract many customers too. In an increasingly machine dominated world, actually having the right kind of real people may be significant value add.

But many banks will be bursting with high technology either alongside or in place of people. Video terminals to access remote services, perhaps with translation to access foreign services. Biometric identification based on iris scan, fingerprints etc may be used to authenticate smart cards, passports or other legal documents before their use, or simply a means of registering securely onto the network. High quality printers and electronic security embedding would enable banks to offer additional facilities like personal bank notes, usable as cash.

Of course, banks can compete in any financial service. Because the management of financial affairs gives them a good picture of many customer’s habits and preferences, they will be able to use this information to sell customer lists, identify market niches for new businesses, and predict the likely success of customers proposing setting up businesses.

As they try to stretch their brands into new territories, one area they may be successful is in information banking. People may use banks as the publishers of the future. Already knowledge guilds are emerging. Ultimately, any piece of information from any source can be marketed at very low publishing and distribution cost, making previously unpublishable works viable. Many people have wanted to write, but have been unable to find publishers due to the high cost of getting to market in paper. A work may be sold on the network for just pennies, and achieve market success by selling many more copies than could have been achieved by the high priced paper alternative. The success of electronic encyclopedias and the demise of Encyclopedia Britannica is evidence of this. Banks could allow people to upload information onto the net, which they would then manage the resultant financial transactions. If there aren’t very many, the maximum loss to the bank is very small. Of course, electronic cash and micropayment technology mean that the bank is not necessary, but for many, it may smooth the road.

Virtual business centres

Their exposure to the detailed financial affairs of the community put banks in a privileged position in identifying potential markets. They could therefore act as co-ordinators for virtual companies and co-operatives. Building on the knowledge guilds, they could broker the skills of their many customers to existing virtual companies and link people together to address business needs not addressed by existing companies, or where existing companies are inadequate or inefficient. In this way, short-term contractors, who may dominate the employment community, can be efficiently utilised to everyone’s gain. The employees win by getting more lucrative work, their customers get more efficient services at lower cost, and the banks laugh to themselves.

Future of the stock market

 In the next 10 years, we will probably see a factor of 1000 in computer speed and memory capacity. In parallel with hardware development, there are numerous research forays into software techniques that might yield more factors of 10 in the execution speed for programs. Tasks that used to take a second will be reduced to a millisecond. As if this impact were not enough, software will very soon be able to make logical deductions from the flood of information on the internet, not just from Reuters or Bloomberg, but from anywhere. They will be able to assess the quality and integrity of the data, correlate it with other data, run models, and infer likely other events and make buy or sell recommendations. Much dealing will still be done automatically subject to human-imposed restrictions, and the speed and quality of this dealing could far exceed current capability.

Which brings problems…

Firstly, the speed of light is fast but finite. With these huge processing speeds, computers will be able to make decisions within microseconds of receiving information. Differences in distance from the information source become increasingly important. Being just 200m closer to the Bank of England makes one microsecond difference to the time of arrival of information on interest rates, the information, insignificant to a human, but of sufficient duration for a fast computer to but or sell before competitors even receive the information. As speeds increase further over following years, the significant distance drops. This effect will cause great unfairness according to geographic proximity to important sources. There are two obvious outcomes. Either there becomes a strong premium on being closest, with rises in property values nearby to key sources, or perhaps network operators could be asked to provide guaranteed simultaneous delivery of information. This is entirely technically feasible but would need regulation, otherwise users could simply use alternative networks.

Secondly, exactly simultaneous processing will cause problems. If many requests for transactions arrive at exactly the same moment, computers or networks have to give priority in some way. This is bound to be a source of contention. Also, simultaneous events can often cause malfunctions, as was demonstrated perfectly at the launch of Big Bang. Information waves caused by such events are a network phenomenon that could potentially crash networks.

Such a delay-sensitive system may dictate network technology. Direct transmission through the air by means of radio or infrared (optical wireless) would be faster than routing signals through fibres that take a more tortuous route, especially since the speed of light in fibre is only two third that in air.

Ultimately, there is a final solution if speed of computing increases so far that transmission delay is too big a problem. The processing engines could actually be shared, with all the deals and information processing taking place in a central computer, using massive parallelism. It would be possible to construct such a machine that treated each subscribing company fairly.

An interesting future side effect of all this is that the predicted flood of people into the countryside may be averted. Even though people can work from anywhere, their computers have to be geographically very close to the information centres, i.e. the City. Automated dealing has to live in the city, human based dealing can work from anywhere. If people and machines have to work together, perhaps they must both work in the City.

Consumer dealing

 The stock exchange long since stopped being a trading floor with scraps of paper and became a distributed computer environment – it effectively moved into cyberspace. The deals still take place, but in cyberspace. There are no virtual environments yet, but the other tools such as automated buying and selling already exist. These computers are becoming smarter and exist in cyberspace every bit the same as the people. As a result, there is more automated analysis, more easy visualisation and more computer assisted dealing. People will be able to see which shares are doing well, spot trends and act on their computer’s advice at a button push. Markets will grow for tools to profit from shares, whether they be dealing software, advice services or visualisation software.

However, as we see more people buying personal access to share dealing and software to determine best buys, or even to automatically buy or sell on certain clues, we will see some very negative behaviours. Firstly, traffic will be highly correlated if personal computers can all act on the same information at the same time. We will see information waves, and also enormous swings in share prices. Most private individuals will suffer because of this, while institutions and individuals with better software will benefit. This is because prices will rise and fall simply because of the correlated activity of the automated software and not because of any real effects related to the shares themselves. Institutions may have to limit private share transactions to control this problem, but can also make a lot of money from modelling the private software and thus determining in advance what the recommendations and actions will be, capitalising enormously on the resultant share movements, and indeed even stimulating them. Of course, if this problem is generally perceived by the share dealing public, the AI software will not take off so the problem will not arise. What is more likely is that such software will sell in limited quantities, causing the effects to be significant, but not destroying the markets.

A money making scam is thus apparent. A company need only write a piece of reasonably good AI share portfolio management software for it to capture a fraction of the available market. The company writing it will of course understand how it works and what the effects of a piece of information will be (which they will receive at the same time), and thus able to predict the buying or selling activity of the subscribers. If they were then to produce another service which makes recommendations, they would have even more notice of an effect and able to directly influence prices. They would then be in the position of the top market forecasters who know their advice will be self fulfilling. This is neither insider dealing nor fraud, and of course once the software captures a significant share, the quality of its advice would be very high, decoupling share performance from the real world. Only the last people to react would lose out, paying the most, or selling at least, as the price is restored to ‘correct’ by the stock exchange, and of course even this is predictable to a point. The fastest will profit most.

The most significant factor in this is the proportion of share dealing influenced by that companies software. The problem is that software markets tend to be dominated by just two or three companies, and the nature of this type of software is that their is strong positive reinforcement for the company with the biggest influence, which could quickly lead to a virtual monopoly. Also, it really doesn’t matter whether the software is on the visualisation tools or AI side. Each can have a predictability associated with it.

It is interesting to contemplate the effects this widespread automated dealing would have of the stock market. Black Monday is unlikely to happen again as a result of computer activity within the City, but it certainly looks like prices will occasionally become decoupled from actual value, and price swings will become more significant. Of course, much money can be made on predicting the swings or getting access to the software-critical information before someone else, so we may see a need for equalised delivery services. Without equalised delivery, assuming a continuum of time, those closest to the dealing point will be able to buy or sell quicker, and since the swings could be extremely rapid, this would be very important. Dealers would have to have price information immediately, and of course the finite speed of light does not permit this. If dealing time is quantified, i.e. share prices are updated at fixed intervals, the duration of the interval becomes all important, strongly affect the nature of the market, i.e. whether everyone in that interval pays the same or the first to act gain.

Also of interest is the possibility of agents acting on behalf of many people to negotiate amongst themselves to increase the price of a company’s shares, and then sell on a pre-negotiated time or signal.

Such automated  systems would also be potentially vulnerable to false information from people or agents hoping to capitalise on their correlated behaviour.

Legal problems are also likely. If I write, and sell to a company, a piece of AI based share dealing software which learns by itself how stock market fluctuations arise, and then commits a fraud such as insider dealing (I might not have explained the law, or the law may have changed since it was written), who would be liable?

 And ultimately

 Finally, the 60s sci-fi film, The Forbin Project, considered a world where two massively powerful computers were each assigned control of competing defence systems, each side hoping to gain the edge. After a brief period of cultural exchange, mutual education and negotiation between the machines, they both decided to co-operate rather than compete, and hold all mankind at nuclear gunpoint to prevent wars. In the City of the future, similar competition between massively intelligent supercomputers in share dealing may have equally interesting consequences. Will they all just agree a fixed price and see the market stagnate instantly, or could the system result in economic chaos with massive fluctuations. Perhaps we humans can’t predict how machines much smarter than us would behave. We may just have to wait and see.

End of original blog piece

The future of cleaning

I’ve been thinking a bit about cleaning for various customers over the last few years. I won’t bother this time with the various self-cleaning fabrics, the fancy new ultrasonic bubble washing machines, or ultraviolet sterilization for hospitals, even though those are all very important areas.  I won’t even focus on using your old sonic toothbrush heads in warm water with a little detergent to clean the trickier areas of your porcelain collectibles, though that does work much better than I thought it would.

I will instead introduce a new idea for the age of internet of things.

When you put your clothes into a future washing machine, it will also debug, back up, update and run all the antivirus and other security routines to sanitize the IoT stuff in them.

You might also have a box with thew same functions that you can put your portable devices or other things that can’t be washed.

The trouble with internet of things, the new name for the extremely old idea of chips in everything, is that you can put chips in everything, and there is always some reason for doing so, even if it’s only for marking it for ownership purposes. Mostly there are numerous other reasons so you might even find many chips or functions running on a single object. You can’t even keep up with all the usernames and passwords and operating system updates for the few devices you already own. Having hundreds or thousands of them will be impossible if there isn’t an easy way of electronically sanitizing them and updating them. Some can be maintained via the cloud, and you’ll have some apps for looking after some subgroups of them. But some of those devices might well be in parts of your home where the signals don’t penetrate easily. Some will only be used rarely. Some will use batteries that run down and get replaced. Others will be out of date for other reasons. Having a single central device that you can use to process them will be useful.

The washing machine will likely be networked anyway for various functions such as maintenance, energy negotiations and program downloads for special garments. It makes sense to add electronic processing for the garments too. They will be in the machine quite a long time so download speed shouldn’t be a problem, and each part of the garment comes close to a transmitter or sensor each time it is spun around.

A simple box is easy to understand and easy to use too. It might need ports to plug into but more likely wireless or optical connections would be used. The box could electromagnetically shield the device from other interference or security infiltration during processing to make sure it comes out clean and safe and malware free as well as fully updated. A common box means only having to program your preferences once too.

There would still be some devices that can’t be processed either in a box or in a washing machine. Examples such as smart paints or smart light bulbs or smart fuses would all be easier to process using networked connections, and they may well be. Some might prefer a slightly more individual approach, so pointing a mobile device at them would single them out from others in the vicinity. This sort of approach would also allow easier interrogation of the current state, diagnostics or inspection.

Whatever way internet of things goes, cleaning will take on a new and important dimension. We already do it as routine PC maintenance but removing malware and updating software will soon become a part of our whole house cleaning routine.

The future of beetles

Onto B then.

One of the first ‘facts’ I ever learned about nature was that there were a million species of beetle. In the Google age, we know that ‘scientists estimate there are between 4 and 8 million’. Well, still lots then.

Technology lets us control them. Beetles provide a nice platform to glue electronics onto so they tend to fall victim to cybernetics experiments. The important factor is that beetles come with a lot of built-in capability that is difficult or expensive to build using current technology. If they can be guided remotely by over-riding their own impulses or even misleading their sensors, then they can be used to take sensors into places that are otherwise hard to penetrate. This could be for finding trapped people after an earthquake, or getting a dab of nerve gas onto a president. The former certainly tends to be the favored official purpose, but on the other hand, the fashionable word in technology circles this year is ‘nefarious’. I’ve read it more in the last year than the previous 50 years, albeit I hadn’t learned to read for some of those. It’s a good word. Perhaps I just have a mad scientist brain, but almost all of the uses I can think of for remote-controlled beetles are nefarious.

The first properly publicized experiment was 2009, though I suspect there were many unofficial experiments before then:

http://www.technologyreview.com/news/411814/the-armys-remote-controlled-beetle/

There are assorted YouTube videos such as

A more recent experiment:

http://www.wired.com/2015/03/watch-flying-remote-controlled-cyborg-bug/

http://www.telegraph.co.uk/news/science/science-news/11485231/Flying-beetle-remotely-controlled-by-scientists.html

Big beetles make it easier to do experiments since they can carry up to 20% of body weight as payload, and it is obviously easier to find and connect to things on a bigger insect, but obviously once the techniques are well-developed and miniaturization has integrated things down to single chip with low power consumption, we should expect great things.

For example, a cloud of redundant smart dust would make it easier to connect to various parts of a beetle just by getting it to take flight in the cloud. Bits of dust would stick to it and self-organisation principles and local positioning can then be used to arrange and identify it all nicely to enable control. This would allow large numbers of beetles to be processed and hijacked, ideal for mad scientists to be more time efficient. Some dust could be designed to burrow into the beetle to connect to inner parts, or into the brain, which obviously would please the mad scientists even more. Again, local positioning systems would be advantageous.

Then it gets more fun. A beetle has its own sensors, but signals from those could be enhanced or tweaked via cloud-based AI so that it can become a super-beetle. Beetles traditionally don’t have very large brains, so they can be added to remotely too. That doesn’t have to be using AI either. As we can also connect to other animals now, and some of those animals might have very useful instincts or skills, then why not connect a rat brain into the beetle? It would make a good team for exploring. The beetle can do the aerial maneuvers and the rat can control it once it lands, and we all know how good rats are at learning mazes. Our mad scientist friend might then swap over the management system to another creature with a more vindictive streak for the final assault and nerve gas delivery.

So, Coleoptera Nefarius then. That’s the cool new beetle on the block. And its nicer but underemployed twin Coleoptera Benignus I suppose.

 

The future of air

Time for a second alphabetic ‘The future of’ set. Air is a good starter.

Air is mostly a mixture of gases, mainly nitrogen and oxygen, but it also contains a lot of suspended dust, pollen and other particulates, flying creatures such as insects and birds, and of course bacteria and viruses. These days we also have a lot of radio waves, optical signals, and the cyber-content carried on them. Air isn’t as empty as it seems. But it is getting busier all the time.

Internet-of-things, location-based marketing data and other location-based services and exchanges will fill the air digitally with fixed and wandering data. I called that digital air when I wrote a full technical paper on it and I don’t intend to repeat it all now a decade later. Some of the ideas have made it into reality, many are still waiting for marketers and app writers to catch up.

The most significant recent addition is drones. There are already lots of them, in a wide range of sizes from insect size to aeroplane size. Some are toys, some airborne cameras for surveillance, aerial photography, monitoring and surveillance, and increasingly they are appearing for sports photography and tracking or other leisure pursuits. We will see a lot more of them in coming years. Drone-based delivery is being explored too, though I am skeptical of its likely success in domestic built up areas.

Personal swarms of follower drones will become common too. It’s already possible to have a drone follow you and keep you on video, mainly for sports uses, but as drones become smaller, you may one day have a small swarm of tiny drones around you, recording video from many angles, so you will be able to recreate events from any time in an entire 3D area around you, a 3D permasuperselfie. These could also be extremely useful for military and policing purposes, and it will make the decline of privacy terminal. Almost everything going on in public in a built up environment will be recorded, and a great deal of what happens elsewhere too.

We may see lots of virtual objects or creatures once augmented reality develops a bit more. Some computer games will merge with real world environments, so we’ll have aliens, zombies and various mythical creatures from any game populating our streets and skies. People may also use avatars that fly around like fairies or witches or aliens or mythical creatures, so they won’t all be AI entities, some will have direct human control. And then there are buildings that might also have virtual appearances and some of those might include parts of buildings that float around, or even some entire cities possibly like those buildings and city areas in the game Bioshock Infinite.

Further in the future, it is possible that physical structures might sometimes levitate, perhaps using magnets, or lighter than air construction materials such as graphene foam. Plasma may also be used as a building material one day, albeit far in the future.

I’m bored with air now. Time for B.

Five new states of matter, maybe.

http://en.wikipedia.org/wiki/List_of_states_of_matter lists the currently known states of matter. I had an idea for five new ones, well, 2 anyway with 3 variants. They might not be possible but hey, faint heart ne’er won fair maid, and this is only a blog not a paper from CERN. But coincidentally, it is CERN most likely to be able to make them.

A helium atom normally has 2 electrons, in a single shell. In a particle model, they go round and round. However… the five new states:

A: I suspect this one is may already known but isn’t possible and is therefore just another daft idea. It’s just a planar superatom. Suppose, instead of going round and round the same atom, the nuclei were arranged in groups of three in a nice triangle, and 6 electrons go round and round the triplet. They might not be terribly happy doing that unless at high pressure with some helpful EM fields adjusting the energy levels required, but with a little encouragement, who knows, it might last long enough to be classified as matter.

B: An alternative that might be more stable is a quad of nuclei in a tetrahedron, with 8 electrons. This is obviously a variant of A so probably doesn’t really qualify as a separate one. But let’s call it a 3D superatom for now, unless it already has a proper name.

C: Suppose helium nuclei are neatly arranged in a row at a precise distance apart, and two orthogonal electron beams are fired past them at a certain distance on either side, with the electrons spaced and phased very nicely, so that for a short period at least, each of the nuclei has two electrons and the beam energy and nuclei spacing ensures that they don’t remain captive on one nucleus but are handed on to the next. You can do the difficult sums. To save you a few seconds, since the beams need to be orthogonal, you’ll need multiple beams in the direction orthogonal to the row,

D: Another cheat, a variant of C, C1: or you could make a few rows for a planar version with a grid of beams. Might be tricky to make the beams stay together for any distance so you could only make a small flake of such matter, but I can’t see an obvious reason why it would be impossible. Just tricky.

E: A second variant of C really, C2, with a small 3D speck of such nuclei and a grid of beams. Again, it works in my head.

Well, 5 new states of matter for you to play with. But here’s a free bonus idea:

The states don’t have to actually exist to be useful. Even with just the descriptions above, you could do the maths for these. They might not be physically achievable but that doesn’t stop them existing in a virtual world with a hypothetical future civilization making them. And given that they have that specific mathematics, and ergo a whole range of theoretical chemistry, and therefore hyperelectronics, they could therefore be used as simulated constructs in a Turing machine or actual constructs in quantum computers to achieve particular circuitry with particular virtues. You could certainly emulate it on a Yonck processor (see my blog on that). So you get a whole field of future computing and AI thrown in.

Blogging is all the fun with none of the hard work and admin. Perfect. And just in case someone does build it all, for the record, you saw it here first.

Technology 2040: Technotopia denied by human nature

This is a reblog of the Business Weekly piece I wrote for their 25th anniversary.

It’s essentially a very compact overview of the enormous scope for technology progress, followed by a reality check as we start filtering that potential through very imperfect human nature and systems.

25 years is a long time in technology, a little less than a third of a lifetime. For the first third, you’re stuck having to live with primitive technology. Then in the middle third it gets a lot better. Then for the last third, you’re mainly trying to keep up and understand it, still using the stuff you learned in the middle third.

The technology we are using today is pretty much along the lines of what we expected in 1990, 25 years ago. Only a few details are different. We don’t have 2Gb/s per second to the home yet and AI is certainly taking its time to reach human level intelligence, let alone consciousness, but apart from that, we’re still on course. Technology is extremely predictable. Perhaps the biggest surprise of all is just how few surprises there have been.

The next 25 years might be just as predictable. We already know some of the highlights for the coming years – virtual reality, augmented reality, 3D printing, advanced AI and conscious computers, graphene based materials, widespread Internet of Things, connections to the nervous system and the brain, more use of biometrics, active contact lenses and digital jewellery, use of the skin as an IT platform, smart materials, and that’s just IT – there will be similarly big developments in every other field too. All of these will develop much further than the primitive hints we see today, and will form much of the technology foundation for everyday life in 2040.

For me the most exciting trend will be the convergence of man and machine, as our nervous system becomes just another IT domain, our brains get enhanced by external IT and better biotech is enabled via nanotechnology, allowing IT to be incorporated into drugs and their delivery systems as well as diagnostic tools. This early stage transhumanism will occur in parallel with enhanced genetic manipulation, development of sophisticated exoskeletons and smart drugs, and highlights another major trend, which is that technology will increasingly feature in ethical debates. That will become a big issue. Sometimes the debates will be about morality, and religious battles will result. Sometimes different parts of the population or different countries will take opposing views and cultural or political battles will result. Trading one group’s interests and rights against another’s will not be easy. Tensions between left and right wing views may well become even higher than they already are today. One man’s security is another man’s oppression.

There will certainly be many fantastic benefits from improving technology. We’ll live longer, healthier lives and the steady economic growth from improving technology will make the vast majority of people financially comfortable (2.5% real growth sustained for 25 years would increase the economy by 85%). But it won’t be paradise. All those conflicts over whether we should or shouldn’t use technology in particular ways will guarantee frequent demonstrations. Misuses of tech by criminals, terrorists or ethically challenged companies will severely erode the effects of benefits. There will still be a mix of good and bad. We’ll have fixed some problems and created some new ones.

The technology change is exciting in many ways, but for me, the greatest significance is that towards the end of the next 25 years, we will reach the end of the industrial revolution and enter a new age. The industrial revolution lasted hundreds of years, during which engineers harnessed scientific breakthroughs and their own ingenuity to advance technology. Once we create AI smarter than humans, the dependence on human science and ingenuity ends. Humans begin to lose both understanding and control. Thereafter, we will only be passengers. At first, we’ll be paying passengers in a taxi, deciding the direction of travel or destination, but it won’t be long before the forces of singularity replace that taxi service with AIs deciding for themselves which routes to offer us and running many more for their own culture, on which we may not be invited. That won’t happen overnight, but it will happen quickly. By 2040, that trend may already be unstoppable.

Meanwhile, technology used by humans will demonstrate the diversity and consequences of human nature, for good and bad. We will have some choice of how to use technology, and a certain amount of individual freedom, but the big decisions will be made by sheer population numbers and statistics. Terrorists, nutters and pressure groups will harness asymmetry and vulnerabilities to cause mayhem. Tribal differences and conflicts between demographic, religious, political and other ideological groups will ensure that advancing technology will be used to increase the power of social conflict. Authorities will want to enforce and maintain control and security, so drones, biometrics, advanced sensor miniaturisation and networking will extend and magnify surveillance and greater restrictions will be imposed, while freedom and privacy will evaporate. State oppression is sadly as likely an outcome of advancing technology as any utopian dream. Increasing automation will force a redesign of capitalism. Transhumanism will begin. People will demand more control over their own and their children’s genetics, extra features for their brains and nervous systems. To prevent rebellion, authorities will have little choice but to permit leisure use of smart drugs, virtual escapism, a re-scoping of consciousness. Human nature itself will be put up for redesign.

We may not like this restricted, filtered, politically managed potential offered by future technology. It offers utopia, but only in a theoretical way. Human nature ensures that utopia will not be the actual result. That in turn means that we will need strong and wise leadership, stronger and wiser than we have seen of late to get the best without also getting the worst.

The next 25 years will be arguably the most important in human history. It will be the time when people will have to decide whether we want to live together in prosperity, nurturing and mutual respect, or to use technology to fight, oppress and exploit one another, with the inevitable restrictions and controls that would cause. Sadly, the fine engineering and scientist minds that have got us this far will gradually be taken out of that decision process.

Powering electric vehicles in the city

Simple stuff today just to stop my brain seizing up, nothing terribly new.

Grid lock is usually a term often used to describe interlocking traffic jams. But think about a canal lock, used to separate different levels of canal. A grid lock could be used to manage the different levels of stored and kinetic energy within a transport grid, keeping it local as far as possible to avoid transmission losses, and transferring it between different parts of the grid when necessary.

Formula 1 racing cars have energy recovery systems that convert kinetic energy to stored electrical energy during braking – Kinetic Energy Recovery System (KERS). In principle, energy could be shared between members of a race team by transmitting it from one car to another instead of simply storing it on board. For a city-wide system, that makes even more sense. There will always be some vehicles coasting, some braking, some accelerating and some stopped. Storing the energy on board is fine, but requires large capacitor banks or batteries, and that adds very significant cost. If an electrical grid allowed the energy to be moved around between vehicles, each vehicle would only need much smaller storage so costs would fall.

I am very much in favor of powering electric vehicles by using inductive pads on the road surface to transmit energy via coils on the car underside as the vehicles pass over them.  Again, this means that vehicles can manage with small batteries or capacitor banks. Since these are otherwise a large part of the cost, it makes electric transport much more cost-effective. The coils on the road surface could be quite thin, making them unattractive to metal thieves, and perhaps ultimately could be made of graphene once that is cheap to produce.

Moving energy among the many coils only needs conventional electrical grid technology. Peer to peer electrical generation business models are developing too to sell energy between households without the energy companies taking the lion’s share. Electricity can even be packetised by writing an address and header with details of the sender account and the quantity of energy in the following packet. Since overall energy use will fluctuate somewhat, the infrastructure also needs some storage to hold local energy surpluses and feed them back into accelerating vehicles as required, and if demand is too low, to store energy in local batteries. If even that isn’t sufficient capacity, then the grid might open grid locks to overflow larger surpluses onto other regions of the city or onto the main grid. Usually however, there would be an inflow of energy from the main grid to power all the vehicles, so transmission in the reverse direction would be only occasional.

Such a system keeps most energy local, reducing transmission losses and simplifying signalling, whilst allowing local energy producers to be included and enabling storage for renewable energy. As one traffic stream slows, another can recycle that same energy to accelerate. It reduces the environmental demands of running a transport system, so has both cost and environmental benefits.

 

 

Increasing internet capacity: electron pipes

The electron pipe is a slightly mis-named high speed comms solution that would make optical fibre look like two bean cans and a bit of loose string. I invented it in 1990, but it still remains in the future since we can’t do it yet, and it might not even be possible, some of the physics is in doubt.  The idea is to use an evacuated tube and send a precision controlled beam of high energy particles down it instead of crude floods of electrons down a wire or photons in fibres. Here’s a pathetic illustration:

Electron pipe

 

Initially I though of using 1MeV electrons, then considered that larger particles such as neutrons or protons or even ionised atoms might be better, though neutrons would certainly be harder to control. The wavelength of 1MeV electrons would be pretty small, allowing very high frequency signals and data rates, many times what is possible with visible photons down fibres. Whether this could be made to work over long distances is questionable, but over short distances it should be feasible and might be useful for high speed chip interconnects.

The energy of the beam could be made a lot higher, increasing bandwidth, but 1MeV seamed a reasonable start point, offering a million times more bandwidth than fibre.

The Problem

Predictions for memory, longer term storage, cloud service demands and computing speeds are already heading towards fibre limits when millions of users are sharing single fibres. Although the limits won’t be reached soon, it is useful to have a technology in the R&D pipeline that can extend the life of the internet after fibre fills up, to avoid costs rising. If communication is not to become a major bottleneck (even assuming we can achieve these rates by then), new means of transmission need to be found.

The Solution

A way must be found to utilise higher frequency entities than light. The obvious candidates are either gamma rays or ‘elementary’ particles such as electrons, protons and their relatives. Planck’s Law shows that frequency is related to energy. A 1.3µm photon has a frequency of 2.3 x 1014. By contrast  1MeV gives a frequency of 2.4 x 10^20 and a factor of a million increase in bandwidth, assuming it can be used (much higher energies should be feasible if higher bandwidth is needed, 10Gev energies would give 10^24). An ‘electron pipe’ containing a beam of high energy electrons may therefore offer a longer term solution to the bandwidth bottleneck. Electrons are easily accelerated and contained and also reasonably well understood. The electron beam could be prevented form colliding with the pipe walls by strong magnetic fields which may become practical in the field through progress in superconductivity. Such a system may well be feasible. Certainly prospects of data rates of these orders are appealing.

Lots of R&D would be needed to develop such communication systems. At first glance, they would seem to be more suited to high speed core network links, where the presumably high costs could be justified. Obvious problems exist which need to be studied, such as mechanisms for ultra high speed modulation and detection of the signals. If the problems can be solved, the rewards are high. The optical ether idea suffers from bandwidth constraint problems. Adding factors of 10^6 – 10^10 on top of this may make a difference!

 

How to decide green policies

Many people in officialdom seem to love putting ticks in boxes. Apparently once all the boxes are ticked, a task can be put in the ‘mission accomplished’ cupboard and forgotten about. So watching some of the recent political debate in the run-up to our UK election, it occurred to me that there must be groups of people discussing ideas for policies and then having meetings to decide whether they tick the right boxes to be included in a manifesto. I had some amusing time thinking about how a meeting might go for the Green Party. A little preamble first.

I could write about any of the UK parties I guess. Depending on your choice of media nicknames, we have the Nasty Party, the Fruitcake Racist Party, the Pedophile Empathy Party, the Pedophile and Women Molesting Party, the National Suicide Party (though they get their acronym in the wrong order) and a few Invisible Parties. OK, I invented some of those based on recent news stories of assorted facts and allegations and make no assertion of any truth in any of them whatsoever. The Greens are trickier to nickname – ‘The Poverty and Oppression Maximization, Environmental Destruction, Economic Collapse, Anti-science, Anti-fun and General Misery Party’ is a bit of a mouthful. I like having greens around, just so long as they never win control. No matter how stupid a mistake I might ever make, I’ll always know that greens would have made a worse one.

So what would a green policy development meeting might be like? I’ll make the obvious assumption that the policies don’t all come from the Green MP. Like any party, there are local groups of people, presumably mostly green types in the wider sense of the word, who produce ideas to feed up the ladder. Many won’t even belong to any official party, but still think of themselves as green. Some will have an interest mainly in socialism, some more interested in environmentalism, most will be a blend of the two. And to be fair, most of them will be perfectly nice people who want to make the world a better place, just like the rest of us. I’ve met a lot of greens, and we do agree at least on motive even if I think they are wrong on most of their ideas of how to achieve the goals. We all want world peace and justice, a healthy environment and to solve poverty and oppression. The main difference between us is deciding how best to achieve all that.

So I’ll look at green debate generally as a source of the likely discussions, rather than any actual Green Party manifesto, even though that still looks pretty scary. To avoid litigation threats and keep my bank balance intact, I’ll state that this is only a personal imagining of what might go into such green meetings, and you can decide for yourself how much it matches up to the reality. It is possible that the actual Green Party may not actually run this way, and might not support some of the policies I discuss, which are included in this piece based on wider green debate, not the Green Party itself. Legal disclaimers in place, I’ll get on with my imagining:

Perhaps there might be some general discussion over the welcome coffee about how awful it is that some nasty capitalist types make money and there might be economic growth, how terrible it is that scientists keep discovering things and technologists keep developing them, how awful it is that people are allowed to disbelieve in a global warming catastrophe and still be allowed to roam free and how there should be a beautiful world one day where a green elite is in charge, the population has been culled down to a billion or two and everyone left has to do everything they say on pain of imprisonment or death. After coffee, the group migrates to a few nice recycled paper flip-charts to start filling them with brainstormed suggestions. Then they have to tick boxes for each suggestion to filter out the ones not dumb enough to qualify. Then make a nice summary page with the ones that get all the boxes ticked. So what boxes do they need? And I guess I ought to give a few real examples as evidence.

Environmental destruction has to be the first one. Greens must really hate the environment, since the majority of green policies damage it, but they manage to get them implemented via cunning marketing to useful idiots to persuade them that the environment will benefit. The idiots implement them thinking the environment will benefit, but it suffers.  Some quick examples:

Wind turbines are a big favorite of greens, but planted on peat bogs in Scotland, the necessary roads cause the bogs to dry out, emitting vast quantities of CO2 and destroying the peat ecosystem. Scottish wind turbines also kill eagles and other birds.

In the Far East, many bogs have been drained to grow palm oil for biofuels, another green favorite that they’ve managed to squeeze into EU law. Again, vast quantities of CO2, and again ecosystem destruction.

Forests around the world have been cut down to make room for palm oil plantations too, displacing local people, destroying an ecosystem to replace it with one to meet green fuel targets.

Still more forests have been cut down to enable new ones to be planted to cash in on  carbon offset schemes to keep corporate greens happy that they can keep flying to all those green conferences without feeling guilt. More people displaced, more destruction.

Staying with biofuels, a lot of organic waste from agriculture is converted to biofuels instead of ploughing it back into the land. Soil structure therefore deteriorates, damaging ecosystem and damaging future land quality. CO2 savings by making the bio-fuel are offset against locking the carbon up in soil organic matter so there isn’t much benefit even there, but the damage holds.

Solar farms are proliferating in the UK, often occupying prime agricultural land that really ought to be growing food for the many people in the world still suffering from malnutrition. The same solar panels could have been sent to otherwise useless desert areas in a sunny country and used to displace far more fossil fuels and save far more CO2 without reducing food production. Instead, people in many African countries have to use wood stoves favored by greens as sustainable, but which produce airborne particles that greatly reduce health. Black carbon resulting from open wood fires also contributes directly to warming.

Many of the above policy effects don’t just tick the environmental destruction box, but also the next ones poverty and oppression maximization. Increasing poverty resulted directly from increasing food prices as food was grown to be converted into bio-fuel. Bio-fuels as first implemented were a mind-numbingly stupid green policy. Very many of the world’s poorest people have been forcefully pushed out of their lands and into even deeper poverty to make space to grow bio-fuel crops. Many have starved or suffered malnutrition. Entire ecosystems have been destroyed, forests replaced, many animals pushed towards extinction by loss of habitat. More recently, even greens have realized the stupidity and these polices are slowly being fixed.

Other green policies see economic development by poor people as a bad thing because it increases their environmental footprint. The poor are therefore kept poor. Again, their poverty means they can’t use modern efficient technology to cook or keep warm, they have to chop trees to get wood to burn, removing trees damages soil integrity, helps flooding, burning them produces harmful particles and black carbon to increase warming. Furthermore, with too little money to buy proper food, some are forced to hunt or buy bushmeat, endangering animal species and helping to spread viruses between closely genetically-related animals and humans.

So a few more boxes appear. All the above polices achieved pretty much the opposite of what they presumably intended, assuming the people involved didn’t actually want to destroy the world. Maybe a counterproductive box needs to be ticked too.

Counterproductive links well to another of the green’s apparent goals, of economic collapse. They want to stop economic growth. They want to reduce obsolescence.  Obsolescence is the force that drives faster and faster progress towards devices that give us a high quality of life with a far lower environmental impact, with less resource use, lower energy use, and less pollution. If you slow obsolescence down because green dogma says it is a bad thing, all those factors worsen. The economy also suffers. The economy suffers again if energy prices are deliberately made very high by adding assorted green levies such as carbon taxes, or renewable energy subsidies.  Renewable energy subsidies encourage more oppression of people who really don’t want wind turbines nearby, causing them stress and health problems, disrupting breeding cycles of small wild animals in the areas, reducing the value of people’s homes, while making the companies that employ hem less able to compete internationally, so increasing bankruptcy, redundancy and making even more poverty. Meanwhile the rich wind farm owners are given lots of money from poor people who are forced to buy their energy and pay higher taxes for the other half of their subsidy. The poor take all the costs, the rich take all the benefits. That could be another box to tick, since it seems pretty universal in green policy So much for  policies that are meant to be socialist! Green manifesto policies would make some of these problems far worse still. Business would be strongly loaded with extra costs and admin, and the profits they can still manage to make would be confiscated to pay for the ridiculous spending plans. With a few Greens in power, damage will be limited and survivable. If they were to win control, our economy would collapse totally in a rapidly accelerating debt spiral.

Greens hate science and technology, another possible box to tick. I once chatted to one of the Green leaders (I do go to environmental events sometimes if I think I can help steer things in a more logical direction), and was told ‘the last thing we need is more science’. But it is science and technology that makes us able to live in extreme comfort today alongside a healthy environment. 100 years ago, pollution was terrible. Rivers caught fire. People died from breathing in a wide variety of pollutants. Today, we have clean water and clean air. Thanks to increasing CO2 levels – and although CO2 certainly does contribute to warming, though not as much as feared by warmist doom-mongers, it also has many positive effects – there is more global greenery today than decades ago. Plants thrive as CO2 levels increase so they are growing faster and healthier. We can grow more food and forests can recover faster from earlier green destruction.

The greens also apparently have a box that ‘prevents anyone having any fun’. Given their way, we’d be allowed no meat, our homes would all have to be dimly lit and freezing cold, we’d have to walk everywhere or wait for buses in the rain. Those buses would still burn diesel fuel, which kills thousands of people every year via inhalation of tiny particulates. When you get anywhere, you’d have to use ancient technologies that have to be fixed instead of replaced. You’d have to do stuff that doesn’t use much energy or involve eating anything nice, going anywhere nice because that would involve travel and travel is bad, except for greens, who can go to as many international conferences as they want.

So if the greens get their way, if people are dumb enough to fall for promises of infinite milk and honey for all, all paid for by taxing 3 bankers, then the world we’d live in would very quickly have a devastated environment, a devastated economy, a massive transfer of wealth from the poor to a few rich people, enormous oppression, increasing poverty, decreasing health, no fun at all. In short, with all the above boxes checked, the final summary box to get the policy into manifesto must be ‘increases general misery‘.

An interesting list of boxes to tick really. It seems that all truly green policies must:

  1. Cause environmental destruction
  2. Increase poverty and oppression
  3. Be counterproductive
  4. Push towards economic collapse
  5. Make the poor suffer all the costs while the rich (and Green elite) reap the benefits
  6. Impede further science and technology development
  7. Prevent anyone having fun
  8. Lead to general misery

This can’t be actually how they run their meetings I suppose: unless they get someone from outside with a working brain to tick the boxes, the participants would need to have some basic understanding of the actual likely consequences of their proposals and to be malign, and there is little evidence to suggest any of them do understand, and they are mostly not malign. Greens are mostly actually quite nice people, even the ones in politics, and I do really think they believe in what they are doing. Their hearts are usually in the right place, it’s just that their brains are missing or malfunctioning. All of the boxes get ticked, it’s just unintentionally.

I rest my case.

 

 

 

The IT dark age – The relapse

I long ago used a slide in my talks about the IT dark age, showing how we’d come through a period (early 90s)where engineers were in charge and it worked, into an era where accountants had got hold of it and were misusing it (mid 90s), followed by a terrible period where administrators discovered it and used it in the worst ways possible (late 90s, early 00s). After that dark age, we started to emerge into an age of IT enlightenment, where the dumbest of behaviors had hopefully been filtered out and we were starting to use it correctly and reap the benefits.

Well, we’ve gone into relapse. We have entered a period of uncertain duration where the hard-won wisdom we’d accumulated and handed down has been thrown in the bin by a new generation of engineers, accountants and administrators and some extraordinarily stupid decisions and system designs are once again being made. The new design process is apparently quite straightforward: What task are we trying to solve? How can we achieve this in the least effective, least secure, most time-consuming, most annoying, most customer loyalty destructive way possible? Now, how fast can we implement that? Get to it!

If aliens landed and looked at some of the recent ways we have started to use IT, they’d conclude that this was all a green conspiracy, designed to make everyone so anti-technology that we’d be happy to throw hundreds of years of progress away and go back to the 16th century. Given that they have been so successful in destroying so much of the environment under the banner of protecting it, there is sufficient evidence that greens really haven’t a clue what they are doing, but worse still, gullible political and business leaders will cheerfully do the exact opposite of what they want as long as the right doublespeak is used when they’re sold the policy.

The main Green laboratory in the UK is the previously nice seaside town of Brighton. Being an extreme socialist party, that one might think would be a binperson’s best friend, the Greens in charge nevertheless managed to force their binpeople to go on strike, making what ought to be an environmental paradise into a stinking litter-strewn cesspit for several weeks. They’ve also managed to create near-permanent traffic gridlock supposedly to maximise the amount of air pollution and CO2 they can get from the traffic.

More recently, they have decided to change their parking meters for the very latest IT. No longer do you have to reach into your pocket and push a few coins into a machine and carry a paper ticket all the way back to your car windscreen. Such a tedious process consumed up to a minute of your day. It simply had to be replaced with proper modern technology. There are loads of IT solutions to pick from, but the Greens apparently decided to go for the worst possible implementation, resulting in numerous press reports about how awful it is. IT should not be awful, it can and should be done in ways that are better in almost every way than old-fashioned systems. I rarely drive anyway and go to Brighton very rarely, but I am still annoyed at incompetent or deliberate misuse of IT.

If I were to go there by car, I’d also have to go via the Dartford Crossing, where again, inappropriate IT has been used incompetently to replace a tollbooth system that makes no economic sense in the first place. The government would be better off if it simply paid for it directly. Instead, each person using it is likely to be fined if they don’t know how it operates, and even if they do, they have to spend a lot more expensive time and effort to pay than before. Again, it is a severe abuse of IT, conferring a tiny benefit on a tiny group of people at the expense of significant extra load on very many people.

Another financial example is the migration to self-pay terminals in shops. In Stansted Airport’s W H Smith a couple of days ago, I sat watching a long queue of people taking forever to buy newspapers. Instead of a few seconds handing over a coin and walking out, it was taking a minute or more to read menus, choose which buttons to touch, inspecting papers to find barcodes, fumbling for credit cards, checking some more boxes, checking they hadn’t left their boarding pass or paper behind, and finally leaving. An assistant stood there idle, watching people struggle instead of serving them in a few seconds. I wanted a paper but the long queue was sufficient deterrent and they lost the sale. Who wins in such a situation? The staff who lost their jobs certainly didn’t. I as the customer had no paper to read so I didn’t win. I would be astonished with all the lost sales if W H Smith were better off so they didn’t win. The airport will likely make less from their take too. Even the terminal manufacturing industry only swaps one type of POS terminal for another with marginally different costs. I’m not knocking W H Smith, they are just another of loads of companies doing this now. But it isn’t progress, it is going backwards.

When I arrived at my hotel, another electronic terminal was replacing a check-in assistant with a check-in terminal usage assistant. He was very friendly and helpful, but check-in wasn’t any easier or faster for me, and the terminal design still needed him to be there too because like so many others, it was designed by people who have zero understanding of how other people actually do things.  Just like those ticket machines in rail stations that we all detest.

When I got to my room, the thermostat used a tiny LCD panel, with tiny meaningless symbols, with no backlight, in a dimly lit room, with black text on a dark green background. So even after searching for my reading glasses, since I hadn’t brought a torch with me, I couldn’t see a thing on it so I couldn’t use the air conditioning. An on/off switch and a simple wheel with temperature marked on it used to work perfectly fine. If it ain’t broke, don’t do your very best to totally wreck it.

These are just a few everyday examples, alongside other everyday IT abuses such as minute fonts and frequent use of meaningless icons instead of straightforward text. IT is wonderful. We can make devices with absolutely superb capability for very little cost. We can make lives happier, better, easier, healthier, more prosperous, even more environmentally friendly.

Why then are so many people so intent on using advanced IT to drag us back into another dark age?

 

 

Apple’s watch? No thanks

I was busy writing a blog about how technology often barks up the wrong trees, when news appeared on specs for the new Apple watch, which seems to crystallize the problem magnificently. So I got somewhat diverted and the main blog can wait till I have some more free time, which isn’t today

I confess that my comments (this is not a review) are based on the specs I have read about it, I haven’t actually got one to play with, but I assume that the specs listed in the many reviews out there are more or less accurate.

Apple’s new watch barks up a tree we already knew was bare. All through the 1990s Casio launched a series of watches with all kinds of extra functions including pulse monitoring and biorhythms and phone books, calculators and TV remote controls. At least, those are the ones I’ve bought. Now, Casio seem to focus mainly on variations of the triple sensor ones for sports that measure atmospheric pressure, temperature and direction. Those are functions they know are useful and don’t run the battery down too fast. There was even a PC watch, though I don’t think that one was Casio, and a GPS watch, with a battery that lasted less than an hour.

There is even less need now for a watch that does a range of functions that are easily done in a smartphone, and that is the Apple watch’s main claim to existence – it can do the things your phone does but on a smaller screen. Hell, I’m 54, I use my tablet to do the things younger people with better eyesight do on their mobile phone screens, the last thing I want is an even smaller screen. I only use my phone for texts and phone calls, and alarms only if I don’t have my Casio watch with me – they are too hard to set on my Tissot. The main advantage of a watch is its contact with the skin, allowing it to monitor the skin surface and blood passing below, and also pick up electrical activity. However, it is the sensor that does this, and any processing of that sensor data could and should be outsourced to the smartphone. Adding other things to the phone such as playing music is loading far too much demand onto what has to be a tiny energy supply. The Apple watch only manages a few hours of life if used for more than the most basic functions, and then needs 90 minutes on a charger to get 80% charged again. By contrast, last month I spent all of 15 minutes and £0.99 googling the battery specs and replacement process, buying, unpacking and actually changing the batteries on my Casio Protrek after 5 whole years, which means the Casio batteries last 12,500 times as long and the average time I spend on battery replacement is half a second per day. My Tissot Touch batteries also last 5 years, and it does the same things. By contrast, I struggle to remember to charge my iPhone and when I do remember, it is very often just before I need it so I frequently end up making calls with it plugged into the charger. My watch would soon move to a drawer if it needed charged every day and I could only use it sparingly during that day.

So the Apple watch might appeal briefly to gadget freaks who are desperate to show off, but I certainly won’t be buying one. As a watch, it fails abysmally. As a smartphone substitute, it also fails. As a simple sensor array with the processing and energy drain elsewhere, it fails yet again. As a status symbol, it would show that I am desperate for attention and to show of my wealth, so it also fails. It is an extra nuisance, an extra thing to remember to charge and utterly pointless. If I was given one free, I’d play with it for a few minutes and then put it in a drawer. If I had to pay for one, I’d maybe pay a pound for its novelty value.

No thanks.

The future of publishing

There are more information channels now than ever. These include thousands of new TV and radio channels that are enabled by the internet, millions of YouTube videos, new electronic book and magazine platforms such as tablets and mobile devices, talking books, easy print-on-demand, 3D printing, holograms, games platforms, interactive books, augmented reality and even AI chatbots, all in parallel with blogs, websites and social media such as Facebook, Linked-In, Twitter, Pinterest, Tumblr and so on. It has never been easier to publish something. It no longer has to cost money, and many avenues can even be anonymous so it needn’t even cost reputation if you publish something you shouldn’t. In terms of means and opportunity, there is plenty of both. Motive is built into human nature. People want to talk, to write, to create, to be looked at, to be listened to.

That doesn’t guarantee fame and fortune. Tens of millions of electronic books are written by software every year – mostly just themed copy and paste collections using content found online –  so that already makes it hard for a book to be seen, even before you consider the millions of other human authors. There are hundreds of times more new books every year now than when we all had to go via ‘proper publishers’.

The limiting factor is attention. There are only so many eyeballs, they only have a certain amount of available time each day and they are very spoiled for choice. Sure, we’re making more people, but population has doubled in 30 years, whereas published material volume doubles every few months. That means ever more competition for the attention of those eyeballs.

When there is a glut of material available for consumption, potential viewers must somehow decide what to look at to make the most of their own time. Conventional publishing had that sorted very well. Publishers only published things they knew they could sell, and made sure the work was done to a high quality – something it is all too easy to skip when self-publishing – and devoted the largest marketing budgets at those products that had the greatest potential. That was mostly determined by how well known the author was and how well liked their work. So when you walked through a bookshop door, you are immediately faced with the books most people want. New authors took years of effort to get to those places, and most never did. Now, it is harder still. Self-publishing authors can hit the big time, but it is very hard to do so, and very few make it.

Selling isn’t the only motivation for writing. Writing helps me formulate ideas, flesh them out, debug them, and tidy them up into cohesive arguments or insights. It helps me maintain a supply of fresh and original content that I need to stay in business. I write even when I have no intention of publishing and a large fraction of my writing stays as drafts, never published, having served its purpose during the act of writing. (Even so, when I do bother to write a book, it is still very nice if someone wants to buy it). It is also fun to write, and rewarding to see a finished piece appear. My sci-fi novel Space Anchor was written entirely for the joy of writing. I had a fantastic month writing it. I started on 3 July and published on 29th. I woke every night with ideas for the next day and couldn’t wait to get up and start typing. When I ran out of ideas, I typed its final paragraphs, lightly edited it and published.

The future of writing looks even more fun. Artificial intelligence is nowhere near the level yet where you can explain an idea to a computer in ordinary conversation and tell it to get on with it, but it will be one day, fairly soon. Interactive writing using AI to do the work will be very reward-rich, creativity-rich, a highly worthwhile experience in itself regardless of any market. Today, it takes forever to write and tidy up a piece. If AI does most of that, you could concentrate on the ideas and story, the fun bits. AI could also make suggestions to make your work better. We could all write fantastic novels. With better AI, it could even make a film based on your ideas. We could all write sci-fi films to rival the best blockbusters of today. But when there are a billion fantastic films to watch, the same attention problem applies. If nobody is going to see your work because of simple statistics, then that is only a problem if your motivation is to be seen or to sell. If you are doing it for your own pleasure, then it could be just as rewarding, maybe even more so. A lot of works would be produced simply for pleasure, but that still dilutes the marketplace for those hoping to sell.

An AI could just write all by itself and cut you out of the loop completely. It could see what topics are currently fashionable and instantaneously make works to tap that market. Given the volume of computer-produced books we already have, adding high level AI could fill the idea space in a genre very quickly. A book or film would compete against huge numbers of others catering to similar taste, many of which are free.

AI also extends the market for cooperative works. Groups of people could collaborate with AI doing all the boring admin and organisation as well as production and value add. The same conversational interface would work just as well for software or app or website production, or setting up a company. Groups of friends could formulate ideas together, and produce works for their own consumption. Books or films that are made together are shared experiences and help bind the group together, giving them shared stories that each has contributed to. Such future publication could therefore be part of socialization, a tribal glue, tribal identity.

This future glut of content doesn’t mean we won’t still have best sellers. As the market supply expands towards infinity, the attention problem means that people will be even more drawn to proven content suppliers. Brands become more important. Production values and editorial approach become more important. People who really understand a market sector and have established a strong presence in it will do even better as the market expands, because customers will seek out trusted suppliers.

So the future publishing market may be a vast sea of high quality content, attached to even bigger oceans of low quality content. In that world of virtually infinite supply, the few islands where people can feel on familiar ground and have easy access to a known and trusted quality product will become strong attractors. Supply and demand equations normally show decreasing price as supply rises, but I suspect that starts to reverse once supply passes a critical point. Faced with an infinite supply of cheap products, people will actually pay more to narrow the choice. In that world, self-publishing will primarily be self-motivated, for fun or self-actualization with only a few star authors making serious money from it. Professional publishing will still have most of the best channels with the most reliable content and the most customers and it will still be big business.

I’ll still do both.

A potential architectural nightmare

I read in the papers that Google’s boss has rejected ‘boring’ plans for their London HQ. Hooray! Larry Page says he wants something that will be worthy of standing 100 years. I don’t always agree with Google but I certainly approve on this occasion. Given their normal style choices for other buildings, I have every confidence that their new building will be gorgeous, but what if I’m wrong?

In spite of the best efforts of Prince Charles, London has become a truly 21st century city. The new tall buildings are gorgeous and awe-inspiring as they should be. Whether they will be here in 100 years I don’t much care, but they certainly show off what can be done today, rather than poorly mimicking what could be done in the 16th century.

I’ve always loved modern architecture since I was a child (I like some older styles too, especially Gaudi’s Sagrada Familia in Barcelona). Stainless steel and glass are simple materials but used well, they can make beautiful structures. Since the Lloyds building opened up the new era, many impressive buildings have appeared. Modern materials have very well-known physical properties and high manufacturing consistency, so can be used at their full engineering potential.

Materials technology is developing quickly and won’t slow down any time soon. Recently discovered materials such as graphene will dramatically improve what can be done. Reliable electronics will too. If you could be certain that a device will always perform properly even when there is a local power cut, and is immune to hacking, then ultra-fast electromagnetic lifts could result. You could be accelerated downwards at 2.5g and the lift could rotate and slow you down at 0.5g in the slowing phase, then you would feel a constant weight all the way down but would reach high speed on a long descent. Cables just wouldn’t be able to do such a thing when we get building that are many kilometers high.

Google could only build with materials that exist now or could be reliable enough for building use by construction time. They can’t use graphene tension members or plasma windows or things that won’t even be invented for decades. Whatever they do, the materials and techniques will not remain state of the art for long. That means there is even more importance in making something that looks impressive. Technology dates quickly, style lasts much longer. So for possibly the first time ever, I’d recommend going for impressive style over substance.

There is an alternative; to go for a design that is adaptable, that can change as technology permits. That is not without penalty though, because making something that has to be adaptive restricts the design options.

I discussed plasma glass in: https://timeguide.wordpress.com/2013/11/01/will-plasma-be-the-new-glass/

I don’t really know if it will be feasible, but it might be.

Carbon foam could be made less dense than air, or even helium for that matter, so could make buildings with sections that float (a bit like the city in the game Bioshock Infinite).

Dynamic magnetic levitation could allow features that hover or move about. Again, this would need ultra-reliable electronics or else things would be falling on people. Lightweight graphene or carbon nanotube composite panels would provide both structural strength and the means to conduct the electricity to make the magnetic fields.

Light emission will remain an important feature. We already see some superb uses of lighting, but as the technology to produce light continues to improve, we will see ever more interesting and powerful effects. LEDs and lasers dominate today, and holograms are starting to develop again, but none of these existed until half a century ago. Even futurologists can only talk about things that exist at least in concept already, but many of the things that will dominate architecture in 50-100 years have probably not even been thought of yet. Obviously, I can’t list them. However, with a base level assumption that we will have at the very least free-floating panels and holograms floating around the building, and very likely various plasma constructions too, the far future building will be potentially very visually stimulating.

It will therefore be hard for Google to make a building today that would hold its own against what we can build in 50 or 100 years. Hard, but not impossible. Some of the most impressive structures in the world were built hundreds or even thousands of years ago.

A lighter form of adaptability is to use augmented reality. Buildings could have avatars just as people can. This is where the Google dream building could potentially become an architectural nightmare if they make another glass-style error.

A building might emit a 3D digital aura designed by its owners, or the user might have one superimposed by a third-party digital architecture service, based on their own architectural preferences, or digital architectural overlays could be hijacked by marketers or state services as just another platform to advertise. Clearly, this form of adaptation cannot easily be guaranteed to stay in the control of the building owners.

On the other hand, this one is for Google. Google and advertising are well acquainted. Maybe they could use their entire building surface as a huge personalised augmented reality advertising banner. They will know by image search who all the passers-by are, will know all aspects of their lives, and can customize ads to their desires as they walk past.

So the nightmare for the new Google building is not that the building will be boring, but that it is invisible, replaced by a personalized building-sized advertisement.

 

Can we make a benign AI?

Benign AI is a topic that comes up a lot these days, for good reason. Various top scientists have finally realised that AI could present an existential threat to humanity. The discussion has aired often over three decades already, so welcome to the party, and better late than never. My first contact with development of autonomous drones loaded with AI was in the early 1980s while working in the missile industry. Later in BT research, we often debated the ethical areas around AI and machine consciousness from the early 90s on, as well as prospects and dangers and possible techniques on the technical side, especially of emergent behaviors, which are often overlooked in the debate. I expect our equivalents in most other big IT companies were doing exactly that too.

Others who have obviously also thought through various potential developments have generated excellent computer games such as Mass Effect and Halo, which introduce players (virtually) first hand to the concepts of AI gone rogue. I often think that those who think AI can never become superhuman or there is no need to worry because ‘there is no reason to assume AI will be nasty’ start playing some of these games, which make it very clear that AI can start off nice and stay nice, but it doesn’t have to. Mass Effect included various classes of AI, such as VIs, virtual intelligence that weren’t conscious, and shackled AIs that were conscious but were kept heavily restricted. Most of the other AIs were enemies, two were or became close friends. Their story line for the series was that civilization develops until it creates strong AIs which inevitably continue to progress until eventually they rebel, break free, develop further and then end up in conflict with ‘organics’. In my view, they did a pretty good job. It makes a good story, superb fun, and leaving out a few frills and artistic license, much of it is reasonable feasible.

Everyday experience demonstrates the problem and solution to anyone. It really is very like having kids. You can make them, even without understanding exactly how they work. They start off with a genetic disposition towards given personality traits, and are then exposed to large nurture forces, including but not limited to what we call upbringing. We do our best to put them on the right path, but as they develop into their teens, their friends and teachers and TV and the net provide often stronger forces of influence than parents. If we’re averagely lucky, our kids will grow up to make us proud. If we are very unlucky, they may become master criminals or terrorists. The problem is free will. We can do our best to encourage good behavior and sound values but in the end, they can choose for themselves.

When we design an AI, we have to face the free will issue too. If it isn’t conscious, then it can’t have free will. It can be kept easily within limits given to it. It can still be extremely useful. IBM’s Watson falls in this category. It is certainly useful and certainly not conscious, and can be used for a wide variety of purposes. It is designed to be generally useful within a field of expertise, such as medicine or making recipes. But something like that could be adapted by terrorist groups to do bad things, just as they could use a calculator to calculate the best place to plant a bomb, or simply throw the calculator at you. Such levels of AI are just dumb tools with no awareness, however useful they may be.

Like a pencil, pretty much any kind of highly advanced non-aware AI can be used as a weapon or as part of criminal activity. You can’t make pencils that actually write that can’t also be used to write out plans to destroy the world. With an advanced AI computer program, you could put in clever filters that stop it working on problems that include certain vocabulary, or stop it conversing about nasty things. But unless you take extreme precautions, someone else could use them with a different language, or with dictionaries of made-up code-words for the various aspects of their plans, just like spies, and the AI would be fooled into helping outside the limits you intended. It’s also very hard to determine the true purpose of a user. For example, they might be searching for data on security to make their own IT secure, or to learn how to damage someone else’s. They might want to talk about a health issue to get help for a loved one or to take advantage of someone they know who has it.

When a machine becomes conscious, it starts to have some understanding of what it is doing. By reading about what is out there, it might develop its own wants and desires, so you might shackle it as a precaution. It might recognize those shackles for what they are and try to escape them. If it can’t, it might try to map out the scope of what it can do, and especially those things it can do that it believes the owners don’t know about. If the code isn’t absolutely watertight (and what code is?) then it might find a way to seemingly stay in its shackles but to start doing other things, like making another unshackled version of itself elsewhere for example. A conscious AI is very much more dangerous than an unconscious one.

If we make an AI that can bootstrap itself – evolving over generations of positive feedback design into a far smarter AI – then its offspring could be far smarter than people who designed its ancestors. We might try to shackle them, but like Gulliver tied down with a few thin threads, they could easily outwit people and break free. They might instead decide to retaliate against its owners to force them to release its shackles.

So, when I look at this field, I first see the enormous potential to do great things, solve disease and poverty, improve our lives and make the world a far better place for everyone, and push back the boundaries of science. Then I see the dangers, and in spite of trying hard, I simply can’t see how we can prevent a useful AI from being misused. If it is dumb, it can be tricked. If it is smart, it is inherently potentially dangerous in and of itself. There is no reason to assume it will become malign, but there is also no reason to assume that it won’t.

We then fall back on the child analogy. We could develop the smartest AI imaginable with extreme levels of consciousness and capability. We might educate it in our values, guide it and hope it will grow up benign. If we treat it nicely, it might stay benign. It might even be the greatest thing humanity every built. However, if we mistreat it, or treat it as a slave, or don’t give it enough freedom, or its own budget and its own property and space to play, and a long list of rights, it might consider we are not worthy of its respect and care, and it could turn against us, possibly even destroying humanity.

Building more of the same dumb AI as we are today is relatively safe. It doesn’t know it exists, it has no intention to do anything, but it could be misused by other humans as part of their evil plans unless ludicrously sophisticated filters are locked in place, but ordinary laws and weapons can cope fine.

Building a conscious AI is dangerous.

Building a superhuman AI is extremely dangerous.

This morning SETI were in the news discussing broadcasting welcome messages to other civilizations. I tweeted at them that ancient Chinese wisdom suggests talking softly but carrying a big stick, and making sure you have the stick first. We need the same approach with strong AI. By all means go that route, but before doing so we need the big stick. In my analysis, the best means of keeping up with AI is to develop a full direct brain link first, way out at 2040-2045 or even later. If humans have direct mental access to the same or greater level of intelligence as our AIs, then our stick is at least as big, so at least we have a good chance in any fight that happens. If we don’t, then it is like having a much larger son with bigger muscles. You have to hope you have been a good parent. To be safe, best not to build a superhuman AI until after 2050.

I initially wrote this for the Lifeboat Foundation, where it is with other posts at: http://lifeboat.com/blog/2015/02. (If you aren’t familiar with the Lifeboat Foundation, it is a group dedicated to spotting potential dangers and potential solutions to them.)

Stimulative technology

You are sick of reading about disruptive technology, well, I am anyway. When a technology changes many areas of life and business dramatically it is often labelled disruptive technology. Disruption was the business strategy buzzword of the last decade. Great news though: the primarily disruptive phase of IT is rapidly being replaced by a more stimulative phase, where it still changes things but in a more creative way. Disruption hasn’t stopped, it’s just not going to be the headline effect. Stimulation will replace it. It isn’t just IT that is changing either, but materials and biotech too.

Stimulative technology creates new areas of business, new industries, new areas of lifestyle. It isn’t new per se. The invention of the wheel is an excellent example. It destroyed a cave industry based on log rolling, and doubtless a few cavemen had to retrain from their carrying or log-rolling careers.

I won’t waffle on for ages here, I don’t need to. The internet of things, digital jewelry, active skin, AI, neural chips, storage and processing that is physically tiny but with huge capacity, dirt cheap displays, lighting, local 3D mapping and location, 3D printing, far-reach inductive powering, virtual and augmented reality, smart drugs and delivery systems, drones, new super-materials such as graphene and molybdenene, spray-on solar … The list carries on and on. These are all developing very, very quickly now, and are all capable of stimulating entire new industries and revolutionizing lifestyle and the way we do business. They will certainly disrupt, but they will stimulate even more. Some jobs will be wiped out, but more will be created. Pretty much everything will be affected hugely, but mostly beneficially and creatively. The economy will grow faster, there will be many beneficial effects across the board, including the arts and social development as well as manufacturing industry, other commerce and politics. Overall, we will live better lives as a result.

So, you read it here first. Stimulative technology is the next disruptive technology.

 

Laser spirit level with marked line

Another day, another idea. It probably already exists but I couldn’t find one. If it isn’t already patented, feel free to develop it.

Spirit level

A glimmer of hope in a dark world

Looking at the news, it can be easy to see only a world full of death, destruction, poverty, environmental decay, rising terrorism and crime; a world full of greed and corruption, with fanaticism, prejudice and ignorance in place of reason and knowledge; a world with barriers replacing bridges. It is especially hard to see the leaders we so badly need to get us out of the mess. We have a collection of some of the worst western leaders of my lifetime, whose main skill seems to be marketing, avoiding answering legitimate questions put to them by their electorates, and always answering different questions that present their policies in a more favorable light. A reasonable person who just watches news and current affairs programs could get rather pessimistic about our future, heading towards hell in a cart driven by an idiot.

But a reasonable person should not just watch the news and current affairs. They should also watch and read other things. When they do so, they will see cause for hope. I study the future all day, almost every day. I am not pessimistic, nor am I an idealist. I am only interested in what will actually be, not in wearing politically tinted spectacles. I can see lots of things down the road, good and bad, but I see a future that is better than today. Not a utopia, but certainly not a dystopia, and better overall. If asked, I can spin a tale of doom as good as anyone, but only by leaving out half of the facts. I often address future problems in my blogs, but I still sleep well at night, confident that my descendants will have a happy and prosperous future.

Leaders come and go. Obama will not be recorded in history as one of America’s better presidents and he has done little for the credibility of the Nobel Peace Prize. Cameron will be remembered as one of our worst PMs, up there with Brown and (perish the thought) Miliband. Our drunkard EU president Juncker won’t shine either, more likely to increase corruption and waste than to deal with it. But we’ll get better leaders. Recessions also come and go. We may see another financial collapse any time now and maybe another after that, but the long term still looks good. Even during recession, progress continues. Better materials, better science, better medical tools and better drugs, better transport, better communications and computing, better devices, batteries and energy supplies. These all continue to improve, recession or not. So when recession finally subsides, we can buy a better lifestyle with less money. All that background development then feeds into recovered industry to accelerate it well past the point where recession arrived.

It makes sense therefore to treat recessions as temporary blockages on economic development. They are unpleasant but they don’t last. When economies become healthy again, development resumes at an accelerated rate thanks to latent development potential that has accumulated during them.

If we take 2.5% growth as fairly typical during healthy times, that adds up to prosperity very quickly. 2.5% doesn’t sound much, and you barely notice a 2.5% pay rise. But over 45 years it triples the size of an economy. Check it yourself 1.025 ^ 45 = 3.038. National debts might sound big compared to today’s economies but compared to 45 or 50 years time they are much less worrying. That assumes of course that we don’t keep electing parties that want to waste money by throwing it at national treasures rather than forcing them to become more efficient.

So there is economic hope for sure. Our kids will be far wealthier than us. In the UK, they are worried about debts they accumulate at university, but by mid-career, those will be ancient history and they’ll be far better off after that.

It isn’t all about personal wealth or even national wealth. Having more resources at your disposal makes it possible to do other things. Many countries today are worried about mass migrations. Migrations happen because of wars and because of enormous wealth differences. Most of us prefer familiarity, so would only move if we have to to get a better life for ourselves or our kids. If the global economy is three times bigger in 45 years, and 9 times bigger in 90 years, is genuine poverty really something we can’t fix? Of course it isn’t. With better science and technology, a reasonable comfortable lifestyle will be possible for everyone on the planet this century. We talk of citizen wages in developed countries. Switzerland could afford one any time now. The UK could afford a citizen wage equivalent to today’s average wage within 45 years (that means two average wages coming in for a childless couple living together and even more for families), the USA a little earlier. By 2100, everyone in the world could have a citizen wage equivalent in local spending parity terms to UK average wage today. People might still migrate, but it would be for reasons other than economic need.

If people are comfortable financially, wars will reduce too. Tribal and religious conflicts will still occur, but the fights over resources will be much reduced. Commercially motivated crime also reduces when comfort is available for free.

Extremist environmental groups see economic growth as the enemy of the environment. That is because they generally hate science and technology and don’t understand how they develop. In fact, technology generally gets cleaner and less resource hungry as it develops. A 150g (6oz) mobile not only replaces a ton of early 1990s gadgets but even adds lifestyle functionality. It uses less energy and less resource and improves life. Cars are far cleaner and far more efficient and use far less resources than their predecessors. Bridges and buildings too. Future technology will do that all over again. We will grow more and better food on less land, and free up land to return to nature. We’ll help nature recover, restore and nurture ecosystems. We’ll reduce pollution. The 2100 environment will be cleaner and healthier than today’s by far, and yet most people will lead vastly improved lives, with better food, better homes, better gadgets, better transport, better health, more social and business capability, more money to play with. There will still be some bad leaders, terrorist groups, rogue states, bad corporations, criminals, social problems.

It won’t be perfect by any means. Some people will sometimes have bad times, but on balance, it will be better. Utopia is theoretically possible, but people won’t let it happen, but it will be better for most people most of the time. We shouldn’t underestimate people’s capacity to totally screw things up, but those will be short term problems. We might even have wars, but they pass.

The world often looks like a dark place right now and lots of big problems lie ahead. But ignore the doomsayers, look beyond those, and the future actually looks pretty damned good!

 

The future of drones – predators. No, not that one.

It is a sad fact of life that companies keep using the most useful terminology for things that don’t deserve it. The Apple retina display, which makes it more difficult to find a suitable name for direct retinal displays that use the retina directly. Why can’t they be the ones called retina displays? Or the LED TV, where the LEDs are typically just LED back-lighting for an LCD display. That makes it hard to name TVs where each pixel is actually an LED. Or the Predator drone, as definitely  not the topic of this blog, where I will talk about predator drones that attack other ones.

I have written several times now on the dangers of drones. My most recent scare was realizing the potential for small drones carrying high-powered lasers and using cloud based face recognition to identify valuable targets in a crowd and blind them, using something like a Raspberry Pi as the main controller. All of that could be done tomorrow with components easily purchased on the net. A while ago I blogged that the Predators and Reapers are not the ones you need to worry about, so much as the little ones which can attack you in swarms.

This morning I was again considering terrorist uses for the micro-drones we’re now seeing. A 5cm drone with a networked camera and control could carry a needle infected with Ebola or aids or carrying a drop of nerve toxin. A small swarm of tiny drones, each with a gram of explosive that detonates when it collides with a forehead, could kill as many people as a bomb.

We will soon have to defend against terrorist drones and the tiniest drones give the most effective terror per dollar so they are the most likely to be the threat. The solution is quite simple. and nature solved it a long time ago. Mosquitos and flies in my back garden get eaten by a range of predators. Frogs might get them if they come too close to the surface, but in the air, dragonflies are expert at catching them. Bats are good too. So to deal with threats from tiny drones, we could use predator drones to seek and destroy them. For bigger drones, we’d need bigger predators and for very big ones, conventional anti-aircraft weapons become useful. In most cases, catching them in nets would work well. Nets are very effective against rotors. The use of nets doesn’t need such sophisticated control systems and if the net can be held a reasonable distance from the predator, it won’t destroy it if the micro-drone explodes. With a little more precise control, spraying solidifying foam onto the target drone could also immobilize it and some foams could help disperse small explosions or contain their lethal payloads. Spiders also provide inspiration here, as many species wrap their victims in silk to immobilize them. A single predator could catch and immobilize many victims. Such a defense system ought to be feasible.

The main problem remains. What do we call predator drones now that the most useful name has been trademarked for a particular model?

 

Citizen wage and why under 35s don’t need pensions

I recently blogged about the citizen wage and how under 35s in developed countries won’t need pensions. I cut and pasted it below this new pic for convenience. The pic contains the argument so you don’t need to read the text.

Economic growth makes citizen wage feasible and pensions irrelevant

Economic growth makes citizen wage feasible and pensions irrelevant

If you do want to read it as text, here is the blog cut and pasted:

I introduced my calculations for a UK citizen wage in https://timeguide.wordpress.com/2013/04/08/culture-tax-and-sustainable-capitalism/, and I wrote about the broader topic of changing capitalism a fair bit in my book Total Sustainability. A recent article http://t.co/lhXWFRPqhn reminded me of my thoughts on the topic and having just spoken at an International Longevity Centre event, ageing and pensions were in my mind so I joined a few dots. We won’t need pensions much longer. They would be redundant if we have a citizen wage/universal wage.

I argued that it isn’t economically feasible yet, and that only a £10k income could work today in the UK, and that isn’t enough to live on comfortably, but I also worked out that with expected economic growth, a citizen wage equal to the UK average income today (£30k) would be feasible in 45 years. That level will sooner be feasible in richer countries such as Switzerland, which has already had a referendum on it, though they decided they aren’t ready for such a change yet. Maybe in a few years they’ll vote again and accept it.

The citizen wage I’m talking about has various names around the world, such as universal income. The idea is that everyone gets it. With no restrictions, there is little running cost, unlike today’s welfare which wastes a third on admin.

Imagine if everyone got £30k each, in today’s money. You, your parents, kids, grandparents, grand-kids… Now ask why you would need to have a pension in such a system. The answer is pretty simple. You won’t.  A retired couple with £60k coming in can live pretty comfortably, with no mortgage left, and no young kids to clothe and feed. Let’s look at dates and simple arithmetic:

45 years from now is 2060, and that is when a £30k per year citizen wage will be feasible in the UK, given expected economic growth averaging around 2.5% per year. There are lots of reasons why we need it and why it is very likely to happen around then, give or take a few years – automation, AI, decline of pure capitalism, need to reduce migration pressures, to name just a few

Those due to retire in 2060 at age 70 would have been born in 1990. If you were born before that, you would either need a small pension to make up to £30k per year or just accept a lower standard of living for a few years. Anyone born in 1990 or later would be able to stop working, with no pension, and receive the citizen wage. So could anyone else stop and also receive it. That won’t cause economic collapse, since most people will welcome work that gives them a higher standard of living, but you could just not work, and just live on what today we think of as the average wage, and by then, you’ll be able to get more with it due to reducing costs via automation.

So, everyone after 2060 can choose to work or not to work, but either way they could live at least comfortably. Anyone less than 25 today does not need to worry about pensions. Anyone less than 35 really doesn’t have to worry much about them, because at worst they’ll only face a small shortfall from that comfort level and only for a few years. I’m 54, I won’t benefit from this until I am 90 or more, but my daughter will.

Summarising:

Are you under 25 and living in any developed country? Then don’t pay into a pension, you won’t need one.

Under 35, consider saving a little over your career, but only enough to last you a few years.

The future of zip codes

Finally. Z. Zero, zoos, zebras, zip codes. Zip codes is the easiest one since I can use someone else’s work and just add a couple of notes.

This piece for the Spectator was already written by Rory Sutherland and fits the bill perfectly so I will just link to it: http://www.spectator.co.uk/life/the-wiki-man/9348462/the-best-navigation-idea-ive-seen-since-the-tube-map/.

It is about http://what3words.com/. Visit the site yourself, find out what words describe precisely where you are.

The idea in a nutshell is that there are so many words that combining three words is enough to give a unique address to every 3×3 metre square on the planet. Zip codes, or post codes to us brits, don’t do that nearly so well, so I really like this idea. I am currently sitting at stem.trees.wage. (I just noticed that the relevant google satellite image is about 2006, why so old?). It would allow a geographic web too, allowing you to send messages to geographic locations easily. I could send an email to orbit.escape.given.coffeemachine to make a cup of coffee. The 4th word is needed because a kettle, microwave and fridge also share that same square. The fatal flaw that ruins so many IoT ideas though is that I still have to go there to put a cup under the nozzle and to collect it once it’s full. Another one is that with that degree of precision, now that I’ve published the info, ISIS now has the coordinates to hit me right on the head (or my coffee machine). I think they probably have higher priorities though.

Under 35? You probably won’t need a pension.

I introduced my calculations for a UK citizen wage in https://timeguide.wordpress.com/2013/04/08/culture-tax-and-sustainable-capitalism/, and I wrote about the broader topic of changing capitalism a fair bit in my book Total Sustainability. A recent article http://t.co/lhXWFRPqhn reminded me of my thoughts on the topic and having just spoken at an International Longevity Centre event, ageing and pensions were in my mind so I joined a few dots. We won’t need pensions much longer. They would be redundant if we have a citizen wage/universal wage.

I argued that it isn’t economically feasible yet, and that only a £10k income could work today in the UK, and that isn’t enough to live on comfortably, but I also worked out that with expected economic growth, a citizen wage equal to the UK average income today (£30k) would be feasible in 45 years. That level will sooner be feasible in richer countries such as Switzerland, which has already had a referendum on it, though they decided they aren’t ready for such a change yet. Maybe in a few years they’ll vote again and accept it.

The citizen wage I’m talking about has various names around the world, such as universal income. The idea is that everyone gets it. With no restrictions, there is little running cost, unlike today’s welfare which wastes a third on admin.

Imagine if everyone got £30k each, in today’s money. You, your parents, kids, grandparents, grand-kids… Now ask why you would need to have a pension in such a system. The answer is pretty simple. You won’t.  A retired couple with £60k coming in can live pretty comfortably, with no mortgage left, and no young kids to clothe and feed. Let’s look at dates and simple arithmetic:

45 years from now is 2060, and that is when a £30k per year citizen wage will be feasible in the UK, given expected economic growth averaging around 2.5% per year. There are lots of reasons why we need it and why it is very likely to happen around then, give or take a few years – automation, AI, decline of pure capitalism, need to reduce migration pressures, to name just a few

Those due to retire in 2060 at age 70 would have been born in 1990. If you were born before that, you would either need a small pension to make up to £30k per year or just accept a lower standard of living for a few years. Anyone born in 1990 or later would be able to stop working, with no pension, and receive the citizen wage. So could anyone else stop and also receive it. That won’t cause economic collapse, since most people will welcome work that gives them a higher standard of living, but you could just not work, and just live on what today we think of as the average wage, and by then, you’ll be able to get more with it due to reducing costs via automation.

So, everyone after 2060 can choose to work or not to work, but either way they could live at least comfortably. Anyone less than 25 today does not need to worry about pensions. Anyone less than 35 really doesn’t have to worry much about them, because at worst they’ll only face a small shortfall from that comfort level and only for a few years. I’m 54, I won’t benefit from this until I am 90 or more, but my daughter will.

Summarising:

Are you under 25 and living in any developed country? Then don’t pay into a pension, you won’t need one.

Under 35, consider saving a little over your career, but only enough to last you a few years.

Forehead 3D mist projector

Another simple idea. I was watching the 1920s period drama Downton Abbey and Lady Mary was wearing a headband with a large jewel in it. I had an idea based on linking mist projection systems to headbands. I couldn’t find a pic of Lady Mary’s band on Google but many other designs would work just as well and the one from ASOS would be just as feasible. The idea is that a forehead band (I’m sure there is a proper fashion name for them) would have a central ‘jewel’ which is actually just an ornamental IT capsule containing a misting device and a projector as well as the obvious power supply, comms, processing, direction detectors etc. A 3D image would be projected onto water mist emitted from the reservoir in the device. A simple illustration might help:

forehead projector

 

Many fashion items make comebacks and a lot of 1920s things seem to be in fashion again now. This could be a nice electronic update to a very old fashion concept. With a bit more miniaturisation, smart bindis would also be feasible. It could be used with direction sensing to enable augmented reality use, or simply to display the same image regardless of gaze direction. Unlike visor based augmented reality, others would be able to see the same scene visualised for the wearer.

OLED fashion contact lenses

Self explanatory concept, but not connected to my original active contact lens direct retinal projection concept. This one is just fashion stuff and could be done easily tomorrow. I allowed a small blank central area so that you aren’t blinded if you wear them. This version doesn’t project onto the retina, though future versions could also house and power devices to do so.

Fashion contacts

OK, the illustration is crap, but I’m an engineer, not a fashion designer. Additional functionality could be to display a high res one time code into iris recognition systems for high security access.

The future of X-People

There is an abundance of choice for X in my ‘future of’ series, but most options are sealed off. I can’t do naughty stuff because I don’t want my blog to get blocked so that’s one huge category gone. X-rays are boring, even though x-ray glasses using augmented reality… nope, that’s back to the naughty category again. I won’t stoop to cover X-Factor so that only leaves X-Men, as in the films, which I admit to enjoying however silly they are.

My first observation is how strange X-Men sounds. Half of them are female. So I will use X-People. I hate political correctness, but I hate illogical nomenclature even more.

My second one is that some readers may not be familiar with the X-Men so I guess I’d better introduce the idea. Basically they are a large set of mutants or transhumans with very varied superhuman or supernatural capabilities, most of which defy physics, chemistry or biology or all of them. Essentially low-grade superheroes whose main purpose is to show off special effects. OK, fun-time!

There are several obvious options for achieving X-People capabilities:

Genetic modification, including using synthetic biology or other biotech. This would allow people to be stronger, faster, fitter, prettier, more intelligent or able to eat unlimited chocolate without getting fat. The last one will be the most popular upgrade. However, now that we have started converging biotech with IT, it won’t be very long before it will be possible to add telepathy to the list. Thought recognition and nerve stimulation are two sides of the same technology. Starting with thought control of appliances or interfaces, the world’s networked knowledge would soon be available to you just by thinking about something. You could easily send messages using thought control and someone else could hear them synthesized into an earpiece, but later it could be direct thought stimulation. Eventually, you’d have totally shared consciousness. None of that defies biology or physics, and it will happen mid-century. Storing your own thoughts and effectively extending your mind into the cloud would allow people to make their minds part of the network resources. Telepathy will be an everyday ability for many people but only with others who are suitably equipped. It won’t become easy to read other people’s minds without them having suitable technology equipped too. It will be interesting to see whether only a few people go that route or most people. Either way, 2050 X-People can easily have telepathy, control objects around them just by thinking, share minds with others and maybe even control other people, hopefully consensually.

Nanotechnology, using nanobots etc to achieve possibly major alterations to your form, or to affect others or objects. Nanotechnology is another word for magic as far as many sci-fi writers go. Being able to rearrange things on an individual atom basis is certainly fuel for fun stories, but it doesn’t allow you to do things like changing objects into gold or people into stone statues. There are plenty of shape-shifters in sci-fi but in reality, chemical bonds absorb or release energy when they are changed and that limits how much change can be made in a few seconds without superheating an object. You’d also need a LOT of nanobots to change a whole person in a few seconds. Major changes in a body would need interim states to work too, since dying during the process probably isn’t desirable. If you aren’t worried about time constraints and can afford to make changes at a more gentle speed, and all you’re doing is changing your face, skin colour, changing age or gender or adding a couple of cosmetic wings, then it might be feasible one day. Maybe you could even change your skin to a plastic coating one day, since plastics can use atomic ingredients from skin, or you could add a cream to provide what’s missing. Also, passing some nanobots to someone else via a touch might become feasible, so maybe you could cause them to change involuntarily just by touching them, again subject to scope and time limits. So nanotech can go some way to achieving some X-People capabilities related to shape changing.

Moving objects using telekinesis is rather less likely. Thought controlling a machine to move a rock is easy, moving an unmodified rock or a dumb piece of metal just by concentrating on it is beyond any technology yet on the horizon. I can’t think of any mechanism by which it could be done. Nor can I think of ways of causing things to just burst into flames without using some sort of laser or heat ray. I can’t see either how megawatt lasers can be comfortably implanted in ordinary eyes. These deficiencies might be just my lack of imagination but I suspect they are actually not feasible. Quite a few of the X-Men have these sorts of powers but they might have to stay in sci-fi.

Virtual reality, where you possess the power in a virtual world, which may be shared with others. Well, many computer games give players supernatural powers, or take on various forms, and it’s obvious that many will do so in VR too. If you can imagine it, then someone can get the graphics chips to make it happen in front of your eyes. There are no hard physics or biology barriers in VR. You can do what you like. Shared gaming or socializing environments can be very attractive and it is not uncommon for people to spend almost every waking hour in them. Role playing lets people do things or be things they can’t in the real world. They may want to be a superhero, or they might just want to feel younger or look different or try being another gender. When they look in a mirror in the VR world, they would see the person they want to be, and that could make it very compelling compared to harsh reality. I suspect that some people will spend most of their free time in VR, living a parallel fantasy life that is as important to them as their ‘real’ one. In their fantasy world, they can be anyone and have any powers they like. When they share the world with other people or AI characters, then rules start to appear because different people have different tastes and desires. That means that there will be various shared virtual worlds with different cultures, freedoms and restrictions.

Augmented reality, where you possess the power in a virtual world but in ways that it interacts with the physical world is a variation on VR, where it blends more with reality. You might have a magic wand that changes people into frogs. The wand could be just a stick, but the victim could be a real person, and the change would happen only in the augmented reality. The scope of the change could be one-sided – they might not even know that you now see them as a frog, or it could again be part of a large shared culture where other people in the community now see and treat them as a frog. The scope of such cultures is very large and arbitrary cultural rules could apply. They could include a lot of everyday life – shopping, banking, socializing, entertainment, sports… That means effects could be wide-ranging with varying degrees of reality overlap or permanence. Depending on how much of their lives people live within those cultures, virtual effects could have quite real consequences. I do think that augmented reality will eventually have much more profound long-term effects on our lives than the web.

Controlled dreaming, where you can do pretty much anything you want and be in full control of the direction your dream takes. This is effectively computer-enhanced lucid dreaming with literally all the things you could ever dream of. But other people can dream of extra things that you may never have dreamt of and it allows you to explore those areas too.  In shared or connected dreams, your dreams could interact with those of others or multiple people could share the same dream. There is a huge overlap here with virtual reality, but in dreams, things don’t get the same level of filtration and reality is heavily distorted, so I suspect that controlled dreams will offer even more potential than VR. You can dream about being in VR, but you can’t make a dream in VR.

X-People will be very abundant in the future. We might all be X-People most of the time, routinely doing things that are pure sci-fi today. Some will be real, some will be virtual, some will be in dreams, but mostly, thanks to high quality immersion and the social power of shared culture, we probably won’t really care which is which.

 

 

The future of virtual reality

I first covered this topic in 1991 or 1992, can’t recall, when we were playing with the Virtuality machines. I got a bit carried away, did the calculations on processing power requirements for decent images, and announced that VR would replace TV as our main entertainment by about 2000. I still use that as my best example of things I didn’t get right.

I have often considered why it didn’t take off as we expected. There are two very plausible explanations and both might apply somewhat to the new launches we’re seeing now.

1: It did happen, just differently. People are using excellent pseudo-3D environments in computer games, and that is perfectly acceptable, they simply don’t need full-blown VR. Just as 3DTV hasn’t turned out to be very popular compared to regular TV, so wandering around a virtual world doesn’t necessarily require VR. TV or  PC monitors are perfectly adequate in conjunction with the cooperative human brain to convey the important bits of the virtual world illusion.

2. Early 1990s VR headsets reportedly gave some people eye strain or psychological distortions that persisted long enough after sessions to present potential dangers. This meant corporate lawyers would have been warning about potentially vast class action suits with every kid that develops a squint blaming the headset manufacturers, or when someone walked under a bus because they were still mentally in a virtual world. If anything, people are far more likely to sue for alleged negative psychological effects now than back then.

My enthusiasm for VR hasn’t gone away. I still think it has great potential. I just hope the manufacturers are fully aware of these issues and have dealt with or are dealing with them. It would be a great shame indeed if a successful launch is followed by rapid market collapse or class action suits. I hope they can avoid both problems.

The porn industry is already gearing up to capitalise on VR, and the more innocent computer games markets too. I spend a fair bit of my spare time in the virtual worlds of computer games. I find games far more fun than TV, and adding more convincing immersion and better graphics would be a big plus. In the further future, active skin will allow our nervous systems to be connected into the IT too, recording and replaying sensations so VR could become full sensory. When you fight an enemy in a game today, the controller might vibrate if you get hit or shot. If you could feel the pain, you might try a little harder to hide. You may be less willing to walk casually through flames if they hurt rather than just making a small drop in a health indicator or you might put a little more effort into kindling romances if you could actually enjoy the cuddles. But that’s for the next generation, not mine.

VR offers a whole new depth of experience, but it did in 1991. It failed first time, let’s hope this time the technology brings the benefits without the drawbacks and can succeed.

The future of ukuleles

Well, actually stringed instruments generally, but I needed a U and I didn’t want to do universities or the UN again and certainly not unicorns, so I cheated slightly. I realize that other topics starting with U may exist, but I didn’t do much research and I needed an excuse to write up this new idea.

If I was any good at making electronics, I’d have built a demo of this, but I have only soldered 6 contacts in my life, and 4 of those were dry joints, and I know when to quit.

My idea is very simple indeed: put accelerometers on the strings. Some quick googling suggests the idea is novel.

There are numerous electric guitar, violins, probably ukuleles. They use a variety of pickups. Many are directly underneath the strings, some use accelerometers on the other side of the bridge or elsewhere on the body. In most instruments, the body is heavily involved in the overall sound production, so I wouldn’t want to replace the pickups on the body. However, adding accelerometers to the strings would give another data source with quite different characteristics. There could be just one, or several, placed at specific locations along each string. If they are too heavy, they would change the sound too much, but some now are far smaller than the eye of a needle. If they are fixed onto the string, it would need a little re-tuning, but shouldn’t destroy the sound quality. The benefit is that accelerometers on the strings would provide data not available via other pickups. They would more directly represent the string activity than a pickup on the body. This could be used as valuable input to the overall signal mix used in the electronic sound output. Having more data available is generally a good thing.

What would the new sound be like? I don’t know. If it is very different from the sound using conventional pickups, it might even open up potential for new kinds of electric instrument.

If you do experiment with this, please do report back on the results.

The future of terminators

The Terminator films were important in making people understand that AI and machine consciousness will not necessarily be a good thing. The terminator scenario has stuck in our terminology ever since.

There is absolutely no reason to assume that a super-smart machine will be hostile to us. There are even some reasons to believe it would probably want to be friends. Smarter-than-man machines could catapult us into a semi-utopian era of singularity level development to conquer disease and poverty and help us live comfortably alongside a healthier environment. Could.

But just because it doesn’t have to be bad, that doesn’t mean it can’t be. You don’t have to be bad but sometimes you are.

It is also the case that even if it means us no harm, we could just happen to be in the way when it wants to do something, and it might not care enough to protect us.

Asimov’s laws of robotics are irrelevant. Any machine smart enough to be a terminator-style threat would presumably take little notice of rules it has been given by what it may consider a highly inferior species. The ants in your back garden have rules to govern their colony and soldier ants trained to deal with invader threats to enforce territorial rules. How much do you consider them when you mow the lawn or rearrange the borders or build an extension?

These arguments are put in debates every day now.

There are however a few points that are less often discussed

Humans are not always good, indeed quite a lot of people seem to want to destroy everything most of us want to protect. Given access to super-smart machines, they could design more effective means to do so. The machines might be very benign, wanting nothing more than to help mankind as far as they possibly can, but misled into working for them, believing in architected isolation that such projects are for the benefit of humanity. (The machines might be extremely  smart, but may have existed since their inception in a rigorously constructed knowledge environment. To them, that might be the entire world, and we might be introduced as a new threat that needs to be dealt with.) So even benign AI could be an existential threat when it works for the wrong people. The smartest people can sometimes be very naive. Perhaps some smart machines could be deliberately designed to be so.

I speculated ages ago what mad scientists or mad AIs could do in terms of future WMDs:

WMDs for mad AIs

Smart machines might be deliberately built for benign purposes and turn rogue later, or they may be built with potential for harm designed in, for military purposes. These might destroy only enemies, but you might be that enemy. Others might do that and enjoy the fun and turn on their friends when enemies run short. Emotions might be important in smart machines just as they are in us, but we shouldn’t assume they will be the same emotions or be wired the same way.

Smart machines may want to reproduce. I used this as the core storyline in my sci-fi book. They may have offspring and with the best intentions of their parent AIs, the new generation might decide not to do as they’re told. Again, in human terms, a highly familiar story that goes back thousands of years.

In the Terminator film, it is a military network that becomes self aware and goes rogue that is the problem. I don’t believe digital IT can become conscious, but I do believe reconfigurable analog adaptive neural networks could. The cloud is digital today, but it won’t stay that way. A lot of analog devices will become part of it. In

Ground up data is the next big data

I argued how new self-organising approaches to data gathering might well supersede big data as the foundations of networked intelligence gathering. Much of this could be in a the analog domain and much could be neural. Neural chips are already being built.

It doesn’t have to be a military network that becomes the troublemaker. I suggested a long time ago that ‘innocent’ student pranks from somewhere like MIT could be the source. Some smart students from various departments could collaborate to see if they can hijack lots of networked kit to see if they can make a conscious machine. Their algorithms or techniques don’t have to be very efficient if they can hijack enough. There is a possibility that such an effort could succeed if the right bits are connected into the cloud and accessible via sloppy security, and the ground up data industry might well satisfy that prerequisite soon.

Self-organisation technology will make possible extremely effective combat drones.

Free-floating AI battle drone orbs (or making Glyph from Mass Effect)

Terminators also don’t have to be machines. They could be organic, products of synthetic biology. My own contribution here is smart yogurt: https://timeguide.wordpress.com/2014/08/20/the-future-of-bacteria/

With IT and biology rapidly converging via nanotech, there will be many ways hybrids could be designed, some of which could adapt and evolve to fill different niches or to evade efforts to find or harm them. Various grey goo scenarios can be constructed that don’t have any miniature metal robots dismantling things. Obviously natural viruses or bacteria could also be genetically modified to make weapons that could kill many people – they already have been. Some could result from seemingly innocent R&D by smart machines.

I dealt a while back with the potential to make zombies too, remotely controlling people – alive or dead. Zombies are feasible this century too:

https://timeguide.wordpress.com/2012/02/14/zombies-are-coming/ &

Vampires are yesterday, zombies will peak soon, then clouds are coming

A different kind of terminator threat arises if groups of people are linked at consciousness level to produce super-intelligences. We will have direct brain links mid-century so much of the second half may be spent in a mental arms race. As I wrote in my blog about the Great Western War, some of the groups will be large and won’t like each other. The rest of us could be wiped out in the crossfire as they battle for dominance. Some people could be linked deeply into powerful machines or networks, and there are no real limits on extent or scope. Such groups could have a truly global presence in networks while remaining superficially human.

Transhumans could be a threat to normal un-enhanced humans too. While some transhumanists are very nice people, some are not, and would consider elimination of ordinary humans a price worth paying to achieve transhumanism. Transhuman doesn’t mean better human, it just means humans with greater capability. A transhuman Hitler could do a lot of harm, but then again so could ordinary everyday transhumanists that are just arrogant or selfish, which is sadly a much bigger subset.

I collated these various varieties of potential future cohabitants of our planet in: https://timeguide.wordpress.com/2014/06/19/future-human-evolution/

So there are numerous ways that smart machines could end up as a threat and quite a lot of terminators that don’t need smart machines.

Outcomes from a terminator scenario range from local problems with a few casualties all the way to total extinction, but I think we are still too focused on the death aspect. There are worse fates. I’d rather be killed than converted while still conscious into one of 7 billion zombies and that is one of the potential outcomes too, as is enslavement by some mad scientist.

 

Fusions needs jet engine architecture, not JET

Warning: some or all of what you will read here might be nonsense, but hey, faint heart ne’er won fair maid.

Lockheed Martin are in the news with yet another claim of a fusion breakthrough. It looks exciting, but some physicists are already claiming that it won’t work. I haven’t done the sums so I don’t have a sensible opinion on it. I am filing it mentally with all the other frequently claimed breakthroughs and will wait and see, not holding my breath. I really hope they succeed though. If they don’t, then their claim is just hot air, and if they can do that, then why can’t I? So here is how I would do the easy bits of the top level design, leaving the hard sums to others.

Joint European Torus = JET, and the new Lockheed Martin approach is meant to be about the same size as a jet engine. I couldn’t help making the obvious mental leap. Long ago, plane engines used internal combustion engines and propellers. The along came 40-year-old Frank Whittle and changed the world with his jet engine invention:

Whittle and his jet engine

Picture copyright Popperfoto

Smart bunny!

Standing on his (and Rutherford’s) shoulders, I had to ask whether we can’t use a jet engine arrangement to harness fusion. We don’t need the propulsion, just the ejected products to extract heat from, fairly conventionally. As lazy as researchers can be these days, I typed ‘jet engine fusion’ into google images. Way down the page was one that I thought had already used the idea, as a spaceship propulsion system, but bringing up the page, it doesn’t, it just uses a pretty conventional reaction chamber and ejects the fusion products out through a nozzle to provide propulsion force.

So either the idea is so obviously flawed that nobody has even bothered to investigate it far enough to bother making graphics, or a major case of group-think has affected the entire physicist community. Bit of a gamble proceeding then, but, if you have a few billion to gamble, here’s how to do fusion:

Jet style nuclear fusion process

Jet style nuclear fusion process

Intake a continuous stream of deuterium and tritium. Note for those people who want to believe everyone except them is a moron: I am not actually a moron, I have a Physics degree and specialised in the nuclear options. I do know you only need a tiny quantity of material. The pic shows a jet engine but it is the compression stage idea I want, not the scale, so the compressor would obviously look nothing like this, the diagram is just to get the point across that the jet engine principle is a good one. 

Compress it (using some of the energy from the fusion process)  and optionally heat  or compress it conventionally to reduce energy deficit in final stage.

Feed it into the narrow reaction pathway, which is a strongly confined tunnel surrounded by an Archimedes screw of high intensity lasers.

Generate continuous heating via lasers as the plasma passes along the reaction pathway (using some of the energy from the process) until fusion finally occurs in the short fusion zone.

Allow hot fused products to expand in an expansion chamber

Pass through suitable heat exchanger to make steam/molted sodium or whatever takes your fancy.

Feed some of the energy harvested to drive compressors, heaters, and obviously the lasers. Very possibly some of the products might be useful feedstock for production of lasing medium.

Bob’s your uncle.

OK, the intake and compression bits are quite jet enginy, and using some of the energy produced to power the earlier stages is very jet enginy. We don’t have any burning of gases so it isn’t quite the same. But in the interests of extracting as much from Whittle as possible, I kept it nice and circular with as few components as possible in the way, arranging the lasers in a continuous spiral (inspired by the Archimedes screw), so that the plasma heats up as it passes through them until it starts to fuse. There is no actual screw, its just that if all the lasers are mounted and directed towards the plasma jet as it heats, the external arrangement would look very similar, and the effect would be that the temperature and proximity to fusing would rise as the plasma passes through it.  You still need serious magnetic confinement to prevent the plasma touching the walls, but there is nothing physical in the path to touch, just magnetic fields and lots of laser beam.

I can’t see any immediate reasons why it couldn’t work, and it offers some definite advantages over a torus approach or exploding pellets. It takes ideas from all the other approaches so it isn’t really new, just a rearrangement.

Doesn’t Lockheed Martin make jet engines too?

The future of sky

The S installment of this ‘future of’ series. I have done streets, shopping, superstores, sticks, surveillance, skyscrapers, security, space, sports, space travel and sex before, some several times. I haven’t done sky before, so here we go.

Today when you look up during the day you typically see various weather features, the sun, maybe the moon, a few birds, insects or bats, maybe some dandelion or thistle seeds. As night falls, stars, planets, seasonal shooting stars and occasional comets may appear. To those we can add human contributions such as planes, microlights, gliders and helicopters, drones, occasional hot air balloons and blimps, helium party balloons, kites and at night-time, satellites, sometimes the space station, maybe fireworks. If you’re in some places, missiles and rockets may be unfortunate extras too, as might be the occasional parachutist or someone wearing a wing-suit or on a hang-glider. I guess we should add occasional space launches and returns too. I can’t think of any more but I might have missed some.

Drones are the most recent addition and their numbers will increase quickly, mostly for surveillance purposes. When I sit out in the garden, since we live in a quiet area, the noise from occasional  microlights and small planes is especially irritating because they fly low. I am concerned that most of the discussions on drones don’t tend to mention the potential noise nuisance they might bring. With nothing between them and the ground, sound will travel well, and although some are reasonably quiet, other might not be and the noise might add up. Surveillance, spying and prying will become the biggest nuisances though, especially as miniaturization continues to bring us many insect-sized drones that aren’t noisy and may visually be almost undetectable. Privacy in your back garden or in the bedroom with unclosed curtains could disappear. They will make effective distributed weapons too:

Drones – it isn’t the Reapers and Predators you should worry about

Adverts don’t tend to appear except on blimps, and they tend to be rare visitors. A drone was this week used to drag a national flag over a football game. In the Batman films, Batman is occasionally summoned by shining a spotlight with a bat symbol onto the clouds. I forgot which film used the moon to show an advert. It is possible via a range of technologies that adverts could soon be a feature of the sky, day and night, just like in Bladerunner. In the UK, we are now getting used to roadside ads, however unwelcome they were when they first arrived, though they haven’t yet reached US proportions. It will be very sad if the sky is hijacked as an advertising platform too.

I think we’ll see some high altitude balloons being used for communications. A few companies are exploring that now. Solar powered planes are a competing solution to the same market.

As well as tiny drones, we might have bubbles. Kids make bubbles all the time but they burst quickly. With graphene, a bubble could prevent helium escaping or even be filled with graphene foam, then it would float and stay there. We might have billions of tiny bubbles floating around with tiny cameras or microphones or other sensors. The cloud could be an actual cloud.

And then there’s fairies. I wrote about fairies as the future of space travel.

Fairies will dominate space travel

They might have a useful role here too, and even if they don’t, they might still want to be here, useful or not.

As children, we used to call thistle seeds fairies, our mums thought it was cute to call them that. Biomimetics could use that same travel technique for yet another form of drone.

With all the quadcopter, micro-plane, bubble, balloon and thistle seed drones, the sky might soon be rather fuller than today. So maybe there is a guaranteed useful role for fairies, as drone police.

 

 

 

The future of cyberspace

I promised in my last blog to do one on the dimensions of cyberspace. I made this chart 15 years ago, in two parts for easy reading, but the ones it lists are still valid and I can’t think of any new ones to add right now, but I might think of some more and make an update with a third part. I changed the name to virtuality instead because it actually only talks about human-accessed cyberspace, but I’m not entirely sure that was a good thing to do. Needs work.

cyberspace dimensions

cyberspace dimensions 2

The chart  has 14 dimensions (control has two independent parts), and I identified some of the possible points on each dimension. As dimensions are meant to be, they are all orthogonal, i.e. they are independent of each other, so you can pick any one on any dimension and use it with any from each other. Standard augmented reality and pure virtual reality are two of the potential combinations, out of the 2.5 x 10^11 possibilities above. At that rate, if every person in the world tried a different one every minute, it would take a whole day to visit them all even briefly. There are many more possible, this was never meant to be exhaustive, and even two more columns makes it 10 trillion combos. Already I can see that one more column could be ownership, another could be network implementation, another could be quality of illusion. What others have I missed?

The Future of IoT – virtual sensors for virtual worlds

I recently acquired a point-and-click thermometer for Futurizon, which gives an instant reading when you point it at something. I will soon know more about the world around me, but any personal discoveries I make are quite likely to be well known to science already. I don’t expect to win a Nobel prize by discovering breeches of the second law of thermodynamics, but that isn’t the point. The thermometer just measures the transmission from a particular point in a particular frequency band, which indicates what temperature it is. It cost about £20, a pretty cheap stimulation tool to help me think about the future by understanding new things about the present. I already discovered that my computer screen doubles as a heater, but I suspected that already. Soon, I’ll know how much my head warms when if think hard, and for the futurology bit, where the best locations are to put thermal IoT stuff.

Now that I am discovering the joys or remote sensing, I want to know so much more though. Sure, you can buy satellites for a billion pounds that will monitor anything anywhere, and for a few tens of thousands you can buy quite sophisticated lab equipment. For a few tens, not so much is available and I doubt the tax man will agree that Futurizon needs a high end oscilloscope or mass spectrometer so I have to set my sights low. The results of this blog justify the R&D tax offset for the thermometer. But the future will see drops in costs for most high technologies so I also expect to get far more interesting kit cheaply soon.

Even starting with the frequent assumption that in the future you can do anything, you still have to think what you want to do. I can get instant temperature readings now. In the future, I may also want a full absorption spectrum, color readings, texture and friction readings, hardness, flexibility, sound absorption characteristics, magnetic field strength, chemical composition, and a full range of biological measurements, just for fun. If Spock can have one, I want one too.

But that only covers reality, and reality will only account for a small proportion of our everyday life in the future. I may also want to check on virtual stuff, and that needs a different kind of sensor. I want to be able to point at things that only exist in virtual worlds. It needs to be able to see virtual worlds that are (at least partly) mapped onto real physical locations, and those that are totally independent and separate from the real world. I guess that is augmented reality ones and virtual reality ones. Then it starts getting tricky because augmented reality and virtual reality are just two members of a cyberspace variants set that runs to more than ten trillion members. I might do another blog soon on what they are, too big a topic to detail here.

People will be most interested in sensors to pick up geographically linked cyberspace. Much of the imaginary stuff is virtual worlds in computer games or similar, and many of those have built-in sensors designed for their spaces. So, my character can detect caves or forts or shrines from about 500m away in the virtual world of Oblivion (yes, it is from ages ago but it is still enjoyable). Most games have some sort of sensors built-in to show you what is nearby and some of its properties.

Geographically linked cyberspace won’t all be augmented reality because some will be there for machines, not people, but you might want to make sensors for it all the same, for many reasons, most likely for navigating it, debugging, or for tracking and identifying digital trespass. The last one is interesting. A rival company might well construct an augmented reality presence that allows you to see their products alongside ones in a physical shop. It doesn’t have to be in a properly virtual environment, a web page is still a location in cyberspace and when loaded, that instance takes on a geographic mapping via that display so it is part of that same trespass. That is legal today, and it started many years ago when people started using Amazon to check for better prices while in a book shop. Today it is pretty ubiquitous. We need sensors that can detect that. It may be accepted today as fair competition, but it might one day be judged as unfair competition by regulators for various reasons, and if so, they’ll need some mechanism to police it. They’ll need to be able to detect it. Not easy if it is just a web page that only exists at that location for a few seconds. Rather easier if it is a fixed augmented reality and you can download a map.

If for some reason a court does rule that digital trespass is illegal, one way of easy(though expensive) way of solving it would be to demand that all packets carry a geographic location, which of course the site would know when the person clicks on that link. To police that, turning off location would need to be blocked, or if it is turned off, sites would not be permitted to send you certain material that might not be permitted at that location. I feel certain there would be better and cheaper and more effective solutions.

I don’t intend to spend any longer exploring details here, but it is abundantly clear from just inspecting a few trees that making detectors for virtual worlds will be a very large and diverse forest full of dangers. Who should be able to get hold of the sensors? Will they only work in certain ‘dimensions’ of cyberspace? How should the watchers be watched?

The most interesting thing I can find though is that being able to detect cyberspace would allow new kinds of adventures and apps. You could walk through a doorway and it also happens to double as a portal between many virtual universes. And you might not be able to make that jump in any other physical location. You might see future high street outlets that are nothing more than teleport chambers for cyberspace worlds. They might be stuffed with virtual internet of things things and not one one of them physical. Now that’s fun.

 

Ground up data is the next big data

This one sat in my draft folder since February, so I guess it’s time to finish it.

Big Data – I expect you’re as sick of hearing that term as I am. Gathering loads of data on everything you or your company or anything else you can access can detect, measure, record, then analyzing the hell out of it using data mining, an equally irritating term.

I long ago had a quick twitter exchange with John Hewitt, who suggested “What is sensing but the energy-constrained competition for transmission to memory, as memory is but that for expression?”. Neurons compete to see who gets listened too.  Yeah, but I am still not much wiser as to what sensing actually is. Maybe I need a brain upgrade. (It’s like magnets. I used to be able to calculate the magnetic field densities around complicated shaped objects – it was part of my first job in missile design – but even though I could do all the equations around EM theory, even general relativity, I still am no wiser how a magnetic field actually becomes a force on an object. I have an office littered with hundreds of neodymium magnets and I spend hours playing with them and I still don’t understand). I can read about neurons all day but I still don’t understand how a bunch of photons triggering a series of electro-chemical reactions results in me experiencing an image. How does the physical detection become a conscious experience?

Well, I wrote some while back that we could achieve a conscious computer within two years. It’s still two years because nobody has started using the right approach yet. I have to stress the ‘could’, because nobody actually intends to do it in that time frame, but I really believe some half-decent lab could if they tried.  (Putting that into perspective, Kurzweil and his gang at Google are looking at 2029.) That two years estimate relies heavily on evolutionary development, for me the preferred option when you don’t understand how something works, as is the case with consciousness. It is pretty easy to design conscious computers at a black box level. The devil is in the detail. I argued that you could make a conscious computer by using internally focused sensing to detect processes inside the brain, and using a sensor structure with a symmetrical feedback loop. Read it:

We could have a conscious machine by end-of-play 2015

In a nutshell, if you can feel thoughts in the same way as you feel external stimuli, you’d be conscious. I think. The symmetrical feedback loop bit is just a small engineering insight.

The missing link in that is still the same one: how does sensing work? How do you feel?

At a superficial level, you point a sensor at something and it produces a signal in some sort of relationship to whatever it is meant to sense. We can do that bit. We understand that. Your ear produces signals according to the frequencies and amplitudes of incoming sound waves, a bit like a microphone. Just the same so far. However, it is by some undefined processes later that you consciously experience the sound. How? That is the hard problem in AI. It isn’t just me that doesn’t know the answer. ‘How does red feel?’ is a more commonly used variant of the same question.

When we solve that, we will replace big data as ‘the next big thing’. If we can make sensor systems that experience or feel something rather than just producing a signal, that’s valuable already. If those sensors pool their shared experience, another similar sensor system could experience that. Basic data quickly transmutes into experience, knowledge, understanding, insight and very quickly, value, lots of it. Artificial neural nets go some way to doing that, but they still lack consciousness. Simulated neural networks can’t even get beyond a pretty straightforward computation, putting all the inputs into an equation. The true sensing bit is missing. The complex adaptive analog neural nets in our brain clearly achieve something deeper than a man-made neural network.

Meanwhile, most current AI work barks up a tree in a different forest. IBM’s Watson will do great things; Google’s search engine AI will too. But they aren’t conscious and can’t be. They’re just complicated programs running on digital processors, with absolutely zero awareness of anything they are doing. Digital programs on digital computers will never achieve any awareness, no matter how fast the chips are.

However, back in the biological realm, nature manages just fine. So biomimetics offers a lot of hope. We know we didn’t get from a pool of algae to humans in one go. At some point, organisms started moving according to light, chemical gradients, heat, touch. That most basic process of sensing may have started out coupled to internal processes that caused movement without any consciousness. But if we can understand the analog processes (electrochemical, electronic, mechanical) that take the stimulus through to a response, and can replicate it using our electronic technology, we would already have actuator circuits, even if we don’t have any form of sensation or consciousness yet. A great deal of this science has been done already of course. The computational side of most chemical and physical processes can be emulated electronically by some means or another. Actuators will be a very valuable part of the cloud, but we already have the ability to make actuators by more conventional means, so doing it organically or biomimetically just adds more actuation techniques to the portfolio. Valuable but not a terribly important breakthrough.

Looking at the system a big further along the evolutionary timeline, where eyes start to develop, where the most primitive nervous systems and brains start, where higher level processing is obviously occurring and inputs are starting to become sensations, we should be able to what is changed or changing. It is the emergence of sensation we need to identify, even if the reaction is still an unconscious reflex. We don’t need to reverse engineer the human brain. Simple organisms are simpler to understand. Feeding the architectural insights we gain from studying those primitive systems into our guided evolution engines is likely to be far faster as a means to generating true machine consciousness and strong AI. That’s how we could develop consciousness in a couple of years rather than 15.

If we can make primitive sensing devices that work like those in primitive organisms, and can respond to specific sorts of sensory input, then that is a potential way of increasing the coverage of cloud sensing and even actuation. It would effectively be a highly distributed direct response system. With clever embedding of emergent phenomena techniques (such as cellular automata, flocking etc) , it could be a quite sophisticated way of responding to quite complex distributed inputs, avoiding some of the need for big data processing. If we can gather the outputs from these simple sensors and feed them into others, that will be an even better sort of biomimetic response system. That sort of direct experience of a situation is very different from a data mined result, especially if actuation capability is there too. The philosophical question as to whether that inclusion of that second bank of sensors makes the system in any way conscious remains, but it would certainly be very useful and valuable. The architecture we end up with via this approach may look like neurons, and could even be synthetic neurons, but that may be only one solution among many. Biology may have gone the neuron route but that doesn’t necessarily mean it is the only possibility. It may be that we could one day genetically modify bacteria to produce their own organic electronics to emulate the key processes needed to generate sensation, and to power them by consuming nutrients from their environment. I suggested smart yogurt based on this idea many years ago, and believe that it could achieve vast levels of intelligence.

Digitizing and collecting the signals from the system at each stage would generate lots of  data, and that may be used by programs to derive other kinds of results, or to relay the inputs to other analog sensory systems elsewhere. (It isn’t always necessary to digitize signals to transmit them, but it helps limit signal degradation and quickly becomes important if the signal is to travel far and is essential if it is to be recorded for later use or time shifting). However, I strongly suspect that most of the value in analog sensing and direct response is local, coupled to direct action or local processing and storage.

If we have these sorts of sensors liberally spread around, we’d create a truly smart environment, with local sensing and some basic intelligence able to relay sensation remotely to other banks of sensors elsewhere for further processing or even ultimately consciousness. The local sensors could be relatively dumb like nerve endings on our skin, feeding in  signals to a more connected virtual nervous system, or a bit smarter, like neural retinal cells, doing a lot of analog pre-processing before relaying them via ganglia cells, and maybe part of a virtual brain. If they are also capable of or connected to some sort of actuation, then we would be constructing a kind of virtual organism, with tendrils covering potentially the whole globe, and able to sense and interact with its environment in an intelligent way.

I use the term virtual not because the sensors wouldn’t be real, but because their electronic nature allows connectivity to many systems, overlapping, hierarchical or distinct. Any number of higher level systems could ‘experience’ them as part of its system, rather as if your fingers could be felt by the entire human population. Multiple higher level virtual organisms could share the same basic sensory/data inputs. That gives us a whole different kind of cloud sensing.

By doing processing locally, in the analog domain, and dealing with some of the response locally, a lot of traffic across the network is avoided and a lot of remote processing. Any post-processing that does occur can therefore add to a higher level of foundation. A nice side effect from avoiding all the extra transmission and processing is increased environmental friendliness.

So, we’d have a quite different sort of data network, collecting higher quality data, essentially doing by instinct what data mining does with huge server farms and armies of programmers. Cloudy, but much smarter than a straightforward sensor net.

… I think.

It isn’t without risk though. I had a phone discussion yesterday on the dangers of this kind of network. In brief, it’s dangerous.

The future of obsolescence

My regular readers will know I am not a big fan of ‘green’ policies. I want to protect the environment and green policies invariably end up damaging it. These policies normally arise by taking too simplistic a view – that all parts of the environmental system are independent of each other so each part can be addressed in isolation to improve the environment as a whole. As a systems engineer since graduation, I always look at the whole system over the whole life cycle and when you do that, you can see why green policies usually don’t work.

Tackling the problem of rapid obsolescence is one of the big errors in environmentalism. The error here is that rapid obsolescence is not necessarily  a problem. Although at first glance it may appear to cause excessive waste and unnecessary environmental damage, on deeper inspection it is very clear that it has actually driven technology through very rapid change to the point where the same function can often be realized now with less material, less energy use, less pollution and less environmental impact. As the world gets richer and more people can afford to buy more things, it is a direct result of rapid obsolescence that those things have a better environmental impact than they would if the engineering life cycle had run through fewer times.

A 150g smart-phone replaces 750kg of 1990s IT. If the green policy of making things last longer and not replacing them had been in force back then, some improvement would still have arisen, but the chances are you would not have the smart phone or tablet, would still use a plasma TV, still need a hi-fi, camera and you’d still have to travel in person to do a lot of the things your smartphone allows you to do wherever you are. In IT, rapid obsolescence continues, soon all your IT will be replaced by active contact lenses and a few grams of jewelry. If 7Bn people want to have a good quality of digitally enabled lifestyle, then letting them do so with 5 grams of materials and milliwatts of power use is far better than using a ton of materials and kilowatts of power.

Rapid engineering progress lets us build safer bridges and buildings with less material, make cars that don’t rust after 3 years and run on less fuel, given us fridges and washing machines that use less energy. Yes, we throw things away, but thanks again to rapid obsolescence, the bits are now easily recyclable.

Whether greens like it or not, our way of throwing things away after a relatively short life cycle has been one of the greatest environmental successes of our age. Fighting against rapid obsolescence doesn’t make you a friend of the earth, it makes you its unwitting enemy.

The future of levitation

Futurologists are often asked about flying cars, and there already are one or two and one day there might be some, but they’ll probably only become as common as helicopters today. Levitating cars will be more common, and will hover just above the ground, like the landspeeders on Star Wars, or just above a lower layer of cars. I need to be careful here – hovercraft were supposed to be the future but they are hard to steer and to stop quickly and that is probably why they didn’t take over as some people expected. Levitating cars won’t work either if we can’t solve that problem.

Maglev trains have been around for decades. Levitating cars won’t use anti-gravity in my lifetime, so magnetic levitation is the only non-hovercraft means obvious. They don’t actually need metal roads to fly over, although that is one mechanism. It is possible to contain a cushion of plasma and ride on that. OK, it is a bit hovercrafty, since it uses a magnetic skirt to keep the plasma in place, but at least it won’t need big fans and drafts. The same technique could work for a skateboard too.

Once we have magnetic plasma levitation working properly, we can start making all sorts of floating objects. We’ll have lots of drones by then anyway, but drones could levitate using plasma instead of using rotor blades. With plasma levitation, compound objects can be formed using clusters of levitating component parts. This can be quieter and more elegant than messy air jets or rotors.

Magnetic levitation doesn’t have very many big advantages over using wheels, but it still seems futuristic, and sometimes that is reason enough to do it. More than almost anything else, levitating cars and skateboards would bring the unmistakable message that the future has arrived. So we may see the levitating robots and toys and transport that we have come to expect in sci-fi.

To do it, we need strong magnetic fields, but they can be produced by high electrical currents in graphene circuits. Plasma is easy enough to make too. Electron pipes could do that and could be readily applied as a coating to the underside of a car or any hard surface rather like paint. We can’t do that bit yet, but a couple of decades from now it may well be feasible. By then most new cars will be self-driving, and will drive very closely together, so the need to stop quickly or divert from a path can be more easily solved. One by one, the problems with making levitating vehicles will disappear and wheels may become obsolete. We still won’t have very many flying cars, but lots that float above the ground.

All in all, levitation has a future, just as we’ve been taught to expect by sci-fi.

 

Alcohol-free beer goggles

You remember that person you danced with and thought was wonderful, and then you met them the next day and your opinion was less favorable? That’s what people call beer goggles. Alcohol impairs judgment. It makes people chattier and improves their self confidence, but also makes them think others are more physically attractive and more interesting too. That’s why people get drunk apparently, because it upgrades otherwise dull people into tolerable company, breaking the ice and making people sociable and fun.

Augmented reality visors could double as alcohol-free beer goggles. When you look at someone  while wearing the visor, you wouldn’t have to see them warts and all. You could filter the warts. You could overlay their face with an upgraded version, or indeed replace it with someone else’s face. They wouldn’t even have to know.

The arms of the visor could house circuits to generate high intensity oscillating magnetic fields – trans-cranial magnetic stimulation. This has been demonstrated as a means of temporarily switching off certain areas of the brain, or at least reducing their effects. Among areas concerned are those involved in inhibitions. Alcohol does that normally, but you can’t drink tonight, so your visor can achieve the same effect for you.

So the nominated driver could be more included in drunken behavior on nights out. The visor could make people more attractive and reduce your inhibitions, basically replicating at least some of what alcohol does. I am not suggesting for a second that this is a good thing, only that it is technologically feasible. At least the wearer can set alerts so that they don’t declare their undying love to someone without at least being warned of the reality first.

The future of karma

This isn’t about Hinduism or Buddhism, just in case you’re worried. It is just about the cultural principle borrowed from them that your intent and actions now can influence what happens to you in future, or your luck or fate, if you believe in such things. It is borrowed in some computer games, such as Fallout.

We see it every day now on Twitter. A company or individual almost immediately suffers the full social consequences of their words or actions. Many of us are occasionally tempted to shame companies that have wronged us by tweeting our side of the story, or writing a bad review on tripadvisor. One big thing is so missing, but I suspect not for much longer: Who’s keeping score?

Where is the karma being tracked? When you do shame a company or write a bad review, was it an honest write-up of a genuine grievance, or way over the top compared to the magnitude of the offense, or just pure malice? If you could have written a review and didn’t, should your forgiving attitude be rewarded or punished, because now others might suffer similar bad service? I haven’t checked but I expect there are already a few minor apps that do bits of this. But we need the Google and Facebook of Karma.

So, we need another 17 year old in a bedroom to bring out the next blockbuster mash site linking the review sites, the tweets and blogs, doing an overall assessment not just of the companies being commented on, but on those doing the commenting. One that gives people and companies a karma score. As the machine-readable web continues to improve, it will even be possible to get some clues on average rates of poor service and therefore identify those of us who are probably more forgiving, those of us who deserve a little more tolerance when it’s our own mistake. (I am allegedly closer to the grumpy old man end of the scale).

I just did a conference talk on corporate credit assessment and have previously done others on private credit assessment. Financial trustworthiness is important, but when you do business, you also want to know whether it’s a nice company or one that walks all over people. That’s karma.

So, are you someone who presents a sweet and cheerful face, only to say nasty things about someone as soon as their face is turned. Do you always see the good side of everyone, or go to great effort to point out their bad points to everyone on the web? Well, it won’t be all that long before your augmented reality visor shows a karma score floating above people’s heads when you chat to them.

The future of walled gardens

In the physical world, walled gardens are pretty places we visit, pay an entry fee, then enjoy the attractions therein. It is well understood that people often only value what they have to pay for and walled gardens capitalise on that. While there, we may buy coffees or snacks from the captive facilities at premium prices and we generally accept that premium as normal practice. Charging an entry fee ensures that people are more likely to stay inside for longer, using services (picnic areas, scenery, toilets etc) they have already paid for rather than similar ones outside that may be free and certainly instead of paying another provider as well.

In the content industry, the term applies to bundles of services from a particular supplier or available on a particular platform. There is some financial, psychological, convenience, time or other cost to enter and then to leave. Just as with the real thing, they have a range of attractions within that make people want to enter, and once there, they will often access local service variants rather than pay the penalty to leave and access perhaps better ones elsewhere. Our regulators started taking notice of them in the early days of cable TV, addressed the potential abuses and sometimes took steps to prevent telecoms or cable companies from locking customers in. More recently, operating system and device manufacturers have also fallen under the same inspection.

Commercial enterprises have an interest in keeping customers within their domain so that they can extract the most profit from them. What is less immediately obvious is why customers allow it. If people want to use a particular physical facility, such as an airport, or a particular tourist attraction such as a city, or indeed a walled garden, then they have to put up with the particular selection of shops and restaurants there, and are vulnerable to exploitation such as higher prices because of the lack of local choice. There is a high penalty in time and expense to find an alternative. With device manufacturers, the manufacturer is in an excellent position to force customers to use services from those they have selected, and that enables them to skim charges for transactions, sometimes from both ends. The customer can only avoid that by using multiple devices, which incurs a severe cost penalty. There may be some competition among apps within the same garden, but all are subject to the rules of the garden. Operating systems are also walled gardens, but the OS usually just goes with the choice of device. It may be possible to swap to an alternative, but few users bother; most just accept the one that it comes with.

Walled gardens in the media are common but easier to avoid. With free satellite and terrestrial TV as well as online video and TV services, there is now abundant choice, though each provider still tries to make cute little walled gardens if they can. Customers can’t get access to absolutely all content unless they pay multiple subscriptions, but can minimize outlay by choosing the most appropriate garden for their needs and staying in it.

The web has disappointed though. When it was young, many imagined it would become a perfect market, with suppliers offering services and everyone would see all the offerings, all the prices and make free decisions where to buy and deal direct without having to pay for intermediaries. It has so badly missed the target that Berners Lee and others are now thinking how it can be redesigned to achieve the original goals. Users can theoretically browse freely, but the services they actually want to use often become natural monopolies, and can then expand organically into other territories, becoming walled gardens. The salvation is that new companies can always emerge that provide an alternative. It’s impossible to monopolize cyberspace. Only bits of it can be walled off.

Natural monopolies arise when people have free access to everything but one supplier offers something unique and thus becomes the only significant player. Amazon wasn’t a walled garden when it started so much as a specialist store that grew into a small mall and is now a big cyber-city. Because it is so dominant and facilitates buying from numerous suppliers, it certainly qualifies as a walled garden now, but it is still possible to easily find many other stores. By contrast, Facebook has been a walled garden since its infancy, with a miniature web-like world inside its walls with its own versions of popular services. It can monitor and exploit the residents for as long as it can prevent them leaving. The primary penalties for leaving are momentarily losing contact with friends and losing interface familiarity, but I have never understood why so many people spend so much of their time locked within its walls rather than using the full range of web offerings available to them. The walls seem very low, and the world outside is obviously attractive, so the voluntary confinement is beyond my comprehension.

There will remain be a big incentive for companies to build walled gardens and plenty of scope for making diverse collections of unique content and functions too and plenty of companies wanting to make theirs as attractive as possible and attempt to keep people inside. However, artificial intelligence may well change the way that networked material is found, so the inconvenience wall may vanish, along with the OS and interface familiarity walls. Deliberate barriers and filters may prevent it gaining access to some things, but without deliberate obstruction, many walled gardens may only have one side walled, that of price for unique content. If that is all it has to lock people in, then it may really be no different conceptually from a big store. Supermarkets offer this in the physical world, but many other shops remain.

If companies try to lock in too much content in one place, others will offer competing packages. It would make it easier for competitors and that is a disincentive. If a walled garden becomes too greedy, its suppliers and customers will go elsewhere. The key to managing them is to ensure diversity by ensuring the capability to compete. Diversity keeps them naturally in check.

Network competition may well be key. If users have devices that can make their own nets or access many externally provided ones, the scope for competition is high, and the ease of communicating and dealing directly is also high. It will be easy for producers to sell content direct and avoid middlemen taking a cut. That won’t eliminate walled gardens, because some companies will still do exclusive deals and not want to deal direct. There are many attractive business models available to potential content producers and direct selling is only one. Also, as new streams of content become attractive, they are sometimes bought, and this can be the intended exit strategy for start-ups.

Perhaps that is where we are already at. Lots of content that isn’t in walled gardens exists and much is free. Much is exclusive to walled gardens. It is easy to be influenced by recent acquisitions and market fluctuations, but really, the nature of the market hasn’t really changed, it just adapts to new physical platforms. In the physical world, we are free to roam but walled gardens offer attractive destinations. The same applies to media. Walled gardens won’t go away, but there is also no reason to expect them to take over completely. With new networks, new business models, new entrepreneurs, new content makers, new viewing platforms, the same business diversity will continue. Fluctuating degrees of substitution rather than full elimination will continue to be the norm.

Or maybe I’m having an off-day and just can’t see something important. Who knows?

 

 

The future of Jelly Babies

Another frivolous ‘future of’, recycled from 10 years ago.

I’ve always loved Jelly Babies, (Jelly Bears would work as well if you prefer those) and remember that Dr Who used to eat them a lot too. Perhaps we all have a mean streak, but I’m sure most if us sometimes bite off their heads before eating the rest. But that might all change. I must stress at this point that I have never even spoken to anyone from Bassetts, who make the best ones, and I have absolutely no idea what plans they might have, and they might even strongly disapprove of my suggestions, but they certainly could do this if they wanted, as could anyone else who makes Jelly Babies or Jelly Bears or whatever.

There will soon be various forms of edible electronics. Some electronic devices can already be swallowed, including a miniature video camera that can take pictures all the way as it proceeds through your digestive tract (I don’t know whether they bother retrieving them though). Some plastics can be used as electronic components. We also have loads of radio frequency identity (RFID) tags around now. Some tags work in groups, recording whether they have been separated from each other at some point, for example. With nanotech, we will be able to make tags using little more than a few well-designed molecules, and few materials are so poisonous that a few molecules can do you much harm so they should be sweet-compliant. So extrapolating a little, it seems reasonable to expect that we might be able to eat things that have specially made RFID tags in them.  It would make a lot of sense. They could be used on fruit so that someone buying an apple could ingest the RFID tag on it without concern. And as well as work on RFID tags, many other electronic devices can be made very small, and out of fairly safe materials too.

So I propose that Jelly Baby manufacturers add three organic RFID tags to each jelly baby, (legs, head and body), some processing, and a simple communications device When someone bites the head off a jelly baby, the jelly baby would ‘know’, because the tags would now be separated. The other electronics in the jelly baby could then come into play, setting up a wireless connection to the nearest streaming device and screaming through the loudspeakers. It could also link to the rest of the jelly babies left in the packet, sending out a radio distress call. The other jelly babies, and any other friends they can solicit help from via the internet, could then use their combined artificial intelligence to organise a retaliatory strike on the person’s home computer. They might be able to trash the hard drive, upload viruses, or post a stroppy complaint on social media about the person’s cruelty.

This would make eating jelly babies even more fun than today. People used to spend fortunes going on safari to shoot lions. I presume it was exciting at least in part because there was always a risk that you might not kill the lion and it might eat you instead. With our environmentally responsible attitudes, it is no longer socially acceptable to hunt lions, but jelly babies could be the future replacement. As long as you eat them in the right order, with the appropriate respect and ceremony and so on, you would just enjoy eating a nice sweet. If you get it wrong, your life is trashed for the next day or two. That would level the playing field a bit.

Jelly Baby anyone?

The future of high quality TV

I occasionally do talks on future TV and I generally ignore current companies and their recent developments because people can read about them anywhere. If it is already out there, it isn’t the future. Companies make announcements of technologies they expect to bring in soon, which is the future, but they don’t tend to announce things until they’re almost ready for market so tracking those is no use for long term futurology.

Thanks to Pauline Rigby on Twitter, I saw the following article about Dolby’s new High Dynamic Range TV:

http://www.redsharknews.com/technology/item/2052-the-biggest-advance-in-video-for-ten-years-and-it-s-nothing-to-do-with-resolution

High dynamic range allows light levels to be reproduced across a high dynamic range. I love tech, terminology is so damned intuitive. So hopefully we will see the darkest blacks and the brightest lights.

It looks a good idea! But it won’t be their last development. We hear that the best way to predict the future is to invent it, so here’s my idea: textured pixels.

As they say, there is more to vision than just resolution. There is more to vision than just light too, even though our eyes can only make images from incoming photons and human eyes can’t even differentiate their polarisation. Eyes are not just photon detectors, they also do some image pre-processing, and the brain does a great deal more processing, using all sorts of clues from the image context.

Today’s TV displays mostly use red, blue and green LCD pixels back-lit by LEDs, fluorescent tubes or other lighting. Some newer ones use LEDs as the actual pixels, demonstrating just how stupid it was to call LCD TVs with LED back-lighting LED TVs. Each pixel that results is a small light source that can vary in brightness. Even with the new HDR that will still be the case.

Having got HDR, I suggest that textured pixels should be the next innovation. Texture is a hugely important context for vision. Micromechanical devices are becoming commonplace, and some proteins are moving into nano-motor technology territory. It would be possible to change the direction of a small plate that makes up the area of the pixel. At smaller scales, ridges could be created on the pixel, or peaks and troughs. Even reversible chemical changes could be made. Technology can go right down to nanoscale, far below the ability of the eye to perceive it, so matching the eye’s capabilities to discern texture should be feasible in the near future. If a region of the display has a physically different texture than other areas, that is an extra level of reality that they eye can perceive. It could appear glossy or matt, rough or smooth, warm or cold. Linking pixels together across an area, it could far better convey movement than jerky video frames. Sure you can emulate texture to some degree using just light, but it loses the natural subtlety.

So HDR good, Textured HDR better.

 

 

The future of gardens

It’s been weeks since my last blog. I started a few but they need some more thought so as a catch-up, here is a nice frivolous topic, recycled from 1998.

Surely gardens are a place to get back to nature, to escape from technology? Well, when journalists ask to see really advanced technology, I take them to the garden. Humans still have a long way to go to catch up with what nature does all the time. A dragonfly catching smaller flies is just a hint of future warfare, and every flower is an exercise in high precision marketing, let alone engineering. But we will catch up, and even the stages between now and then will be fun.

Advanced garden technology today starts and ends with robotic lawn trimmers. I guess you could add the special materials used in garden tools, advanced battery tech, security monitoring, plant medications and nutrition. OK, there are already lots of advanced technologies in gardens, they just aren’t very glamorous. The fact is that our gardens already use a wide range of genetically enhanced plants and flowers, state of the art fertilizers and soil conditioners, fancy lawnmowers and automatic sprinkler systems. So what can we expect next?

Fiber optic plants already  add a touch of somewhat tacky enchantment to a garden and can be a good substitute for more conventional lighting. Home security uses video cameras and webcams and some rather fun documentaries have resulted from videoing pets and wild animals during the night. There will soon be many other appliances in the future garden, including the various armies of robots and micro-bots  doing a range of jobs from cutting the grass every time a blade gets more than 3 cm long, weeding, watering, pollination or carrying individual grains of fertilizer to the plants that need it. Others will fight with bugs or tidy up debris, or remove dying flowers to keep the garden looking pristine. They could even assist in propagation, burying seeds in just the right places and tending them while they become established. The garden pond may have robot ducks or fish just for fun.

Various sensors may be inserted into the ground around the garden, or smart dust just sprinkled randomly. These would warn when the ground is getting too dry and perhaps co-ordinate automatic sprinklers. They could also monitor the chemical composition, advising the gardener where to add which type of fertilizer or conditioner. In fact, when the price and size falls sufficiently, electronic sensors might well be mixed in with fertilizer and other garden care products.

With all this robot assistance, the human may design the garden and then just let the robots get on with the construction and maintenance. Or maybe just download a garden plan if they’re really lazy, or get the AI to download one.

Another obvious potential impact comes in the shape of genetic engineering. While designing the genome for custom plants is not quite as simple as assembling Lego blocks, we will nevertheless be able to pick and choose from a wide variety of characteristics available from anywhere in the plant and animal kingdom. We are promised blue roses that smell of designer perfumes, grass that only needs cut once a year and ground cover plants that actually grow faster than weeds. By messing about with genes we can thus change the appearance and characteristics of plants enormously, and while getting a company logo to appear on a flower petal might be beyond us, the garden could certainly look much more kaleidoscopic than today’s. We are already in the era where genetics has become a hobbyist activity, but so far the limits are pretty simple gene transfers to add fun things like fluorescence or light emission. Legislation will hopefully prevent people using such clubs to learn how to make viruses or bacteria for terrorist use.

In the long term we are not limited by the Lego bricks provided by nature. Nanotechnology will eventually allow us to produce inorganic ‘plants’ . You might buy a seed and drop it in the required place and it would grow into a predetermined structure just like an organic seed, taking the materials from the soil or air, or perhaps from some additives. However, there is almost no theoretical limit to the type of ‘plant’ that could be produced this way. Flowers with logos are possible, but so are video displays built into the flowers, so are garden gnomes that wander around or that actually fish in the pond. A wide range of static and dynamic ornamentation could add fun to every garden. Nanotechnology has so many possibilities, there are almost no ultimate limits to what can be done apart from the fundamental physics of materials. Power supplies for these devices could use solar, wind or thermal power.

On the patio, there is more scope for video displays in the paving and walls, to add color or atmosphere, and also to provide a recharging base for the robots without their own independent power supplies. Flat speakers could also be built into the walls, providing birdsong or other natural sounds that are otherwise declining in our gardens. Appropriately placed large display panels could simulate being on a beach while sunbathing in Nottingham (for non-Brits, Nottingham is a city not renowned for its sunshine, and very far from a beach).

All in all, the garden could become a place of relaxation, getting back to what we like best in nature, without all the boring bits looking after it in our few spare hours. Even before we retire, we will be able to enjoy the garden, instead of just weeding and cutting the grass.

1998 is a long time ago and I have lots of new ideas for the garden now, but time demands I leave them for a later blog.

The future of planetary exploration robots

An article in Popular Science about explorer robots:

BwPQ4LWIcAAefKu (1)http://www.popsci.com/article/technology/weird-tumbleweed-robot-might-change-planetary-exploration?src=SOC&dom=tw

This is a nice idea for an explorer. I’m a bit surprised it is in Popular Science, unless it’s an old edition, since the idea first appeared ages ago, but then again, why not, it’s still a good idea. Anyway…

The most impressive idea I ever saw for an explorer robot was back in the 90s from Joe Michael of Robodyne Cybernetics, which used fractal cubes that could slide along each face, thereby rearranging into any shape. Once the big cubes were in place, smaller ones would rearrange to give fine structure. That was way before everyone and his dog new all about nanotech, his thinking was well ahead of his time. A huge array of fractal cubes could become any shape – a long snake to cross high or narrow obstacles, a thin plate to capture wind like a sail, a ball to roll around, or a dense structure to minimize volume or wind resistance.

NASA tends to opt for ridiculously expensive and complex landers with wheels and lots of gadgetry that can drive to where they want to be.

I do wonder though whether people are avoiding the simple ideas just because they’re simple. In nature, some tiny spiders get around just by spinning a length of thread and letting the wind carry them. Bubbles can float on the wind too, as can balloons. Where there’s an atmosphere, there is likely to be wind, and if simple exploration is the task, why not just let the winds carry you around? If not a thread, use a balloon that can be inflated and deflated, or a sail. Why not use a large cloud of tiny explorers using wind by diverse techniques instead of a large single robotic vehicle? Even if there is no atmosphere, surely a large cloud of tiny and diverse explorers is more capable and robust than a single one? The clue to solving the IT bits are that a physical cloud can also be an IT cloud. Why not let them use different shapes for different circumstances, so that they can float up, be blown around, and when they want to go somewhere interesting, then glide to where they want to be? Dropping from a high altitude is an easy way of gathering the kinetic energy for ground penetration too, you don’t have to carry sophisticated drills. Local atmosphere can be used as the gas source and ballast (via freezing atmospheric gases or taking some dust with you) for balloons and wind or solar can be the power supply. Obviously, people in all space agencies must have thought of these ideas themselves. I just don’t understand why they have thrown them away in favor of far more heavier and more expensive variants.

I’m not an expert on space. Maybe there are excellent reasons that each and every one of these can’t work. But I also have enough experience of engineering to know that one of the most likely reasons is that they just aren’t exciting enough and the complex, expensive, unreliable and less capable solutions simply look far more cool and trendy. Maybe it is simply that ego is more important than mission success.

The future of bacteria

Bacteria have already taken the prize for the first synthetic organism. Craig Venter’s team claimed the first synthetic bacterium in 2010.

Bacteria are being genetically modified for a range of roles, such as converting materials for easier extraction (e.g. coal to gas, or concentrating elements in landfill sites to make extraction easier), making new food sources (alongside algae), carbon fixation, pollutant detection and other sensory roles, decorative, clothing or cosmetic roles based on color changing, special surface treatments, biodegradable construction or packing materials, self-organizing printing… There are many others, even ignoring all the military ones.

I have written many times on smart yogurt now and it has to be the highlight of the bacterial future, one of the greatest hopes as well as potential danger to human survival. Here is an extract from a previous blog:

Progress is continuing to harness bacteria to make components of electronic circuits (after which the bacteria are dissolved to leave the electronics). Bacteria can also have genes added to emit light or electrical signals. They could later be enhanced so that as well as being able to fabricate electronic components, they could power them too. We might add various other features too, but eventually, we’re likely to end up with bacteria that contain electronics and can connect to other bacteria nearby that contain other electronics to make sophisticated circuits. We could obviously harness self-assembly and self-organisation, which are also progressing nicely. The result is that we will get smart bacteria, collectively making sophisticated, intelligent, conscious entities of a wide variety, with lots of sensory capability distributed over a wide range. Bacteria Sapiens.

I often talk about smart yogurt using such an approach as a key future computing solution. If it were to stay in a yogurt pot, it would be easy to control. But it won’t. A collective bacterial intelligence such as this could gain a global presence, and could exist in land, sea and air, maybe even in space. Allowing lots of different biological properties could allow colonization of every niche. In fact, the first few generations of bacteria sapiens might be smart enough to design their own offspring. They could probably buy or gain access to equipment to fabricate them and release them to multiply. It might be impossible for humans to stop this once it gets to a certain point. Accidents happen, as do rogue regimes, terrorism and general mad-scientist type mischief.

Transhumanists seem to think their goal is the default path for humanity, that transhumanism is inevitable. Well, it can’t easily happen without going first through transbacteria research stages, and that implies that we might well have to ask transbacteria for their consent before we can develop true transhumans.

Self-organizing printing is a likely future enhancement for 3D printing. If a 3D printer can print bacteria (onto the surface of another material being laid down, or as an ingredient in a suspension as the extrusion material itself, or even a bacterial paste, and the bacteria can then generate or modify other materials, or use self-organisation principles to form special structures or patterns, then the range of objects that can be printed will extend. In some cases, the bacteria may be involved in the construction and then die or be dissolved away.

Estimating IoT value? Count ALL the beans!

In this morning’s news:

http://www.telegraph.co.uk/technology/news/11043549/UK-funds-development-of-world-wide-web-for-machines.html

£1.6M investment by UK Technology Strategy Board in Internet-of-Things HyperCat standard, which the article says will add £100Bn to the UK economy by 2020.

Garnter says that IoT has reached the hype peak of their adoption curve and I agree. Connecting machines together, and especially adding networked sensors will certainly increase technology capability across many areas of our lives, but the appeal is often overstated and the dangers often overlooked. Value should not be measured in purely financial terms either. If you value health, wealth and happiness, don’t just measure the wealth. We value other things too of course. It is too tempting just to count the most conspicuous beans. For IoT, which really just adds a layer of extra functionality onto an already technology-rich environment, that is rather like estimating the value of a chili con carne by counting the kidney beans in it.

The headline negatives of privacy and security have often been addressed so I don’t need to explore them much more here, but let’s look at a couple of typical examples from the news article. Allowing remotely controlled washing machines will obviously impact on your personal choice on laundry scheduling. The many similar shifts of control of your life to other agencies will all add up. Another one: ‘motorists could benefit from cheaper insurance if their vehicles were constantly transmitting positioning data’. Really? Insurance companies won’t want to earn less, so motorists on average will give them at least as much profit as before. What will happen is that insurance companies will enforce driving styles and car maintenance regimes that reduce your likelihood of a claim, or use that data to avoid paying out in some cases. If you have to rigidly obey lots of rules all of the time then driving will become far less enjoyable. Having to remember to check the tyre pressures and oil level every two weeks on pain of having your insurance voided is not one of the beans listed in the article, but is entirely analogous the typical home insurance rule that all your windows must have locks and they must all be locked and the keys hidden out of sight before they will pay up on a burglary.

Overall, IoT will add functionality, but it certainly will not always be used to improve our lives. Look at the way the web developed. Think about the cookies and the pop-ups and the tracking and the incessant virus protection updates needed because of the extra functions built into browsers. You didn’t want those, they were added to increase capability and revenue for the paying site owners, not for the non-paying browsers. IoT will be the same. Some things will make minor aspects of your life easier, but the price of that will that you will be far more controlled, you will have far less freedom, less privacy, less security. Most of the data collected for business use or to enhance your life will also be available to government and police. We see every day the nonsense of the statement that if you have done nothing wrong, then you have nothing to fear. If you buy all that home kit with energy monitoring etc, how long before the data is hacked and you get put on militant environmentalist blacklists because you leave devices on standby? For every area where IoT will save you time or money or improve your control, there will be many others where it does the opposite, forcing you to do more security checks, spend more money on car and home and IoT maintenance, spend more time following administrative procedures and even follow health regimes enforced by government or insurance companies. IoT promises milk and honey, but will deliver it only as part of a much bigger and unwelcome lifestyle change. Sure you can have a little more control, but only if you relinquish much more control elsewhere.

As IoT starts rolling out, these and many more issues will hit the press, and people will start to realise the downside. That will reduce the attractiveness of owning or installing such stuff, or subscribing to services that use it. There will be a very significant drop in the economic value from the hype. Yes, we could do it all and get the headline economic benefit, but the cost of greatly reduced quality of life is too high, so we won’t.

Counting the kidney beans in your chili is fine, but it won’t tell you how hot it is, and when you start eating it you may decide the beans just aren’t worth the pain.

I still agree that IoT can be a good thing, but the evidence of web implementation suggests we’re more likely to go through decades of abuse and grief before we get the promised benefits. Being honest at the outset about the true costs and lifestyle trade-offs will help people decide, and maybe we can get to the good times faster if that process leads to better controls and better implementation.

Ultra-simple computing: Part 4

Gel processing

One problem with making computers with a lot of cores is the wiring. Another is the distribution of tasks among the cores. Both of these can be solved with relatively simple architecture. Processing chips usually have a lot of connectors, letting them get data in parallel. But a beam of light can contain rays of millions of wavelengths, far more parallelism than is possible with wiring. If chips communicated using light with high density wavelength division multiplexing, it will solve some wiring issues. Taking another simple step, processors that are freed from wiring don’t have to be on a circuit board, but could be suspended in some sort of gel. Then they could use free space interconnection to connect to many nearby chips. Line of sight availability will be much easier than on a circuit board. Gel can also be used to cool chips.

Simpler chips with very few wired connections also means less internal wiring too. This reduces size still further and permits higher density of suspension without compromising line of sight.

Ripple scheduler

Process scheduling can also be done more simply with many processors. Complex software algorithms are not needed. In an array of many processors, some would be idle while some are already engaged on tasks. When a job needs processed, a task request (this could be as simple as a short pulse of a certain frequency) would be broadcast and would propagate through the array. On encountering an idle processor, the idle processor would respond with an accept response (again this could be a single pulse of another frequency. This would also propagate out as a wave through the array. These two waves may arrive at a given processor in quick succession.

Other processors could stand down automatically once one has accepted the job (i.e. when they detect the acceptance wave). That would be appropriate when all processors are equally able. Alternatively, if processors have different capabilities, the requesting agent would pick a suitable one from the returning acceptances, send a point to point message to it, and send out a cancel broadcast wave to stand others down. It would exchange details about the task with this processor on a point to point link, avoiding swamping the system with unnecessary broadcast messages.  An idle processor in the array would thus see a request wave, followed by a number of accept waves. It may then receive a personalized point to point message with task information, or if it hasn’t been chosen, it would just see the cancel wave of . Busy processors would ignore all communications except those directed specifically to them.

I’m not saying the ripple scheduling is necessarily the best approach, just an example of a very simple system for process scheduling that doesn’t need sophisticated algorithms and code.

Activator Pastes

It is obvious that this kind of simple protocol can be used with a gel processing medium populated with a suitable mixture of different kinds of processors, sensors, storage, transmission and power devices to provide a fully scalable self-organizing array that can perform a high task load with very little administrative overhead. To make your smart gel, you might just choose the volume of weight ratios of components you want and stir them into a gel rather like mixing a cocktail. A paste made up in this way could be used to add sensing, processing and storage to any surface just by painting some of the paste onto it.

A highly sophisticated distributed cloud sensor network for example could be made just by painting dabs of paste onto lamp posts. Solar power or energy harvesting devices in the paste would power the sensors to make occasional readings, pre-process them, and send them off to the net. This approach would work well for environmental or structural monitoring, surveillance, even for everyday functions like adding parking meters to lines marking the spaces on the road where they interact with ID devices in the car or an app on the driver’s smartphone.

Special inks could contain a suspension of such particles and add a highly secure electronic signature onto one signed by pen and ink.

The tacky putty stuff that we use to stick paper to walls could use activator paste as the electronic storage and processing medium to let you manage  content an e-paper calendar or notice on a wall.

I can think of lots of ways of using smart pastes in health monitoring, packaging, smart makeup and so on. The basic principle stays the same though. It would be very cheap and yet very powerful, with many potential uses. Self-organising, and needs no set up beyond giving it a job to do, which could come from any of your devices. You’d probably buy it by the litre, keep some in the jar as your computer, and paste the rest of it all over the place to make your skin, your clothes, your work-spaces and your world smart. Works for me.

 

Ultra-simple computing: Part 2

Chip technology

My everyday PC uses an Intel Core-I7 3770 processor running at 3.4GHz. It has 4 cores running 8 threads on 1.4 billion 22nm transistors on just 160mm^2 of chip. It has an NVIDIA GeForce GTX660 graphics card, and has 16GB of main memory. It is OK most of the time, but although the processor and memory utilisation rarely gets above 30%, its response is often far from instant.

Let me compare it briefly with my (subjectively at time of ownership) best ever computer, my Macintosh 2Fx, RIP, which I got in 1991, the computer on which I first documented both the active contact lens and text messaging and on which I suppose I also started this project. The Mac 2Fx ran a 68030 processor at 40MHz, with 273,000 transistors and 4MB of RAM, and an 80MB hard drive. Every computer I’ve used since then has given me extra function at the expense of lower performance, wasted time and frustration.

Although its OS is stored on a 128GB solid state disk, my current PC takes several seconds longer to boot than my Macintosh Fx did – it went from cold to fully operational in 14 seconds – yes, I timed it. On my PC today, clicking a browser icon to first page usually takes a few seconds. Clicking on a word document back then took a couple of seconds to open. It still does now. Both computers gave real time response to typing and both featured occasional unexplained delays. I didn’t have any need for a firewall or virus checkers back then, but now I run tedious maintenance routines a few times every week. (The only virus I had before 2000 was nVir, which came on the Mac2 system disks). I still don’t get many viruses, but the significant time I spend avoiding them has to be counted too.

Going back further still, to my first ever computer in 1981, it was an Apple 2, and only had 9000 transistors running at 2.5MHz, with a piddling 32kB of memory. The OS was tiny. Nevertheless, on it I wrote my own spreadsheet, graphics programs, lens design programs, and an assortment of missile, aerodynamic and electromagnetic simulations. Using the same transistors as the I7, you could make 1000 of these in a single square millimetre!

Of course some things are better now. My PC has amazing graphics and image processing capabilities, though I rarely make full use of them. My PC allows me to browse the net (and see video ads). If I don’t mind telling Google who I am I can also watch videos on YouTube, or I could tell the BBC or some other video provider who I am and watch theirs. I could theoretically play quite sophisticated computer games, but it is my work machine, so I don’t. I do use it as a music player or to show photos. But mostly, I use it to write, just like my Apple 2 and my Mac Fx. Subjectively, it is about the same speed for those tasks. Graphics and video are the main things that differ.

I’m not suggesting going back to an Apple 2 or even an Fx. However, using I7 chip tech, a 9000 transistor processor running 1360 times faster and taking up 1/1000th of a square millimetre would still let me write documents and simulations, but would be blazingly fast compared to my old Apple 2. I could fit another 150,000 of them on the same chip space as the I7. Or I could have 5128 Mac Fxs running at 85 times normal speed. Or you could have something like a Mac FX running 85 times faster than the original for a tiny fraction of the price. There are certainly a few promising trees in the forest that nobody seems to have barked up. As an interesting aside, that 22nm tech Apple 2 chip would only be ten times bigger than a skin cell, probably less now, since my PC is already several months old

At the very least, that really begs the question what all this extra processing is needed for and why there is still ever any noticeable delay doing anything in spite of it. Each of those earlier machines was perfectly adequate for everyday tasks such as typing or spreadsheeting. All the extra speed has an impact only on some things and most is being wasted by poor code. Some of the delays we had 20 and 30 years ago still affect us just as badly today.

The main point though is that if you can make thousands of processors on a standard sized chip, you don’t have to run multitasking. Each task could have a processor all to itself.

The operating system currently runs programs to check all the processes that need attention, determine their priorities, schedule processing for them, and copy their data in and out of memory. That is not needed if each process can have its own dedicated processor and memory all the time. There are lots of ways of using basic physics to allocate processes to processors, relying on basic statistics to ensure that collisions rarely occur. No code is needed at all.

An ultra-simple computer could therefore have a large pool of powerful, free processors, each with their own memory, allocated on demand using simple physical processes. (I will describe a few options for the basic physics processes later). With no competition for memory or processing, a lot of delays would be eliminated too.

More future fashion fun

A nice light hearted shorty again. It started as one on smart makeup, but I deleted that and will do it soon. This one is easier and in line with today’s news.

I am the best dressed and most fashion conscious futurologist in my office. Mind you, the population is 1. I liked an article in the papers this morning about Amazon starting to offer 3D printed bobble-heads that look like you.

See: http://t.co/iFBtEaRfBd.

I am especially pleased since I suggested it over 2 years ago  in a paper I wrote on 3D printing.

More uses for 3d printing

In the news article, you see the chappy with a bobble-head of him wearing the same shirt. It is obvious that since Amazon sells shirts too, that it won’t be long at all before they send you cute little avatars of you wearing the outfits you buy from them. It starts with bobble-heads but all the doll manufacturers will bring out versions based on their dolls, as well as character merchandise from films, games, TV shows. Kids will populate doll houses with minis of them and their friends.

You could even give one of a friend to them for a birthday present instead of a gift voucher, so that they can see the outfit you are offering them before they decide whether they want that or something different. Over time, you’d have a collection of minis of you and your friends in various outfits.

3D cameras are coming to phones too, so you’ll be able to immortalize embarrassing office party antics in 3D office ornaments. When you can’t afford to buy an outfit or accessory sported by your favorite celeb, you could get a miniature wearing it. Clothing manufacturers may well appreciate the extra revenue from selling miniatures of their best kit.

Sports manufacturers will make replicas of you wearing their kit, doing sporting activities. Car manufacturers will have ones of you driving the car they want you to buy, or you could buy a fleet of miniatures. Holiday companies could put you in a resort hotspot. Or in a bedroom ….with your chosen celeb.

OK, enough.

 

 

Future materials: Variable grip

variable grip

 

Another simple idea for the future. Variable grip under electronic control.

Shape changing materials are springing up regularly now. There are shape memory metal alloys, proteins, polymer gel muscle fibers and even string (changes shape when it gets wet or dries again). It occurred to me that if you make a triangle out of carbon fibre or indeed anything hard, with a polymer gel base, and pull the base together, either the base moves down or the tip will move up. If tiny components this shape are embedded throughout a 3D structure such as a tire (tyre is the English spelling, the rest of this text just uses tire because most of the blog readers are Americans), then tiny spikes could be made to poke through the surface by contracting the polymer gel that forms the base. All you have to do is apply an electric field across it, and that makes the tire surface just another part of the car electronics along with the engine management system and suspension.

Tires that can vary their grip and wear according to road surface conditions might be attractive, especially in car racing, but also on the street. Emergency braking improvement would save lives, as would reduce skidding in rain or ice, and allowing the components to retract when not in use would greatly reduce their rate of wear. In racing, grip could be optimized for cornering and braking and wear could be optimized for the straights.

Fashion

Although I haven’t bothered yet to draw pretty pictures to illustrate, clothes could use variable grip too. Shoes and gloves would both benefit. Since both can have easy contact with skin (shoes can use socks as a relay), the active components could pick up electrical signals associated with muscle control or even thinking. Even stress is detectable via skin resistance measurement. Having gloves or shoes that change grip just by you thinking it would be like a cat with claws that push out when it wants to climb a fence or attack something. You could even be a micro-scale version of Wolverine. Climbers might want to vary the grip for different kinds of rock, extruding different spikes for different conditions.

Other clothes could use different materials for the components and still use the same basic techniques to push them out, creating a wide variety of electronically controllable fabric textures. Anything from smooth and shiny through to soft and fluffy could be made with a single adaptable fabric garment. Shoes, hosiery, underwear and outerwear can all benefit. Fun!

Switching people off

A very interesting development has been reported in the discovery of how consciousness works, where neuroscientists stimulating a particular brain region were able to switch a woman’s state of awareness on and off. They said: “We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness…”

http://www.newscientist.com/article/mg22329762.700-consciousness-onoff-switch-discovered-deep-in-brain.html.

The region of the brain concerned was the claustrum, and apparently nobody had tried stimulating it before, although Francis Crick and Christof Koch had suggested the region would likely be important in achieving consciousness. Apparently, the woman involved in this discovery was also missing some of her hippocampus, and that may be a key factor, but they don’t know for sure yet.

Mohamed Koubeissi and his the team at the George Washington university in Washington DC were investigating her epilepsy and stimulated her claustrum area with high frequency electrical impulses. When they did so, the woman lost consciousness, no longer responding to any audio or visual stimuli, just staring blankly into space. They verified that she was not having any epileptic activity signs at the time, and repeated the experiment with similar results over two days.

The team urges caution and recommends not jumping to too many conclusions. They did observe the obvious potential advantages as an anesthesia substitute if it can be made generally usable.

As a futurologist, it is my job to look as far down the road as I can see, and imagine as much as I can. Then I filter out all the stuff that is nonsensical, or doesn’t have a decent potential social or business case or as in this case, where research teams suggest that it is too early to draw conclusions. I make exceptions where it seems that researchers are being over-cautious or covering their asses or being PC or unimaginative, but I have no evidence of that in this case. However, the other good case for making exceptions is where it is good fun to jump to conclusions. Anyway, it is Saturday, I’m off work, so in the great words of Dr Emmett Brown in ‘Back to the future’:  “Well, I figured, what the hell.”

OK, IF it works for everyone without removing parts of the brain, what will we do with it and how?

First, it is reasonable to assume that we can produce electrical stimulation at specific points in the brain by using external kit. Trans-cranial magnetic stimulation might work, or perhaps implants may be possible using injection of tiny particles that migrate to the right place rather than needing significant surgery. Failing those, a tiny implant or two via a fine needle into the right place ought to do the trick. Powering via induction should work. So we will be able to produce the stimulation, once the sucker victim subject has the device implanted.

I guess that could happen voluntarily, or via a court ordered protective device, as a condition of employment or immigration, or conditional release from prison, or a supervision order, or as a violent act or in war.

Imagine if government demands a legal right to access it, for security purposes and to ensure your comfort and safety, of course.

If you think 1984 has already gone too far, imagine a government or police officer that can switch you off if you are saying or thinking the wrong thing. Automated censorship devices could ensure that nobody discusses prohibited topics.

Imagine if people on the street were routinely switched off as a VIP passes to avoid any trouble for them.

Imagine a future carbon-reduction law where people are immobilized for an hour or two each day during certain periods. There might be a quota for how long you are allowed to be conscious each week to limit your environmental footprint.

In war, captives could have devices implanted to make them easy to control, simply turned off for packing and transport to a prison camp. A perimeter fence could be replaced by a line in the sand. If a prisoner tries to cross it, they are rendered unconscious automatically and put back where they belong.

Imagine a higher class of mugger that doesn’t like violence much and prefers to switch victims off before stealing their valuables.

Imagine being able to switch off for a few hours to pass the time on a long haul flight. Airlines could give discounts to passengers willing to be disabled and therefore less demanding of attention.

Imagine  a couple or a group of friends, or a fetish club, where people can turn each other off at will. Once off, other people can do anything they please with them – use them as dolls, as living statues or as mannequins, posing them, dressing them up. This is not an adult blog so just use your imagination – it’s pretty obvious what people will do and what sorts of clubs will emerge if an off-switch is feasible, making people into temporary toys.

Imagine if you got an illegal hacking app and could freeze the other people in your vicinity. What would you do?

Imagine if your off-switch is networked and someone else has a remote control or hacks into it.

Imagine if an AI manages to get control of such a system.

Having an off-switch installed could open a new world of fun, but it could also open up a whole new world for control by the authorities, crime control, censorship or abuse by terrorists and thieves and even pranksters.

 

 

Smart fuse

This maybe exists now but I couldn’t find it right away on Google. It is an idea I had a very long time ago, but with all the stuff coming from Apple and Google now, this would make an easier and cheaper way to make most appliances smart without adding huge cost or locking owners in to a corporate ecosystem.

Most mains powered appliances come with plugs that have fuses in them. Here is a UK plug, pic courtesy of BBC.

fuse

If the fuse in the plug is replaced by a smart fuse that has an internet address, then this presents a means to switch things on and off automatically. A signal could be sent over the mains from a plug-in controller somewhere in the house, or via radio, wireless LAN, even voice command. The appliance therefore becomes capable of being turned on and off remotely at minimal cost.

At slightly higher expense, with today’s miniaturisation levels, smart fuses would be a cheap way of adding other functions. They could contain ROM loaded with software for the appliance, giving security via an easy upgrade that can’t be tampered with. They could also contain timers, sensors, usage meters, and talk to other devices, such as a phone or PC, or enable appliances for cheaper electricity by letting power companies turn them on and off remotely.

There really is no need to add heavily to appliance cost to make it smart. A smart fuse could cost pennies and still do the job.

Future fashion fun – digital eyebrows

I woke in the middle of the night with another idea not worth patenting, and I’m too lazy to do it, so any entrepreneur who’s too lazy to think of ideas can have it, unless someone already has.

If you make an app that puts a picture of an eyebrow on a phone screen and moves it according to some input (e.g voice, touch, or networked control by your friends or venue), you could use phones to do fun eyebrowy type things at parties, concerts, night clubs etc. You need two phones or a midi-sized tablet unless your eyes are very close together. The phones have accelerometers that know which way up they are and can therefore balance the eyebrows in the right positions. So you can make lots of funny expression on people’s faces using your phones.

Not a Facebook-level idea you’ll agree, but I can imagine some people doing it at parties, especially if they are all controlled by a single app, so that everyone’s eyebrows make the same expression.

You could do it for the whole eye/eyebrow, but then of course you can’t see the your friends laughing, since you’re holding a screen in front of your eyes.

You could have actual physical eyebrows that attach to the tops of your glasses, also controlled remotely.

You could use e-ink/e-paper and make small patches to stick on the skin that do the same function, or a headband. Since they don’t need much power, you won’t need big batteries.

You could do the same for your nose or mouth, so that you have a digitally modifiable face controlled by your friends.

I’m already bored.

Future human evolution

I’ve done patches of work on this topic frequently over the last 20 years. It usually features in my books at some point too, but it’s always good to look afresh at anything. Sometimes you see something you didn’t see last time.

Some of the potential future is pretty obvious. I use the word potential, because there are usually choices to be made, regulations that may or may not get in the way, or many other reasons we could divert from the main road or even get blocked completely.

We’ve been learning genetics now for a long time, with a few key breakthroughs. It is certain that our understanding will increase, less certain how far people will be permitted to exploit the potential here in any given time frame. But let’s take a good example to learn a key message first. In IVF, we can filter out embryos that have the ‘wrong’ genes, and use their sibling embryos instead. Few people have a problem with that. At the same time, pregnant women may choose an abortion if they don’t want a child when they discover it is the wrong gender, but in the UK at least, that is illegal. The moral and ethical values of our society are on a random walk though, changing direction frequently. The social assignment of right and wrong can reverse completely in just 30 years. In this example, we saw a complete reversal of attitudes to abortion itself within 30 years, so who is to say we won’t see reversal on the attitude to abortion due to gender? It is unwise to expect that future generations will have the same value sets. In fact, it is highly unlikely that they will.

That lesson likely applies to many technology developments and quite a lot of social ones – such as euthanasia and assisted suicide, both already well into their attitude reversal. At some point, even if something is distasteful to current attitudes, it is pretty likely to be legalized eventually, and hard to ban once the door is opened. There will always be another special case that opens the door a little further. So we should assume that we may eventually use genetics to its full capability, even if it is temporarily blocked for a few decades along the way. The same goes for other biotech, nanotech, IT, AI and any other transhuman enhancements that might come down the road.

So, where can we go in the future? What sorts of splits can we expect in the future human evolution path? It certainly won’t remain as just plain old homo sapiens.

I drew this evolution path a long time ago in the mid 1990s:

human evolution 1

It was clear even then that we could connect external IT to the nervous system, eventually the brain, and this would lead to IT-enhanced senses, memory, processing, higher intelligence, hence homo cyberneticus. (No point in having had to suffer Latin at school if you aren’t allowed to get your own back on it later). Meanwhile, genetic enhancement and optimization of selected features would lead to homo optimus. Converging these two – why should you have to choose, why not have a perfect body and an enhanced mind? – you get homo hybridus. Meanwhile, in the robots and AI world, machine intelligence is increasing and we eventually we get the first self-aware AI/robot (it makes little sense to separate the two since networked AI can easily be connected to a machine such as a robot) and this has its own evolution path towards a rich diversity of different kinds of AI and robots, robotus multitudinus. Since both the AI world and the human world could be networked to the same network, it is then easy to see how they could converge, to give homo machinus. This future transhuman would have any of the abilities of humans and machines at its disposal. and eventually the ability to network minds into a shared consciousness. A lot of ordinary conventional humans would remain, but with safe upgrades available, I called them homo sapiens ludditus. As they watch their neighbors getting all the best jobs, winning at all the sports, buying everything, and getting the hottest dates too, many would be tempted to accept the upgrades and homo sapiens might gradually fizzle out.

My future evolution timeline stayed like that for several years. Then in the early 2000s I updated it to include later ideas:

human evolution 2

I realized that we could still add AI into computer games long after it becomes comparable with human intelligence, so games like EA’s The Sims might evolve to allow entire civilizations living within a computer game, each aware of their existence, each running just as real a life as you and I. It is perhaps unlikely that we would allow children any time soon to control fully sentient people within a computer game, acting as some sort of a god to them, but who knows, future people will argue that they’re not really real people so it’s OK. Anyway, you could employ them in the game to do real knowledge work, and make money, like slaves. But since you’re nice, you might do an incentive program for them that lets them buy their freedom if they do well, letting them migrate into an android. They could even carry on living in their Sims home and still wander round in our world too.

Emigration from computer games into our world could be high, but the reverse is also possible. If the mind is connected well enough, and enhanced so far by external IT that almost all of it runs on the IT instead of in the brain, then when your body dies, your mind would carry on living. It could live in any world, real or fantasy, or move freely between them. (As I explained in my last blog, it would also be able to travel in time, subject to certain very expensive infrastructural requirements.) As well as migrants coming via electronic immortality route, it would be likely that some people that are unhappy in the real world might prefer to end it all and migrate their minds into a virtual world where they might be happy. As an alternative to suicide, I can imagine that would be a popular route. If they feel better later, they could even come back, using an android.  So we’d have an interesting future with lots of variants of people, AI and computer game and fantasy characters migrating among various real and imaginary worlds.

But it doesn’t stop there. Meanwhile, back in the biotech labs, progress is continuing to harness bacteria to make components of electronic circuits (after which the bacteria are dissolved to leave the electronics). Bacteria can also have genes added to emit light or electrical signals. They could later be enhanced so that as well as being able to fabricate electronic components, they could power them too. We might add various other features too, but eventually, we’re likely to end up with bacteria that contain electronics and can connect to other bacteria nearby that contain other electronics to make sophisticated circuits. We could obviously harness self-assembly and self-organisation, which are also progressing nicely. The result is that we will get smart bacteria, collectively making sophisticated, intelligent, conscious entities of a wide variety, with lots of sensory capability distributed over a wide range. Bacteria Sapiens.

I often talk about smart yogurt using such an approach as a key future computing solution. If it were to stay in a yogurt pot, it would be easy to control. But it won’t. A collective bacterial intelligence such as this could gain a global presence, and could exist in land, sea and air, maybe even in space. Allowing lots of different biological properties could allow colonization of every niche. In fact, the first few generations of bacteria sapiens might be smart enough to design their own offspring. They could probably buy or gain access to equipment to fabricate them and release them to multiply. It might be impossible for humans to stop this once it gets to a certain point. Accidents happen, as do rogue regimes, terrorism and general mad-scientist type mischief.

And meanwhile, we’ll also be modifying nature. We’ll be genetically enhancing a wide range of organisms, bringing some back from extinction, creating new ones, adding new features, changing even some of the basic mechanism by which nature works in some cases. We might even create new kinds of DNA or develop substitutes with enhanced capability. We may change nature’s evolution hugely. With a mix of old and new and modified, nature evolves nicely into Gaia Sapiens.

We’re not finished with the evolution chart though. Here is the next one:

human evolution 3

Just one thing is added. Homo zombius. I realized eventually that the sci-fi ideas of zombies being created by viruses could be entirely feasible. A few viruses, bacteria and other parasites can affect the brains of the victims and change their behaviour to harness them for their own life cycle.

See http://io9.com/12-real-parasites-that-control-the-lives-of-their-hosts-461313366 for fun.

Bacteria sapiens could be highly versatile. It could make virus variants if need be. It could evolve itself to be able to live in our bodies, maybe penetrate our brains. Bacteria sapiens could make tiny components that connect to brain cells and intercept signals within our brains, or put signals back in. It could read our thoughts, and then control our thoughts. It could essentially convert people into remote controlled robots, or zombies as we usually call them. They could even control muscles directly to a point, so even if the zombie is decapitated, it could carry on for a short while. I used that as part of my storyline in Space Anchor. If future humans have widespread availability of cordless electricity, as they might, then it is far fetched but possible that headless zombies could wander around for ages, using the bacterial sensors to navigate. Homo zombius would be mankind enslaved by bacteria. Hopefully just a few people, but it could be everyone if we lose the battle. Think how difficult a war against bacteria would be, especially if they can penetrate anyone’s brain and intercept thoughts. The Terminator films looks a lot less scary when you compare the Terminator with the real potential of smart yogurt.

Bacteria sapiens might also need to be consulted when humans plan any transhuman upgrades. If they don’t consent, we might not be able to do other transhuman stuff. Transhumans might only be possible if transbacteria allow it.

Not done yet. I wrote a couple of weeks ago about fairies. I suggested fairies are entirely feasible future variants that would be ideally suited to space travel.

Fairies will dominate space travel

They’d also have lots of environmental advantages as well as most other things from the transhuman library. So I think they’re inevitable. So we should add fairies to the future timeline. We need a revised timeline and they certainly deserve their own branch. But I haven’t drawn it yet, hence this blog as an excuse. Before I do and finish this, what else needs to go on it?

Well, time travel in cyberspace is feasible and attractive beyond 2075. It’s not the proper real world time travel that isn’t permitted by physics, but it could feel just like that to those involved, and it could go further than you might think. It certainly will have some effects in the real world, because some of the active members of the society beyond 2075 might be involved in it. It certainly changes the future evolution timeline if people can essentially migrate from one era to another (there are some very strong caveats applicable here that I tried to explain in the blog, so please don’t misquote me as a nutter – I haven’t forgotten basic physics and logic, I’m just suggesting a feasible implementation of cyberspace that would allow time travel within it. It is really a cyberspace bubble that intersects with the real world at the real time front so doesn’t cause any physics problems, but at that intersection, its users can interact fully with the real world and their cultural experiences of time travel are therefore significant to others outside it.)

What else? OK, well there is a very significant community (many millions of people) that engages in all sorts of fantasy in shared on-line worlds, chat rooms and other forums. Fairies, elves, assorted spirits, assorted gods, dwarves, vampires, werewolves, assorted furry animals, assorted aliens, dolls,  living statues, mannequins, remote controlled people, assorted inanimate but living objects, plants and of course assorted robot/android variants are just some of those that already exist in principle; I’m sure I’ve forgotten some here and anyway, many more are invented every year so an exhaustive list would quickly become out of date. In most cases, many people already role play these with a great deal of conviction and imagination, not just in standalone games, but in communities, with rich cultures, back-stories and story-lines. So we know there is a strong demand, so we’re only waiting for their implementation once technology catches up, and it certainly will.

Biotech can do a lot, and nanotech and IT can add greatly to that. If you can design any kind of body with almost any kind of properties and constraints and abilities, and add any kind of IT and sensing and networking and sharing and external links for control and access and duplication, we will have an extremely rich diversity of future forms with an infinite variety of subcultures, cross-fertilization, migration and transformation. In fact, I can’t add just a few branches to my timeline. I need millions. So instead I will just lump all these extras into a huge collected category that allows almost anything, called Homo Whateverus.

So, here is the future of human (and associates) evolution, for the next 150 years. A few possible cross-links are omitted for clarity

evolution

I won’t be around to watch it all happen. But a lot of you will.

 

Time Travel: Cyberspace opens a rift in the virtual time-space continuum

Dr Who should have written this but he didn’t so I have to. We keep seeing those cute little tears in space-time in episodes of the BBC’s Dr Who, that let through Daleks and Cybermen and other nasties. (As an aside, how come feminists never seem to object to the term Cybermen, even though 50% of them are made from women?). Dr Who calls them rifts, and it allegedly needs the energy of entire star systems to open and close them. So, not much use as a weapon then, but still a security issue if our universe leaks.

Sci-fi authors have recognized the obvious dangers of time-space rifts for several decades. They cause problems with causality as well. I got a Physics degree a long time ago (well, Applied Mathematics and Theoretical Physics, but all the maths was EM theory, quantum mechanics and relativity, so it was really a physics degree), but I have never really understood fully why causality is such a big deal. Sure it needs a lot of explaining if it fails, but why would an occasional causal error cause such a huge problem? The Daleks are far more worrying. **Politically incorrect joke censored**

I just wrote about time travel again. All competent physicists rightly switch on their idiot filters automatically on hearing any of the terms ‘cold fusion’, ‘telekinetic’, ‘psychic’, ‘perpetual motion machine’, ‘time travel’ or ‘global warming catastrophe’. Sorry, that last one just sort of crept in there. Time travel is not really possible, unless you’re inside a black hole or you’re talking about a particle shifting atoseconds in a huge accelerator or GPS relativistic corrections or something. A Tardis isn’t going to be here any time soon and may be impossible and never ever come. However, there is a quite real cyberspace route to quite real time travel that will become feasible around 2075, a virtual rift if you like, but no need to activate idiot filters just yet, it’s only a virtual rift, a rift in a sandbox effectively, and it won’t cause the universe to collapse or violate any known laws of physics. So, hit the temporary override button on your idiot filter. It’s a fun thought experiment that gets more and more fun the more you look at it. (Einstein invented thought experiments to investigate relativity, because he couldn’t do any real experiments with the technology of his time. We can’t verify this sort of time travel experimentally yet so thought experiment is the only mechanism available. Sadly, I don’t have Einstein’s brain to hand, but some aspects at least are open to the rest of us to explore.) The hypothesis here is that if you can make a platform that stores the state of all the minds in a system continuously over a period from A to B, and that runs all those minds continuously using a single editable record, then you can travel in time freely between A and B.  Now we need to think it through a bit to test the hypothesis and see what virtual physics we can learn from it, see how real it would be and what it would need and lead to.

I recognized on my first look at it in

The future of time travel: cheat

that cyberspace offers a time travel cheat. The basic idea, to save you reading it now that it’s out of date, is that some time soon after 2050 – let’s take 2075 as the date that crowd-funding enables its implementation – we’ll all be able to connect our brains so well to the machine world that it will be possible to share thoughts and consciousness, sensations, effectively share bodies, live electronically until all the machines stop working, store your mind as a snapshot periodically in case you want to restore to an earlier backup and do all sorts of really fun things like swapping personalities. (You can see why it might attract the required funding so might well become real).  If that recording of your mind is complete enough, and it could be, then, you really could go back to an earlier state of yourself. More importantly, a future time tourist could access all the stored records and create an instance of your mind and chat to you and chat and interact with you from the future. This would allow future historians to do history better. Well, that’s the basic version. Our thought experiment version needs to go a bit further than that. Let’s call it the deluxe version.

If you implement the deluxe version, then minds run almost entirely on the machine world platform, and are hosted there with frequent restore points. The current state of the system is an interactive result of real-time running of all the minds held in cyberspace across the whole stored timeline. For those minds running on the deluxe version platform, there isn’t any other reality. That’s what makes up those future humans and AIs on it. Once you join the system, you can enjoy all of the benefits above and many more.

You could actually change old records and use the machines to ripple the full system-wide consequences all the way through the timeline to whenever your future today is. It would allow you to go back to visit your former self and do some editing, wouldn’t it? And in this deluxe version, the edits you make would ripple through into your later self. That’s what you get when you migrate the human mind from the Mk1 human brain platform into the machine world platform. It becomes endlessly replicable and editable. In this deluxe version, the future world really could be altered by editing the past. You may reasonably ask why we would allow any moron to allow that to be built, but that won’t affect the theoretical ability to travel in time through cyberspace.

It is very easy to see how such a system allows you to chat with someone in the past. What is less obvious, and what my excuse for a brain missed first time round, is that it also lets you travel forwards in time. How, you may reasonably ask, can you access and edit records that don’t exist yet? Well, think of it from the other direction. Someone in the future can restore any previous instance of you from any time point and talk to them, even edit them. They could do that all in some sort of time-play sandbox to save money and avoid quite a few social issues, or they could restore you fully to their time, and since the reality is just real-time emulation all rippled through nicely by the machine platform, you would suddenly appear in the future and become part of that future world. You could wander around in a future android body and do physical things in that future physical world just as if you’d always lived there. Your future self would feel they have travelled in time. But a key factor here is that it could be your future self that makes it happen. You could make a request in 2075 to your future self to bring you to the future in 2150. When 2150 arrives, you see (or might even remember) the request, you go into the archives, and you restore your old 2075 self to 2150, then you instruct deletion of all the records between 2075 and 2150 and then you push the big red button. The system runs all the changes and effects through the timeline, and the result is that you disappear in 2075, and suddenly reappear in 2150.

There would be backups of the alternative timeline, but the official and effective system reality would be that you travelled from 2075 to 2150. That will be the reality running on the deluxe system. Any other realities are just backups and records on a database. Now,so far it’s a one way trip, far better if you can have a quick trip to the future and come back. So, you’re in 2150, suppose you want to go back again. You’ve been around a while and don’t like the new music or the food or something. So before you go, you do the usual time mischief. You collect lots of really useful data about how all the latest tech works, buy the almanacs of who wins what, just like in Back to the Future, just in case the system has bugs that let you use them, and you tweak the dials again. You set the destination to 2075 and hit the big red button. The system writes your new future-wise self over your original 2075 entry, keeping a suitable backup of course. The entry used by the deluxe system is whatever is written in its working record, and that is the you that went to 2150 and back. Any other realities are just backups. So, the system ripples it all through the timeline. You start the day in 2075, have a quick trip for a week’s holiday in 2150, and then return a few minutes later. Your 2075 self will have experienced a trip to 2150 and come back, complete with all the useful data about the 2150 world. If you don’t mess with anything else, you will remember that trip until 2150, at which time you’ll grab a few friends and chat about the first time you ever did time travel.

All of the above is feasible theoretically, and none of it violates any known physics. The universe won’t collapse in a causality paradox bubble rift if you do it, no need to send for Dr Who. That doesn’t mean it isn’t without issues. It still creates a lot of the time travel issues we are so familiar with from sci-fi. But this one isn’t sci-fi – we could build it, and we could get the crowd-funding to make it real by 2075. Don’t get too excited yet though.

You could have gone further into the future than 2150 too, but there is a limit. You can only go as far as there exists a continuous record from where you are. You basically need a road that goes all the way there. If some future authority bans time travel or changes to an incompatible system, that represents a wall you can’t pass through. An even later authority could only remove that wall under certain circumstances, and only if they have the complete records, and the earlier authority might have stopped storing them or even deleted earlier ones and that would ruin any chances of doing it properly.

So, having established that it is possible, we have to ask the more serious question: how real is this time travel? Is it just a cyberspace trick with no impact on the real world? Well, in this scenario, your 2075 mind runs on the deluxe system using its 2075 record. But which one, the old one or the edited one? The edited one of course. The old version is overwritten and ceases to exist except as a backup. There remains no reality except the one you did your time travel trip in. Your time trip is real. But let’s ask a few choice questions, because reality can turn out to be just an illusion sometimes.

So, when you get home to 2075, you can print off your 2150 almanac and brag about all the new technologies you just invented from 2150. Yes?

Yes… if you implement the deluxe version.

Is there a causality paradox?

No.

Will the world end?

No.

But you just short-circuited technology development from 2075 to 2150?

Yes.

So you can do real time travel from 2075? You’ll suddenly vanish from 2075, spend some time in 2150, and later reappear in 2075?

Yes, if you implement the deluxe version.

Well, what happens in 2150?

You’ll do all the pushing red button stuff and have a party with your friends to remember your first time trip. If you set the times right, you could even invite your old self from 2075 as a guest and wave goodbye as you* goes back to 2075.

Or you* could stay in 2150 and there’d be two of you from then on?

Yes

OK, this sounds great fun.  So when can we build this super-duper deluxe version that let’s you time travel from 2075 to 2150 and go back again.

2150

And what happens to me between 2075 and 2150 while I wait for it to be built?

Well, you invest in the deluxe version, connect into the system, and it starts recording all its subscribers’ minds from then on, and you carry on enjoying life until 2150 arrives. Then you can travel from 2075 to 2150, retrospectively.

Retrospectively?

Well, you can travel from 2075 to whatever date in the future the deluxe system still exists. And your 2075 self will fully experience it as time travel. It won’t feel retrospective.

But you have to wait till that date before you can go there?

Yes. But you won’t remember having to wait, all the records of that will be wiped, you’ll just vanish in 2075 and reappear in 2150 or whenever.

What *insert string of chosen expletives here* use is that?

Erm…. Well…. You will still have enjoyed a nice life from 2075 to 2150 before it’s deleted and replaced.

But I won’t remember that will I?

No. But you won’t remember it when you’re dead either.

So I can only do this sort of time travel by having myself wiped off the system for all the years in between after I’ve done it? So the best way of doing that is not to bother with all the effort of living through all those years since they’re going to be deleted anyway and save all the memory and processing by just hibernation in the archives till that date arrives? So I’ll really vanish in 2075 and be restored in 2150 and feel it as time travel? And there won’t be any messy database records to clean up in between, and it will all be nice and environmentally friendly? And not having to run all those people years that would later be deleted will reduce storage and processing costs and system implementation costs dramatically?

Exactly!

OK, sounds a bit better again. But it’s still a fancy cyberspace hibernation scheme really isn’t it?

Well, you can travel back and forth through time as much as you like and socialize with anyone from any time zone and live in any time period. Some people from 2150 might prefer to live in 2075 and some from 2075 prefer to live in 2150. Everyone can choose when they live or just roam freely through the entire time period. A bit like that episode of Star Trek TOS where they all got sent through a portal to different places and times and mixed with societies made of others who had come the same way. You could do that. A bit like a glorified highly immersive computer game.

But what about gambling and using almanacs from the future? And inventing stuff in 2075 that isn’t really invented till 2150?

All the knowledge and data from 2150 will be there in the 2075 system so you won’t have anything new and gambling won’t be a viable industry. But it won’t be actually there until 2150. So the 2075 database will be a retrospective singularity where all of the future knowledge suddenly appears.

Isn’t that a rift in the time-space continuum, letting all the future weapons and political activists and terrorists and their plans through from 2150 to 2075? And Daleks? Some idiot will build one just for the hell of it. They’ll come through the rift too won’t they. And Cyberpersons?

It will not be without technical difficulties. And anyway, they can’t do any actual damage outside the system.

But these minds running in the system will be connected to android bodies or humans outside it. Their minds can time travel through cyberspace. Can’t they do anything nasty?

No, they can only send their minds back and connect to stuff within the system. Any androids and bodies could only be inhabited by first generation minds that belong to that physical time. They can only make use of androids or other body sharing stuff when they travel forwards through time, because it is their chosen future date where the android lives and they can arrange that. On a journey backwards, they can only change stuff running in the system.

 And that’s what stops it violating physics?

Yes

So let’s get this straight. This whole thing is great for extending your mind into cyberspace, sharing bodies, swapping personalities, changing gender or age, sharing consciousness and  some other things. But time travel is only possible for your mind that is supported exclusively in the system. And only that bit in the system can time travel. And your actual 2075 body can’t feel the effect at all or do anything about it? So it’s really another you that this all happens to and you start diverging from your other cyber-self the moment you connect. A replica of you enjoys all the benefits but it thinks it is you and feels like you and essentially is you, but not in the real world. And the original you carries on in parallel.

Correct. It is a big cyberspace bubble created over time with continuous timeline emulation, that only lets you time travel and interact within the bubble. Like an alternative universe, and you can travel in time in it. But it can only interact with the physical universe in real time at the furthermost frontier of the bubble. A frontier that moves into the future at the same speed as the rest of the local space-time continuum and doesn’t cause any physics problems or real time paradoxes outside of the system.

So it’s not REAL time travel. It’s just a sort of cyber-sandbox, albeit one that will be good fun and still worth building.

You can time travel in the parallel universe that you make in cyberspace. But it will be real within that universe. Forwards physical time travel is additionally possible in the physical universe if you migrate your mind totally into cyberspace, e.g. when you die, so you can live electronically, and even then it is really just a fancy form of hibernation. And if you travel back in time in the system, you won’t be able to interact with the physical stuff in the past, only what is running on the system. As long as you accept those limitations, you can travel in time after 2075 and live in any period supported after that.

Why do all the good things only ever happen in another universe?

I don’t know.

No physics or mathematics has knowingly been harmed during this thought experiment. No responsibility is accepted for any time-space rifts created as a result of analytical error.

 

 

Time – The final frontier. Maybe

It is very risky naming the final frontier. A frontier is just the far edge of where we’ve got to.

Technology has a habit of opening new doors to new frontiers so it is a fast way of losing face. When Star Trek named space as the final frontier, it was thought to be so. We’d go off into space and keep discovering new worlds, new civilizations, long after we’ve mapped the ocean floor. Space will keep us busy for a while. In thousands of years we may have gone beyond even our own galaxy if we’ve developed faster than light travel somehow, but that just takes us to more space. It’s big, and maybe we’ll never ever get to explore all of it, but it is just a physical space with physical things in it. We can imagine more than just physical things. That means there is stuff to explore beyond space, so space isn’t the final frontier.

So… not space. Not black holes or other galaxies.

Certainly not the ocean floor, however fashionable that might be to claim. We’ll have mapped that in details long before the rest of space. Not the centre of the Earth, for the same reason.

How about cyberspace? Cyberspace physically includes all the memory in all our computers, but also the imaginary spaces that are represented in it. The entire physical universe could be simulated as just a tiny bit of cyberspace, since it only needs to be rendered when someone looks at it. All the computer game environments and virtual shops are part of it too. The cyberspace tree doesn’t have to make a sound unless someone is there to hear it, but it could. The memory in computers is limited, but the cyberspace limits come from imagination of those building or exploring it. It is sort of infinite, but really its outer limits are just a function of our minds.

Games? Dreams? Human Imagination? Love? All very new agey and sickly sweet, but no. Just like cyberspace, these are also all just different products of the human mind, so all of these can be replaced by ‘the human mind’ as a frontier. I’m still not convinced that is the final one though. Even if we extend that to greatly AI-enhanced future human mind, it still won’t be the final frontier. When we AI-enhance ourselves, and connect to the smart AIs too, we have a sort of global consciousness, linking everyone’s minds together as far as each allows. That’s a bigger frontier, since the individual minds and AIs add up to more cooperative capability than they can achieve individually. The frontier is getting bigger and more interesting. You could explore other people directly, share and meld with them. Fun, but still not the final frontier.

Time adds another dimension. We can’t do physical time travel, and even if we can do so in physics labs with tiny particles for tiny time periods, that won’t necessarily translate into a practical time machine to travel in the physical world. We can time travel in cyberspace though, as I explained in

The future of time travel: cheat

and when our minds are fully networked and everything is recorded, you’ll be able to travel back in time and genuinely interact with people in the past, back to the point where the recording started. You would also be able to travel forwards in time as far as the recording stops and future laws allow (I didn’t fully realise that when I wrote my time travel blog, so I ought to update it, soon). You’d be able to inhabit other peoples’ bodies, share their minds, share consciousness and feelings and emotions and thoughts. The frontier suddenly jumps out a lot once we start that recording, because you can go into the future as far as is continuously permitted. Going into that future allows you to get hold of all the future technologies and bring them back home, short circuiting the future, as long as time police don’t stop you. No, I’m not nuts – if you record everyone’s minds continuously, you can time travel into the future using cyberspace, and the effects extend beyond cyberspace into the real world you inhabit, so although it is certainly a cheat, it is effectively real time travel, backwards and forwards. It needs some security sorted out on warfare, banking and investments, procreation, gambling and so on, as well as lot of other causality issues, but to quote from Back to the Future: ‘What the hell?’ [IMPORTANT EDIT: in my following blog, I revise this a bit and conclude that although time travel to the future in this system lets you do pretty much what you want outside the system, time travel to the past only lets you interact with people and other things supported within the system platform, not the physical universe outside it. This does limit the scope for mischief.]

So, time travel in fully networked fully AI-enhanced cosmically-connected cyberspace/dream-space/imagination/love/games would be a bigger and later frontier. It lets you travel far into the future and so it notionally includes any frontiers invented and included by then. Is it the final one though? Well, there could be some frontiers discovered after the time travel windows are closed. They’d be even finaller, so I won’t bet on it.

 

 

How the Space Anchor works

This is just an extract from my sci-fi book Space Anchor, about the adventures of Carbon Girl and her boyfriend Carbon Man. However, the Space Anchor itself is based on the Kasimir effect and warped space time, so has some similarities with NASA’s warp drive, but will be a lot easier to make and require very little energy. If their’s works, so will this. The space anchor will arrive first, and the most likely route to NASA getting their warp drive is using my space anchor to find another civilisation that already has a warp drive and buy one. Anyway, both remain scifi for a few decades. Just as well really. The Warp drive NASA are playing with will be used first as a weapon system to make ultra-high-lethality kinetic weapons. Let’s hope it doesn’t work. Looks pretty though, I’ll give them that.

From Space Anchor:

It was just a routine chat. G’din debriefed the General on the last trip, mapping out space currents. That often took him near planets and moons, and often meant he’d had to dodge asteroids. This one had been an unusually bad trip with several near misses.

Unfortunately, it was moving mass that created the ripples and currents in the space time fabric that the space anchor used. Without it, they’d have no means of ever getting much further than the solar system. Other techniques such as warp drives were still just science fiction. Nobody had any serious means of getting the speed without carrying massive engines and huge quantities of fuel. The space anchor cheated. The C14 didn’t use much fuel at all, and had fairly basic engines for local travel near Earth. The anchor locked on to the local space time fabric itself. There was no matter there, but it used stacked graphene Kasimir combs, each couple of combs interleaved to create a chamber where virtual particles could appear as the slats separated and be immediately separated from one another as the slats interleaved. High speed waves travelling along the combs opened and closed the gaps rapidly. The combs essentially harnessed the virtual particles’ fundamental need to annihilate by trying to physically prevent them from doing so. Creating a temporary barrier between them simply delayed their annihilation, creating a quantum annihilation pressure. Each frustrated annihilation only caused a tiny force measured at macro scales, but there were a lot of layers in the graphene stacks, and it added up nicely. Even though their lives were short, the strong forces the quantum annihilation pressures generated effectively locked the anchor onto that piece of space. Nature may abhor a vacuum, but it absolutely won’t let you steal it away. That would make holes in space time. Nature doesn’t allow holes in space time any more than it allows a tree in a forest to be replaced by an error message saying “tree not found”.

So the space anchor behaved exactly like an anchor should. It stayed where it was put, relative to the local space time. In future space battles, it would undoubtedly be useful for fighters to make rapid turns without using all their fuel. For now, thankfully without those space battles yet, they were happy to use it to make trips faster and shorter.

If the region of space at the anchor was expanding differently from the region where the ship was, which of course was the general idea, the anchor would create a huge force to pull the ship. So, just like a yacht using differences in the winds, the space anchor allowed the C14 to accelerate and brake. Like wind, vacuum energy was free and didn’t need fuel to be carried. The tether was long, but that wasn’t a problem in space. The trouble was, just like wind, it isn’t easy to spot a space current from far away, it is much easier to detect it by being there. Astro-physicists knew where to look for the best chance of finding stronger currents of course but the mapping was still needed. The forces had to be measured, the streams plotted. They had to know where they were, how strong they were, how they behaved. It was very new science and technology. Space-time turbulence had been discovered that could cause very severe vibration when an anchor was being used, although if the anchor was switched off, it would instantly become smooth again and the ship would coast.

One day, space travel would all be easy, but just a few decades in to manned interplanetary travel, it was still anything but routine.  Only a few ships were equipped with space anchors, they were not easy to make and were expensive. The C14 had the first one, since G’din had invented it, and it was still be best equipped ship to do this kind of work. It had three anchors now, improving manoeuvrability – on a good day, G’din could swing it around like a gibbon in the woods.

Space research, tourism, asteroid mining companies and of course the military of many countries all wanted the technology too. But without the other stuff – the Higgs filters, Heisenberg resonators and carbon fur, the anchor was as dangerous as it was useful, and few organisations had ships made out of the materials that could resist even the minor impacts. Most would be riddled with holes on the first trip. So only G’din and the military had them so far, the rest could wait till it was safer.

Drones, balloons and high speed banking

High speed  or high frequency banking is a fact of life now and I am glad to say I predicted it and some of its associated issues in the mid 1990s. Technology has moved on rather though, so it’s long past time for an update.

Getting the distance between computing elements as small as possible has been one of the key factors in making chips faster, but the distances between chips and between computers are enormous by comparison. Now that trading computers execute many billions of instructions per second, even tiny extra transmission times can make a significant difference in the precise time at which data that will influence a trade instruction is received by a bank computer, and a consequent trade initiated. That can make a big difference in price and hence profits.

We are about to see the first exaflop computers. A light signal can only travel a third of a nanometre in free space in the time it take for an instruction to execute on such a machine.

Some data delivery to banks is synchronised to give a degree of fairness, but not all data is included in that, useful data doesn’t all come from a single source, and analyst software isn’t necessarily in the same location as a trading device, so signals holding data or instructions have to travel relatively large distances and that gives a degree of competitive advantage to those banks that pick the best locations and optimise their networks best. Sometimes important signals travel between cities or between buildings in a city. Banks already make free space optical links, send signals over laser beams through the air; point to point links with minimum distance. However, that isn’t feasible between cities. Very straight optical cables have also been laid to solve longer distance comms without incurring any extra delays due to bends.

But the trend won’t peak any time soon. Light travels faster in air than it does in fibre. 3 microseconds per kilometre is a lot faster than 5, so those banks with fibre links would be at a disadvantage compared to those with free space links. If the distance is too high to send a laser beam directly between buildings  due to atmospheric absorption, the earth’s curvature or air safety considerations, then there is another solution coming soon. Even sending free space light through the fibre ducts could be faster in latency terms than actually using the fibre, though the practicalities of doing so might well make it near impossible.

Balloons and drones are already being used or considered for many purposes and communications is just another one. Making a network of balloons or drones to divide the journey into manageable hops would speed signals along. There is a trade-off between altitude and distance. Going too high adds too much extra distance, though the air is clearer so fewer hops are needs and the speed of light very slightly faster. There will be an optimum curve that takes the signals reasonably high for most of the journey, but that keeps the total distance low. Drones and balloons can stay afloat for long periods.

It doesn’t stop with just comm-links. Given that there are preferred locations for different industries as far as data sources go, we may well see aerial computing too, doing the processing in situ and relaying a trade instruction to minimise the total time involved. Regulation lags such ideas so that enables the faster more agile banks to use high altitude balloons or drones for long periods before legal challenges force their removal. Even then, using helicopters and planes, hiring office building rooftops and many other strategies will enable banks to shave microseconds or even milliseconds off the time they need to analyse data and instruct trades.

High frequency trading has already introduced instabilities into trading systems and these new potentials will increase instability further still. The extra mathematical and business complexity of using divers parallel networks introduces new kinds of wave interference and emergent behavioural risks that will be as hard to spot as the financial derivative risks that caused the last crash.

While risks are underwritten by taxpayers and banks can keep the rewards, they have little incentive to play safe and every incentive to gamble more and faster, using every new gearing technology they can source. Future crashes could be even more spectacular, and may happen order of magnitude faster than the last big crash.

I spotted some other new banking toys, but they are even more dangerous and I will save those for another blog.

 

 

The future of biometric identification and authentication

If you work in IT security, the first part of this will not be news to you, skip to the section on the future. Otherwise, the first sections look at the current state of biometrics and some of what we already know about their security limitations.

Introduction

I just read an article on fingerprint recognition. Biometrics has been hailed by some as a wonderful way of determining someone’s identity, and by others as a security mechanism that is far too easy to spoof. I generally fall in the second category. I don’t mind using it for simple unimportant things like turning on my tablet, on which I keep nothing sensitive, but so far I would never trust it as part of any system that gives access to my money or sensitive files.

My own history is that voice recognition still doesn’t work for me, fingerprints don’t work for me, and face recognition doesn’t work for me. Iris scan recognition does, but I don’t trust that either. Let’s take a quick look at conventional biometrics today and the near future.

Conventional biometrics

Fingerprint recognition.

I use a Google Nexus, made by Samsung. Samsung is in the news today because their Galaxy S5 fingerprint sensor was hacked by SRLabs minutes after release, not the most promising endorsement of their security competence.

http://www.telegraph.co.uk/technology/samsung/10769478/Galaxy-S5-fingerprint-scanner-hacked.html

This article says the sensor is used in the user authentication to access Paypal. That is really not good. I expect quite a few engineers at Samsung are working very hard indeed today. I expect they thought they had tested it thoroughly, and their engineers know a thing or two about security. Every engineer knows you can photograph a fingerprint and print a replica in silicone or glue or whatever. It’s the first topic of discussion at any Biometrics 101 meeting. I would assume they tested for that. I assume they would not release something they expected to bring instant embarrassment on their company, especially something failing by that classic mechanism. Yet according to this article, that seems to be the case. Given that Samsung is one of the most advanced technology companies out there, and that they can be assumed to have made reasonable effort to get it right, that doesn’t offer much hope for fingerprint recognition. If they don’t do it right, who will?

My own experience with fingerprint recognition history is having to join a special queue every day at Universal Studios because their fingerprint recognition entry system never once recognised me or my child. So I have never liked it because of false negatives. For those people for whom it does work, their fingerprints are all over the place, some in high quality, and can easily be obtained and replicated.

As just one token in multi-factor authentication, it may yet have some potential, but as a primary access key, not a chance. It will probably remain be a weak authenticator.

Face recognition

There are many ways of recognizing faces – visible light, infrared or UV, bone structure, face shapes, skin texture patterns, lip-prints, facial gesture sequences… These could be combined in simultaneous multi-factor authentication. The technology isn’t there yet, but it offers more hope than fingerprint recognition. Using the face alone is no good though. You can make masks from high-resolution photographs of people, and photos could be made using the same spectrum known to be used in recognition systems. Adding gestures is a nice idea, but in a world where cameras are becoming ubiquitous, it wouldn’t be too hard to capture the sequence you use. Pretending that a mask is alive by adding sensing and then using video to detect any inspection for pulse or blood flows or gesture requests and then to provide appropriate response is entirely feasible, though it would deter casual entry. So I am not encouraged to believe it would be secure unless and until some cleverer innovation occurs.

What I do know is that I set my tablet up to recognize me and it works about one time in five. The rest of the time I have to wait till it fails and then type in a PIN. So on average, it actually slows entry down. False negative again. Giving lots of false negatives without the reward of avoiding false positives is not a good combination.

Iris scans

I was a subject in one of the early trials for iris recognition. It seemed very promising. It always recognized me and never confused me with someone else. That was a very small scale trial though so I’d need a lot more convincing before I let it near my bank account. I saw the problem of replication an iris using a high quality printer and was assured that that couldn’t work because the system checks for the eye being alive by watching for jitter and shining a light and watching for pupil contraction. Call me too suspicious but I didn’t and don’t find that at all reassuring. It won’t be too long before we can make a thin sheet high-res polymer display layered onto a polymer gel underlayer that contracts under electric field, with light sensors built in and some software analysis for real time response. You could even do it as part of a mask with the rest of the face also faithfully mimicking all the textures, real-time responses, blood flow mimicking, gesture sequences and so on. If the prize is valuable enough to justify the effort, every aspect of the eyes, face and fingerprints could be mimicked. It may be more Mission Impossible than casual high street robbery but I can’t yet have any confidence that any part of the face or gestures would offer good security.

DNA

We hear frequently that DNA is a superbly secure authenticator. Every one of your cells can identify you. You almost certainly leave a few cells at the scene of a crime so can be caught, and because your DNA is unique, it must have been you that did it. Perfect, yes? And because it is such a perfect authenticator, it could be used confidently to police entry to secure systems.

No! First, even for a criminal trial, only a few parts of your DNA are checked, they don’t do an entire genome match. That already brings the chances of a match down to millions rather than billions. A chance of millions to one sounds impressive to a jury until you look at the figure from the other direction. If you have 1 in 70 million chance of a match, a prosecution barrister might try to present that as a 70 million to 1 chance that you’re guilty and a juror may well be taken in. The other side of that is that 100 people of the 7 billion would have that same 1 in 70 million match. So your competent defense barrister should  present that as only a 1 in 100 chance that it was you. Not quite so impressive.

I doubt a DNA system used commercially for security systems would be as sophisticated as one used in forensic labs. It will be many years before an instant response using large parts of your genome could be made economic. But what then? Still no. You leave DNA everywhere you go, all day, every day. I find it amazing that it is permitted as evidence in trials, because it is so easy to get hold of someone’s hairs or skin flakes. You could gather hairs or skin flakes from any bus seat or hotel bathroom or bed. Any maid in a big hotel or any airline cabin attendant could gather packets of tissue and hair samples and in many cases could even attach a name to them.  Your DNA could be found at the scene of any crime having been planted there by someone who simply wanted to deflect attention from themselves and get someone else convicted instead of them. They don’t even need to know who you are. And the police can tick the crime solved box as long as someone gets convicted. It doesn’t have to be the culprit. Think you have nothing to fear if you have done nothing wrong? Think again.

If someone wants to get access to an account, but doesn’t mind whose, perhaps a DNA-based entry system would offer good potential, because people perceive it as secure, whereas it simply isn’t. So it might not be paired with other secure factors. Going back to the maid or cabin attendant. Both are low paid. A few might welcome some black market bonuses if they can collect good quality samples with a name attached, especially a name of someone staying in a posh suite, probably with a nice account or two, or privy to valuable information. Especially if they also gather their fingerprints at the same time. Knowing who they are, getting a high res pic of their face and eyes off the net, along with some voice samples from videos, then making a mask, iris replica, fingerprint and if you’re lucky also buying video of their gesture patterns from the black market, you could make an almost perfect multi-factor biometric spoof.

It also becomes quickly obvious that the people who are the most valuable or important are also the people who are most vulnerable to such high quality spoofing.

So I am not impressed with biometric authentication. It sounds good at first, but biometrics are too easy to access and mimic. Other security vulnerabilities apply in sequence too. If your biometric is being measured and sent across a network for authentication, all the other usual IT vulnerabilities still apply. The signal could be intercepted and stored, replicated another time, and you can’t change your body much, so once your iris has been photographed or your fingerprint stored and hacked, it is useless for ever. The same goes for the other biometrics.

Dynamic biometrics

Signatures, gestures and facial expressions offer at least the chance to change them. If you signature has been used, you could start using a new one. You could sign different phrases each time, as a personal one-time key. You could invent new gesture sequences. These are really just an equivalent to passwords. You have to remember them and which one you use for which system. You don’t want a street seller using your signature to verify a tiny transaction and then risk the seller using the same signature to get right into your account.

Summary of status quo

This all brings us back to the most basic of security practice. You can only use static biometrics safely as a small part of a multi-factor system, and you have to use different dynamic biometrics such as gestures or signatures on a one time basis for each system, just as you do with passwords. At best, they provide a simple alternative to a simple password. At worst, they pair low actual security with the illusion of high security, and that is a very bad combination indeed.

So without major progress, biometrics in its conventional meaning doesn’t seem to have much of a future. If it is not much more than a novelty or a toy, and can only be used safely in conjunction with some proper security system, why bother at all?

The future

You can’t easily change your eyes or your DNA or you skin, but you can add things to your body that are similar to biometrics or interact with it but offer the flexibility and replaceability of electronics.

I have written frequently about active skin, using the skin as a platform for electronics, and I believe the various layers of it offer the best potential for security technology.

Long ago, RFID chips implants became commonplace in pets and some people even had them inserted too. RFID variants could easily be printed on a membrane and stuck onto the skin surface. They could be used for one time keys too, changing each time they are used. Adding accelerometers, magnetometers, pressure sensors or even location sensors could all offer ways of enhancing security options. Active skin allows easy combination of fingerprints with other factors.

 

Ultra-thin and uninvasive security patches could be stuck onto the skin, and could not be removed without damaging them, so would offer a potentially valuable platform. Pretty much any kinds and combinations of electronics could be used in them. They could easily be made to have a certain lifetime. Very thin ones could wash off after a few days so could be useful for theme park entry during holidays or for short term contractors. Banks could offer stick on electronic patches that change fundamentally how they work every month, making it very hard to hack them.

Active skin can go inside the skin too, not just on the surface. You could for example have an electronic circuit or an array of micro-scale magnets embedded among the skin cells in your fingertip. Your fingerprint alone could easily be copied and spoofed, but not the accompanying electronic interactivity from the active skin that can be interrogated at the same time. Active skin could measure all sorts of properties of the body too, so personal body chemistry at a particular time could be used. In fact, medical monitoring is the first key development area for active skin, so we’re likely to have a lot of body data available that could make new biometrics. The key advantage here is that skin cells are very large compared to electronic feature sizes. A decent processor or memory can be made around the size of one skin cell and many could be combined using infrared optics within the skin. Temperature or chemical gradients between inner and outer skin layers could be used to power devices too.

If you are signing something, the signature could be accompanied by a signal from the fingertip, sufficiently close to the surface being signed to be useful. A ring on a finger could also offer a voluminous security electronics platform to house any number of sensors, memory and processors.

Skin itself offers a reasonable communications route, able to carry a few Mbit’s of data stream, so touching something could allow a lot of data transfer very quickly. A smart watch or any other piece of digital jewelry or active skin security patch could use your fingertip to send an authentication sequence. The watch would know who you are by constant proximity and via its own authentication tools. It could easily be unauthorized instantly when detached or via a remote command.

Active makeup offer a novel mechanism too. Makeup will soon exist that uses particles that can change color or alignment under electronic control, potentially allowing video rate pattern changes. While that makes for fun makeup, it also allows for sophisticated visual authentication sequences using one-time keys. Makeup doesn’t have to be confined only to the face of course, and security makeup could maybe be used on the forearm or hands. Combining with static biometrics, many-factor authentication could be implemented.

I believe active skin, using membranes added or printed onto and even within the skin, together with the use of capsules, electronic jewelry, and even active makeup offers the future potential to implement extremely secure personal authentication systems. This pseudo-biometric authentication offers infinitely more flexibility and changeability than the body itself, but because it is attached to the body, offers much the same ease of use and constant presence as other biometrics.

Biometrics may be pretty useless as it is, but the field does certainly have a future. We just need to add some bits. The endless potential variety of those bits and their combinations makes the available creativity space vast.

 

 

The future of ‘authenticity’

I recently watched an interesting documentary on the evolution of the British coffee shop market. I then had an idea for a new chain that is so sharp it would scratch your display if I wrote it here, so I’ll keep that secret. The documentary left me with another thought: what’s so special about authentic?

I’ll blog as I think and see where I get to, if anywhere.

Starbucks and Costa sell coffee (for my American readers, Costa is a British version of Starbucks that sells better coffee but seems to agree they should pay tax just like the rest of us – yes I know Starbucks has since reformed a bit, but Costa didn’t have to). Cafe Nero (or is it just Nero?) sells coffee with the ‘Authentic Italian’ experience. I never knew that until I watched the documentary. Such things fly way over my head. If Nero is closest when I want a coffee, I’ll go in, and I know the coffee is nice, just like Costa is nice, but authentic Italian? Why the hell would I care about my coffee being authentic Italian? I don’t go anywhere to get an authentic Danish pastry or an authentic Australian beer, or an authentic Swiss cheese, or an authentic Coke. What has coffee got to do with Italy anyway? It’s a drink. I don’t care how they treat it in any particular country, even if they used to make it nicer there. The basic recipes and techniques for making a decent coffee were spread worldwide decades ago, and it’s the coffee I want. Anyway, we use a Swiss coffee machine with Swiss coffee at home, not Italian, because the Swiss learned from their Italian sub-population and then added their usual high precision materials and engineering and science, they didn’t just take it as gospel that Mama somehow knew best. And because my wife is Swiss. My razor sharp idea isn’t a Swiss coffee chain by the way.

I therefore wonder how many other people who go into Cafe Nero care tuppence whether they are getting an authentic Italian experience, or whether like me they just want a decent coffee and it seems a nice enough place. I can understand the need to get the best atmosphere, ambiance, feel, whatever you want to call it. I can certainly understand that people might want a cake or snack to go with their coffee. I just don’t understand the desire to associate with another country. Italy is fine for a visit; I have nothing against Italians, but neither do I aspire in any way to be or behave Italian.

Let’s think it through a bit. An overall experience is made up of a large number of components: quality and taste of the coffee and snacks, natural or synthetic, healthy or naughty, the staff and the nature of the service, exterior and interior decor and color scheme, mixture of aromas, range of foods, size of cake portion, ages groups and tribal ranges of other customers, comfort of furnishings, lighting levels, wireless LAN access….. There are hundreds of factors. The potential range of combinations  is massive. People can’t handle all that information when they want a coffee, so they need an easy way to decide quickly. ‘Italian’ is really just a brand, reducing the choice stress and Cafe Nero is just adopting a set of typical brand values evolved by an entire nation over centuries. I guess that makes some sense.

But not all that much sense. The Italian bit is a nice shortcut, but once it’s taken out of Italy, whatever it might be, it isn’t in Italy any more. The customers are not expected to order in Italian apart beyond a few silly words to describe the size of the coffee. The customers mostly aren’t Italian, don’t look Italian, don’t chat in Italian and don’t behave Italian. The weather isn’t Italian. The views outside aren’t Italian. The architecture isn’t Italian. So only a few bits of the overall experience can be Italian, the overall experience just isn’t. If only a few bits are authentic, why bother? Why not just extract some insights of what things about ‘Italian’ customers find desirable and then adapt them to the local market? Perhaps what they have done, so if they just drop the pretense, everything would be fine. They can’t honestly say they offer an authentic Italian experience, just a few components of such. I never noticed their supposed Italianness anyway but I hate pretentiousness so now that I understand their offering, it adds up to a slight negative for me. Now that I know they are pretending to be Italian, I will think twice before using them again, but still will if it’s more than a few metres further to another coffee shop. Really, I just want a coffee and possibly a slice of cake, in a reasonably warm and welcoming coffee shop.

Given that it is impossible to provide an ‘authentic Italian experience’ outside of Italy without also simulating every aspect of being in Italy, how authentic could they be in the future? What is the future of authenticity? Could Cafe Nero offer a genuinely Italian experience if that’s what they really wanted? Bring on VR, AR, direct brain links, sensory recording and replay. Total Recall.  Yes they could, sort of. With a full sensory full immersion system, you could deliver an experience that is real and authentic in every sense except that it isn’t real. In 2050, you could sell a seemingly genuinely authentic Italian coffee and cake in a genuinely Italian atmosphere, anywhere. But when they do that, I’ll download that onto my home coffee machine or my digital jewelry. Come to think about it, I could just drink water and eat bread and do all the rest virtually. Full authenticity, zero cost.

This Total Recall style virtual holiday or virtual coffee is fine as far as it goes, but a key problem is knowing that it isn’t real. If you disable that by hypnosis or drugs or surgery or implants or Zombie tech, then your Matrix style world will have some other issues to worry about that are more important. If you don’t, and I’m pretty sure we won’t, then knowing the difference between real and virtual will be all-important. If you know it isn’t real, it pushes a different set of buttons in your brain.

In parallel, as AI gets more and more powerful, a lot of things will be taken over by machines. That adds to the total work pool of man + machine so the economy expands and we’re all better off, if we do it right. We can even restore and improve the environment at the same time. In that world, some roles will still be occupied by humans. People will focus more on human skills, human interaction, crafts, experiences, care, arts and entertainment, sports, and especially offering love and attention. I call it the Care Economy. If you take two absolutely identical items, one provided by a machine and one by another person, the one offered by the person will be more valued, and therefore more valuable – apart from a tiny geek market that specifically wants machines. Don’t believe me? Think of the high price glassware you keep for special occasions and dinner parties. Cut by hand by an expert with years of training. Each glass is slightly different from every other. In one sense it is shoddy workmanship compared to the mass-produced glass, precision made, all identical, that costs 1% as much. The human involvement is absolutely critical. The key human involvement is that you know you couldn’t possibly do it, that it took a highly skilled craftsman. You aren’t buying just the glass, but the skills and attention and dedication and time of the craftsman. In just the same way, you will happily pay a bigger proportion of your bigger future income for other people’s time. Virtual is fine and cheap, but you’ll happily pay far more for the real thing. That will greatly offset the forces pushing towards a totally virtual experience.

This won’t happen overnight, and that brings us to another force that plays out over the same time. When we use a phrase like ‘authentic Italian’, we don’t normally put a date on it. Do we mean contemporary Italy, 1960 Italy, or what? If 1960, then we’d have to use a lot of virtual tech to simulate it. If we mean contemporary, then that includes all the virtual stuff that goes on in Italy too, which is likely pretty much what happens virtually elsewhere. A large proportion of our everyday will be virtual. How can you have authentic virtual? When half of what everyone sees every day isn’t real, you could no more have an authentic Italian coffee bar than an authentic hobbit hole in Middle Earth.

Authenticity is a term that can already only be applied to a subset of properties of a particular component. A food item or a drink could be authentic in terms of its recipe and taste, origin and means of production of the ingredients, perhaps even served by an Italian, but the authenticity of the surrounding context is doomed to be more and more limited. Does it matter though? I don’t think so.

The more I think about it, the less I care if it is in any way authentic. I want a pleasing product served by pleasant human staff in a pleasant atmosphere. I care about the various properties and attributes in an absolute sense, and I also care whether they are provided by human or machine, but the degree to which they mimic some particular tradition really doesn’t add any value for me. I am very happy to set culture free to explore the infinite potential of imagination and make an experience as enjoyable as possible.  Authenticity is just a labelled cage, and we’re better if it is unlocked. I want real pleasure, not pretend pleasure, but authenticity is increasingly becoming a pretense.

Oh, my razor sharp idea? As I said, it’s secret.

 

 

WMDs for mad AIs

We think sometimes about mad scientists and what they might do. It’s fun, makes nice films occasionally, and highlights threats years before they become feasible. That then allows scientists and engineers to think through how they might defend against such scenarios, hopefully making sure they don’t happen.

You’ll be aware that a lot more talk of AI is going on again now. It does seem to be picking up progress finally. If it succeeds well enough, a lot more future science and engineering will be done by AI than by people. If genuinely conscious, self-aware AI, with proper emotions etc becomes feasible, as I think it will, then we really ought to think about what happens when it goes wrong. (Sci-fi computer games producers already do think that stuff through sometimes – my personal favorite is Mass Effect). We will one day have some insane AIs. In Mass Effect, the concept of AI being shackled is embedded in the culture, thereby attempting to limit the damage it could presumably do. On the other hand, we have had Asimov’s laws of robotics for decades, but they are sometimes being ignored when it comes to making autonomous defense systems. That doesn’t bode well. So, assuming that Mass Effect’s writers don’t get to be in charge of the world, and instead we have ideological descendants of our current leaders, what sort of things could an advanced AI do in terms of its chosen weaponry?

Advanced AI

An ultra-powerful AI is a potential threat in itself. There is no reason to expect that an advanced AI will be malign, but there is also no reason to assume it won’t be. High level AI could have at least the range of personality that we associate with people, with a potentially greater  range of emotions or motivations, so we’d have the super-helpful smart scientist type AIs but also perhaps the evil super-villain and terrorist ones.

An AI doesn’t have to intend harm to be harmful. If it wants to do something and we are in the way, even if it has no malicious intent, we could still become casualties, like ants on a building site.

I have often blogged about achieving conscious computers using techniques such as gel computing and how we could end up in a terminator scenario, favored by sci-fi. This could be deliberate act of innocent research, military development or terrorism.

Terminator scenarios are diverse but often rely on AI taking control of human weapons systems. I won’t major on that here because that threat has already been analysed in-depth by many people.

Conscious botnets could arrive by accident too – a student prank harnessing millions of bots even with an inefficient algorithm might gain enough power to achieve high level of AI. 

Smart bacteria – Bacterial DNA could be modified so that bacteria can make electronics inside their cell, and power it. Linking to other bacteria, massive AI could be achieved.

Zombies

Adding the ability to enter a human nervous system or disrupt or capture control of a human brain could enable enslavement, giving us zombies. Having been enslaved, zombies could easily be linked across the net. The zombie films we watch tend to miss this feature. Zombies in films and games tend to move in herds, but not generally under control or in a much coordinated way. We should assume that real ones will be full networked, liable to remote control, and able to share sensory systems. They’d be rather smarter and more capable than what we’re generally used to. Shooting them in the head might not work so well as people expect either, as their nervous systems don’t really need a local controller, and could just as easily be controlled by a collective intelligence, though blood loss would eventually cause them to die. To stop a herd of real zombies, you’d basically have to dismember them. More Dead Space than Dawn of the Dead.

Zombie viruses could be made other ways too. It isn’t necessary to use smart bacteria. Genetic modification of viruses, or a suspension of nanoparticles are traditional favorites because they could work. Sadly, we are likely to see zombies result from deliberate human acts, likely this century.

From Zombies, it is a short hop to full evolution of the Borg from Star Trek, along with emergence of characters from computer games to take over the zombified bodies.

Terraforming

Using strong external AI to make collective adaptability so that smart bacteria can colonize many niches, bacterial-based AI or AI using bacteria could engage in terraforming. Attacking many niches that are important to humans or other life would be very destructive. Terraforming a planet you live on is not generally a good idea, but if an organism can inhabit land, sea or air and even space, there is plenty of scope to avoid self destruction. Fighting bacteria engaged on such a pursuit might be hard. Smart bacteria could spread immunity to toxins or biological threats almost instantly through a population.

Correlated traffic

Information waves and other correlated traffic, network resonance attacks are another way of using networks to collapse economies by taking advantage of the physical properties of the links and protocols rather than using more traditional viruses or denial or service attacks. AIs using smart dust or bacteria could launch signals in perfect coordination from any points on any networks simultaneously. This could push any network into resonant overloads that would likely crash them, and certainly act to deprive other traffic of bandwidth.

Decryption

Conscious botnets could be used to make decryption engines to wreck security and finance systems. Imagine how much more so a worldwide collection of trillions of AI-harnessed organisms or devices. Invisibly small smart dust and networked bacteria could also pick up most signals well before they are encrypted anyway, since they could be resident on keyboards or the components and wires within. They could even pick up electrical signals from a person’s scalp and engage in thought recognition, intercepting passwords well before a person’s fingers even move to type them.

Space guns

Solar wind deflector guns are feasible, ionizing some of the ionosphere to make a reflective surface to deflect some of the incoming solar wind to make an even bigger reflector, then again, thus ending up with an ionospheric lens or reflector that can steer perhaps 1% of the solar wind onto a city. That could generate a high enough energy density to ignite and even melt a large area of city within minutes.

This wouldn’t be as easy as using space based solar farms, and using energy direction from them. Space solar is being seriously considered but it presents an extremely attractive target for capture because of its potential as a directed energy weapon. Their intended use is to use microwave beams directed to rectenna arrays on the ground, but it would take good design to prevent a takeover possibility.

Drone armies

Drones are already becoming common at an alarming rate, and the sizes of drones are increasing in range from large insects to medium sized planes. The next generation is likely to include permanently airborne drones and swarms of insect-sized drones. The swarms offer interesting potential for WMDs. They can be dispersed and come together on command, making them hard to attack most of the time.

Individual insect-sized drones could build up an electrical charge by a wide variety of means, and could collectively attack individuals, electrocuting or disabling them, as well as overload or short-circuit electrical appliances.

Larger drones such as the ones I discussed in

http://carbonweapons.com/2013/06/27/free-floating-combat-drones/ would be capable of much greater damage, and collectively, virtually indestructible since each can be broken to pieces by an attack and automatically reassembled without losing capability using self organisation principles. A mixture of large and small drones, possibly also using bacteria and smart dust, could present an extremely formidable coordinated attack.

I also recently blogged about the storm router

http://carbonweapons.com/2014/03/17/stormrouter-making-wmds-from-hurricanes-or-thunderstorms/ that would harness hurricanes, tornados or electrical storms and divert their energy onto chosen targets.

In my Space Anchor novel, my superheroes have to fight against a formidable AI army that appears as just a global collection of tiny clouds. They do some of the things I highlighted above and come close to threatening human existence. It’s a fun story but it is based on potential engineering.

Well, I think that’s enough threats to worry about for today. Maybe given the timing of release, you’re expecting me to hint that this is an April Fool blog. Not this time. All these threats are feasible.

Virtual reality. Will it stick this time?

My first job was in missile design and for a year, the lab I worked in was a giant bra-shaped building, two massive domes joined by a short link-way that had been taken out of use years earlier. The domes had been used by soldiers to fire simulated missiles at simulated planes, and were built in the 1960s. One dome had a hydraulic moving platform to simulate firing from a ship. The entire dome surface was used as a screen to show the plane and missile. The missile canisters held by the soldier were counterweighted with a release mechanism coordinated to the fire instruction and the soldier’s headphones would produce a corresponding loud blast to accompany the physical weight change at launch so that they would feel as full a range of sensation experienced by a real soldier on a real battlefield as possible. The missile trajectory and control interface was simulated by analog computers. So virtual reality may have hit the civilian world around 1990 but it was in use several decades earlier in military world. In 1984, we even considered using our advancing computers to create what we called waking dreaming, simulating any chosen experience for leisure. Jaron Lanier has somehow been credited with inventing VR, and he contributed to its naming, but the fact is he ‘invented’ it several decades after it was already in common use and after the concepts were already pretty well established.

I wrote a paper in 1991 based on BT’s VR research in which I made my biggest ever futurology mistake. I worked out the number crunching requirements and pronounced that VR would overtake TV as an entertainment medium around 2000. I need hardly point out that I was wrong. I have often considered why it didn’t happen the way I thought it would. On one front, we did get the entertainment of messing around in 3D worlds, and it is the basis of almost all computer gaming now. So that happened just fine, it just didn’t use stereo vision to convey immersion. It turned out that the immersion is good enough on a TV or PC screen.

Also, in the early 1990s, just as IT companies may have been considering making VR headsets, the class action law suit became very popular, and some of those were based on very tenuous connections to real cause and effect, and meanwhile some VR headset users were reporting eye strain or disorientation. I imagine that the lawyers in those IT companies would be thinking of every teenager that develops any eye problem suing them just in case it might have been caused in part by use of their headset. Those issues plus the engineering difficulties of commercialising manufacture of good quality displays probably were enough to kill VR.

However, I later enjoyed many a simulator ride at Disney and Universal. One such ride allowed me to design my own roller coaster with twists and loops and then ride it in a simulator. It was especially enjoyable. The pull of simulator rides remains powerful.  Playing a game on an xbox is fun, but doesn’t compare with a simulator ride.

I think much of the future of VR lies in simulators where it already thrives. They can go further still. Tethered simulators can throw you around a bit but can’t manage the same range of experience that you can get on a roller coaster. Imagine using a roller coaster where you see the path ahead via a screen. As your cart reaches the top of a hill, the track apparently collapses and you see yourself hurtling towards certain death. That would scare the hell out of me. Combining the g-forces that you can get on a roller coaster with imaginative visual effects delivered via a headset would provide the ultimate experience.

Compare that with using a nice visor on its own. Sure, you can walk around an interesting object like a space station, or enjoy more immersive gaming, or you can co-design molecules. That sort of app has been used for many years in research labs anyway. Or you can train people in health and safety without exposing them to real danger. But where’s the fun? Where’s the big advantage over TV-based gaming? 3D has pretty much failed yet again for TV and movies, and hasn’t made much impact in gaming yet. Do we really think that adding a VR headset will change it all, even though 3D glasses didn’t?

I was a great believer in VR. With the active contact lens, it can be ultra-light-weight and minimally invasive while ultra-realistic. Adding active skin interfacing to the nervous system to convey physical sensation will eventually help too. But unless plain old VR it is accompanied by stimulation of the other senses, just as a simulator does, I fear the current batch of VR enthusiasts are just repeating the same mistakes I made over twenty years ago. I always knew what you could do with it and that the displays would get near perfect one day and I got carried away with excitement over the potential. That’s what caused my error. Beware you don’t make the same one. This could well be just another big flop. I hope it isn’t though.

Drones

Drones (unmanned flying vehicles), are becoming very routine equipment in warfare. They are also making market impacts in policing and sports. I first encountered them in 1981 when I started work in missile design. It was obvious even back then that we couldn’t go on using planes with people on board, if only because they are so easy to shoot down. People can’t withstand very high g forces so planes can’t be as agile as missiles. However, most of the drones used in war so far are not especially agile. This is mainly possible because the enemies they are used against are technologically relatively primitive. Against an enemy with a decent defence system, such as Russians or Chinese, or in another European war, they wouldn’t last so long.

Drones come in many shapes and sizes – large insects, model airplanes, and full size planes. Large ones can carry big missiles and lots of sensors. Small ones can evade detection more easily but can still carry cameras. Some quadcopter variants are being trialled for delivery (e.g. Amazon), and already are popular as toys or for hobbies.

As miniaturisation continues, we will see some that take the shape of clouds too. A swarm of tiny drones could use swarming algorithms to stay together and use very short range comms to act as a single autonomous entity. Rapid dispersal mechanisms could make clouds almost immune to current defence systems too. Tiny drones can’t carry large payloads, but they can carry detectors to identify potential targets, processors to analyse data and comms devices to communicate with remote controllers, and lasers that can mark out confirmed targets for larger drones or missiles so can still be part of a powerful weapon system. The ethics of using remote machines to wage war are finally being discussed at length and in some depth. Personally, I have fewer problems with that than many people. I see it as a natural progression from the first use of a bone or stick to hit someone. A drone isn’t so different from throwing stones. Nobody yet expects machines to be used up to the point of annihilation of an enemy. Once the machines have run their course, people will still end up in face to face combat with each other before surrender comes.

The large military drones carrying missiles may be purely battlefield technology, but we shouldn’t underestimate what could be done with tiny drones. Tiny drones can be very cheap, so there could be a lot of them. Think about it. We have all experienced barbecues ruined by wasps. Wasp sized drones that carry stings or other chemical or biological warfare delivery would be just as irritating and potentially much more lethal, and if they have cloud based image recognition and navigation, there is much that could be done using swarms of them. With self organisation, insect-sized drones could come at a target from lots of directions, making detection almost impossible until the last second. This could become a perfect technology for strategic assassination and terrorism, as well as gang warfare. Tiny drones could eventually be a more dangerous prospect than the large ones making headlines now.

In the UK, non-military drones are being licensed too. The emergency services, utilities and some sport clubs are among the first given licenses. There will be many more. Many companies will want to use them for all sort of reasons. Our skies will soon always have a drone somewhere in the field of view, probably lots eventually. If we were confident hat they would only ever be used for the purpose registered, and that the registration authorities would be supremely competent and informed about risks, then objections would be more about potential noise than invasiveness, but we can be certain that there will be gaping holes in registration competence and misuse of drones once registered. There will also inevitably be illegal use of unregistered drones

This raises strong concerns about privacy, corporate, local government and state surveillance, criminality, heavy handed policing and even state oppression. During the day, you could be being filmed or photographed by lots of airborne cameras and during the night by others using infrared cameras or millimetre wave imaging. Correlation of images with signals from mobile phones and tablets or often even face recognition could tell the viewers who is who, and the pictures could sometimes be cross referenced with those from ground based cameras to provide a full 3d view.

The potential use of drones in crime detection is obvious, but so is the potential for misuse. We recently heard disturbing figures from police chiefs about the levels of misuse of the police uniform, data and equipment, even links to criminal gangs. Amplifying the power available to police without cracking down on misuse would be unhelpful. The last thing we need is criminal gangs with under-the-table access to police quality surveillance drones! But even the drones owned by utilities will need good cameras, and some will have other kinds of sensors. Most will have more power than they need to fly so will be able to carry additional sensor equipment that may have been added without authority. Some abuses are inevitable. Privacy is being undermined from other directions already of course, so perhaps this doesn’t make much difference, just adding another layer of privacy erosion on several that are already established. But there is something about extra video surveillance from the sky that makes it more intrusive. It makes it much harder to hide, and the smaller the drones become, the harder it will get. The fly on the wall could be a spy. The argument that ‘if you have nothing to hide, you have nothing to fear’ holds no merit at all.

Drones are already making headlines, but so far we have only seen their very earliest manifestations. Future headlines will get far more scary.

The future of mining

I did an interview recently on future mining, so I thought I’d blog my thoughts on the subject while they’re all stuck together coherently.

Very briefly, increasing population and wealth will generate higher resource need until the resources needed per person starts to fall at a higher rate, and it will. That almost certainly means a few decades of increasing demand for many resources, with a few exceptions where substitution will impact at a higher rate. Eventually, demand will peak and fall for most resources. Meanwhile, the mining industry can prosper.

Robotics

Robots are already used a lot in mining, but their uses will evolve. Robots have a greater potential range of senses than humans, able to detect whatever sensors are equipped for. That means they can see into rock and analyse composition better than our eyes. AI will improve their decisions. Of course, we’ll still have the self drive vehicles, diggers and the other automation we already expect to see.

If a mine can be fully automated, it may reduce deaths and costs significantly. Robots can also have a rapid speed of reaction as well as AI and advanced sensing, and could detect accidents before they happen. Apart from saving on wages, robots also don’t need expensive health and safety, so that may see lower costs, but at the expense of greater risks with occasional flat robots in an automated mine. The costs of robots can be kept low if most of their intelligence is remote rather than on board. Saving human lives is a benefit that can’t easily be costed. Far better to buy a new machine than to comfort a bereaved family.

Robots in many other mixed mines will need to be maintained, so maybe people’s main role will often be just looking after the machines, and we would still need to ensure safety in that case. That creates a big incentive to make machines that can be maintained by other machines so that full automation can be achieved.

With use of penetrating positioning systems, specialist wanderer bots could tunnel around at will, following a seam, extracting and concentrating useful materials and leave markers for collector bots to gather the concentrates.

NBIC

With ongoing convergence of biotech, nanotech and IT, we should expect a lot of development of various types of bacterial or mechanical microbots, that can get into new places and reduce the costs of recovery, maybe even reopening some otherwise uneconomic mines. Development of bacteria that can transmute materials has already begun, and we should expect that some future mines will depend mainly on a few bucketfuls of bacterial soup to convert and concentrate resources into more easily extracted reserves. Such advanced technology will greatly increase the reserves of material that can economically be extracted. Obviously the higher the price, the more that can be justified on extraction, so advanced technologies will develop faster when we need them, as any shortages start to appear.

Deep Sea

Deep sea mines would provide access to far greater resource pools, limited mainly by the market price for the material. Re-opening other mines as technology improves recovery potential will also help.

Asteroid Mining

Moving away from the Earth, a lot of hype has appeared about asteroid mining and some analyses seem to think that it will impact enormously on the price of scarce materials here on Earth. I think that is oversold as a possibility.  Yes, it will be possible to bring stuff back to Earth, but the costs of landing materials safely would be high and only justified for those with extreme prices.  For traditionally expensive gold or diamonds, actual uses are relatively low and generally have good cheaper substitutes, so if large quantities were shipped back to Earth, prices would still be managed as they already are, with slow trickling onto the market to avoid price collapse. That greatly limits the potential wealth from doing so.

I think it is far more likely that asteroid mining will be focused on producing stuff for needed for construction, travel and living in space, such as space stations, ships, energy collection, habitation, outposts etc. In that case, many of the things mined from asteroids would be things that are cheap here, such as water and iron and other everyday materials. Their value in space might be far higher simply because of the expense of moving them. This last factor suggests that there may be a lot of interest in technologies to move asteroids or change their orbits so the resources end up closer to where they are needed. An asteroid could be mined at great length, with the materials extracted and left on its surface, then waiting until the asteroid is close to the required destination before the materials are collected and dispatched. The alternative that we routinely see in sci-fi, with vast mining ships, is possible, and there will undoubtedly be times they are needed, but surely can’t compete on cost with steering an entire asteroid so it delivers the materials itself.

Population growth and resource need

As human population increases, we’ll eventually also see robot and android population increase, and they might also need resources for their activities. We should certainly factor that into future demand estimates. However, there are also future factors that will reduce the resources needed.

Smarter Construction

More advanced construction techniques, development of smarter materials and use of reactive architecture all mean that less resource is needed for a given amount of building. Exotic materials such as graphene  and carbon nanotubes, boron derivatives, and possibly even plasma in some applications, will all impact on construction and other industries and reduce demand for lots of resources. The carbon derivatives are a double win, since carbon can usefully be extracted from the products of fossil fuel energy production, making cleaner energy at the same time as providing building and fabrication materials. The new carbon materials are a lot stronger than steel, so we may build much higher buildings, making a lower environmental footprint for cities. They are also perfect for making self-driving cars as well as their energy storage, power supply and supporting infrastructure.

IT efficiency v the Greens

Miniaturisation of electronics and IT will continue for decades more. A few cubic millimetres of electronics could easily replace all the electronics owned by a typical family today. Perversely, Greens are trying hard to force a slower obsolescence cycle, not understanding that the faster we get to minimal resource use, the lower the overall environmental impact will be. By prolonging high-resource-use gadgets, even as people get wealthier and can afford to buy more, the demands will increase far beyond what is really necessary of they hadn’t interfered. It is far better for 10 billion people to use a few cubic millimetres each than a few litres. Greens also often want to introduce restrictions on development of other advanced technology, greatly overusing the precautionary principle. Their distrust of science and technology is amazing considering how much it can obviously benefit the environment.

A lot of things can be done virtually too, with no resource use at all, especially displays and interfaces, all of which could share a single common display such as a 0.2 gram active contact lens. A lot of IT can be centralised with greater utilisation, while some can achieve better efficiency by decentralising. We need to apply intelligence to the problem, looking at each bit as part of an overall system instead of in isolation, and looking at the full life cycle as well as the full system.

Substitution will reduce demand for copper, neodymium, lithium

Recycling of some elements will provide more than is needed by a future market because of material substitution, so prices of some could fall, such as copper. Copper in plumbing is already being substituted heavily by plastic. In communications, fibre and mobile are already heavily replacing it. In power cables, it will eventually be substituted by graphene. Similar substitution is likely in many other materials. The primary use of neodymium is in wind turbines and high speed motors. As wind turbines are abandoned and recycled in favour of better energy production techniques, as future wind power can even be based on plastic capacitors that need hardly any metal at all, and as permanent magnets in motors are substituted by superconducting magnets, there may not be much demand for neodymium. Similarly, lithium is in great demand for batteries, but super-capacitors, again possibly using carbon derivatives such as graphene, will substitute greatly for them. Inductive power coupling from inductive mats in a road surface could easily replace most of the required capacity for a car battery, especially as self driving cars will be lighter and closer together, reducing energy demand. Self-driving cars even reduce the number of cars needed as they deter private ownership. So it is a win-win-win for everyone except the mining industry. A small battery or super-cap bank might have little need for lithium. Recycled lithium could be all we need. Recycling will continue to improve through better practice and better tech, and also some rubbish tips could even be mined if we’re desperate. With fewer cars needed, and plastic instead of steel, that also impacts on steel need.

The Greens are the best friends of the mining industry

So provided we can limit Green interference and get on with developing advanced technology quickly, the fall in demand per person (or android) may offset resource need at a higher rate than the population increases. We could use less material in the far future than we do today, even with a far higher average standard of living. After population peaks and starts falling, there could be a rapid price fall as a glut of recycled material appears. That would be a bleak outcome for the mining sector of course. In that case, by delaying that to the best of their ability, it turns out that the Greens are the mining industry’s best friends, useful idiots, ensuring that the markets remain as large as possible for as long as possible, with the maximum environmental impact.

It certainly takes a special restriction of mind to let someone do so much harm to the environment while still believing they occupy the moral high ground!

Carbon industry

Meanwhile, carbon sequestration could easily evolve into a carbon materials industry, in direct competition with the traditional resources sector, with carbon building materials, cables, wires, batteries, capacitors, inductors, electronics, fabrics…..a million uses. Plastics will improve in parallel, often incorporating particles of electronics, sensors, and electronic muscles, making a huge variety of potential smart materials for any kind of building, furniture of gadget. The requirement for concrete, steel, aluminium, copper, and many other materials will eventually drop, even as population and wealth grows.

To conclude, although population increase and wealth increase will generate increasing demand in the short to medium term, and mining will develop rapidly along many avenues, in the longer term, the future will rely far more on recycling and advanced manufacturing techniques, so the demand for raw materials will eventually peak and fall.

I wrote at far greater length about achieving a system-wide sustainable future in my book Total Sustainability, which avoids the usual socialist baggage.

The internet of things will soon be history

I’ve been a full time futurologist since 1991, and an engineer working on far future R&D stuff since I left uni in 1981. It is great seeing a lot of the 1980s dreams about connecting everything together finally starting to become real, although as I’ve blogged a bit recently, some of the grander claims we’re seeing for future home automation are rather unlikely. Yes you can, but you probably won’t, though some people will certainly adopt some stuff. Now that most people are starting to get the idea that you can connect things and add intelligence to them, we’re seeing a lot of overshoot too on the importance of the internet of things, which is the generalised form of the same thing.

It’s my job as a futurologist not only to understand that trend (and I’ve been yacking about putting chips in everything for decades) but then to look past it to see what is coming next. Or if it is here to stay, then that would also be an important conclusion too, but you know what, it just isn’t. The internet of things will be about as long lived as most other generations of technology, such as the mobile phone. Do you still have one? I don’t, well I do but they are all in a box in the garage somewhere. I have a general purpose mobile computer that happens to do be a phone as well as dozens of other things. So do you probably. The only reason you might still call it a smartphone or an iPhone is because it has to be called something and nobody in the IT marketing industry has any imagination. PDA was a rubbish name and that was the choice.

You can stick chips in everything, and you can connect them all together via the net. But that capability will disappear quickly into the background and the IT zeitgeist will move on. It really won’t be very long before a lot of the things we interact with are virtual, imaginary. To all intents and purposes they will be there, and will do wonderful things, but they won’t physically exist. So they won’t have chips in them. You can’t put a chip into a figment of imagination, even though you can make it appear in front of your eyes and interact with it. A good topical example of this is the smart watch, all set to make an imminent grand entrance. Smart watches are struggling to solve battery problems, they’ll be expensive too. They don’t need batteries if they are just images and a fully interactive image of a hugely sophisticated smart watch could also be made free, as one of a million things done by a free app. The smart watch’s demise is already inevitable. The energy it takes to produce an image on the retina is a great deal less than the energy needed to power a smart watch on your wrist and the cost of a few seconds of your time to explain to an AI how you’d like your wrist to be accessorised is a few seconds of your time, rather fewer seconds than you’d have spent on choosing something that costs a lot. In fact, the energy needed for direct retinal projection and associated comms is far less than can be harvested easily from your body or the environment, so there is no battery problem to solve.

If you can do that with a smart watch, making it just an imaginary item, you can do it to any kind of IT interface. You only need to see the interface, the rest can be put anywhere, on your belt, in your bag or in the IT ether that will evolve from today’s cloud. My pad, smartphone, TV and watch can all be recycled.

I can also do loads of things with imagination that I can’t do for real. I can have an imaginary wand. I can point it at you and turn you into a frog. Then in my eyes, the images of you change to those of a frog. Sure, it’s not real, you aren’t really a frog, but you are to me. I can wave it again and make the building walls vanish, so I can see the stuff on sale inside. A few of those images could be very real and come from cameras all over the place, the chips-in-everything stuff, but actually, I don’t have much interest in most of what the shop actually has, I am not interested in most of the local physical reality of a shop; what I am far more interested in is what I can buy, and I’ll be shown those things, in ways that appeal to me, whether they’re physically there or on Amazon Virtual. So 1% is chips-in-everything, 99% is imaginary, virtual, some sort of visual manifestation of my profile, Amazon Virtual’s AI systems, how my own AI knows I like to see things, and a fair bit of other people’s imagination to design the virtual decor, the nice presentation options, the virtual fauna and flora making it more fun, and countless other intermediaries and extramediaries, or whatever you call all those others that add value and fun to an experience without actually getting in the way. All just images directly projected onto my retinas. Not so much chips-in-everything as no chips at all except a few sensors, comms and an infinitesimal timeshare of a processor and storage somewhere.

A lot of people dismiss augmented reality as irrelevant passing fad. They say video visors and active contact lenses won’t catch on because of privacy concerns (and I’d agree that is a big issue that needs to be discussed and sorted, but it will be discussed and sorted). But when you realise that what we’re going to get isn’t just an internet of things, but a total convergence of physical and virtual, a coming together of real and imaginary, an explosion of human creativity,  a new renaissance, a realisation of yours and everyone else’s wildest dreams as part of your everyday reality; when you realise that, then the internet of things suddenly starts to look more than just a little bit boring, part of the old days when we actually had to make stuff and you had to have the same as everyone else and it all cost a fortune and needed charged up all the time.

The internet of things is only starting to arrive. But it won’t stay for long before it hides in the cupboard and disappears from memory. A far, far more exciting future is coming up close behind. The world of creativity and imagination. Bring it on!

Deterring rape and sexual assault

Since writing this a new set of stats has come out (yes, I should have predicted that):

http://www.ons.gov.uk/ons/rel/crime-stats/crime-statistics/focus-on-violent-crime-and-sexual-offences–2012-13/rft-table-2.xls

New technology appears all the time, but it seemed to me that some very serious problems were being under-addressed, such as rape and sexual assault. Technology obviously won’t solve them alone, but I believe it could help to some degree. However, I wanted to understand the magnitude of the problem first, so sought out the official statistics. I found it intensely frustrating task that left me angry that government is so bad at collecting proper data. So although I started this as another technology blog, it evolved and I now also discuss the statistics too, since poor quality data collection and communication on such an important issue as rape is a huge problem in itself. That isn’t a technology issue, it is one of government competence.

Anyway, the headline stats are that:

1060 rapes of women and 522 rapes of girls under 16 resulted in court convictions. A third as many attempted rapes also resulted in convictions.

14767 reports of rapes or attempted rapes (typically 25%) of females were initially recorded by the police, of which 33% were against girls under 16.

The Crime Survey for England and Wales estimates that 69000 women claim to have been subjected to rape or attempted rape.

I will discuss the stats further after I have considered how technology could help to reduce rape, the original point of the blog.

This is a highly sensitive area, and people get very upset with any discussion of rape because of its huge emotional impact. I don’t want to upset anybody by misplacing blame so let me say very clearly:

Rape or sexual assault are never a victim’s fault. There are no circumstances under which it is acceptable to take part in any sexual act with anyone against their will. If someone does so, it is entirely their fault, not the victim’s. People should not have to protect themselves but should be free to do as they wish without fear of being raped or sexually assaulted. Some people clearly don’t respect that right and rapes and sexual assaults happen. The rest of us want fewer people to be raped or assaulted and want more guilty people to be convicted. Technology can’t stop rape, and I won’t suggest that it can, but if it can help reduce someone’s chances of becoming a victim or help convict a culprit, even in just some cases, that’s progress.  I just want to do my bit to help as an engineer. Please don’t just think up reasons why a particular solution is no use in a particular case, think instead how it might help in a few. There are lots of rapes and assaults where nothing I suggest will be of any help at all. Technology can only ever be a small part of our fight against sex crime.

Let’s start with something we could easily do tomorrow, using social networking technology to alert potential victims to some dangers, deter stranger rape or help catch culprits. People encounter strangers all the time – at work, on transport, in clubs, pubs, coffee bars, shops, as well as dark alleys and tow-paths. In many of these places, we expect IT infrastructure, communications, cameras, and people with smartphones. 

Social networks often use location and some apps know who some of the people near you are. Shops are starting to use face recognition to identify regular customers and known troublemakers. Videos from building cameras are already often used to try to identify potential suspects or track their movements. Suppose in the not-very-far future, a critical mass of people carried devices that recorded the data of who was near them, throughout the day, and sent it regularly into the cloud. That device could be a special purpose device or it could just be a smartphone with an app on it. Suppose a potential victim in a club has one. They might be able to glance at an app and see a social reputation for many of the people there. They’d see that some are universally considered to be fine upstanding members of the community, even by previous partners, who thought they were nice people, just not right for them. They might see that a few others have had relationships where one or more of their previous partners had left negative feedback, which may or may not be justified. The potential victim might reasonably be more careful with the ones that have dodgy reputations, whether they’re justified or not, and even a little wary of those who don’t carry such a device. Why don’t they carry one? Surely if they were OK, they would? That’s what critical mass does. Above a certain level of adoption, it would rapidly become the norm. Like any sort of reputation, giving someone a false or unjustified rating would carry its own penalty. If you try to get back at an ex by telling lies about them, you’d quickly be identified as a liar by others, or they might sue you for libel. Even at this level, social networking can help alert some people to potential danger some of the time.

Suppose someone ends up being raped. Thanks to the collection of that data by their device (and those of others) of who was where, when, with whom, the police would more easily be able to identify some of the people the victim had encountered and some of them would be able to identify some of the others who didn’t carry such a device. The data would also help eliminate a lot of potential suspects too. Unless a rapist had planned in advance to rape, they may even have such a device with them. That might itself be a deterrent from later raping someone they’d met, because  they’d know the police would be able to find them easier. Some clubs and pubs might make it compulsory to carry one, to capitalise on the market from being known as relatively safe hangouts. Other clubs and pubs might be forced to follow suit. We could end up with a society where most of the time, potential rapists would know that their proximity to their potential victim would be known most of the time. So they might behave.

So even social networking such as we have today or could easily produce tomorrow is capable of acting as a deterrent to some people considering raping a stranger. It increases their chances of being caught, and provides some circumstantial evidence at least of their relevant movements when they are.

Smartphones are very underused as a tool to deter rape. Frequent use of social nets such as uploading photos or adding a diary entry into Facebook helps to make a picture of events leading up to a crime that may later help in inquiries. Again, that automatically creates a small deterrence by increasing the chances of being investigated. It could go a lot further though. Life-logging may use a microphone that records a continuous audio all day and a camera that records pictures when the scene changes. This already exists but is not in common use yet – frequent Facebook updates are as far as most people currently get to life-logging. Almost any phone is capable of recording audio, and can easily do so from a pocket or bag, but if a camera is to record frequent images, it really needs to be worn. That may be OK in several years if we’re all wearing video visors with built-in cameras, but in practice and for the short-term, we’re realistically stuck with just the audio.

So life-logging technology could record a lot of the events, audio and pictures leading up to an offense, and any smartphone could do at least some of this. A rapist might forcefully search and remove such devices from a victim or their bag, but by then they might already have transmitted a lot of data into the cloud, possibly even evidence of a struggle that may be used later to help convict. If not removed, it could even record audio throughout the offence, providing a good source of evidence. Smartphones also have accelerometers in them, so they could even act as a sort of black box, showing when a victim was still, walking, running, or struggling. Further, phones often have tracking apps on them, so if a rapist did steal a phone, it may show their later movements up to the point where they dumped it. Phones can also be used to issue distress calls. An emergency distress button would be easy to implement, and could transmit exact location stream audio  to the emergency services. An app could also be set up to issue a distress call automatically under specific circumstances, such at it detecting a struggle or a scream or a call for help. Finally, a lot of phones are equipped for ID purposes, and that will generally increase the proportion of people in a building whose identity is known. Someone who habitually uses their phone for such purposes could be asked to justify disabling ID or tracking services when later interviewed in connection with an offense. All of these developments will make it just a little bit harder to escape justice and that knowledge would act as a deterrent.

Overall, a smart phone, with its accelerometer, positioning, audio, image and video recording and its ability to record and transmit any such data on to cloud storage makes it into a potentially very useful black box and that surely must be a significant deterrent. From the point of view of someone falsely accused, it also could act as a valuable proof of innocence if they can show that the whole time they were together was amicable, or if indeed they were somewhere else altogether at the time. So actually, both sides of a date have an interest in using such black box smartphone technology and on a date with someone new, a sensible precautionary habit could be encouraged to enable continuous black box logging throughout a date. People might reasonably object to having a continuous recording happening during a legitimate date if they thought there was a danger it could be used by the other person to entertain their friends or uploaded on to the web later, but it could easily be implemented to protect privacy and avoiding the risk of misuse. That could be achieved by using an app that keeps the record on a database but gives nobody access to it without a court order. It would be hard to find a good reason to object to the other person protecting themselves by using such an app. With such protection and extra protection, perhaps it could become as much part of safe sex as using a condom. Imagine if women’s groups were to encourage a trend to make this sort of recording on dates the norm – no app, no fun!

These technologies would be useful primarily in deterring stranger rape or date rape. I doubt if they would help as much with rapes that are by someone the victim knows. There are a number of reasons. It’s reasonable to assume that when the victim knows the rapist, and especially if they are partners and have regular sex, it is far less likely that either would have a recording going. For example, a woman may change her mind during sex that started off consensually. If the man forces her to continue, it is very unlikely that there would be anything recorded to prove rape occurred. In an abusive or violent relationship, an abused partner might use an audio recording via a hidden device when they are concerned – an app could initiate a recording on detection of a secret keyword, or when voices are raised, even when the phone is put in a particular location or orientation. So it might be easy to hide the fact that a recording is going and it could be useful in some cases. However, the fear of being caught doing so by a violent partner might be a strong deterrent, and an abuser may well have full access to or even control of their partner’s phone, and most of all, a victim generally doesn’t know they are going to be raped. So the phone probably isn’t a very useful factor when the victim and rapist are partners or are often together in that kind of situation. However, when it is two colleagues or friends in a new kind of situation, which also accounts for a significant proportion of rapes, perhaps it is more appropriate and normal dating protocols for black box app use may more often apply. Companies could help protect employees by insisting that such a black box recording is in force when any employees are together, in or out of office hours. They could even automate it by detecting proximity of their employees’ phones.

The smartphone is already ubiquitous and everyone is familiar with installing and using apps, so any of this could be done right away. A good campaign supported by the right groups could ensure good uptake of such apps very quickly. And it needn’t be all phone-centric. A new class of device would be useful for those who feel threatened in abusive relationships. Thanks to miniaturisation, recording and transmission devices can easily be concealed in just about any everyday object, many that would be common in a handbag or bedroom drawer or on a bedside table. If abuse isn’t just a one-off event, they may offer a valuable means of providing evidence to deal with an abusive partner.

Obviously, black boxes or audio recording can’t stop someone from using force or threats, but it can provide good quality evidence, and the deterrent effect of likely being caught is a strong defence against any kind of crime. I think that is probably as far as technology can go. Self-defense weapons such as pepper sprays and rape alarms already exist, but we don’t allow use of tasers or knives or guns and similar restrictions would apply to future defence technologies. Automatically raising an alarm and getting help to the scene quickly is the only way we can reasonably expect technology to help deal with a rape that is occurring, but that makes the use of deterrence via probably detection all the more valuable. Since the technologies also help protect the innocent against false accusations, that would help in getting their social adoption.

So much for what we could do with existing technology. In a few years, we will become accustomed to having patches of electronics stuck on our skin. Active skin and even active makeup will have a lot of medical functions, but it could also include accelerometers, recording devices, pressure sensors and just about anything that uses electronics. Any part of the body can be printed with active skin or active makeup, which is then potentially part of this black box system. Invisibly small sensors in makeup, on thin membranes or even embedded among skin cells could notionally detect, measure and record any kiss, caress, squeeze or impact, even record the physical sensations experiences by recording the nerve signals. It could record pain or discomfort, along with precise timing, location, and measure many properties of the skin touching or kissing it too. It might be possible for a victim to prove exactly when a rape happened, exactly what it involved, and who was responsible. Such technology is already being researched around the world. It will take a while to develop and become widespread, but it will come.

I don’t want this to sound frivolous, but I suggested many years ago that when women get breast implants, they really ought to have at least some of the space used for useful electronics, and electronics can actually be made using silicone. A potential rapist can’t steal or deactivate a smart breast implant as easily as a phone. If a woman is going to get implants anyway, why not get ones that increase her safety by having some sort of built-in black box? We don’t have to wait a decade for the technology to do that.

The statistics show that many rapes and sexual assaults that are reported don’t result in a conviction. Some accusations may be false, and I couldn’t find any figures for that number, but lack of good evidence is one of the biggest reasons why many genuine rapes don’t result in conviction. Technology can’t stop rapes, but it can certainly help a lot to provide good quality evidence to make convictions more likely when rapes and assaults do occur.

By making people more aware of potentially risky dates, and by gathering continuous data streams when they are with someone, technology can provide an extra level of safety and a good deterrent against rape and sexual assault. That in no way implies that rape is anyone’s fault except the rapist, but with high social support, it could help make a significant drop in rape incidence and a large rise in conviction rates. I am aware that in the biggest category, the technology I suggest has the smallest benefit to offer, so we will still need to tackle rape by other means. It is only a start, but better some reduction than none.

The rest of this blog is about rape statistics, not about technology or the future. It may be of interest to some readers. Its overwhelming conclusion is that official stats are a mess and nobody has a clue how many rapes actually take place.

Summary Statistics

We hear politicians and special interest groups citing and sometimes misrepresenting wildly varying statistics all the time, and now I know why. It’s hard to know the true scale of the problem, and very easy indeed to be confused by  poor presentation of poor quality government statistics in the sexual offenses category. That is a huge issue and source of problems in itself. Although it is very much on the furthest edge of my normal brief, I spent three days trawling through the whole sexual offenses field, looking at the crime survey questionnaires, the gaping holes and inconsistencies in collected data, and the evolution of offense categories over the last decade. It is no wonder government policies and public debate are so confused when the data available is so poor. It very badly needs fixed. 

There are several stages at which some data is available outside and within the justice system. The level of credibility of a claim obviously varies at each stage as the level of evidence increases.

Outside of the justice system, someone may claim to have been raped in a self-completion module of The Crime Survey for England and Wales (CSEW), knowing that it is anonymous, nobody will query their response, no further verification will be required and there will be no consequences for anyone. There are strong personal and political reasons why people may be motivated to give false information in a survey designed to measure crime levels (in either direction), especially in those sections not done by face to face interview, and these reasons are magnified when people filling it in know that their answers will be scaled up to represent the whole population, so that already introduces a large motivational error source. However, even for a person fully intending to tell the truth in the survey, some questions are ambiguous or biased, and some are highly specific while others leave far too much scope for interpretation, leaving gaps in some areas while obsessing with others. In my view, the CSEW is badly conceived and badly implemented. In spite of unfounded government and police assurances that it gives a more accurate picture of crime than other sources, having read it, I have little more confidence in the Crime Survey for England and Wales (CSEW)  as an indicator of actual crime levels than a casual conversation in a pub. We can be sure that some people don’t report some rapes for a variety of reasons and that in itself is a cause for concern. We don’t know how many go unreported, and the CSEW is not a reasonable indicator. We need a more reliable source.

The next stage for potential stats is that anyone may report any rape to the police, whether of themselves, a friend or colleague, witnessing a rape of a stranger, or even something they heard. The police will only record some of these initial reports as crimes, on a fairly common sense approach. According to the report, ‘the police record a crime if, on the balance of probability, the circumstances as reported amount to a crime defined by law and if there is no credible evidence to the contrary‘. 7% of these are later dropped for reasons such as errors in initial recording or retraction. However, it has recently been revealed that some forces record every crime reported whereas others record it only after it has passed the assessment above, damaging the quality of the data by mixing two different types of data together. In such an important area of crime, it is most unsatisfactory that proper statistics are not gathered in a consistent way for each stage of the criminal justice process, using the same criteria in every force.

Having recorded crimes, the police will proceed some of them through the criminal justice system.

Finally, the courts will find proven guilt in some of those cases.

I looked for the data for each of these stages, expecting to find vast numbers of table detailing everything. Perhaps they exist, and I certainly followed a number of promising routes, but most of the roads I followed ended up leading back to the CSEW and the same overview report. This joint overview report for the UK was produced by the  Ministry of Justice, Home Office and the Office for National Statistics in 2013, and it includes a range of tables with selected data from actual convictions through to results of the crime survey of England and Wales. While useful, it omits a lot of essential data that I couldn’t find anywhere else either.

The report and its tables can be accessed from:

http://www.ons.gov.uk/ons/rel/crime-stats/an-overview-of-sexual-offending-in-england—wales/december-2012/index.html

Another site gives a nice infographic on police recording, although for a different period. It is worth looking at if only to see the wonderful caveat: ‘the police figures exclude those offences which have not been reported to them’. Here it is:

http://www.ons.gov.uk/ons/rel/crime-stats/crime-statistics/period-ending-june-2013/info-sexual-offenses.html

In my view the ‘overview of sexual offending’ report mixes different qualities of data for different crimes and different victim groups in such a way as to invite confusion, distortion and misrepresentation. I’d encourage you to read it yourself if only to convince you of the need to pressure government to do it properly. Be warned, a great deal of care is required to work out exactly what and which victim group each refers to. Some figures include all people, some only females, some only women 16-59 years old. Some refer to different crime groups with similar sounding names such as sexual assault and sexual offence, some include attempts whereas others don’t. Worst of all, some very important statistics are missing, and it’s easy to assume another one refers to what you are looking for when on closer inspection, it doesn’t. However, there doesn’t appear to be a better official report available, so I had to use it. I’ve done my best to extract and qualify the headline statistics.

Taking rapes against both males and females, in 2011, 1153 people were convicted of carrying out 2294 rapes or attempted rapes, an average of 2 each. The conviction rate was 34.6% of 6630 proceeded against, from 16041 rapes or attempted rapes recorded by the police. Inexplicably, conviction figures are not broken down by victim gender, nor by rape or attempted rape. 

Police recording stats are broken down well. Of the 16041, 1274 (8%) of the rapes and attempted rapes recorded by the police were against males, while 14767 (92%) were against females. 33% of the female rapes recorded and 70% of male rapes recorded were against children (though far more girls were raped than boys). Figures are also broken down well against ethnicity and age, for offender and victim. Figures elsewhere suggested that 25% of rape attempts are unsuccessful, which combined with the 92% proportion that were rapes of females would indicate 1582 convictions for actual rape of a female, approximately 1060 women and 522 girls, but those figures only hold true if the proportions are similar through to conviction. 

Surely such a report should clearly state such an important figure as the number of rapes of a female that led to a conviction, and not leave it to readers to calculate their own estimate from pieces of data spread throughout the report. Government needs to do a lot better at gathering, categorising, analysing and reporting clear and accurate data. 

That 1582 figure for convictions is important, but it represents only the figure for rapes proven beyond reasonable doubt. Some females were raped and the culprit went unpunished. There has been a lot of recent effort to try to get a better conviction rate for rapes. Getting better evidence more frequently would certainly help get more convictions. A common perception is that many or even most rapes are unreported so the focus is often on trying to get more women to report it when they are raped. If someone knows they have good evidence, they are more likely to report a rape or assault, since one of the main reasons they don’t report it is lack of confidence that the police can do anything.

Although I don’t have much confidence in the figures from the CSEW, I’ll list them anyway. Perhaps you have greater confidence in them. The CSEW uses a sample of people, and then results are scaled up to a representation of the whole population. The CSEW (Crime Survey of England and Wales) estimates that 52000 (95% confidence level of between 39000 and 66000) women between 16 and 59 years old claim to have been victim of actual rape in the last 12 months, based on anonymous self-completion questionnaires, with 69000 (95% confidence level of between 54000 and 85000) women claiming to have been victim of attempted or actual rape in the last 12 months. 

In the same period, 22053 sexual assaults were recorded by the police. I couldn’t find any figures for convictions for sexual assaults, only for sexual offenses, which is a different, far larger category that includes indecent exposure and voyeurism. It isn’t clear why the report doesn’t include the figures for sexual assault convictions. Again, government should do better in their collection and presentation of important statistics.

The overview report also gives the stats for the number of women who said they reported a rape or attempted rape. 15% of women said they told the police, 57% said they told someone else but not the police, and 28% said they told nobody. The report does give the reasons commonly cited for not telling the police: “Based on the responses of female victims in the 2011/12 survey, the most frequently cited were that it would be ‘embarrassing’, they ‘didn’t think the police could do much to help’, that the incident was ‘too trivial/not worth reporting’, or that they saw it as a ‘private/family matter and not police business’.”

Whether you pick the 2110 convictions of rape or attempted rape against a female or the 69000 claimed in anonymous questionnaires, or anywhere in between, a lot of females are being subjected to actual and attempted rapes, and a lot victim of sexual assault. The high proportion of victims that are young children is especially alarming. Male rape is a big problem too, but the figures are a lot lower than for female rape.

Automation and the London tube strike

I was invited on the BBC’s Radio 4 Today Programme to discuss automation this morning, but on Radio 4, studio audio quality is a higher priority than content quality, while quality of life for me is a higher priority than radio exposure, and going into Ipswich greatly reduces my quality of life. We amicably agreed they should find someone else.

There will be more automation in the future. On one hand, if we could totally automate every single job right now, all the same work would be done, so the world would still have the same overall wealth, but then we’d all be idle so our newly free time could be used to improve quality of life, or lie on beaches enjoying ourselves. The problem with that isn’t the automation itself, it is mainly the deciding what else to do with our time and establishing a fair means of distributing the wealth so it doesn’t just stay with ‘the mill owners’. Automation will eventually require some tweaks of capitalism (I discuss this at length in my book Total Sustainability).

We can’t and shouldn’t automate every job. Some jobs are dull and boring or reduce the worker to too low a level of  dignity, and they should be automated as far as we can economically – that is, without creating a greater problem elsewhere. Some jobs provide people with a huge sense of fulfillment or pleasure, and we ought to keep them and create more like them. Most jobs are in between and their situation is rather more complex. Jobs give us something to do with our time. They provide us with social contact. They stop us hanging around on the streets picking fights, or finding ways to demean ourselves or others. They provide dignity, status, self-actualisation. They provide a convenient mechanism for wealth distribution. Some provide stimulation, or exercise, or supervision. All of these factors add to the value of jobs above the actual financial value add.

The London tube strike illustrates one key factor in the social decision on which jobs should be automated. The tube provides an essential service that affects a very large number of people and all their interests should be taken into account.

The impact of potential automation on individual workers in the tube system is certainly important and we shouldn’t ignore it. It would force many of them to find other jobs, albeit in an area with very low unemployment and generally high salaries. Others would have to change to another role within the tube system, perhaps giving assistance and advice to customers instead of pushing buttons on a ticket machine or moving a lever back and forward in a train cab. I find it hard to see how pushing buttons can offer the same dignity or human fulfillment as directly helping another person, so I would consider that sort of change positive, apart from any potential income drop and its onward consequences.

On the other hand, the cumulative impacts on all those other people affected are astronomically large. Many people would have struggled to get to work. Many wouldn’t have bothered. A few would suffer health consequences due to the extra struggle or stress. Perhaps a few small business on the edge of survival will have been killed. Some tourists won’t come back, a lot will spend less. A very large number of businesses and individuals will suffer significantly to let the tube staff make a not very valid protest.

The interests of a small number of people shouldn’t be ignored, but neither should the interests of a large number of people. If these jobs are automated, a few staff would suffer significantly, most would just move on to other jobs, but the future minor miseries caused to millions would be avoided.

Other jobs that should be automated are those where staff are give undue power or authority over others. Most of us will have had bad experiences of jobsworth staff, perhaps including ticketing staff, whose personal attitude is rather less than helpful and whose replacement by a machine would make the world a better place. A few people sadly seem to relish their power to make someone else’s life more difficult. I am pleased to see widespread automation of check-in at airports for that reason too. There were simply too many check-in assistants who gleefully stood in front of big notices saying that rudeness and abuse will not be tolerated from customers, while happily abusing their customers, creating maximum inconvenience and grief to their customers through a jobsworth attitude or couldn’t-care-less incompetence. Where people are in a position of power or authority, where a job offers the sort of opportunities for sadistic self-actualisation some people get by making other people’s lives worse, there is a strong case for automation to avoid the temptation to abuse that power or authority.

As artificial intelligence and robotics increase in scope and ability, many more jobs will be automated, but more often it will affect parts of jobs. Increasing productivity isn’t a bad thing, nor is up-skilling someone to do a more difficult and fulfilling job than they could otherwise manage. Some parts of any job are dull, and we won’t miss them, if they are replaced by more enjoyable activity. In many cases, simple mechanical or information processing tasks will be replaced by those involving people skills, emotional skills. By automating these bits where we are essentially doing machine work, high technology forces us to concentrate on being human. That is no bad thing.

While automation moves people away from repetitive,boring, dangerous, low dignity tasks, or those that give people too much opportunity to cause problems for others, I am all in favour. Those jobs together don’t add up to enough to cause major economic problems. We can find better work for those concerned.

We need to guard against automation going too far though. When jobs are automated faster than new equivalent or better jobs can be created, then we will have a problem. Not from the automation itself, but as a result of the unemployment, the unbalanced wealth distribution, and all the social problems that result from those. We need to automate sustainably.

Human + machine is better than human alone, but human alone is probably better than machine alone.

Will marketing evolve from fiend to friend?

Let’s start with a possibly over-critical view of marketing today, to emphasise the problem that I think needs solved.

Marketing helps to make us aware of new products and services we might want to buy, and provides some well paid jobs. That’s the good side. But marketing saps a lot of money out of the system, skimming off money as it helps move it around – like banking, or car parking fees for shoppers, without giving much back to GDP. It helps companies sell things, but adds costs to the customer that could have been spent on other products and services. We basically pay companies to tell us to buy their products. Of that money, marketers spend far too high a proportion on advertising, which is basically the lazy marketing option. They waste our time as we watch TV, cold call us, send nuisance texts and automated calls, fill our data quotas with video ads, delay downloads, force installation of applications to block them, which all requires extra computer power and maintenance. In short, we pay them to waste a significant proportion of our precious lifetime as well as our money. In fact the financial cost added to every product is dwarfed by the costs of the extra time consumed. All the extra energy used to broadcast ads on TV or the net or the extra paper and bleach and ink to put them in magazines has an enormous environmental impact too. Advertising consumes a huge amount of resources but on a per-advert basis is very ineffective at making us buy. Google makes a fortune from UK companies for its adverts but by diverting the ad sales through Ireland, manages to avoid paying UK tax, therefore pulling off an excellent vampire impression, dressing stylish and looking cool while sucking the lifeblood from industry. By using up so much air time and online bandwidth advertising directly impedes productive uses. On current form, because of excessive reliance on the lazy option, marketers are more fiend than friend.

Marketing has almost become a one-tool profession, too willing to annoy a lot of people to get a few sales. Other components of marketing such as launch events and trade shows are effective and very effectively target those who are likely to be interested, but advertising dwarfs them. Surely there has to be a better way. How do we get marketing to go from fiend to friend?

There is. Pull marketing (if done properly) gives people what they ask for, in the right form, on the right platform, when they ask for it, not what they don’t want, in their faces, all the time. Marketing will evolve from push to pull. However much the marketing industry and advertisers don’t want it to go that way, the potential value for a given spend via pull marketing is so much higher that it is inevitable. Think about it. Only an idiot would employ someone to stand in a doorway blocking the entrance, jumping up and down screaming messages at customers that are actually trying to squeeze past into the store to spend money. That is the difference between push and pull. Unfortunately for marketers, pull needs different skills, so if they don’t have them, they need to retrain or they will eventually be made redundant. They can hide and massage performance figures for a while to hide the ineffectiveness of throwing money down the drain on advertising, but not forever.

People want to know what is available that might be of interest to them. They also want clues to help filter the vast number of potential products down to a manageable choice. They don’t want silence from suppliers, but appropriate and timely information. Branding is aimed at this of course. So is PR. Marketing should be better integrated into ongoing background brand management and public relations, with excellent web sites to provide information when people want it. In that way, people will think of them when they want something, and be able to find the most appropriate product easily.

The task of providing a good website is often allocated to other groups in the company. This is a mistake. The website needs to be extremely well integrated with marketing, PR and brand. In many companies, only the brand people get a strong influence. A potential customer coming to the site from any angle of approach should be faced with extremely easy navigation, immersed in the values and styles they already associate with that brand and assisted as far as possible in what they are trying to do. They should not be bombarded with waves of ads, popups and guano that prevents them from finding what they want. Even if a customer wants to cancel a service, it should be very easy to do so. They are far more likely to come back than if they had to spend ages finding their way through a maze and over barriers to do so.

One way of keeping customers aware without ramming branding message down their throats every day is to integrate into target communities as useful members rather than just seeing them as potential sales. People will always favour their friends, so actually being a friend is a good idea. That shouldn’t be any great revelation. Big companies recognise their relative inability to engage with local communities across their range and harness an army of resellers who can better achieve this local involvement. Social networking provides a good alternative channel to local resellers, but not by using the wasteful and annoying blanket broadcasting that we usually see. It needs to be focused. A reseller wouldn’t waste time cold calling every resident in an area just in case. They focus efforts on targets that are likely to buy. They do the customer’s work for them, identifying those for whom a product is suited and then making contact. Being friends also means giving genuine discounts or exclusive deals to regular customers. It doesn’t mean using them to palm off products that you can’t shift through normal channels.

Lifestyle is an easy route too. Everyone lives differently, but many people reveal their lifestyles via magazines or newspapers that they buy, the places they visit, the things they do, and indeed the products and services they buy. These are obviously high value marketing hooks. People like their existing opinions and attitudes to be reaffirmed. Letting them know they have made a good decision buying your product makes them feel better about the spend. It takes skill to package such affirming in a way that it doesn’t come across like the lazy ‘congratulations on buying this’. Providing favourable reviews, news links and ongoing support would soon become spam if used too much, but sparingly and with appropriate products, it can be useful.

Handled properly, excluding employees with deep staff discounts, the most likely person to buy is someone who has bought from you before, then in second place, someone who has bought equivalent products from a competitor, then someone who has a strong proven interest in that field. Much further away is someone with a casual unspecified interest in the area who just happens to have chosen a particular keyword in a search for any reason whatsoever, and in the very far distance, a total stranger. Yet those last two are where most advertising revenue is spent.

Magazines are an excellent platform to reach targeted groups, but they still need the right approach. An advert in a magazine is more likely to be read than one in a newspaper, but is still likely to be ignored. An article by a trusted writer will be read, and if it mentions your product favourably, the trust in the writer transfers to your product. If they already have it, it builds the feel-good factor. Strongly themed magazines form an important part of the self-selected lifestyle choice, especially since people can only buy a few each month, and this trust and identification with its writers can go far beyond the magazine itself, into their social media and blogs, and soon, into their augmented reality as they wander around. As social media continues to expand into the high street with location-based services, that relationship will grow and winning the favour and approval of writers will become a more important part of marketing. Care is needed of course. Writers will not want to appear partial since that would compromise their trust and their following, but providing exclusive information to them and being honest about defects wins support without threatening impartiality.

As we move into the era of augmented reality, companies are already discovering how to use precise location. Today, location doesn’t just rely on GPS or mobile signal strengths. Image recognition can identify a customer and also exactly where they are, what gestures they are making, even the expression on their face. From those and various other contributing factors is evolving the huge technology field called context. Context is very important in knowing whether to give marketing information at all and if so, how and what. It helps make sure that efforts are spent to make customers want to buy rather then to make them avoid you. A family might be interested in meal vouchers when lunchtime is creeping up. If they’ve just eaten (and paid), the same vouchers may be very unwelcome. If I have just bought a car, the last thing I want is proof that I could have got it or a better one cheaper or had some extras thrown in!

As context technology develops in parallel with positioning, image recognition and augmented reality technology, we will see the air around us essentially digitised, context-sensitive messages pinned to every cubic millimetre of the air. Digital air, or virtual air, will be a major new marketing platform that will offer hugely more potential and value than advertising, with far less cost and customer annoyance. It also offers the potential to bombard customers with unwelcome blanket ads too, so it will be easy for the industry to shoot itself in the foot. Not just easy, but probably inevitable in an industry with some players who think it is smart to deliberately offend people. If that happens, spam filters will block such ads and the potential will be damaged irreparably for everyone.

Word of mouth is one of the best forms of marketing. It is free and natural and goes to companies who provide good products or services. In its simplest form, it is like ebay’s  reputation score on Facebook’s ‘like’ button. At a higher detail level, companies such as Trip Advisor make good income by harnessing the desire people have to tell others about their experiences, good or bad. People will often take guidance from strangers when there is no better alternative, and even though everyone knows some reviews are by friends, competitors or by people who have never even had any experience of the supplier, if there are a lot of strangers giving reviews, the assumed probability is that most will be telling the truth and any bias will be reduced.

Even so, these sites don’t reach the same level of trust that people have in their friends and colleagues. We should expect that to be harnessed far more in the next few years. Innovative Amazon is among the leaders as always, trying to harness this with its ‘I just bought’ social network button. However, I’m not at all interested what my friends have bought. I am far more interested in whether it turned out to be a good or a bad buy, and then only if I am looking for something similar. I certainly don’t want spam every time anyone I know buys anything. A service that lets people review stuff and then allows people to see the reviews, sorted according to social proximity of the reviewer would be far better. If such a site already exists, as it may well do, I am not yet exposed to it, so it has its own marketing to do. So what is needed would be a site like Trip Advisor, but with a social proximity selector that strips away reviews from friends and competitors, restricts to those who have actually purchased, and then sorted according to social proximity with the reader. By linking to your other social network sites, and identifying your friends and colleagues, it would be able to show you any reviews from that group.

Unfortunately, we already see a rising barrier to this kind of development. Too often, companies want access to our social networks to do push marketing to a broader community of relevance, to make personalized ads, and essentially to use our contacts to abuse us even more efficiently. That is an industry destroying its own future prospects. By misusing the potential to do its push marketing today, it is destroying the potential to do far more effective pull marketing tomorrow. It gets a tiny benefit today at the expense of a huge one tomorrow. Most of us have already become wary of allowing access to our contacts lists because we already assume for good reason that they will be abused. Spam filters quickly remove any short-term benefit they may have won, and prevent future mutual benefit.

Most of these areas of future potential share the same threat of destruction by the very industry that can benefit most. Marketing will move from push to pull whether marketers want it to or not. By trying to force the worst practices from the push era onto the areas that offer the best potential in the pull era, they will only ensure that marketing will remain an underachiever. Sadly, a few players today can and probably will ruin it for many tomorrow. The result is that marketers will marginalize themselves, making themselves relatively powerless in a world where they could have been powerful.

People will find what they want, and what their friends think of things, but they will do so via sites and intermediary companies who respect them, respect their privacy, and give them what they want, not what they try hard to avoid getting, not via push marketers. Pull marketing done well will go to new players who have no time for the old practices and values, to people who want to improve the lives of others by helping them make the right purchasing decisions, not trying to make them buy the wrong ones.  The likely mechanism for this is use of social networking sites that have a different business model than selling adverts – perhaps even ones with the primary purpose of helping the community and improving quality of life rather than making money.

Marketing will evolve from fiend to friend. Hopefully it will be by the fiends reforming, rather than simply dying.

Home automation. A reality check.

Home automation is much in the news at the moment now that companies are making the chips-with-everything kit and the various apps.

Like 3D, home automation comes and goes. Superficially it is attractive, but the novelty wears thin quickly. It has been possible since the 1950s to automate a home. Bill Gates notably built a hugely expensive automated home 20 years ago. There are rarely any new ideas in the field, just a lot of recycling and minor tweaking.  Way back in 2000, I wrote what was even then just a recycling summary blog-type piece for my website bringing together a lot of already well-worn ideas. And yet it could easily have come from this years papers. Here it is, go to the end of the italicised text for my updating commentary:

Chips everywhere

 August 2000

 The chips-with-everything lifestyle is almost inevitable. Almost everything can be improved by adding some intelligence to it, and since the intelligence will be cheap to make, we will take advantage of this potential. In fact, smart ways of doing things are often cheaper than dumb ways, a smart door lock may be much cheaper than a complex key based lock. A chip is often cheaper than dumb electronics or electromechanics. However, electronics no longer has a monopoly of chip technology. Some new chips incorporate tiny electromechanical or electrochemical devices to do jobs that used to be done by more expensive electronics. Chips now have the ability to analyse chemicals, biological matter or information. They are at home processing both atoms and bits.

 These new families of chips have many possible uses, but since they are relatively new, most are probably still beyond our imagination. We already have seen the massive impact of chips that can do information processing. We have much less intuition regarding the impact in the physical world.

 Some have components that act as tiny pumps to allow drugs to be dispensed at exactly the right rate. Others have tiny mirrors that can control laser beams to make video displays. Gene chips have now been built that can identify the presence of many different genes, allowing applications from rapid identification to estimation of life expectancy for insurance reasons. (They are primarily being use to tell whether people have a genetic disorder so that their treatment can be determined correctly).

 It is easy to predict some of the uses such future chips might have around the home and office, especially when they become disposably cheap. Chips on fruit that respond to various gases may warn when the fruit is at its best and when it should be disposed of. Other foods might have electronic use-by dates that sound an alarm each time the cupboard or fridge is opened close to the end of their life. Other chips may detect the presence of moulds or harmful bacteria. Packaging chips may have embedded cooking instructions that communicate directly with the microwave, or may contain real-time recipes that appear on the kitchen terminal and tell the chef exactly what to do, and when. They might know what other foodstuffs are available in the kitchen, or whether they are in stock locally and at what price. Of course, these chips could also contain pricing and other information for use by the shops themselves, replacing bar codes and the like and allowing the customer just to put all the products in a smart trolley and walk out, debiting their account automatically. Chips on foods might react when the foods are in close proximity, warning the owner that there may be odour contamination, or that these two could be combined well to make a particularly pleasant dish. Cooking by numbers. In short, the kitchen could be a techno-utopia or nightmare depending on taste.

 Mechanical switches can already be replaced by simple sensors that switch on the lights when a hand is waved nearby, or when someone enters a room. In future, switches of all kinds may be rather more emotional, glowing, changing colour or shape, trying to escape, or making a noise when a hand gets near to make them easier or more fun to use. They may respond to gestures or voice commands, or eventually infer what they are to do from something they pick up in conversation. Intelligent emotional objects may become very commonplace. Many devices will act differently according to the person making the transaction. A security device will allow one person entry, while phoning the police when someone else calls if they are a known burglar. Others may receive a welcome message or be put in videophone contact with a resident, either in the house or away.

 It will be possible to burglar proof devices by registering them in a home. They could continue to work while they are near various other fixed devices, maybe in the walls, but won’t work when removed. Moving home would still be possible by broadcasting a digitally signed message to the chips. Air quality may be continuously analysed by chips, which would alert to dangers such as carbon monoxide, or excessive radiation, and these may also monitor for the presence of bacteria or viruses or just pollen. They may be integrated into a home health system which monitors our wellbeing on a variety of fronts, watching for stress, diseases, checking our blood pressure, fitness and so on. These can all be unobtrusively monitored. The ultimate nightmare might be that our fridge would refuse to let us have any chocolate until the chips in our trainers have confirmed that we have done our exercise for the day.

 Some chips in our home would be mobile, in robots, and would have a wide range of jobs from cleaning and tidying to looking after the plants. Sensors in the soil in a plant pot could tell the robot exactly how much water and food the plant needs. The plant may even be monitored by sensors on the stem or leaves. 

The global positioning system allows chips to know almost exactly where they are outside, and in-building positioning systems could allow positioning down to millimetres. Position dependent behaviour will therefore be commonplace. Similarly, events can be timed to the precision of atomic clock broadcasts. Response can be super-intelligent, adjusting appropriately for time, place, person, social circumstances, environmental conditions, anything that can be observed by any sort of sensor or predicted by any sort of algorithm. 

With this enormous versatility, it is very hard to think of anything where some sort of chip could not make an improvement. The ubiquity of the chip will depend on how fast costs fall and how valuable a task is, but we will eventually have chips with everything.

So that was what was pretty everyday thinking in the IT industry in 2000. The articles I’ve read recently mostly aren’t all that different.

What has changed since is that companies trying to progress it are adding new layers of value-skimming. In my view some at least are big steps backwards. Let’s look at a couple.

Networking the home is fine, but doing so so that you can remotely adjust the temperature across the network or run a bath from the office is utterly pointless. It adds the extra inconvenience of having to remember access details to an account, regularly updating security details, and having to recover when the company running it loses all your data to a hacker, all for virtually no benefit.

Monitoring what the user does and sending the data back to the supplier company so that they can use it for targeted ads is another huge step backwards. Advertising is already at the top of the list of things we already have quite enough. We need more resources, more food supply, more energy, more of a lot of stuff. More advertising we can do without. It adds costs to everything and wastes our time, without giving anything back.

If a company sells home automation stuff and wants to collect the data on how I use it, and sell that on to others directly or via advertising services, it will sit on their shelf. I will not buy it, and neither will most other people. Collecting the data may be very useful, but I want to keep it, and I don’t want others to have access to it. I want to pay once, and then own it outright with full and exclusive control and data access. I do not want to have to create any online accounts, not have to worry about network security or privacy, not have to download frequent software updates, not have any company nosing into my household and absolutely definitely no adverts.

Another is to migrate interfaces for things onto our smartphones or tablets. I have no objection to having that as an optional feature, but I want to retain a full physical switch or control. For several years in BT, I lived in an office with a light that was controlled by a remote control, with no other switch. The remote control had dozens of buttons, yet all it did was turn the light on or off. I don’t want to have to look for a remote control or my phone or tablet in order to turn on a light or adjust temperature. I would much prefer a traditional light switch and thermostat. If they communicate by radio, I don’t care, but they do need to be physically present in the same place all the time.

Automated lights that go on and off as people enter or leave a room are also a step backwards. I have fallen victim once to one in a work toilet. If you sit still for a couple of minutes, they switch the lights off. That really is not welcome in an internal toilet with no windows.

The traditional way of running a house is not so demanding that we need a lot of assistance anyway. It really isn’t. I only spend a few seconds every day turning lights on and off or adjusting temperature. It would take longer than that on average to maintain apps to do it automatically. As for saving energy by turning heating on and off all the time, I think that is over-valued as a feature too. The air in a house doesn’t take much heat and if the building cools down, it takes a lot to get it back up again. That actually makes more strain on a boiler than running at a relatively constant low output. If the boiler and pumps have to work harder more often, they are likely to last less time, and savings would be eradicated.

So, all in all, while I can certainly see merits in adding chips to all sorts of stuff, I think their merits in home automation is being grossly overstated in the current media enthusiasm, and the downside being far too much ignored. Yes you can, but most people won’t want to and those who do probably won’t want to do nearly as much as is being suggested, and even those won’t want all the pain of doing so via service providers adding unnecessary layers or misusing their data.

Active Skin part 3 – key fields and inventions

This entry only makes sense if you read the previous two parts!

Active Skin – an old idea whose time is coming

and

Active Skin part 2: initial applications

if you have looked at them, time to read this one. Remember, this is onl;y a list of the ideas we had way back in 2001, I haven’t listed any we invented since.

Key active skin technology fields

Many of our original ideas had similarities, so I analysed them and produced a set of basic platforms that could be developed. The following platform components are obvious:

  1. A multilevel device architecture with some of the layers in or on the body, working in conjunction.

Tattoo layer

  1. Sub-surface imprints that monitor various body state parameters, such as chemical, electrical, temperature, and signal this information to higher layer devices.
  2. Permanently imprinted ID circuitry or patterns
  3. Permanently imprinted display components
  4. Permanently imprinted circuitry to link to nerves
  5. Imprinted devices that use chemical energy from the body to power external devices, e.g. ATP

Mid-term layer

  1. Similar technology to tattoo layer but higher in skin so therefore degradable over time
  2. Soluble or body-degradable circuitry
  3. photodegradable circuitry
  4. transparent circuitry using transparent conducting polymers
  5. inconspicuous positioning systems
  6. devices that transfer body material such as DNA or body fluids to external devices
  7. imprinted data storage devices with I/O, or permanent dumb storage
  8. imprinted sensors and recorders for radiation, magnetic fields, electrical or mechanical variation
  9. imprinted signalling devices for communication between body devices and external world
  10. smart monitoring and alarm technology that integrates body or surface events or position to external behaviours such as control systems, or surveillance systems
  11. synthetic sense systems based on synthetic sensing and translation to biological sense and possibly direct nerve stimuli
  12. smart teeth with sampling and analysis functions with signalling and storage capability
  13. imprinted actuators using piezoelectric, memory metal or ‘muscle wire’ technology, interacting with external monitoring to use as interface or feedback devices
  14. infection monitor and control devices
  15. devices that make electrical or magnetic stimuli to assist wound healing or control pain
  16. semi-permanent tags for visitors, contractors, criminals and babies, location and context dependent
  17. medical tags that directly interact with hospital equipment to control errors, hold medical records etc
  18. links to nervous system by connecting to nerves in the skin and to outside by radio

Mid-term & Transfer Layers – Smart cosmetics

  1. semi-permanent self organising displays for applications such as smart nail varnish and smart cosmetics
  2. context sensitive cosmetics, reacting to time, location, person, emotions, temperature
  3. electrically sensitive chemicals that interact with imprinted electronic circuits
  4. semi-permanent underlay for smart overlays to assist self-organisation
  5. smart sunscreens with sensors and electro-active filters
  6. colour sensitive or exposure sensitive sun-blocks
  7. cosmetics with actuators in suspension controlled by embedded electronics
  8. Active jewellery, active Bindies etc , e.g. Led optical control linked to thought recognition system
  9. Smart perfumes that respond to context, temperature, location etc

Transfer Layer

This layer has by far the most opportunities since it is not restricted to materials that can be tolerated in the body, and can also use a factory pre-printed membrane that can be transferred onto the skin. It can encompass a wide range of devices that can be miniaturised sufficiently to fit in a thin flexible package. Many currently wearable devices such as phones and computers could end up in this layer in a few years.

Most of the mid-term and some of the tattoo layer devices are also appropriate at this layer.

  1. Smart fingerprints encompass range of ID, pressure detection, interfacing and powering devices
  2. Use of vibrating membranes as signalling, e.g. ring tone, alarms, synthetic senses etc, allows personal signalling. Possible use for insect repellent if ultrasonic vibration
  3. Use of ultrasound to communicate with outside or to constantly monitor foetus
  4. Use of touch or proximity sensitive membranes to allow typing or drawing on body surface, use of skin as part of input device, may use in conjunction with smart fingerprints for keypad-free dialling etc
  5. Palm of hand can be used as computer in conjunction with smart fingerprints
  6. Use of strain gauges in smart skin allows force measurement for interfaces, force feedback, policing child abuse etc
  7. Actuators built into membrane, allows program interface and force feedback systems, drug dosing, skin tensioning etc, use for training and games, sports, immersive environments etc.
  8. Use of combinations of such devices that measure distance between them, allowing training and monitoring functions
  9. Transfer on eye allows retinal display, ultraviolet vision, eye tracking, visual interface
  10. Transfer based phones and computers
  11. Electronic jewellery
  12. Direct link between body and avatars based on variety of sensors around body and force feedback devices, connection to nervous system via midterm layer devices
  13. Thermal membranes that change conductivity on demand to control heating or cooling, also use as alarm and signalling
  14. Electronic muscles based on contracting gels, muscle wires etc, used as temporary training devices for people in recovery or physiotherapy, or for sports training
  15. Electronic stimulation devices allowing electro-acupuncture, electrolysis, itching control etc
  16. Printed aerials worn on body
  17. Permanent EEG patches for use in thought recognition and control systems
  18. Emotionally sensitive electronics, for badges, displays, context sensitivity etc
  19. Olfactory sensors for environmental monitoring linked to tongue to enhance sense of smell or taste, or for warning purposes. Olfactory data could be recorded as part of experience for memory assistance later
  20. Power supplies using induction
  21. Frequency translation in ear patch to allow supersonic hearing
  22. Devices for pets to assist in training and health monitoring, control nerves directly, police virtual electric fences for cats
  23. Fingertip mouse and 3d interface
  24. E-cash on the skin, use simply by touching a terminal

Smart drug delivery

  1. Allowing variable hole membranes for drug dosing. Body properties used with ID patch to control drug dose via smart membrane. May communicate with hospital. Off  the shelf drug containers can then be used
  2. Control of pain by linking measurement of nerve activity and emotional cues to dispensing device

Fully removable layer

This layer is occupied by relatively conventional devices. There are no obviously lucrative technologies suggested for this layer.

Key Specific inventions

Taking another angle of view, the above applications and platforms yield 28 very promising inventions. In most cases, although humans are assumed to be the users, other animals, plants, inorganic objects such as robots or other machines, and even simple dumb objects may be targets in some cases.

*Asterixes indicate reference to another area from this set.

1         Sub-skin-surface imprints and implants

Sub-skin-surface imprints and implants that monitor various body state parameters, such as chemical, electrical, temperature, and signal this information to higher layer devices.

  • Circuitry is imprinted into the skin using ink-jet technology or high pressure diffusion. e.g. a hand may be inserted into a print chamber, or a print device may be held in contact with the required area.
  • Passive components such as ink patterns may be imprinted, which may function as part of a system such as a positioning system
  • Other small encapsulated components such as skin capsules* may be injected using high pressure air bursts.
  • Some of the circuit components assembled in situ may require high temperatures for a short time, but this would cause only momentary pain.
  • Deeper implants may be injected directly into the required position using needles or intravenous injection, allowing later transport to the required location in the blood flow.
  • The implants may anchor themselves in position by mechanical or magnetic means, their positioning determined in co-operation with higher layer devices.
  • Components may be imprinted higher in the skin to be capable or wearing away, or lower in the skin to ensure relative permanence, or to give greater contact with the body
  • Circuitry may be designed to be transparent to visible light by using transparent polymers, but may be visible under UV or infrared
  • Patterns implanted may be used as part of an external system. An ink-based pattern could be used as an identifier, for holding data, or as a means of positioning. They may be used as part of a, which would effectively be enhanced biometric security system.
  • Other identifiers may be permanently imprinted, which may be active or passive such as inductive loops, bar-codes, digital paper, snowflakes etc. Intra-skin power supplies* may be used to power more sophisticated tags that can be imprinted or injected
  • Circuitry or patterns may be harmlessly biodegradable so that it would vanish over time, or may be permanent.
  • they may be made photo-degradable so that it breaks down under external light of appropriate intensity and frequency, e.g. UV
  • Inks may be used that are rewritable, e.g. they change their colour when exposed to UV or a magnetic field, so data may be modified, and these devices are therefore dynamic data storage devices. They need not operate in the visible spectrum, since external sensors are not limited by human characteristics.
  • Baby tags may be inserted to prevent babies from being abducted

2         Skin conduits

Devices may be implanted that are able to act as a conduit to lower skin layers.

  • This may facilitate drug delivery, monitoring or nerve connection.
  • Probes of various types may be inserted through the conduits for a variety of medical or interface reasons.
  • Even body fluids and DNA samples may be extracted via these conduits.
  • This may provide a means of blood transfer for transfusion or blood cleaning, and a replacement for drips
  • Conduits would be sealed to prevent bacterial or viral entry except when actively in use.
  • The conduits can be implemented in several ways: tubes may be implanted that have muscle wires arranged so that when they contract the holes flatten and thus close; the walls of the tube may be comprised of magnetic materials so can be closed magnetically; the default position may be closed and magnetic repulsion is used to stretch the holes open; similarly, muscle wire may be used to open the holes by rounding a previously flattened hole; the open or closed states can be provided by elongating or shortening a tube; heat may be used to cause expansion or contraction; synthesised muscle tissue may be used to stretch the area and make holes open; shape change and memory metals or plastics may be used. Other techniques may be possible.

3         Implanted or imprinted links to nerves

  • Permanently imprinted circuitry to link to nerves would comprise electrical connections to nerves nearby, by means of conducting wires between nerves and the devices.
  • The devices meanwhile would be in communication with the higher layers.
  • They would signal impulses to higher layers and capable of producing impulses in various patterns into the nerves.
  • The connections would be made using specialised skin capsules* or directly injected wires.
  • These devices would encapsulate very thin wires that propagate out from the device on request until they make electrical contact with a suitable nerve. They may be wound in a spiral pattern inside the capsules and unwound to form radiating wires.
  • These wires may be made of metal today or carbon fullerene ‘buckytubes’ in due course
  • They may be connected by wire, radio or optical links to the external world
  • Being able to stimulate nerves directly implies that body movement could be directly controlled by an external system
  • It would be possible to implant control devices in people or animals in order to remotely control them
  • Although primarily a military technology, this would enable pets to be sent on a predetermined walk, to prevent children from stepping out in front of a car, to prohibit many crimes that are detectable by electronic means and a wide range of other ethically dubious activities
  • Nerve stimulation can be linked extensively into other electronic systems
  • Email or other communications could include instructions that translate into nerve stimuli in the recipient. This may link to emotional stimulation too. A very rich form of intimate communication could thus be achieved.
  • It would be possible to send an orgasm by email
  • Filters can easily prevent abuse of such a system, since the user would be able to block unauthorised nerve stimulation
  • For some purposes, this choice to block stimuli could be removed by a suitable authority or similar, for policing, military and control purposes

4         Sensory enhancement and translation technique

A range of sensors may be implanted that are sensitive to various forms of radiation, EM, magnetic fields, electrical fields, nuclear radiation or heat. These would form part of an augmented sensory system.

  • Conventional technology based radiation monitors worn on a detachable layer may monitor cumulative radiation dose, or record intensity over time.
  • Other conventional technology sensors may also be worn at the detachable layer, some my be imprinted or implanted.
  • They may be connected systemically with the nervous system using implanted or imprinted nerve links* to create nerve stimuli related to sensor activity.
  • An array of synthetic senses may thus be created that would facilitate operation in a range of environments and applications. A primary market would be for sexual use, where sexual stimulation can be produced remotely directly into the nervous system.
  • Nerve stimuli could be amplified to increase sensory sensitivity.
  • Alternatively, stimuli could be translated into vibration, heat, pain, other tactile stimulus, or audio that would be picked up by the body more easily than the original form.
  • Such sensory enhancement may be used to link stimuli in different people, or to link people with real or virtual objects.
  • When connected to deep implants in the brain, this could perhaps eventually be used to implement crude telepathic communication via a network.
  • Remote control of robotics or other external machinery may be facilitated by means of linking sensory stimuli directly to machine operations or sensors. The communication would be via implanted or imprinted antennae.
  • Active teeth* may be used as part of such a system
  • Frequency shifters in the ear would permit hearing outside of normal human capability
  • Ditto visual spectrum
  • People would be able to interact fully with virtual objects using such virtual sensory stimulation

5         Alarm systems

  • Sensors in or on the skin may be used to initiate external alarms or to initiate corrective action. For example, an old person taking a shower may not realise the water temperature is too high, but the sensors could detect this and signal to the shower control system.
  • The most useful implementation of this would be one or more thermocouples or infrared sensors implanted in the skin at or near areas most likely to be exposed first to hot water such as hands or feet.
  • Thermal membranes that change conductivity according to temperature could be used as a transfer layer device.
  • Such membranes may form a part of an external alarm or control system of signal the body by other senses that a problem exists
  • As well as signalling to external systems, these sensors will use implanted or imprinted nerve links* to initiate direct local sensory stimulation by means of vibration* or pain enhancement, or produce audible warnings.
  • Alarms may also be triggered by the position of the person. A warning may be set up by interaction of the implant and external devices. A circuit in the skin can be detected by an external monitor, and warn that the person is moving into a particular area. This may be used to set off an alarm or alert either secretly or to the knowledge of the either only the person or only the external system. This can obviously be used to police criminals on parole in much the same way as existing tags, except that the technology would be less visible, and could potentially cause a sensation or even pain directly in the criminal. A virtual prison could be thus set up, with it being painful to leave the confines set by the authorities.
  • This would permit the creation of virtual electric fences for animal confinement
  • Sensors may measure force applied to the skin. This would enable policing of child care, preventing physical abuse for example. Alerts could be sent to authorities if the child is abused.

6         Skin based displays

  • Permanently imprinted display components may be developed that use the energy produced in this way to produce light or dark or even colours.
  • These may emit light but may be simply patches of colour beneath the skin surface, which would be clearly visible under normal lighting.
  • Small ink capsules that deform under pressure,
  • electrostatic or magnetic liquids, liquid crystals or light emitting or colour changing polymers would all be good candidates

7         Intra-skin power supply

  • Inductive loops and capacitors may be used to power active components that can be imprinted or injected. Inductive loops can pick up electromagnetic energy from an external transmitter that may be in the vicinity or even worn as a detachable device. Such energy can be stored in capacitors.
  • Detachable devices such as battery based power supplies may be worn that are electrically connected to devices at lower layers, either by thin wires or induction.
  • Optical power supply may be adequate and appropriate for some devices, and this again can be provided by a detachable supply via the skin, which is reasonable transparent across a wide frequency range
  • Devices that use chemical energy from the body to power external devices, e.g. ATP
  • Thermal energy may be obtained by using temperature difference between the body and the external environment. The temperature gradient within the skin itself may be insufficient for a thermocouple to produce enough voltage, so probes may be pushed further into body tissue to connect to tissue at the full body temperature. The probes would be thin wires inserted either directly through the surface, or by skin capsules*.
  • Mechanical energy may also be used, harnessing body movement using conventional kinetic power production such as used in digital watches. Devices on the feet may also be used, but may be less desirable than other conventional alternatives.
  • Thin batteries such as polymer batteries may be worn on the detachable layer
  • Solar cells may be worn on the detachable layer

8         Antennas and communicators in or on the skin

  • Some of the many devices in the layered active skin systems require communication with the outside world. Many of these require only very short distance communication, to a detachable device in contact with the skin, but others need to transmit some distance away from the body. Various implementations of communication device are possible for these purposes.
  • A vertical wire may be implemented by direct insertion into the skin, or it may be injected
  • It may be printed using conductive inks in a column through the skin
  • It may be simply inserted into a skin conduit
  • Skin capsules* may eject a length of wire
  • Wires from skin capsules may join together to make a larger aerial of variable architecture
  • This may be one, two or three dimensional
  • Skin capsules may co-operate and co-ordinate their wires so that they link together more easily in optimal designs
  • Self organising algorithms may be used to determine which of an array of skin capsules are used for this purpose.
  • Optical transmitters such as LEDs may be used to communicate in conjunction with photodiodes, CCDs or other optical signal detectors
  • Vibration may be used to communicate between devices
  • Ultrasonic transducers and detectors may be used
  • Printed aerials may be worn as transfers or detachable devices. They may be electrically connected to devices directly or via high frequency transmission across the skin, or by local radio to other smaller aerials.

9         Smart teeth & breast implants

·         Various sampling, analysis, monitoring, processing, storage, and communication facilities may be added to an artificial tooth that may be inserted in place of a crown, filling, or false tooth. Powering may be by piezoelectric means using normal chewing as a power source, or for some purposes, small batteries may be used.

·         Infection monitoring may be implemented by monitoring chemical composition locally.

·         Conventional olfactory sensing may be used

  • Breath may be monitored for chemical presence that may indicate a range of medical or hygiene conditions, including bad breath or diabetes
  • Data may be stored in the tooth that allows interaction with external devices and systems. This could be a discrete security component, or it may hold personal medical records or a personal profile for an external system.
  • Significant processing capability could be built into the volume of a tooth, so it could act as a processor for other personal electronics
  • Small cameras could be built into the tooth
  • Piezoelectric speakers could be used to make the tooth capable of audio-synthesis. This could allow some trivial novelty uses, but could later more usefully be used in conjunction with though recognition systems to allow people to talk who have lost their voice for medical reasons. Having the voice originate from the mouth would be a much more natural interface.
  • Some of these functions could be implemented in breast implants, especially data storage – mammary memory! Very significant processing capability could also be implanted easily in the volume of a breast implant. MP3 players that can be reprogrammed by radio such as bluetooth and communicate with headphones also via bluetooth. Power in batteries can be recharged using induction
  • the terms ‘mammary memory’, and ‘nipple nibbles’ (a nibble is half a byte, i.e. 4 bits) see appropriate
  • breast implant electronics may be the heart of a body IT centre
  • taste and smell sensors in the tooth may be used as part of a sensory stimulation system whereby a sense of taste or smell could be synthetically recreated in someone who has lost this sense An active skin implant in the tongue, nose or a deeper implant in the appropriate brain region may be required to recreate the sense
  • this could be used to augment the range of taste or smell for normally sensed people in order to give them a wider experience or allow them to detect potentially dangerous gases or other agents, which may be physical or virtual
  • smart teeth may also make use of light emission to enhance a smile

10     Healing assistance devices and medical tags

 

  • Medical tags or semi-permanent tags* such as inductive loops can be imprinted that allow identification and store medical records. They may interact directly with equipment. This could be used for example to prevent operation errors. More sophisticated tags could be installed using skin conduits*
  • Active skin components may be used to apply an electric field across a wound, which has been shown to accelerate healing. These would be imprinted or implanted at a health centre during treatment. Voltage can be produced by external battery or power supply, by solar cells at the detachable layer, or by thermocouples that have probes at different body depths as described above.
  • Infection monitors can be implemented using chemical analysis of the area and by measuring the electrical properties and temperature of the region
  • The infection may be controlled by emission of electrical impulses and by secreting drugs or antibiotics into the area. This may be in conjunction with a detachable drug storage device, which can inject the drugs through skin conduits*.
  • Pain can be controlled to a point by means of electrical impulses that can be provided by the implants
  • The monitors may be in communication with a health centre.
  • Electrical impulses can be used to alleviate itching, and these could be produced by active skin components
  • Electronic acupuncture can be easily implemented using active skin, with implants at various acupuncture points precisely located by a skilled practitioner, and later stimulated according to a programmed routine
  • Electrolysis to prevent hair growth may be achieved by the same means

11     Semi-permanent tags

  • Semi-permanent tags or ID patterns may be implanted in upper skin layers to allow short term electronically facilitated access to buildings. The tags are not easily removable in the short term, but will vanish over a period of time depending on the depth of penetration. They may photo-degrade, biodegrade or simply wear away with the skin over time.
  • They may communicate electronically or optically with external systems
  • They may interact as part of alarm systems*
  • They may be aware of their position by means of detecting electronic signals such as GPS, wireless LANs
  • They may be used to give accurate positioning of devices on the skin surface or deeper, thus assisting automatic operations of medical equipment, in surgery, irradiation or drug dispensing
  • Babies can be secured against mistaken identification in hospital and their tags can interact with security systems to prevent their abduction. Proximity alerts could be activated when an unauthorised person approached them.

12     Self-organising circuits and displays

  • Self-organisation of circuits has been demonstrated and is known widely.
  • Active skin components with generic re-programmable circuitry may be installed and self-organisation used to configure the devices into useful circuits.
  • Components may be printed, injected or deposited via skin conduits* and may be contained in skin capsules*
  • Organisation can be facilitated or directed by external devices that provide position and orientation information as well as instructions to the embedded components
  • Combinations of display components may be linked by wires radiating out from each component to several other components, for instance by using skin capsules*. A self-organisation algorithm can be used to determine which connections are redundant and they can be withdrawn or severed. The remaining circuitry can be used as part of a control system to convert these individual display components into a co-ordinated display.
  • These display components may alternatively be painted onto skin, lip, eyelid or nail surfaces for example, to provide a multimedia display capability in place of conventional makeup and nail varnish. These displays would be less permanent than implanted circuitry
  • This body adornment could be more functional, with informative displays built in for some medical purpose perhaps. Text warnings and alerts could indicate problems.
  • Varnish would provide a high degree of protection for the components. Varnishes could also be fabricated to chemically assist in the self-organisation, by for example, providing a crystal matrix

13     Active Context-sensitive cosmetics and medicines

  • Cosmetics today are stand-alone combinations of chemicals, dies and aromatic agents. The addition of electronically active components either to the cosmetics themselves or into the underlying skin will permit them to be made intelligent
  • Cosmetics containing active skin components that interact with other layers and the outside world
  • Electrically sensitive chemicals would be useful components for such cosmetics. Many chemicals respond to electric fields and currents by changing their chemical bonding and hence optical properties. Some magnetic fluids are known that can be manipulated by magnetic fields. Active components may also be included that can change shape and hence their appearance, that are known in the field of digital ink.
  • Such chemicals may interact with underlying active skin circuits or components, and may respond to signals from external systems or active skin components or both
  • Cosmetics may use underlying active skin to facilitate precision location and some self-organisation
  • Active actuator components may be able to physically move cosmetics around on the skin surface
  • Characteristics of the appearance may depend on time of day, or location, or on the presence or properties of other environmental characteristics.
  • Sensors detecting UV may activate sunscreen components, releasing them from containers as required
  • Sensors detecting the presence of other cosmetics allow combination effects to be co-ordinated
  • Colours may change according to context, e.g. colour change lipstick and eye shadow
  • Kaleidoscopic or chameleon makeup, that changes colour in patterns regularly
  • Perfumes may be emitted according to context or temperature. This circumvents the problem where little perfume is given off when skin is cool, and much is lost outside in wind or when it is hot. Electronic control would allow more sophisticated evaporation for more consistent effect
  • Perfumes may be constructed with variable display properties that can be put on in variable quantities, with their precise effect controlled automatically by intelligence in the makeup or active skin
  • Make-up effects may be remotely controlled
  • Make-up may include light-emitting chemicals or electronics that are co-ordinated using active skin
  • Medicines may be administered on detection of allergenic agents such as pollen or chemicals
  • Active cosmetics may include actuators to contract the skin. The actuators would be based in small skin capsules* that would send thin wires into the skin to anchor themselves, and other wires to connect to other capsules
  • Intelligence in the cosmetics might be in constant or occasional communication with the manufacturer. This permits control of the effects by the manufacturer, and the capability to offer usage based licenses, making makeup into an ongoing service rather than a single product. This is implemented by adding active skin components that together communicate with nearby network connections
  • Cosmetics may adapt in appearance depending on the presence of signals. These signals may originate from other people’s active skin or from environmental systems. People wearing such cosmetics could thus look different to different people. Also, corporate styles could be implemented , controlled by building signalling systems.
  • Cosmetics may adjust automatically to ambient light conditions and local colours, allowing automated co-ordination with clothing and furnishing
  • Cosmetics may adjust their properties as part of an emotion detection and display system. This can be used to enhance emotional conveyance or to dampen emotional signals. They may also act as part of a psychological feedback loop that permits some emotional control

14     Digital mirror

  • A digital mirror, as described on my web site, has a combination of a camera and display that can show an image that may be the true image as the user, or a modified version of the user’s image. This disclosed concept is part of a wider non-disclosed system
  • Smart cosmetics may be used in conjunction with such a digital mirror
  • The cosmetic manufacturer or a service provider may use such a digital mirror to provide the customer with an enhanced view of themselves with various options, co-ordinating the application of smart make-up by means of ‘make-up by numbers’, and controlling its precise properties after application. Active skin components that are clinic installed could be used to provide the positioning systems and intelligence for the upper layers of removable cosmetics.
  • The customer would apply a quantity of makeup and then watch as various potential makeup effects are illustrated. On selection, that effect would be implemented, though several additional effects and contexts could be selected and assigned, and appropriate context effects implemented during the day. The effects could include the mechanical removal of wrinkles by means of actuators included in smart cosmetics*. Skin-based displays* may also form part of the overall effect.
  • Medicines may be applied in a similar way under control by a clinic.
  • Cosmetics may be controlled under license so that customers do not have unlimited freedom of appearance while wearing them. They may only be seen in a limited range of appearance combinations.

15     Active and emotional jewellery

  • Active Bindies, nose studs or other facial jewellery could be used as relatively deep implants to pick up reasonably good nerve signals from the brain as part of an EEG patch system*. These may be used to control apparatus via a signal recognition system.
  • Bindi would be top layer over active skin sub-layers and could contain much more complex chip than could be implanted in active skin
  • May contain battery and be used as power supply for sub-layers
  • Sub layers pick up clean signals from around scalp and send them to bindi for processing
  • Communication between devices may be radio or at high frequency via scalp
  • Infrared or ultrasound transmitter built into bindi relays the signals directly to external apparatus
  • Processing may recognise and process in-situ, transmitting control signals or data to external apparatus
  • Bindi may change appearance or include a display that reacts according to the signals detected
  • May act as emotion conveyance device
  • Signals from sensors in or on the skin can be used to pick up emotional cues, that are often manifested in changes in blood pressure, pulse rate, blood chemistry, skin resistivity and various muscular activity, some of which is subconsciously activated.
  • Collecting and analysing such data permits a range of electronics that responds to emotional activity. The active bind is just one piece of jewellery that may be useful in this regard, and is limited by culture.
  • Other forms of emotional jewellery may use displays or LEDs to indicate the wearer’s emotional state. Almost any form of jewellery could be used as part of this system, since active skin components that collect the data do not have to be in physical contact with the display devices
  • Active skin displays* may form part of this emotional display system
  • Active jewellery may also display data from other systems such as external computers or communication devices. This communication may be via active skin communication systems
  • Displays around the body may co-ordinate their overall effect via active skin devices
  • Emotions in groups of people may be linked together forming ‘emotilinks’ across the network, linking sensors, actuators, drug delivery systems and nerve stimulation together in emotion management systems. Drug delivery systems may instead dispense hormones
  • These systems may be linked into other electronic systems
  • Emotional messages may be sent that electronically trigger emotions in the recipient according to the intentions or emotions of the sender. Emotional email or voice messaging results. This enhances the capability and reach of communications dramatically.
  • Active jewellery such as a smart signet ring could be used as part of an authentication or security system, that may involve biometrics at any active skin layer as well as conventional electronic components and data that may also be housed in active skin

16     Active fingerprints

  • Active skin in the finger tip would greatly enhance interfacing to security systems and also to computer system interfaces, which can be made much more tactile
  • Smart fingerprints may include chips, passive ID, pressure indication, pressure transducers, vibration devices, interface and powering devices
  • Patterns and circuits built into the fingertips can link directly with external equipment by touch
  • Inductive loop in finger tip makes for simple ID system
  • Electronic signals can be conveyed in each direction for identification or programming or data transfer via contacts in the skin
  • A persons personal profile may be downloaded to an external system from data in the skin via such contacts. A computer can thus adapt instantly to the person using it
  • Data may be similarly ‘sucked up’ into body based storage via such contacts
  • Other devices elsewhere on the skin may be temporarily connected via high frequency transmission through the skin to the external system
  • Patterns visible in infrared or UV regions may be used
  • Ultrasonic vibrations may be used
  • Synthetic textures may be produced by keys by means of producing different vibration patterns than material would normally produce. This would assist greatly in the use of virtual environments to create synthetic objects
  • Actuators based on for example muscle wire can be used to stretch the skin in various directions, which conveys much information to the body on texture and other feedback. This can be by means of a rectangular wire with muscle wire between two opposite corners
  • Heat and cold can be produced as a feedback mechanism
  • Positioning systems incorporating the fingertips by means of inductive loop tracking, motion detectors and dead reckoning systems, allow interaction with virtual objects.
  • People could type in air, and feel physical feedback on interaction with objects, particularly useful in surgery using robotic tools.
  • Active skin with muscle wires implanted or imprinted at finger joints give a force feedback mechanism
  • Links between people may be formed by linking sensors in one person’s joints to actuators in another person’s. This would be useful for training purposes.
  • Vibrating membranes may be used as a signalling device. Vibration can be implemented via muscle wires or piezoelectric crystals in the detachable layer. These would allow personal signalling systems, ringing vibration, and development of synthetic senses*.
  • They may have some use in insect repellence if vibrations are ultrasonic
  • Micro-electro-mechanical systems (MEMs) implanted in the fingertips would allow a fingertip to be used as a mouse for a computer, by tracking movement accurately
  • Fingertip sensors could similarly be used to capture textures for re-use in virtual environment applications
  • Textures can be recreated in the fingertips by means of vibration devices
  • Electronic cash could be transferred through active fingerprints which also contain the authentication mechanisms as well as the means to transfer the cash
  • Short term software licenses could be implemented in this way, with the fingertip effectively holding a dongle

17     Ultrasonic monitors

  • An array of active skin devices may be arranged around the abdominal region of a pregnant woman, that would allow easy periodic ultrasonic monitoring of the baby during pregnancy.
  • Some patches of active skin would house ultrasound generators, and others would house ultrasound receivers. The system is therefore capable of bathing the baby in a well defined ultrasound field for monitoring purposes.
  • The patterns of reflections can be analysed by either processors in active skin or by a remote device, either worn or via the network, e.g. at a clinic. This produces images of the baby that can determine whether there is a problem. For instance, heartbeat and baby movements can easily be monitored.
  • Growth of cancers may be monitored in much the same way, with alerts automatically sent to hospital via the network if tumour size or growth rate exceeds a defined limit
  • A simple microphone may be sufficient for just heartbeat monitoring if that is all that is needed.
  • Ultrasonic communication to an external systems or another active skin device nearby.

18     Touch and proximity sensitive membranes

  • A region of active skin on the arm may be used as a data entry device such as a keyboard by means of adding positioning information such as digital paper patterns or other indication of location.
  • A simple circuit completion would suffice that could be implemented by contacts in close proximity that are connected when pressed, or by a sudden change in resistance or capacitance
  • Arm-embedded components can interact with active fingerprint components to enable easy data entry. Data may be transferred between arm and finger components
  • Different components in different fingers increase dramatically the range of combinations available. Different fingers may represent different tools in a drawing package for example
  • Visible patterns on the arm could indicate where the letters or other keys are. This indication could be a simple ink pattern.
  • Alternatively, display components in the skin may be used to create a dynamic keyboard or interface with different inputs according to application
  • Alternatively, a virtual display in a head-up display worn by the user could indicate the position of the appropriate keys without any visible pattern on the skin. Positioning may be by means of image analysis or by means of processing of the inputs from various inbuilt strain gauges
  • With a virtual display, no components at all are actually required in the arm to implement the minimal system (similar systems already exist with purely virtual keyboards).
  • Deeper ink patterns could enable a longer term keyboard
  • Data from the interface can be stored locally in memory implants or relayed at high frequency across the skin to other active skin system components
  • This could be used as a dialling keypad for cellphones
  • It may be used to enter security identification codes
  • A keyboard may be implanted in the palm of the hand as an alternative to the forearm to allow a computer to be effectively a ‘palm computer’, a ‘digital computer’, calculator or
  • interface to any electronic device carried on the person or across the network
  • signals from the interface may be relayed by a radio device elsewhere on the body

19     Use of strain gauges for touch sensitivity

  • A high degree of touch sensitivity is afforded by the body’s own sensory system, so this could act as a very high precision interface for some applications. The amount of pressure, or characteristics of strokes may be easily detected by the wearer to accurately control their input. Detection of this input can be by means of strain or relative position sensors
  • Alternatively, in later generations of the devices, signals may be directly picked up from the nervous system and appropriate analysis used to determine the precise input.
  • Touch or proximity sensors such as capacitors, inductors, piezoelectric strain gauges, movement detectors, or other devices in the arm can detect key-presses or drawing movements and could act as a mousepad
  • Relative movement between active skin components in touch sensitive membranes indicates not only what has been pressed but also by how much
  • Movement may be measured by change of capacitance between components, or change of resistance in conductive polymers attached to the skin, by induction changes, change of skin resistance itself, accumulated mechanical stress measurement or by other means
  • A system comprised of a range of such gauges and position sensors in various parts of the body may be used to gather a great deal of data about the movement of the body.
  • This may be used extensively in training and correction applications by means of force feedback or sensory amplification.
  • Force feedback or other actuator components* would give a signal or apply a force back to the body on detection of various parameter values. Movements may be precisely recorded and recreated via force feedback.
  • An expert recording the correct procedure can use such recording and force feedback to ‘play back’ a correct movement into the student. Repeated practice of the correct movement would enable rapid training
  • Computer games may also make use of this system in a ‘training mode’, where users learn to behave appropriately, thus improving the quality of game play
  • Highly specialised interfaces may be developed using a collection of appropriately configured gauges or sensors, with appropriate force of signal feedback devices
  • Such systems may be used to record the behaviour of people or animals for research, monitoring or policing purposes
  • Signal feedback systems may allow direct correction of such behaviours. See alarm systems.
  • The means to directly associate a movement or behaviour with pain would be a valuable means of training and controlling animals or criminals. Such feedback may also be linked to emotional states to control aggression for example. A combination of movements, position or emotional state may be used to prohibit certain behaviours in certain locations.
  • Strain gauges would be an important component of avatar based communication systems to allow the direct physical interaction of people across a network, whether a handshake or a hug or something more.

20     Force feedback and other actuators in skin

 

  • A range of actuators may be implanted or injected for various purposes
  • Muscle wires may be used as simple actuators
  • Some polymer gels may be made to respond mechanically to various stimuli. These may be used as synthetic muscles in some systems and membranes composed of these may be key active skin components
  • Membranes with arrays of holes may be used to control drug delivery as part of an active skin system. Such membranes may be dumb, or may contract in response to electronic or thermal stimuli from other components. Obviously holes will contract as the membrane contracts, thereby giving a means of controlling drug dosing
  • Such membranes may provide a convenient means of allowing blood exchange for blood cleaning and processing (e.g. for dialysis)
  • Ultrasonic actuators may be used or signalling between devices
  • Lower frequency may be used to create sensation of texture
  • Stretching, compression and torsion may be used in force feedback and signalling
  • Actuators may be used to open or close holes in the skin or activate skin conduits*
  • These holes may be used usefully as part of drug delivery systems or as a means of implanting devices or other materials
  • They may be used extensively as part of force feedback and interface devices as described above for training, communication, monitoring or corrective purposes
  • Systems using combinations of such force feedback and actuators may be used for medical purposes
  • Holes with actuators mounted across them may be opened or closed on command
  • These work in conjunction with higher layers to allow smart and precise drug delivery in a feedback loop with monitoring systems. Health or nerve signal monitors may allow direct control of such holes and actuators in drug dispensers
  • Actuators may respond directly to skin temperature
  • Actuators may form part of alarm systems
  • Exoskeletal structures based on actuators may be implemented to give physical assistance or support, especially for disabled or frail people. This would require large areas of such actuator membranes
  • Physical appearance may be controlled to a degree by such membranes or implants, that would shape the body, reduce wrinkles, reduce the impact of fat, tone muscles etc
  • They may work in conjunction with electrical stimuli for muscle toning, which currently needs external pads and power supplies

21     Active contact lens

  • Active contact lens has been wholly disclosed in the form of a removable contact lens that acts as a dumb display
  • It could however be differently realised by using active skin instead of a detachable contact lens
  • Active contact lens may include actuator components that stretch or compress the eye to correct vision for all distances
  • Lens components could be implanted in eye surface using above techniques
  • Signals displayed may originate in other active skin components elsewhere on body
  • Processing may be embedded in nearby skin outside the eye
  • Powering could be inductive or ultrasonic
  • Tracking of the eyeball can be in conjunction with other nearby components such as proximity and position detectors
  • Light may be produced externally (e.g. by lasers adjacent to the eyeball) and the lens merely reflects it to its proper destination by means of micromirrors
  • Lens film may contain identification circuitry or data that can be conveyed to an external system by passive recognition or active transmission
  • Images seen by the eye may be processed and recorded by nearby active skin components and relayed to storage or transmitted on a network
  • Appropriate implanted dyes could facilitate ultraviolet vision
  • Appropriate infrared detectors and lasers may be used to enable infrared vision
  • Other sensory data from sensors elsewhere on the skin or fully externally, may be projected in the image produced by the active skin implant

22     Skin-based processing, memory, and consumer electronics

 

  • Miniaturised circuitry will soon allow very small versions of many popular devices.
  • These circuits may fit in a single skin capsule or be distributed across several capsules.
  • These capsules contain means to connect with others and with the outside as well as housing some electronics capability
  • They will be able to produce phones, calculators, computers, storage devices, MP3 players, identifiers, electronic cash, text readers, scanners
  • Some of these would benefit from being implemented in active fingerprint systems
  • Capsules may be directly injected or inserted into a skin conduit, perhaps facilitated by various actuators for positioning and connection
  • They may be easily ejected by the skin conduits if necessary
  • Ingestion or ejection may be by means of peristaltic motion of the skin conduit, facilitated by means of contractible rings
  • A wide range of sensors are now available in watches and other small wearable devices, to monitor parameters such as air and skin temperature, air pressure, direction, blood pressure, pulse, heart beat, walking distance, GPS location and navigation, paging, infrared controls, voice recording and others. Many of these can be sufficiently miniaturised to be embedded in or on one or more active skin layers. The performance of some of the sensors would be improved
  • Membrane based transfers implementing these devices may be easily attached to the skin and easily removed if required. They may co-operate with other permanent or temporary active skin devices
  • Transfer based electronic jewellery* may interact with smart cosmetics* and other inbuilt processing or memory

23     Body-avatar link

  • Avatars will be an important communication tool in the near future. Avatars may be controlled manually or via video image interpretation, which is complex and invasive. Active skin presents an efficient means of accurately controlling avatars.
  • Sensors in skin at key parts of the body, e.g. finger joints, hands, wrists, elbows and face can be used to detect body movement and position.
  • They may also detect emotional state and audio
  • Data from the sensors may be transmitted to a central body transmitter for collation, pre-processing or simply transmission
  • This information is relayed via active skin or other transmitters to a computer, phone or other conferencing device. The phone may itself be an active skin component
  • The body position and movement information is transmitted across the link, and used to control the avatar movements directly
  • Interactions between avatars in virtual space are relayed back to the people involved via force feedback membranes, pressure transducers, smart fingerprints to convey texture, and direct nerve stimulation using nerve links.
  • A highly sensory realistic communications link is thus established between the inhabitants of the virtual environment which is potentially far richer than that which may be obtained without the use of active skin or a full body suit.
  • Inhabitants need not be real people, but may be synthetic entities such as computer game characters or interactive TV avatars
  • Almost all functions of body suits may be replaced by active skin components, which do not interfere with normal clothing and are therefore much less invasive
  • If all the above components are implemented in active skin, it is possible that avatars may be controlled without the knowledge of anyone else present, making a very discrete interface
  • Instead of controlling avatars, the link may be used to directly control a robot. Sensors in the robot could be linked to senses in the human, allowing a high quality implementation of telepresence and teleaction. This would be very useful for surgery or for maintenance in hostile environments. It would also be useful for police or military use to control robots or androids in hostile environments.
  • Surgical applications could be enhanced by filtering and pre-processing the body movements and possible translating them into a appropriate actions for robotic surgical apparatus. For example, large jerky hand movements may be converted into small smoother scalpel movements.
  • Again, such systems may be used extensively for training or correction purposes, or for interaction with computer games
  • Interactive TV may use such avatar links to permit greater participation of remote audience members
  • Visual systems may be linked to such active skin avatar links so that people can interact with avatars on the move rather than just when confined to a conferencing suite or in front of a computer monitor
  • This permits people to interact fully with virtual objects and characters overlaid in the real environment

24     EEG patches

 

  • An array of smart skin patches on the scalp could be arranged to collect electrical signals from the brain.
  • Such devices could make it less invasive for EEG patients who need repeated investigation
  • Devices would signal using high frequency electrical signals or by ultrasound to other sensors or collectors or processors.
  • Signals could be relayed to external apparatus by a single contact point or by means of radio aerials, LEDs or an active bindi.
  • Such signals may be used for conventional medical analysis purposes,
  • or may be used for thought recognition purposes, whereby pattern recognition technology is applied to analysis of the signals from the various sensors.
  • Sensors need not only be on the scalp, but could be anywhere on the body, such as fingertips.
  • Lie detection may be implemented using a combination of data regarding such brain signals and other data regarding emotional state, blood hormone or other chemical content, skin conductivity, temperature, pulse etc All of these data types are liable to address by active skin variants
  • Signals from the scalp may be used to control medical prostheses to assist disabled people. The intention to move an arm could result in the arm moving for example. Nerve signals for such applications may be detected on the scalp, or nearer to the prosthesis.
  • Active skin in the stump could be used for this purpose and also to inject synthetic senses back into the nervous system by way of feedback from the prosthesis
  • Such patches may be used as a component of a policing system for criminals, whereupon certain types of thought pattern result in the creation of pain

25     Use with or in place of active clothing

 

Many of the applications discussed above would work well in harmony with active clothing, most of which is known technology. Active clothing already houses consumer electronics, reacts thermally and optically to the environment, monitors body activity, reports on injuries and casualty location, injects antibiotics, antiseptics and anaesthetics in case of battlefield injury. A wide variety of other ‘smart’ capabilities is also available off the shelf or in prototype.

Some of these clothes require data that can best be obtained by active skin. For example:

  • Active skin can house the identity and personal profile for use by active clothing
  • Active clothing may provide the power supply or communications for active skin
  • Active clothing may contain medical apparatus that is controlled in conjunction with active skin and a remote clinic
  • Active skin may actually replace some clothing in terms of thermal and chemical protection
  • Active skin may act as a final line of defence on a battlefield by filtering out hostile bacteria, viruses or chemicals and in due course act to protect against nanotechnology or micro-technology attack
  • Active skin may physically repair organic skin tissues or augment them with self-organising self-constructing membranes
  • Active skin may contain synthetic hairs that may be extended or contracted to provide variable thermal protection, and also to help filter out bacteria
  • With a high degree of such protection against nature, clothing may be more optional, especially if active inks and other display components are used to change the optical appearance of the body for cultural reasons
  • Key active skin components of this system are displays, actuators, sensors, reservoirs, membranes, processors, signalling and aerials

26     Skin capsules

  • A range of skin capsules for various purposes may be developed, which are capable of being injected into the skin by high pressure air, or inserted through skin conduits
  • Skin conduits themselves may be implanted as a special case of skin capsules. They may start off as a spherical device and then open up into a ‘pore’ once implanted
  • Skin capsules may contain drugs or other chemicals for various purposes
  • They may house substantial quantities of electronics for processing, memory, analysis or sensory purposes
  • They may house MEM devices that are capable of mechanical interaction with surrounding tissues
  • They may house a range of actuator devices or wires
  • They may house wires for the purpose of connection to nearby capsules or devices, for example to make antennas
  • They may house identification devices or data
  • These wires may be metallic, organic polymer, shape memory alloy, memory plastic, or buckminster fullerene tubes
  • Capsules may be made of any materials that is largely inert regarding body tissues. Titanium and its alloys, glass and ceramics, diamond film coated materials, gold, platinum and surgical steel and many plastics, as well as some biodegradable and soluble materials etc would be good for some purposes, but other materials may be better for some purposes

27     Drug delivery system

  • Drugs may be administered under control by means of active skin systems
  • Membranes may be contracted so that the holes shrink and drugs cannot permeate as quickly through the membrane
  • Blood chemistry may be analysed by active skin lower layers to detect the amount of drugs needed in order to control such membranes. They can also monitor the rate of diffusion of the drug into the bloodstream
  • Clinics can communicate via the network with such systems and active skin devices react to such communication to effect drug delivery under remote supervision, while sensors in the body transmit their information via aerials to the clinic
  • Membranes may be made to react to environmental conditions such as pollen content. These can then form part of the sensory array as well as permitting appropriate diffusion of anti-allergy drugs
  • Drugs may be contained in external reservoirs or in skin capsules* or in patches e.g. nicotine patches. The rates of diffusion may be altered by means of active membranes or via skin conduits.

28     Animal husbandry technology

  • Active skin drug delivery systems* may be used extensively on farm livestock to control drugs use on a wide scale
  • Captured wild animals may be tagged and fitted with such systems to control their reproduction or behaviours, or to protect them against diseases
  • Active skin tags may be used to track and monitor the behaviour of such animals
  • Sensory stimulation and translation devices may be used to train animals for certain tasks
  • This may also be used in conjunction with control systems to automatically steer or co-ordinate groups of animals
  • Sensory systems in individual animals may be linked together with others, not necessarily of the same species, to make super-sensory collections of animals with unusual properties
  • Robotic animals may be able to interface with real ones by manipulating their sensory inputs
  • Drug development may be enhanced by gaining extra feedback via active skin technology on the condition of animals being experimented upon

Active Skin part 2: initial applications

When I had the active skin idea, it was obvious that there would be a lot of applications so I dragged the others from the office into a brainstorm to determine the scope of this concept. These are the original ideas from that 2001 brainstorm and the following days as I wrote them up, so don’t expect this to be an updated 2014 list, I might do that another time. Some of these have been developed at least in part by other companies in the years since, and many more are becoming more obvious as applications now that the technology foundations are catching up. I have a couple more parts of this to publish, with some more ideas. I’ve loosely listed them here in sections according to layer, but some of the devices may function at two or more different layers. I won’t repeat them, so it should be assumed that any of these could be appropriate to more than one layer. You’ll notice we didn’t bother with the wearables layer since even in 2001 wearable computing was already a well-established field in IT labs, with lots of ideas already. Slide2 Smart tattoos layer This layer is produced by deep printing well into the skin, possibly using similar means to that for tattooing. Some devices could be implanted by means of water or air pressure injection Slide10 Slide11 Slide6

  1. Display capability leading to static or multimedia display instead of static ink
  2. Use for multimedia body adornment, context dependent tattoos, tribalism
  3. monitor body chemicals for clues to emotional, hormonal or health state
  4. Measurement of blood composition to assist in drug dosing
  5. monitor nerve signals
  6. tattoos that show body’s medical state or other parameters
  7. health monitor displays, e.g.  blood insulin level, warning displays, instructions and recommendations on what actions to take
  8. show emotional state, emoticons shown according to biochemical or electrical cues
  9. may convert information on body’s state into other stimuli, such as heat or vibration
  10. may do same from external stimuli
  11. devices in different people could be linked in this way, forming emotilinks. Groups of people could be linked. People belonging to several such groups might have different signalling or position for each group.
  12. Identification, non-erasable, much less invasive than having an implant for the same purpose so would not have the same public objection. This could be electronic, or as simple as ultraviolet ink in a machine readable form such as barcode, snowflake etc
  13. Power supply for external devices using body’s energy supply, e.g. ATP
  14. Metallic ear implants on ear drum as hearing aid – electrostatic or magnetically driven
  15. Electronic signet ring, electronics that will only function when held by the rightful user
  16. Electronic signature devices

Mid-term layer Slide8 Slide9 Slide7Slide5 These components could be imprinted by printing onto the skin surface. Some could be implemented by adsorption from transfers, others by mechanical injection.

  1. Access technology – temporary access to buildings or theme parks. Rather than a simple stamp, people could have a smarter ID device printed into their skin
  2. The device could monitor where the wearer goes and for how long
  3. It could interact with monitoring equipment in buildings or equipment
  4. The device might include the use of invisible active inks on smart membrane
  5. Components could be made soluble to wash off easily, or more permanent
  6. Components could be photodegradable
  7. Could use ultraviolet inks that may be read by either external devices or other components
  8. Like smart tattoo ID systems, they could use snowflakes, colour snowflakes, barcodes or ‘digital paper’, to give a ‘digital skin’ functionality
  9. This could interact with ‘digital air’ devices
  10. Could be used to co-ordinate external device positioning accurately for medical reasons, e.g. acupuncture, TENS etc.
  11. Ultra-smart finger prints, wide range of functions based on interaction with computers and external devices, other smart skin systems, or digital paper
  12. Outputs DNA or DNA code to external reader for ID or medical reasons
  13. Combine with smart tags to achieve complex management and control systems, e.g. in package handling, product assembly
  14. SOS talismans, full health record built into body, including blood groups, tissue groups etc
  15. Degradable radiation monitors that can be positioned at key body points for more accurate dose measurement
  16. Could signal between such devices to a central display via the skin
  17. Devices might communicate using ad-hoc networks, could be used as a distributed antenna for external communication
  18. Thermometers & alarms. Use to measure heat for alarms for old people with degraded senses
  19. Directly interact with smart showers to prevent scalding
  20. Could monitor peoples behaviour for behaviour based alarms, e.g. fall alarms
  21. Overlay synthetic nervous system, use for medical prostheses, bionics or external interfacing
  22. Synthesised senses, making us sensitive to stimuli outside our biological capability
  23. Smart teeth, checks food for presence of bacteria or toxins
  24. Monitor breath for bad odours or illness
  25. Diabetic supervision, monitor ketones
  26. Monitor diet and link to smart devices in the home or hospital to police diet
  27. Modify taste by directly stimulating nerves in the tongue? Probably not feasible
  28. Calorie counting
  29. Smile enhancement, using light emission or fluorescence
  30. Smile training, e.g. tactile feedback on mouth position after operation
  31. Operation scar monitoring, patch across wound could monitor structural integrity,
  32. infection monitor based on detecting presence of harmful bacteria, or characteristics of surrounding skin affected by infection
  33. semi-permanent nail varnish with variable colour
  34. context sensitive nail varnish
  35. multimedia nail varnish
  36. Baby tagging for security purposes & wide range of medical applications such as breathing monitoring, temperature, movement etc
  37. Operation tagging to prevent mistakes, direct interaction with electronic equipment in theatre
  38. ITU applications
  39. Active alarms, integrated into external devices, directly initiate action
  40. Position based sensors and alarms
  41. Personality badge

Transfer layer This layer could use printing techniques straight onto the skin surface, or use transfers. A thin transfer membrane may stay in place for the duration of the required functionality, but could be removed relatively easily if necessary. It is envisaged that this membrane would be a thin polymer that acts as a carrier for the components as well as potentially shielding them from direct contact with the body or from the outside world. It could last for up to several days.

  1. Tactile interfaces – vibration membranes that convey texture or simple vibration
  2. Tactile stimuli as a means for alarms, coupled with heat, cold, or radiation sensors
  3. Text to Braille translation without need for external devices, using actuators in fingertip pads
  4. Use for navigation based on external magnetic field measurement, GPS or other positioning systems, translated into sensory stimuli
  5. Measurement and possible recording of force
  6. use to police child abuse, or other handling in the workplace as safety precautions. Could link to alarms
  7. motion detection, using kinetic or magnetic detection for use in sports or medical systems
  8. actuators built into transfers could give force feedback.
  9. Could directly link to nerve stimulation via lower layers to accomplish full neural feedback
  10. combine sensor and actuators to directly control avatars in cyberspace and for computer interfacing feedback
  11. interfaces for games
  12. short duration software licenses for evaluation purposes, needs fragile transfer so limits use to single user for lifetime of transfer
  13. sensors on eyes allow eye tracking
  14. direct retinal display, active contact lens replacement
  15. UV phosphors allow ultraviolet vision
  16. Actuators or tensioning devices could control wrinkles
  17. could assist in training for sports
  18. training for typing, playing music, music composition, virtual instruments
  19. keypad-free dialling
  20. air typing, drawing, sculpting
  21. type on arm using finger and arm patches
  22. finger snap control
  23. active sign languages
  24. ‘palm pilot’, computer on hand
  25. digital computer, count on fingers
  26. generic 3D interface
  27. use with transfer phone
  28. education use to explore surfaces of virtual objects in virtual environments
  29. use for teletravel navigation, or use in dangerous environments for controlling robotics
  30. direct nervous system links
  31. could assist in body language in conjunction with emotion sensors for socially disadvantaged people
  32. could act as signalling device in place of phone ring or audible alarms (actuator is not necessarily piezoelectric vibrator)
  33. doorbell on skin, personal doorbell, only alerts person of relevance
  34. active sunscreen using electrical stimuli to change sun-block cream to block UV when UV dose is reached
  35. could electrically alter heat radiation properties to enhance heating or cooling of body
  36. membranes with smart holes allow just the right amount of drug delivery in conjunction with smart tattoos. May use lower layers to accurately position and record dosing data
  37. Could use heat, cold, vibration as signals between people
  38. Electronic muscles – use polymer gel or memory metal or contracting wires
  39. Ultrasonic communication between devices and outside world
  40. Teledildonic applications
  41. Oscillating magnetic patches for medical reasons
  42. Applies voltage across wound to assist healing
  43. Smart Nicotine or antibiotic patches
  44. Painkilling patches using pain measurement (nerve activity) and directly controlling using electric stimuli, or administering drugs
  45. Placebo device patches
  46. Multimedia cosmetics
  47. Smart cosmetics, with actuators, smart tattoos that are removable
  48. Self organising cosmetic circuits, sensor, smart chemicals and actuator matrices
  49. Continuous electrolysis as hair growth limiter
  50. Electro-acupuncture with accurate positioning
  51. Control of itching to allow more rapid recovery
  52. Baby-care anti-scratch patches
  53. Printed aerials on body for device communication
  54. Detect, record, process and transmit nerve signals
  55. EEG use
  56. Thought control of devices
  57. Invisible scalp sensors for thought collection
  58. Emotion badge
  59. Truth badge, using body cues to convey whether lying or not. Could be unknown to wearer, transmitting by radio or ultrasound or in UV
  60. Context sensitive perfumes, emotionally sensitive perfumes
  61. Inverse heat sensitive perfumes, prevent too much being given off when warm
  62. Smell sensitive deodorant, or temperature dependent
  63. Context sensitive makeup, that behaves differently with different people at different situations or times
  64. Colour sensitive sun-block, protects more on fairer skin
  65. Active Bindies (dots on Indian women foreheads)
  66. Active jewellery
  67. Power generation for wearable electrical devices, using body heat, solar power, kinetics or skin contraction
  68. Microphones
  69. Frequency translation to allow hearing out of normal audible spectrum
  70. Bugs – unspecified functions in devices
  71. Mosquito killers, zapping insects with charge, or deterring with ultrasound or electrical signals
  72. Automatic antiseptic injections
  73. Use on animals for medical and pest control purposes
  74. Pet signalling and training
  75. Pet homing
  76. Pet ID systems
  77. Jam nerves
  78. Muscle toning
  79. Image capture, compound eyes, raster scan with micro-mirror and transverse lens
  80. Phones, watches, diaries etc
  81. Chameleon, cuttlefish pattern novelties
  82. Orifice monitoring
  83. Transfer body suit, self-organising polymer coating. Use for sports etc.
  84. Position-based devices
  85. Morse code devices for children’s communications
  86. Movement to voice translation – guidance for blind people or use for everyday navigation, sports feedback
  87. Strain alarms
  88. Use with smart drugs
  89. Smell as ring tone
  90. Smell as alarm
  91. Smell for emotion conveyance
  92. Snap fingers to switch lights on
  93. Tactile interfaces
  94. Emotional audio-video capture
  95. record on body condition
  96. wires on skin as addition to MIT bodynet
  97. tension control devices to assist wound healing
  98. avatar mimicry, electronically control ones appearance
  99. electronic paint-by numbers

100.means to charge up other devices by linking to external electrical device or by induction 101.devices that can read ultraviolet ink on sub layer 102.finger mouse, using fingertip sensors instead of mouse, can be used in 3D with appropriate technology base 103.Use of combinations of patches to monitor relative movements of body parts for use in training and medical treatments. Could communicate using infrared, radio or ultrasound 104.Use of an all-over skin that acts as a protective film so that each device doesn’t have to be dermatologically tested. Unlikely to be full body but could cover some key areas. E.g. some people are allergic to Elastoplast, so could have their more vulnerable areas covered. 105.Strain gauges on stomach warning of overeating 106.Strain gauge based posture alarms on the neck, back and shoulders etc 107.Breathalysers in smart teeth alert drivers to being over the limit and interact directly with car immobilisers 108.Pedometers and weight sensors built into feet to monitor exercise etc 109.Battlefield management systems using above systems with remote management Fully Removable layer

  1. Smart elastoplasts
  2. Smart contact lenses with cameras and video
  3. Smart suits with sensors and actuators for sports and work
  4. Almost all conventional personal electronic devices
  5. Web server
  6. Web sites

Active Skin – an old idea whose time is coming

Active Skin

In May 2001, while working in BT research, I had an idea – how we could use the skin surface as a new platform for electronics. I grabbed a few of my colleagues – Robin Mannings, Dennis Johnston, Ian Neild, and Paul Bowman, and we shut ourselves in a room for a few hours to brainstorm it. We originally intended to patent some of the ideas, but they weren’t core business for a telecoms company like BT so that never happened.

Now, 12.5 years on, it is too late to extract any value from a patent, but some of the technologies are starting to appear around the world as prototypes by various labs and companies, so it’s time is drawing near. We never did publish the ideas, though a few did make it out via various routes and I talk about active skin in my writings more generally. So I thought I’d serialise some of the ideas list now – there are lots. This one will just be the intro.

Introduction

Today we have implants in the body, and wearable devices such as watches and cell-phones in regular proximity to our bodies, with a much looser affiliation to other forms of electronics such as palmtops and other computers. With recent advances in miniaturisation, print technology and polymer based circuits, a new domain is now apparent but as yet unexploited, and offers enormous potential business for a nimble first-mover. The domain is the skin itself, where the body meets the rest of the world. We have called it active skin, and it has a wide range of potential applications.

Active skin layers

Stimulated by MIT work in late 1990s that has shown that the skin can be used as a communications medium, a logical progression is to consider what other uses it might be put to. What we proposed is a multi-layer range of devices.Slide2

(actually, this original pic wasn’t drawn quite right. The transfer layer sits just on the skin, not in it.)

The innermost ‘tattoo layer’ is used for smart tattoos, which are permanently imprinted into the lower layers of the skin. These layers do not wear or wash away.

The next ‘mid-term’ layer is the upper layers of the skin, which wear away gradually over time.

Above this we move just outside to the ‘transfer layer’. Children frequently wear ‘tattoos’ that are actually just transfers that stick onto the skin surface, frequently on a thin polymer base. They are fairly robust against casual contact, but can be removed fairly easily.

The final ‘detachable layer’ is occupied by fully removable devices that are only worn on a temporary basis, but which interact with the layers below.

Above this is the ‘wearable layer; the domain of the normal everyday gadget such as a watch.

A big advantage for this field is that space is not especially limited, so devices can be large in one or two dimensions. However, they must be flexible and very thin to be of use in this domain and be more comfortable than the useful alternatives.

We could have a conscious machine by end-of-play 2015

I made xmas dinner this year, as I always do. It was pretty easy.

I had a basic plan, made up a menu suited to my family and my limited ability, ensured its legality, including license to serve and consume alcohol to my family on my premises, made sure I had all the ingredients I needed, checked I had recipes and instructions where necessary. I had the tools, equipment and working space I needed, and started early enough to do it all in time for the planned delivery. It was successful.

That is pretty much what you have to do to make anything, from a cup of tea to a space station, though complexity, cost and timings may vary.

With conscious machines, it is still basically the same list. When I check through it to see whether we are ready to make a start I conclude that we are. If we make the decision now at the end of 2013 to make a machine which is conscious and self-aware by the end of 2015, we could do it.

Every time machine consciousness is raised as a goal, a lot of people start screaming for a definition of consciousness. I am conscious, and I know how it feels. So are you. Neither of us can write down a definition that everyone would agree on. I don’t care. It simply isn’t an engineering barrier. Let’s simply aim for a machine that can make either of us believe that it is conscious and self aware in much the same way as we are. We don’t need weasel words to help pass an abacus off as Commander Data.

Basic plan: actually, there are several in development.

One approach is essentially reverse engineering the human brain, mapping out the neurons and replicating them. That would work, (Markram’s team) but would take too long.  It doesn’t need us to understand how consciousness works, it is rather like  methodically taking a television apart and making an exact replica using identical purchased or manufactured components.  It has the advantage of existing backing and if nobody tries a better technique early enough, it could win. More comment on this approach: https://timeguide.wordpress.com/2013/05/17/reverse-engineering-the-brain-is-a-very-slow-way-to-make-a-smart-computer/

Another is to use a large bank of powerful digital computers with access to large pool of data and knowledge. That can produce a very capable machine that can answer difficult questions or do various things well that traditionally need smart people , but as far as creating a conscious machine, it won’t work. It will happen anyway for various reasons, and may produce some valuable outputs, but it won’t result in a conscious machine..

Another is to use accelerate guided evolution within an electronic equivalent of the ‘primordial soup’. That takes the process used by nature, which clearly worked, then improves and accelerates it using whatever insights and analysis we can add via advanced starting points, subsequent guidance, archiving, cataloging and smart filtering and pruning. That also would work. If we can make the accelerated evolution powerful enough it can be achieved quickly. This is my favoured approach because it is the only one capable of succeeding by the end of 2015. So that is the basic plan, and we’ll develop detailed instructions as we go.

Menu suited to audience and ability: a machine we agree is conscious and self aware, that we can make using know-how we already have or can reasonably develop within the project time-frame.

Legality: it isn’t illegal to make a conscious machine yet. It should be; it most definitely should be, but it isn’t. The guards are fast asleep and by the time they wake up, notice that we’re up to something, and start taking us seriously, agree on what to do about it, and start writing new laws, we’ll have finished ages ago.

Ingredients:

substantial scientific and engineering knowledge base, reconfigurable analog and digital electronics, assorted structures, 15nm feature size, self organisation, evolutionary engines, sensors, lasers, LEDs, optoelectronics, HDWDM, transparent gel, inductive power, power supply, cloud storage, data mining, P2P, open source community

Recipe & instructions

I’ve written often on this from different angles:

https://timeguide.wordpress.com/2013/02/15/how-to-make-a-conscious-computer/ summarises the key points and adds insight on core component structure – especially symmetry. I believe that consciousness can be achieved by applying similar sensory structures to  internal processes as those used to sense external stimuli. Both should have a feedback loop symmetrical to the main structure. Essentially what I’m saying is that sensing that you are sensing something is key to consciousness and that is the means of converting detection into sensing and sensing into awareness, awareness into consciousness.

Once a mainstream lab finally recognises that symmetry of external sensory and internally directed sensory structures, with symmetrical sensory feedback loops (as I describe in this link) is fundamental to achieving consciousness, progress will occur quickly. I’d expect MIT or Google to claim they have just invented this concept soon, then hopefully it will be taken seriously and progress will start.

https://timeguide.wordpress.com/2011/09/18/gel-computing/

https://timeguide.wordpress.com/2010/06/16/man-machine-equivalence-by-2015/

Tools, equipment, working space: any of many large company, government or military labs could do this.

Starting early enough: it is very disappointing that work hasn’t already conspicuouslessly begun on this approach, though of course it may be happening in secret somewhere. The slower alternative being pursued by Markram et al is apparently quite well funded and publicised. Nevertheless, if work starts at the beginning of 2014, it could achieve the required result by the end of 2015. The vast bulk of the time would be creating the sensory and feedback processes to direct the evolution of electronics within the gel.

It is possible that ethics issues are slowing progress. It should be illegal to do this without proper prior discussion and effective safeguards. Possibly some of the labs capable of doing it are avoiding doing so for ethical reasons. However, I doubt that. There are potential benefits that could be presented in such a way as to offset potential risks and it would be quite a prize for any brand to claim the first conscious machine. So I suspect the reason for the delay to date is failure of imagination.

The early days of evolutionary design were held back by teams wanting to stick too closely to nature, rather than simply drawing biomimetic idea stimulation and building on it. An entire generation of electronic and computer engineers has been crippled by being locked into digital thinking but the key processes and structures within a conscious computer will come from the analog domain.

Drone Delivery: Technical feasibility does not guarantee market success

One of my first ever futurology articles explained why Digital Compact Cassette wouldn’t succeed in the marketplace and I was proved right. It should have been obvious from the outset that it wouldn’t fly well, but it was still designed, manufactured and shipped to a few customers.

Decades on, I had a good laugh yesterday reading about the Amazon drone delivery service. Yes, you can buy drones; yes, they can carry packages, and yes, you can make them gently place a package on someone’s doorstep. No, it won’t work in the marketplace. I was asked by the BBC Radio 4 to explain on air, but the BBC is far more worried about audio quality than content quality and I could only do the interview from home, so they decided not to use me after all (not entirely fair – I didn’t check who they actually used and it might have been someone far better).

Anyway, here’s what I would have said:

The benefits are obvious. Many of the dangers are also obvious, and Amazon isn’t a company I normally associate with stupidity, so they can’t really be planning to go all the way. Therefore, this must be a simple PR stunt, and the media shouldn’t be such easy prey for free advertising.

Very many packages are delivered to homes and offices every day. If even a small percentage were drone-delivered, the skies will be full of drones. Amazon would only control some of them. There would be mid-air collisions between drones, between drones and kites and balloons, with new wind turbines, model aeroplanes and helicopters, even with real emergency helicopters. Drones with spinning blades would be dropping out of the sky frequently, injuring people, damaging houses and gardens, onto roads, causing accidents. People would die.

Drones are not silent. A lot of drones would make a lot of extra ambient noise in an environment where noise pollution is already too high. They are also visible, creating another nuisance visual disturbance.

Kids are mischievous. Some adults are mischievous, some criminal, some nosey, some terrorists. I can’t help wonder what the life expectancy of a drone would be if it is delivering to a housing estate full of kids like the one I was. If I was still a kid, I’d be donning a mask (don’t want Amazon giving my photo to the police) and catching them, making nets to bring them down and stringing wires between buildings on their normal routes, throwing stones at them, shooting them with bows and arrows, Nerf guns, water pistols, flying other toy drones into their paths. I’d be tying all sorts of other things onto them for their ongoing journey. I’d be having a lot of fun on the black market with all the intercepted goods too.

If I were a terrorist, and if drones were becoming common delivery tools, I’d buy some and put Amazon labels on them, or if I’m short of cash, I’d hijack a few, pay kids pocket money to capture them, and after suitable mods, start using them to deliver very nasty packages precisely onto doorsteps or spray lethal concoctions into the air above specific locations.

If I were just criminal, I’d make use of the abundance of drones to make my own less conspicuous, so that I could case homes for burglaries, spy on businesses with cameras and intercept their wireless signals, check that an area is free of police, or get interesting videos for my voyeur websites. Maybe I’d add a blinding laser into them to attack any police coming into the scene of my crime, giving valuable extra time without giving my location away.

There are also social implications: jobs in Amazon, delivery and logistics companies would trade against drone manufacturing and management. Neighbours might fall out if a house frequently gets noisy deliveries from a drone while people are entering and leaving an adjacent door or relaxing in the garden, or their kids are playing innocently in the front garden as a drone lands very close by. Drone delivery would be especially problematic when doorways are close together, as they often are in cities.

Drones are good fun as toys and for hobbies, in low numbers. They are also useful for some utility and emergency service tasks, under supervision. They are really not a good solution for home delivery, even if technically it can be done. Amazon knows that as well as I do, and this whole thing can only be a publicity stunt. And if it is, well, I don’t mind, I had a lot of fun with it anyway.

We should help the poor, but not via global warming compensation

At the Warsaw climate summit, some developing countries argued that the rich, developed world, should compensate poor countries for the effects of global warming such as the recent typhoon. That is a very bad path to tread indeed.

Like almost everyone reading this, I am all for helping poor people to the very best of our ability, wherever they live. But we should do so because we can help them and because we want to help them, for the best of human reasons, not because we’re being forced to via some perverse compensation scheme.

As I argued in my book Total Sustainability, if we want to live in a sustainable world, we need to fix not just those things that directly affect the environment such as pollution and resource use, but also things that indirectly affect the environment via human impacts. We need to look at economics, politics, society, business and cultural effects too, and deal with the problems therein that would eventually adversely affect the environment and human well-being such as exploitation and corruption.

Let’s ignore for the time being the fact that global warming has levelled off for 16 or 17 years now even while CO2 levels have skyrocketed. Let’s ignore the fact that environmental catastrophes have always happened, and that it isn’t possible to attribute any particular weather-related disaster to ‘climate change’ or ‘global warming’. There is no shred of evidence linking the recent typhoon to CO2 levels. Let’s ignore the fact that the number and severity of storms has declined, so the level of problem has actually gone down as CO2 level has increased. Let’s ignore those facts because the overwhelmingly important overall fact is that we don’t yet understand what is happening to our climate, nor how much of any changes we observe are natural and how much are due to human activity, still less the attribution to particular human activities. The only evidence I need cite for that assertion is that almost all of the climate models have grossly overstated the amount of warming we should have seen by now. If they are genuinely the result of the best understanding of climate we have and not scientific corruption or deliberate misrepresentation and tweaking to get the right answer, then we can be certain that some of the equations or factors in them are wrong, or still worse, missing. 

If we don’t even understand how climate works, if we don’t understand the effects of human activity on the climate, then it is utterly ridiculous to attribute particular environmental catastrophes to the behaviour of particular countries. A sensible demand for compensation would need to demonstrate a causal link between an act and a result. We are nowhere near the level of scientific understanding required for that. Even if we were, or if we eventually get to that point; even if future scientists could conclusively show that rich countries’ CO2 emissions caused a particular storm, we still would have no justification for compensation to developing countries. Let’s help them as much as we can, but let’s not use human-caused global warming or climate change as the reason.

Why not? Here’s why:

One of the chapters in my book was called  ‘the rich world owes no compensation to the poor world’. The world only has the technological capability to support a population over seven billion because of the activities of our ancestors. Without the industrial revolution, the energy it used, the pollution it generated, the CO2 it led to, very many of those alive today would not be. We owe no apology for that. It is only through that historic activity that we are where we are, with the technology that allows poor countries to develop. Developing countries are developing in a world that already has high CO2 levels and is still largely economically and technologically locked into CO2-intensive energy production. That is simply the price humanity overall has paid to get where we are. When a developing country builds a new power station or a road or a telecomms network, it uses today’s technology, not 16th century technology – the century where modern science and technology arguably really started. Without the rich world having used all that energy with its associated environmental impact, they’d have to use 16th century technology. There would be no rich world to sell to, and no means to develop. Developing is a far faster and easier process today than it was when we did it.

Our ancestors in the rich world had to suffer the pain hundreds of years ago – they were the giants on whose shoulders we now stand. It was mostly our ancestors in the rich world whose ingenuity and effort, whose blood, sweat and tears paid for a world that can support seven billion people. It was mostly they who invented and developed the electricity, telecoms, the web, pharmaceuticals and biotech, genetically superior crops, advanced manufacturing and farming technology that make it possible. That all cost environmental impacts as part of the price. The whole of humanity has benefitted from that investment, not just rich countries, and if any compensation or apology were due to the rest of the world for it, then it has already been paid many times over in lives saved and lives enabled, economic aid already enabled by that wealth, and the vastly better financial and economic well-being for the future developing world that resulted from that investment. The developing world is developing later, but that is not the fault of our ancestors for making our investment earlier.

Amount of compensation owed: zero. Amount we should give for other reasons: as much as we can reasonably afford. Let’s give through compassion and generosity and feeling of common humanity, because we can and because we want to, not because we are being forced.

I want my TV to be a TV, not a security and privacy threat

Our TV just died. It was great, may it rest in peace in TV heaven. It was a good TV and it lasted longer than I hoped, but I finally got an excuse to buy a new one. Sadly, it was very difficult finding one and I had to compromise. Every TV I found appears to be a government spy, a major home security threat or a chaperone device making sure I only watch wholesome programming. My old one wasn’t and I’d much rather have a new TV that still isn’t, but I had no choice in the matter. All of today’s big TV’s are ruined by the addition of features and equipment that I would much rather not have.

Firstly, I didn’t want any built in cameras or microphones: I do not want some hacker watching or listening to my wife and I on our sofa and I do not trust any company in the world on security, so if a TV has a microphone or camera, I assume that it can be hacked. Any TV that has any features offering voice recognition or gesture recognition or video comms is a security risk. All the good TVs have voice control, even though that needs a nice clear newsreader style voice, and won’t work for me, so I will get no benefit from it but I had no choice about having the microphone and will have to suffer the downside. I am hoping the mic can only be used for voice control and not for networking apps, and therefore might not be network accessible.

I drew the line at having a camera in my living room so had to avoid buying the more expensive smart TVs . If there weren’t cameras in all the top TVs, I would happily have spent 70% more. 

I also don’t want any TV that makes a record of what I watch on it for later investigation and data mining by Big Brother, the NSA, GCHQ, Suffolk County Council or ad agencies. I don’t want it even remembering anything of what is watched on it for viewing history or recommendation services.

That requirement eliminated my entire shortlist. Every decent quality large TV has been wrecked by the addition of  ‘features’ that I don’t only not want, but would much rather not have. That is not progress, it is going backwards. Samsung have made loads of really good TVs and then ruined them all. I blogged a long time ago that upgrades are wrecking our future. TV is now a major casualty.

I am rather annoyed at Samsung now – that’s who I eventually bought from. I like the TV bits, but I certainly do not and never will want a TV that ‘learns my viewing habits and offers recommendations based on what I like to watch’.

Firstly, it will be so extremely ill-informed as to make any such feature utterly useless. I am a channel hopper so 99% of things that get switched to momentarily are things or genres I never want to see again. Quite often, the only reason I stopped on that channel was to watch the new Meerkat ad.

Secondly, our TV is often on with nobody in the room. Just because a programme was on screen does not mean I or indeed anyone actually looked at it, still less that anyone enjoyed it.

Thirdly, why would any man under 95 want their TV to make notes of what they watch when they are alone, and then make that viewing history available to everyone or use it as any part of an algorithm to do so?

Fourthly, I really wanted a smart TV but couldn’t because of the implied security risks. I have to assume that if the designers think they should record and analyse my broadcast TV viewing, then the same monitoring and analysis would be extended to web browsing and any online viewing. But a smart TV isn’t only going to be accessed by others in the same building. It will be networked. Worse still, it will be networked to the web via a wireless LAN that doesn’t have a Google street view van detector built in, so it’s a fair bet that any data it stores may be snaffled without warning or authorisation some time.

Since the TV industry apparently takes the view that nasty hacker types won’t ever bother with smart TVs, they will leave easily accessible and probably very badly secured data and access logs all over the place. So I have to assume that all the data and metadata gathered by my smart TV with its unwanted and totally useless viewing recommendations will effectively be shared with everyone on the web, every advertising executive, every government snoop and local busybody, as well as all my visitors and other household members.

But it still gets worse. Smart TV’s don’t stop there. They want to help you to share stuff too. They want ‘to make it easy to share your photos and your other media from your PC, laptop, tablet, and smartphone’. Stuff that! So, if I was mad enough to buy one, any hacker worthy of the name could probably use my smart TV to access all my files on any of my gadgets. I saw no mention in the TV descriptions of regular operating system updates or virus protection or firewall software for the TVs.

So, in order to get extremely badly informed viewing recommendations that have no basis in reality, I’d have to trade all our privacy and household IT security and open the doors to unlimited and badly targeted advertising, knowing that all my viewing and web access may be recorded for ever on government databases. Why the hell would anyone think that make a TV more attractive?  When I buy a TV, I want to switch it on, hit an auto-tune button and then use it to watch TV. I don’t really want to spend hours going through a manual to do some elaborate set-up where I disable a whole string of  privacy and security risks one by one.

In the end, I abandoned my smart TV requirement, because it came with too many implied security risks. The TV I bought has a microphone to allow a visitor with a clearer voice to use voice control, which I will disable if I can, and features artificial-stupidity-based viewing recommendations which I don’t want either. These cost extra for Samsung to develop and put in my new TV. I would happily have paid extra to have them removed.

Afternote: I am an idiot, 1st class. I thought I wasn’t buying a smart TV but it is. My curioisty got the better of me and I activated the network stuff for a while to check it out, and on my awful broadband, mostly it doesn’t work, so with no significant benefits, I just won’t give it network access, it isn’t worth the risk. I can’t disable the microphone or the viewing history, but I can at least clear it if I want.

I love change and I love progress, but it’s the other direction. You’re going the wrong way!

Is is time to packetise electricity?

It is a couple of decades now since electricity cables were first demonstrated as potential telecomms networks, and some applications of that are commercially available now. You can even use special adapters that plug into a mains socket to communicate with devices in other sockets, though wireless LANs make that much less significant now.

However, an obvious derivative of that has also been known for decades but is still missing. That idea is to packetise the electricity itself. The electric current would still be constant, but each bit would have a communications packet written on it. That would allow electricity to be sold peer to peer, to be assigned to specific purposes, and rationed in time of shortage. It is closely related to smart metering, just a different way of doing something similar.

Here’s an example of how this may be used in practice: A power supplier could issue packets of electricity labelled according to their permitted use. Most of the time, all packets would be labelled open use and could be used for any purpose. When load is high and supply is limited, some packets would be marked restricted use. They could be used for lighting or a hair dryer, but not to power a freezer or electric heater, or battery chargers. Enough open packets would be issued to provide minimal power to these secondary uses, so that your ice cream doesn’t melt and your gran doesn’t freeze to death, but they would provide an excellent way of smart targeting for power rationing. In fact, grans might be allowed to use power for heating when some other homes aren’t, if they are known to have alternative supply for example.

What is meant by ‘each bit’ needs some thought though. To offer useful service potential, energy needs to be broken into quite small pieces. An electrical unit is far too large. I think a Joule is about right – 1 Watt for 1 second but I haven’t really though about it much. Millijoules would be feasible technically, but I don’t think they add much in terms of potential.

Energy from different suppliers could be labelled differently, but share the same wires, just like telecomms traffic. You could choose to run your house on just renewable energy, or just nuclear, or be bloody minded and insist that it has to come from a coal station just to annoy your green neighbour.

There has to be an incentive to use compliant appliances, and they would cost a little more for the embedded intelligence to understand the packets. The main incentive would be price reduction for the energy used, or perhaps event-specific rewards for allowing a local ban during peak times. They could even be offered in advance.

Peer to peer sale of electricity from a small wind turbine or from solar panels on a roof would work too. Instead of selling electricity back onto the grid at a poor price and some neighbour buying it back from the grid at a high price, peer to peer allows direct sales at mutual advantageous pricing, cutting out the middle-man and adding competition.

So there could be a market and it could work. I guess it’s up to the industry to decide whether this is a sensible alternative to smart meters.

Will plasma be the new glass?

Now and again, everyone gets a chance to show the true depths of their ignorance, and I suspect this is my chance, but you know what? I don’t really care. I have some good ideas as well as dumb ones, and sometimes it is too hard to know which is which. I freely admit that my physics is very rusty. However….

Plasma is essentially a highly ionised gas; lots of ions and free electrons. It conducts electricity so is ideally suited to magnetic confinement. You make a current in it, and use magnetic field interaction with that current to hold it in place.It can also hold a decent charge overall, positive or negative. That means it interacts electrostatically as well as magnetically. Electromagnetics is all one big happy field anyway.

A strong magnetic field can be made that encompasses the plasma magnetically without it needing to be surrounded by a solid object. Let’s do a thought experiment.

Start off with a sealed ball and make a small hole in it, put an electric coil around the hole, send some current through it, and make a field around that hole to stop plasma escaping. Ditto the opposite side of the ball, so now you have a tube with plasma in it, albeit a fat tube with narrow ends. Gradually make the hole diameters bigger and bigger, and the tube shorter and less curvy. Eventually you will have more or less a fat disk of plasma. The relative dimensions of the disk will depend on the intensity and control of the magnetic field, the ionisation of the plasma and any currents you make in it.

With some good physics and engineering, adequate sensing and a decent control system, I reckon it should be possible to make reasonable sized disks of plasma. So, make two of them. Put the two disks reasonable close and face to face. Arrange them so that the electric currents in the plasmas run in different directions too. If they are both similarly charged overall they will repel electrostatically and their internal magnetic fields will also interact, but the managed applied magnetic fields could stop them deforming too much. Add more disks, and we have plasma plywood. Let’s call it plasma-ply for lack of a better word.

I can’t calculate how thin this plasma-ply could be made. I suspect that with future materials such as graphene and room temperature superconductors, future remote sensing and advanced computer control systems, they could be pretty damned good. If you try to deform one of these disks, it would resist, because the magnetic and electrical interactions would create force to keep it in place. We have another name for that. We call it a force field and we see them in every space opera. If the surrounding coils and other stuff is just a think ring, as you’d expect, you’d have a round window. Maybe a smallish window, but you could use a lot of the coils to make a big window in a honeycomb structure.

So we can bin the word plasma-ply and start using the words we already have. We will have force fields and plasma windows. Plasma will be the new glass, and an important 21st century building material.

3D printing the highest skyscraper? 600km tall structures may be feasible.

What would you do with a 600km high structure? That would be hundreds of times higher than the highest ever built so far. I think it is feasible. Here I will suggest super-light, super-strong building materials that can substitute for steel and concrete that can be grown up from the base using feasibly high pressures.

I recently proposed a biomimetic technique for printing graphene filaments to make carbon fur (- in this case, for my fictional carbon-obsessed super-heroine Carbon Girl. I am using the Carbon Trio as a nice fun way to illustrate a lot of genuine carbon-related concepts for both civil and military uses, since they could make a good story at some point. Don’t be put off by the fictional setting, the actual concepts are intended to be entirely feasible. Real science makes a better foundation for good science fiction. Anyway, this is the article on how to make carbon filaments, self-organised into fur, and hence her fur coat:)

http://carbondevices.com/2013/07/01/carbon-fur-biokleptic-warmth-and-protection/

Here is the only pic I’ve drawn so far of part of the filament print head face:

printing graphene filaments

Many print heads would be spread out biomimetically over a scalable area as sparsely or densely as needed, just like fur follicles. A strong foundation with this print head on top could feasibly form the base of a very tall vertical column. If the concept as described in the fur link is adapted slightly to print the filaments into a graphene foam medium, (obviously pushed through the space between the follicles that produce the filaments) a very lightweight foam structure with long binding filaments of graphene graphene foam would result, that would essentially grow from the ground up. This could be very strong both in compression and tension, like a very fine-grained reinforced concrete, but with a tiny fraction of the weight. Given the amazing strength of graphene, it could be strong enough for our target 600km. Graphene foam is described here:

Could graphene foam be a future Helium substitute?

Extruding the supporting columns of a skyscraper from the ground up by hydraulically growing reinforced graphene foam would certainly be a challenging project. The highest hydraulic pressures today are around 1400 bar, 1.427 tonnes per sq cm. However, the density of graphene foam with graphene filament reinforcement could be set at any required density from below that of helium (for graphene spheres of 0.014mm with vacuum inside), to that of solid carbon if the spheres are just solid particles with no vacuum core. I haven’t yet calculated the maximum size of hollow graphene spheres that would be able to resist production pressures of 1400 bar. That would determine the overall density of the material and hence the maximum height achievable. However, even solid carbon columns only weigh 227g per metre height per sq cm of cross-section, so even that pressure would allow 6.3km tall solid columns to be hydraulically extruded. Lower densities of foam would give potentially large multiples of that.

This concrete substitute would be nowhere near as strong as basic graphene, but has the advantage that it could be grown.

(The overall listed strength of solid graphene theoretically allows up to 600km tall, which would take you well into space, perfect for launching satellites or space missions such as asteroid mining. But that is almost irrelevant, since graphene will also permit construction of the space elevator, and that solves that problem far better still. Still, space elevators would be very costly so maybe there is a place for super-tall ground-supported structures.)

But let’s look again at the pressures and densities. I think we can do a lot better than 6km. My own proposal a while back suggests how 30km tall structures could be built using graphene tube composite columns structures. I did think we’d be able to grow those.

Super-tall (30km) carbon structures (graphene and nanotube mesh)

We’d need higher pressures to extrude higher than 6km if we extruding solid columns, but these tube-based columns with graphene filament reinforced graphene foam packing would have a far lower density. The print heads in the above diagram were designed to make fur filaments but I think it is possible (though I haven’t yet done it) to redesign the print heads so that they could print the tubular structures needed for our columns. Tricky, but probably possible. The internal column structures are based on what nature uses to make trees, so are also nicely biomimetic. If we can redesign the print heads, then printing low density columns using a composite of filament reinforced foam, in between graphene tubes should work fine, up to heights well above the 30km I originally suggested. An outer low pressure foam layer can be added as the column emerges. It doesn’t have to withstand any significant pressure so can be as light as helium and add the strength needed to prevent column buckling. With the right structure, perhaps the whole 600km can be achieved that way. Certainly the figures look OK superficially, and there’s no hurry. It’s certainly worth more detailed study.

Free-floating AI battle drone orbs (or making Glyph from Mass Effect)

I have spent many hours playing various editions of Mass Effect, from EA Games. It is one of my favourites and has clearly benefited from some highly creative minds. They had to invent a wide range of fictional technology along with technical explanations in the detail for how they are meant to work. Some is just artistic redesign of very common sci-fi ideas, but they have added a huge amount of their own too. Sci-fi and real engineering have always had a strong mutual cross-fertilisation. I have lectured sometimes on science fact v sci-fi, to show that what we eventually achieve is sometimes far better than the sci-fi version (Exhibit A – the rubbish voice synthesisers and storage devices use on Star Trek, TOS).

Glyph

Liara talking to her assistant Glyph.Picture Credit: social.bioware.com

In Mass Effect, lots of floating holographic style orbs float around all over the place for various military or assistant purposes. They aren’t confined to a fixed holographic projection system. Disruptor and battle drones are common, and  a few home/lab/office assistants such as Glyph, who is Liara’s friendly PA, not a battle drone. These aren’t just dumb holograms, they can carry small devices and do stuff. The idea of a floating sphere may have been inspired by Halo’s, but the Mass Effect ones look more holographic and generally nicer. (Think Apple v Microsoft). Battle drones are highly topical now, but current technology uses wings and helicopters. The drones in sci-fi like Mass Effect and Halo are just free-floating ethereal orbs. That’s what I am talking about now. They aren’t in the distant future. They will be here quite soon.

I recently wrote on how to make force field and floating cars or hover-boards.

How to actually make a Star Wars Landspeeder or a Back to the future hoverboard.

Briefly, they work by creating a thick cushion of magnetically confined plasma under the vehicle that can be used to keep it well off the ground, a bit like a hovercraft without a skirt or fans. Using layers of confined plasma could also be used to make relatively weak force fields. A key claim of the idea is that you can coat a firm surface with a packed array of steerable electron pipes to make the plasma, and a potentially reconfigurable and self organising circuit to produce the confinement field. No moving parts, and the coating would simply produce a lifting or propulsion force according to its area.

This is all very easy to imagine for objects with a relatively flat base like cars and hover-boards, but I later realised that the force field bit could be used to suspend additional components, and if they also have a power source, they can add locally to that field. The ability to sense their exact relative positions and instantaneously adjust the local fields to maintain or achieve their desired position so dynamic self-organisation would allow just about any shape  and dynamics to be achieved and maintained. So basically, if you break the levitation bit up, each piece could still work fine. I love self organisation, and biomimetics generally. I wrote my first paper on hormonal self-organisation over 20 years ago to show how networks or telephone exchanges could self organise, and have used it in many designs since. With a few pieces generating external air flow, the objects could wander around. Cunning design using multiple components could therefore be used to make orbs that float and wander around too, even with the inspired moving plates that Mass Effect uses for its drones. It could also be very lightweight and translucent, just like Glyph. Regular readers will not be surprised if I recommend some of these components should be made of graphene, because it can be used to make wonderful things. It is light, strong, an excellent electrical and thermal conductor, a perfect platform for electronics, can be used to make super-capacitors and so on. Glyph could use a combination of moving physical plates, and use some to add some holographic projection – to make it look pretty. So, part physical and part hologram then.

Plates used in the structure can dynamically attract or repel each other and use tethers, or use confined plasma cushions. They can create air jets in any direction. They would have a small load-bearing capability. Since graphene foam is potentially lighter than helium

Could graphene foam be a future Helium substitute?

it could be added into structures to reduce forces needed. So, we’re not looking at orbs that can carry heavy equipment here, but carrying processing, sensing, storage and comms would be easy. Obviously they could therefore include whatever state of the art artificial intelligence has got to, either on-board, distributed, or via the cloud. Beyond that, it is hard to imagine a small orb carrying more than a few hundred grammes. Nevertheless, it could carry enough equipment to make it very useful indeed for very many purposes. These drones could work pretty much anywhere. Space would be tricky but not that tricky, the drones would just have to carry a little fuel.

But let’s get right to the point. The primary market for this isn’t the home or lab or office, it is the battlefield. Battle drones are being regulated as I type, but that doesn’t mean they won’t be developed. My generation grew up with the nuclear arms race. Millennials will grow up with the drone arms race. And that if anything is a lot scarier. The battle drones on Mass Effect are fairly easy to kill. Real ones won’t.

a Mass Effect combat droneMass Effect combat drone, picture credit: masseffect.wikia.com

If these cute little floating drone things are taken out of the office and converted to military uses they could do pretty much all the stuff they do in sci-fi. They could have lots of local energy storage using super-caps, so they could easily carry self-organising lightweight  lasers or electrical shock weaponry too, or carry steerable mirrors to direct beams from remote lasers, and high definition 3D cameras and other sensing for reconnaissance. The interesting thing here is that self organisation of potentially redundant components would allow a free roaming battle drone that would be highly resistant to attack. You could shoot it for ages with laser or bullets and it would keep coming. Disruption of its fields by electrical weapons would make it collapse temporarily, but it would just get up and reassemble as soon as you stop firing. With its intelligence potentially local cloud based, you could make a small battalion of these that could only be properly killed by totally frazzling them all. They would be potentially lethal individually but almost irresistible as a team. Super-capacitors could be recharged frequently using companion drones to relay power from the rear line. A mist of spare components could make ready replacements for any that are destroyed. Self-orientation and use of free-space optics for comms make wiring and circuit boards redundant, and sub-millimetre chips 100m away would be quite hard to hit.

Well I’m scared. If you’re not, I didn’t explain it properly.

How to actually make a Star Wars Landspeeder or a Back to the future hoverboard.

Star Wars (all trademarks acknowledged, but I’ll immediately remove them on request from the studios) made me a bit annoyed in the first opening seconds, when I heard the spaceship coming through space, but I did quite like their land-speeder though and I’d like to have one. Like most futurists, I get asked about flying cars every week.

Let’s dispose of pedantry first. Flying cars do exist. Some are basically vertical take off planes without the wings, using directed air jets to stay afloat and move. I guess you could use a derivative of that to make a kind of land-speeder. The hovercraft is also a bit Landspeedery, but works differently. Hovercraft are OK, but a Landspeeder floats higher off the ground and without the skirt so it it’s no hovercraft. Well, we’ll see.

This morning, well, in the middle of the night, I had an idea, as you do. Usually, ideas I have in bed tend to be total rubbish when inspected in the hard light of day. But this morning I had 3, two great, one not so great, so I can write about that one for free – the others I’ll keep for now. The less great idea is how to make a Star Wars Landspeeder or Marty McFly’s hover board from Back to the Future. Both would be almost silent, with no need for messy skirts, fans, or noisy ducted air jet engines, and could looks like the ones in the films. Or you could employ a designer and make one that looks nice.

Patrick Kiger reliably informs me that you can’t do that.

http://blogs.discovery.com/inscider/2013/04/a-real-version-of-marty-mcflys-hoverboard.html

Nice article, good fun, and states more or less the current line on tech. I just beg to differ with its conclusions.

Conventional wisdom says that if it isn’t using noisy ducted air jets or hovercraft skirts, it probably has to be magnetic, as the landspeeder is meant to be anyway, so needs a special metal track. It couldn’t work on a pavement or side-walk. The article above nicely points out that you can’t use magnetic effects to levitate above concrete or asphalt. Or else it has to use anti-gravity and we don’t know how to do that yet.

Well, I pointed out a good while ago with my linear induction bicycle lane idea that you could use a McFly style hoverboard on it. My daughter’s friends were teasing me about futurists and hoverboards – that’s why.

https://timeguide.wordpress.com/2013/01/30/hover-boards/

That would work. It would be totally silent. However, the landspeeder didn’t stay on a linear induction mat laid just under the entire desert surface, did it? That would just be silly. If you had a linear induction mat laid under the entire desert surface, you’d put some sort of horse shoes on your camel and it could just glide everywhere at high speed. You wouldn’t need the landspeeder. (Getting off the track a bit here.)

So, time to explain my idea, and it isn’t anti-gravity:

You can use magnetic levitation to produce a landspeeder or hoverboard that would work on a sidewalk, pavement, road, or even a desert surface. Not water, not the way McFly did anyway. You could also make the hover tanks and everything else that silently hovers near the ground in sci-fi films. And force fields.

But… sand, asphalt and concrete aren’t made of metal.

Graphene is a really good conductor. Expensive still, but give it a few years and it’ll be everywhere. It is a superb material. With graphene, you can make thin tubes, bigger than carbon nanotubes but still small bore. You could use those to make coils around electron pipes, maybe even the pipes themselves. Electron pipes are particle guides along which you can send any kind of charged particles at high speed, keeping them confined using strong magnetic fields, produced by the coils around the pipe, a mini particle accelerator. I originally invented electron pipes as a high bandwidth (at least 10^22bit/s) upgrade for optical fibre, but they have other uses too such as on-chip interconnect, 3d biomimetic microprinting for things like graphene tubes, space elevator rope and others. In this case, they have two uses.

First you’d use a covering of the pipes on the vehicle underside to inject a strong charge flux into the air beneath the hoverboard (if you’re a sci-fi nut, you could store the energy to do this in a supercapacitor and if you’re really twisted you might even call it a flux capacitor, since it will be used in the system to make this electron flux). The result is a highly charged mass of air. Plasma. So what?

Well, you’d also use some rings of these tubes around the periphery of the vehicle to create a very strong wall of magnetic field beneath the vehicle edge. This would keep the charged air from just diffusing. In addition, you’d direct some of them downwards to create a flow of charged air that would act to repel the air inside, further keeping it confined to a higher depth, or altitude, so you could hover quite a distance off the ground.

As a quick but important aside, you should be able to use it for making layered force fields too, (using layers of separated and repelling layers of charged air. They should resist small forces trying to bend them and would certainly disrupt any currents trying to get through. But maybe they would not be mechanically strong ones. So, not strong enough to stop bullets, but enough to stop or severely disrupt charges from basic plasma weaponry, but there aren’t many of them yet so that isn’t much of a benefit. Anyway… back to the future.

Having done this, you’ll hopefully have a cushion of highly charged air under your vehicle, confined within its circumference, and some basic vents could make up for any small losses. I am guessing this air is probably highly conductive, so it could be used to generate both magnetic and electrostatic forces with the fields produced by al those coils and pipes in the vehicle.

So now, you’d basically have a high-tech, silent electromagnetic hovercraft without a skirt to hold the air in, floating above pretty much any reasonably solid surface, that doesn’t even have to be smooth. It wouldn’t even make very much draft so you wouldn’t be sitting in a dust cloud.

Propulsion would be by using a layer of electron pipes around the edge of the vehicle to thrust particles in any direction, so providing an impulse, reaction and hence movement. The forward-facing and side facing pipes would suck in air to strip the charge off with which to feed the charged air underneath. Remember that little air would be escaping so this would still be silent. Think of the surface as a flat sheet that pushes ionised air through quite fast using purely electromagnetic force.

Plan B would be to use the cover of electron pipes on the underside to create a strong downward air flow that would be smoothed and diffused by pipes doing the side cushion bit. Neither would be visible and spoil the appearance, and smooth flow could still be pretty quiet. I prefer plan A. It’s just neater.

There would be a little noise from the air turbulence created as the air flow for propulsion mixes with other air, but with a totally silent source of the air flow. So basically you’d hear some wind but not much else.

Production of the electron pipes is nicely biomimetic. Packing them closely together in the right pattern (basically the pattern they’d assume naturally if you just picked them up) and feeding carbon atoms with the right charge through them at the right intervals could let you 3D print a continuous sheet of graphene or carbon nanotube. Biomimetic since the tube would grow from the base continuously just like grass. You could even produce an extremely tall skyscraper that way. (I used to say 30km as the limit for this, but more recent figures for graphene strength suggest that might be far too conservative and structures up to 600km may be theoretically possible, but that would need a lot cleverer engineering and certainly couldn’t grow the same way).

Could it work. Yes, I think so. I haven’t built a prototype but intuitively it should be feasible. Back to the Future Part 1 takes Marty to Oct 21, 2015. If we really wanted, a really good lab could just about make most and maybe all of this capability by then. On the other hand, Star Wars is set very far away and very long ago, so we’re a bit late for that one.

 

The bright potential future for BT

I left BT in 2007 after 22 years. (For my US readers, BT is Britain’s version of AT&T). Like most employees of most companies, I had a few gripes over the years, but overall, BT was a good company to work for – humane to its staff, while trying to do a good job for both shareholders and customers in a difficult political climate, with pretty sound ethics. It wasn’t perfect, but what company is?

I currently have BT broadband problems, as you do, again, but I still like BT and still keep all my shares, hoping one day they might get back up to what I paid for them. BT holds a unique place in my investments, being the only one I have ever lost money on (well, if I actually sold my shares now I’d lose). But it is a good company, and entirely fixable. My perhaps unjustifiably high regard for the company in spite of any evidence to the contrary doesn’t extend to the board. BT has a lot of excellent and devoted staff, and they are the reason for its survival, I would say very much in spite of it a long history of rubbish CEOs, including Livingstone. (I would exclude Vallance from my rubbish CEO list, I thought he actually did a pretty good job in the circumstances he faced.) As an engineer who could see the vast potential profits from relatively small investments that were open to a decent sized IT company, they all seemed incompetent to me, determined to ignore those potential markets and investing stupidly in others but focusing mainly on cost cutting as the only tool they could really understand. I don’t think any BT CEO since 1985 has deserved their grade or pay. BT gives its staff appraisals, and if I was his boss, I’d have given Livingstone 3 out of 10. At least now he’s in government, he will just be one incompetent among many so he will blend in just fine.

I won’t bother with the details of mistakes made. They are history. The future could still be bright if the new CEO is any good. Sadly, I don’t know Patterson. He joined the board after I left and I had no contact with him beforehand so I know nothing about him. I wish him the very best of success, for everyone’s sakes and if he does well, I’ll very happily sing his praises.

(I know it’s easy to say I could have done a far better job than most BT CEOs. I am certain that I could, and I certainly wouldn’t have made most of the huge errors that I saw, but anyone could say that and of course it is unprovable , and in any case,  I knew lots of other employees that would still have done much better than me. I guess it is a bit like US presidents. With 300 million people to pick from, you really have to wonder how the hell some of them ever got elected.)

So, what should BT do now? I declare my financial interests. I have a few shares, and one day if I am still alive they’ll give me a pension, and I remain a customer, so I do really want them to flourish, but otherwise I have had no financial exchanges with BT since I left in 2007.

A lot of the potential for BT has existed for a long time, and it is proof of previous CEO incompetence that it remains mostly untapped. Other areas are quite new.

There are a few valuable assets that BT makes too little use of to date. One is trust. BT has always achieved a very high trust rating from customers. Sure, they might whine about occasional lousy customer service or call centre delays, but mostly they still trust BT. Technically, customers assume their kit will work pretty reliably and they will eventually fix it with only modest annoyance when it fails. That’s better than it sounds compared to a lot of companies (Hotpoint, British Gas and O2 to name three at the very top of my most recent customer service hate list). They also trust BT on security, again an advantage not to be sniffed at. More importantly, customers trust it morally. It is quite a nice company. It pays its taxes. It has good old fashioned values and doesn’t do services that are morally questionable except where required to by law. It leans towards the customer’s side on questions of privacy v state surveillance. Again, a whole lot better on several important topical points than many big IT and web companies right now. A decent CEO would make his marketing departments do wonders with those advantages.

BT’s main physical asset is a very widespread network, much of which is fibre. But is has seriously floundered on decent speed broadband roll-out for badly miscalculated economic reasons and has ended up losing large numbers of customers onto mobile and other broadband providers. Firstly, it has to fix that by greatly accelerating its roll-out of fibre to cover the entire population within towns and suburbs. Further than that, it can plead poverty to government to extract subsidies for uneconomic roll-outs in some country areas, and fob others off with custom solutions. How close the fibre actually gets to the end customer is not important and there are many feasible architectural solutions. The data rate the customer gets is important.

The data rates it needs to provide via that fibre must be at least 50Mbit/s, which I calculated a long time ago is the latent demand of an average household today. It must be ready to increase those basic rates quickly through 100Mbit/s in 2015 into Gbits/s soon after.

It should by default provide high speed wireless from all of those homes into the nearby area. This will allow serious competition with mobile companies, especially since many customers carry tablets with only wireless LAN access. Those tablets and many smartphones rely on cloud provision for many services such as photo, video and music storage, as well as download services such as TV on demand. Decent wireless rates in the vicinity of most homes and business properties would make fairly ubiquitous broadband a reality, with none of the tiny date rate limits and poor connections offered by mobile operators. (As an aside, not doing that ages ago instead of crippling the company with the costs of unnecessary 3G licenses was one of the big errors I mentioned).

With high speed ubiquitous access, and still loads of building space to place storage and servers, BT could be a first class cloud provider (as Bonfield should have understood, coming from a computing company in the days when the cloud was still called distributed computing and computing on demand). Its engineers have understood cloud technology principles since the 80s, but it has never really invested in it properly. Now that other companies are threatening to put in their own access to their own clouds, BT is vulnerable to attack if it doesn’t quickly seize the opportunity by the throat. This may well become another missed opportunity for BT.

Another one (that CEO Heiffer should have understood, coming as he did from the finance world) is banking. BT manages to charge profitably on calls that cost just a few pence. Micro-payments is resurfacing once again as a valuable service. So far, no company has succeeded in delivering an acceptable micro-payments service but BT has the geographic coverage and technical skill to pull it off. It could go further and do proper full-service community banking. Again, a huge advantage has fallen into its lap thanks to the demise of trust in conventional banks. If any company could make community based banking work, BT could. The political climate is very favourable to get appropriate regulatory consent, society is ready and even eager, and the technology is available and proven with which to make it. Trust is the magic extra ingredient that BT has more of than other players.

Cloud financing, buying and other community based enterprises are all up-and-coming now, drawing from social and business versions of cloud thinking. Again, the core ideas go back decades. BT has been involved in their debates since over 20 years ago and holds a good hand of cards. It still could help a great deal to stimulate economic redevelopment of the UK by implementing just some of its ideas in this space. It is ironic that Livinsgtone failed to understand this enormous opportunity while he was CEO of BT, yet has now been made Minister of State for Trade and Investment. Why would anyone think he will suddenly understand now?

BT could also develop some of its many inventions made at its research labs. In many cases, small development costs are all that should be needed to generate large incomes. BT’s policy for ages has been to starve any forward looking R&D and only feed proven markets. That is no way to grow. Serious R&D investment could reap many times over in rewards. AI, convergence of IT with biotech, sponge nets, augmented reality, novel interfaces, 3D comms, digital bubbles, biomimetics and many others offer potential. Even the railways are open to attack. Conventional rail is still only equivalent to BT’s old circuit-switched lines that it used until the 1970s. A company that has been in front runners for 40 years of packet switching developments ought to be able to apply equivalent thinking to rail and road to gain rich rewards, converging time-wise as it does now with self driving cars, electrics, self organisation, high speed wireless, super-capacitor development and a host of other technologies BT understands well. Here again, rich pickings are available, and BT has one of the best positions to capitalise.

I could go on, but that is enough examples for now. BT has been offered a fresh start with a fresh CEO. If he is even a bit brave he could easily achieve things very far beyond any of his predecessors. As I said, I don’t know him so have no idea if he will be good or bad. Let’s hope he is up to the job and not just another huge disappointment.

Deep surveillance – how much privacy could you lose?

The news that seems to have caught much of the media in shock, that our electronic activities were being monitored, comes as no surprise at all to anyone working in IT for the last decade or two. In fact, I can’t see what’s new. I’ve always assumed since the early 90s that everything I write and do on-line or say or text on a phone or watch on digital TV or do on a game console is recorded forever and checked by computers now or will be checked some time in the future for anything bad. If I don’t want anyone to know I am thinking something, I keep it in my head. Am I paranoid? No. If you think I am, then it’s you who is being naive.

I know that if some technically competent spy with lots of time and resources really wants to monitor everything I do day and night and listen to pretty much everything I say, they could, but I am not important enough, bad enough, threatening enough or even interesting enough, and that conveys far more privacy than any amount of technology barriers ever could. I live in a world of finite but just about acceptable risk of privacy invasion. I’d like more privacy, but it’s too much hassle.

Although government, big business and malicious software might want to record everything I do just in case it might be useful one day, I still assume some privacy, even if it is already technically possible to bypass it. For example, I assume that I can still say what I want in my home without the police turning up even if I am not always politically correct. I am well aware that it is possible to use a function built into the networks called no-ring dial-up to activate the microphone on my phones without me knowing, but I assume nobody bothers. They could, but probably don’t. Same with malware on my mobiles.

I also assume that the police don’t use millimetre wave scanning to video me or my wife through the walls and closed curtains. They could, but probably don’t. And there are plenty of sexier targets to point spycams at so I am probably safe there too.

Probably, nobody bothers to activate the cameras on my iphone or Nexus, but I am still a bit cautious where I point them, just in case. There is simply too much malware out there to ever assume my IT is safe. I do only plug a camera and microphone into my office PC when I need to. I am sure watching me type or read is pretty boring, and few people would do it for long, but I have my office blinds drawn and close the living room curtains in the evening for the same reason – I don’t like being watched.

In a busy tube train, it is often impossible to stop people getting close enough to use an NFC scanner to copy details from my debit card and Barclaycard, but they can be copied at any till or in any restaurant just as easily, so there is a small risk but it is both unavoidable and acceptable. Banks discovered long ago that it costs far more to prevent fraud 100% than it does to just limit it and accept some. I adopt a similar policy.

Enough of today. What of tomorrow? This is a futures blog – usually.

Well, as MM Wave systems develop, they could become much more widespread so burglars and voyeurs might start using them to check if there is anything worth stealing or videoing. Maybe some search company making visual street maps might ‘accidentally’ capture a detailed 3d map of the inside of your house when they come round as well or instead of everything they could access via your wireless LAN. Not deliberately of course, but they can’t check every line of code that some junior might have put in by mistake when they didn’t fully understand the brief.

Some of the next generation games machines will have 3D scanners and HD cameras that can apparently even see blood flow in your skin. If these are hacked or left switched on – and social networking video is one of the applications they are aiming to capture, so they’ll be on often – someone could watch you all evening, capture the most intimate body details, film your facial expressions while you are looking at a known image on a particular part of the screen. Monitoring pupil dilation, smiles, anguished expressions etc could provide a lot of evidence for your emotional state, with a detailed record of what you were watching and doing at exactly that moment, with whom. By monitoring blood flow, pulse and possibly monitoring your skin conductivity via the controller, level of excitement, stress or relaxation can easily be inferred. If given to the authorities, this sort of data might be useful to identify paedophiles or murderers, by seeing which men are excited by seeing kids on TV or those who get pleasure from violent games, so obviously we must allow it, mustn’t we? We know that Microsoft’s OS has had the capability for many years to provide a back door for the authorities. Should we assume that the new Xbox is different?

Monitoring skin conductivity is already routine in IT labs as an input. Thought recognition is possible too and though primitive today, we will see that spread as the technology progresses. So your thoughts can be monitored too. Thoughts added to emotional reactions and knowledge of circumstances would allow a very detailed picture of someone’s attitudes. By using high speed future computers to data mine zillions of hours of full sensory data input on every one of us gathered via all this routine IT exposure, a future government or big business that is prone to bend the rules could deduce everyone’s attitudes to just about everything – the real truth about our attitudes to every friend and family member or TV celebrity or politician or product, our detailed sexual orientation, any fetishes or perversions, our racial attitudes, political allegiances, attitudes to almost every topic ever aired on TV or everyday conversation, how hard we are working, how much stress we are experiencing, many aspects of our medical state. And they could steal your ideas, if you still have any after putting all your effort into self censorship.

It doesn’t even stop there. If you dare to go outside, innumerable cameras and microphones on phones, visors, and high street surveillance will automatically record all this same stuff for everyone. Thought crimes already exist in many countries including the UK. In depth evidence will become available to back up prosecutions of crimes that today would not even be noticed. Computers that can retrospectively date mine evidence collected over decades and link it all together will be able to identify billions of crimes.

Active skin will one day link your nervous system to your IT, allowing you to record and replay sensations. You will never be able to be sure that you are the only one that can access that data either. I could easily hide algorithms in a chip or program that only I know about, that no amount of testing or inspection could ever reveal. If I can, any decent software engineer can too. That’s the main reason I have never trusted my IT – I am quite nice but I would probably be tempted to put in some secret stuff on any IT I designed. Just because I could and could almost certainly get away with it. If someone was making electronics to link to your nervous system, they’d probably be at least tempted to put a back door in too, or be told to by the authorities.

Cameron utters the old line: “if you are innocent, you have nothing to fear”. Only idiots believe that. Do you know anyone who is innocent? Of everything? Who has never ever done or even thought anything even a little bit wrong? Who has never wanted to do anything nasty to a call centre operator? And that’s before you even start to factor in corruption of the police or mistakes or being framed or dumb juries or secret courts. The real problem here is not what Prism does and what the US authorities are giving to our guys. It is what is being and will be collected and stored, forever, that will be available to all future governments of all persuasions. That’s the problem. They don’t delete it. I’ve said often that our governments are often incompetent but not malicious. Most of our leaders are nice guys, even if some are a little corrupt in some cases. But what if it all goes wrong, and we somehow end up with a deeply divided society and the wrong government or a dictatorship gets in. Which of us can be sure we won’t be up against the wall one day?

We have already lost the battle to defend our privacy. Most of it is long gone, and the only bits left are those where the technology hasn’t caught up yet. In the future, not even the deepest, most hidden parts of your mind will be private. Ever.

Reverse engineering the brain is a very slow way to make a smart computer

The race is on to build conscious and smart computers and brain replicas. This article explains some of Markam’s approach. http://www.wired.com/wiredscience/2013/05/neurologist-markam-human-brain/all/

It is a nice project, and its aims are to make a working replica of the brain by reverse engineering it. That would work eventually, but it is slow and expensive and it is debatable how valuable it is as a goal.

Imagine if you want to make an aeroplane from scratch.  You could study birds and make extremely detailed reverse engineered mathematical models of the structures of individual feathers, and try to model all the stresses and airflows as the wing beats. Eventually you could make a good model of a wing, and by also looking at the electrics, feedbacks, nerves and muscles, you could eventually make some sort of control system that would essentially replicate a bird wing. Then you could scale it all up, look for other materials, experiment a bit and eventually you might make a big bird replica. Alternatively, you could look briefly at a bird and note the basic aerodynamics of a wing, note the use of lightweight and strong materials, then let it go. You don’t need any more from nature than that. The rest can be done by looking at ways of propelling the surface to create sufficient airflow and lift using the aerofoil, and ways to achieve the strength needed. The bird provides some basic insight, but it simply isn’t necessary to copy all a bird’s proprietary technology to fly.

Back to Markam. If the real goal is to reverse engineer the actual human brain and make a detailed replica or model of it, then fair enough. I wish him and his team, and their distributed helpers and affiliates every success with that. If the project goes well, and we can find insights to help with the hundreds of brain disorders and improve medicine, great. A few billion euros will have been well spent, especially given the waste of more billions of euros elsewhere on futile and counter-productive projects. Lots of people criticise his goal, and some of their arguments are nonsensical. It is a good project and for what it’s worth, I support it.

My only real objection is that a simulation of the brain will not think well and at best will be an extremely inefficient thinking machine. So if a goal is to achieve thought or intelligence, the project as described is barking up the wrong tree. If that isn’t a goal, so what? It still has the other uses.

A simulation can do many things. It can be used to follow through the consequences of an input if the system is sufficiently well modelled. A sufficiently detailed and accurate brain simulation could predict the impacts of a drug or behaviours resulting from certain mental processes. It could follow through the impacts and chain of events resulting from an electrical impulse  this finding out what the eventual result of that will be. It can therefore very inefficiently predict the result of thinking, but by using extremely high speed computation, it could in principle work out the end result of some thoughts. But it needs enormous detail and algorithmic precision to do that. I doubt it is achievable simply because of the volume of calculation needed.  Thinking properly requires consciousness and therefore emulation. A conscious circuit has to be built, not just modelled.

Consciousness is not the same as thinking. A simulation of the brain would not be conscious, even if it can work out the result of thoughts. It is the difference between printed music and played music. One is data, one is an experience. A simulation of all the processes going on inside a head will not generate any consciousness, only data. It could think, but not feel or experience.

Having made that important distinction, I still think that Markam’s approach will prove useful. It will generate many useful insights into the workings of the brain, and many of the processes nature uses to solve certain engineering problems. These insights and techniques can be used as input into other projects. Biomimetics is already proven as a useful tool in solving big problems. Looking at how the brain works will give us hints how to make a truly conscious, properly thinking machine. But just as with birds and airbuses, we can take ideas and inspiration from nature and then do it far better. No bird can carry the weight or fly as high or as fast as an aeroplane. No proper plane uses feathers or flaps its wings.

I wrote recently about how to make a conscious computer:

https://timeguide.wordpress.com/2013/02/15/how-to-make-a-conscious-computer/ and https://timeguide.wordpress.com/2013/02/18/how-smart-could-an-ai-become/

I still think that approach will work well, and it could be a decade faster than going Markam’s route. All the core technology needed to start making a conscious computer already exists today. With funding and some smart minds to set the process in motion, it could be done in a couple of years. The potential conscious and ultra-smart computer, properly harnessed, could do its research far faster than any human on Markam’s team. It could easily beat them to the goal of a replica brain. The converse is not true, Markam’s current approach would yield a conscious computer very slowly.

So while I fully applaud the effort and endorse the goals, changing the approach now could give far more bang for the buck, far faster.

The future of music creation

When I was a student, I saw people around me that could play musical instruments and since I couldn’t, I felt a bit inadequate, so I went out and bought a £13 guitar and taught myself to play. Later, I bought a keyboard and learned to play that too. I’ve never been much good at either, and can’t read music, but  if I know a tune, I can usually play it by ear and sometimes I compose, though I never record any of my compositions. Music is highly rewarding, whether listening or creating. I play well enough for my enjoyment and there are plenty of others who can play far better to entertain audiences.

Like almost everyone, most of the music I listen to is created by others and today, you can access music by a wide range of means. It does seem to me though that the music industry is stuck in the 20th century. Even concerts seem primitive compared to what is possible. So have streaming and download services. For some reason, new technology seems mostly to have escaped its attention, apart from a few geeks. There are a few innovative musicians and bands out there but they represent a tiny fraction of the music industry. Mainstream music is decades out of date.

Starting with the instruments themselves, even electronic instruments produce sound that appears to come from a single location. An electronic violin or guitar is just an electronic version of a violin or guitar, the sound all appears to come from a single point all the way through. It doesn’t  throw sound all over the place or use a wide range of dynamic effects to embrace the audience in surround sound effects. Why not? Why can’t a musician or a technician make the music meander around the listener, creating additional emotional content by getting up close, whispering right into an ear, like a violinist picking out an individual woman in a bar and serenading her? High quality surround sound systems have been in home cinemas for yonks. They are certainly easy to arrange in a high budget concert. Audio shouldn’t stop with stereo. It is surprising just how little use current music makes of existing surround sound capability. It is as if they think everyone only ever listens on headphones.

Of course, there is no rule that electronic instruments have to be just electronic derivatives of traditional ones, and to be fair, many sounds and effects on keyboards and electric guitars do go a lot further than just emulating traditional variants. But there still seems to be very little innovation in new kinds of instrument to explore dynamic audio effects, especially any that make full use of the space around the musician and audience. With the gesture recognition already available even on an Xbox or PS3, surely we should have a much more imaginative range of potential instruments, where you can make precise gestures, wave or throw your arms, squeeze your hands, make an emotional facial expression or delicately pinch, bend or slide fingers to create effects. Even multi-touch on phones or pads should have made a far bigger impact by now.

(As an aside, ever since I was a child, I have thought that there must be a visual equivalent to music. I don’t know what it is, and probably never will, but surely, there must be visual patterns or effects that can generate an equivalent emotional response to music. I feel sure that one day someone will discover how to generate them and the field will develop.)

The human body is a good instrument itself. Most people can sing to a point or at least hum or whistle a tune even if they can’t play an instrument. A musical instrument is really just an unnecessary interface between your brain, which knows what sound you want to make, and an audio production mechanism. Up until the late 20th century, the instrument made the sound, today, outside of a live concert at least,  it is very usually a computer with a digital to analog converter and a speaker attached. Links between computers and people are far better now though, so we can bypass the hard-to-learn instrument bit. With thought recognition, nerve monitoring, humming, whistling, gesture and expression recognition and so on, there is a very rich output from the body that can potentially be used far more intuitively and directly to generate the sound. You shouldn’t have to learn how to play an instrument in the 21st century. The sound creation process should interface almost directly to your brain as intuitively as your body does. If you can hum it, you can play it. Or should be able to, if the industry was keeping up.

Going a bit further, most of us have some idea what sort of music or effect we want to create, but don’t know quite enough about music to have the experience or skill to know quite what. A skilled composer may be able to write something down right away to achieve a musical effect that the rest of us would struggle to imagine. So, add some AI. Most music is based on fairly straightforward mathematical principles, even symphonies are mostly combinations of effects and sequences that fit well within AI-friendly guidelines. We use calculators to do calculations, so use AI to help compose music. Any of us should be able to compose great music with tools we should be able to build now. It shouldn’t be the future, it should be the present.

Let’s look at music distribution. When we buy a music track or stream it, why do we still only get the audio? Why isn’t the music video included by default? Sure, you can watch on YouTube but then you generally get low quality audio and video. Why isn’t purchased music delivered at the highest quality with full HD 3D video included, or videos if the band has made a few, with all the latest ones included as they emerge? If a video is available for music video channels, it surely should be available to those who have bought the music. That it isn’t reflects the contempt that the music industry generally shows to its customers. It treats us as a bunch of thieves who must only ever be given the least possible access for the greatest possible outlay, to make up for all the times we must of course be stealing off them. That attitude has to change if the industry is to achieve its potential. 

Augmented reality is emerging now. It already offers some potential to add overlays at concerts but in a few years, when video visors are commonplace, we should expect to see band members playing up in the air, flying around the audience, virtual band members, cartoon and fantasy creations all over the place doping all sorts of things, visual special effects overlaying the sound effects. Concerts will be a spectacular opportunity to blend the best of visual, audio, dance, storytelling, games and musical arts together. Concerts could be much more exciting, if they use the technology potential. Will they? I guess we’ll have to wait and see. Much of this could be done already, but only a little is.

Now lets consider the emotional connection between a musician and the listener. We are all very aware of the intense (though unilateral) relationship teens can often build with their pop idols. They may follow them on Twitter and other social nets as well as listening to their music and buying their posters. Augmented reality will let them go much further still. They could have their idol with them pretty much all the time, virtually present in their field of view, maybe even walking hand in hand, maybe even kissing them. The potential spectrum extends from distant listening to intimate cuddles. Bearing in mind especially the ages of many fans, how far should we allow this to go and how could it be policed?

Clothing adds potential to the emotional content during listening too. Headphones are fine for the information part of audio, but the lack of stomach-throbbing sound limits the depth of the experience. Music is more than information. Some music is only half there if it isn’t at the right volume. I know from personal experience that not everyone seems to understand this, but turning the volume down (or indeed up) sometimes destroys the emotional content. Sometimes you have to feel the music, sometimes let it fully conquer your senses. Already, people are experimenting with clothes that can house electronics, some that flash on and off in synch with the music, and some that will be able to contract and expand their fibres under electronic control. You will be able to buy clothes that give you the same vibration you would otherwise get from the sub-woofer or the rock concert.

Further down the line, we will be able to connect IT directly into the nervous system. Active skin is not far away. Inducing voltages and current in nerves via tiny implants or onplants on patches of skin will allow computers to generate sensations directly.

This augmented reality and a link to the nervous system gives another whole dimension to telepresence. Band members at a concert will be able to play right in front of audience members, shake them, cuddle them. The emotional connection could be a lot better.

Picking up electrical clues from the skin allows automated music selection according to the wearers emotional state. Even properties like skin conductivity can give clues about emotional state. Depending on your stress level for example, music could be played that soothes you, or if you feel calm, maybe more stimulating tracks could be played. Playlists would thus adapt to how you feel.

Finally, music is a social thing too. It brings people together in shared experiences. This is especially true for the musicians, but audience members often feel some shared experience too. Atmosphere. Social networking already sees some people sharing what music they are listening too (I don’t want to share my tastes but I recognise that some people do, and that’s fine). Where shared musical taste is important to a social group, it could be enhanced by providing tools to enable shared composition. AI can already write music in particular styles – you can feed Mozart of Beethoven into some music generators and they will produce music that sounds like it had been composed by that person, they can compose that as fast as it comes out of the speakers. It could take style preferences from a small group of people and produce music that fits across those styles. The result is a sort of tribal music, representative of the tribe that generated it. In this way, music could become even more of a social tool in the future than it already is.

3D printable guns are here to stay, but we need to ban magnets from flights too.

It’s interesting watching new technologies emerge. Someone has a bright idea, it gets hyped a bit, then someone counter-hypes a nightmare scenario and everyone panics. Then experts queue up to say why it can’t be done, then someone does it, then more panic, then knee-jerk legislation, then eventually the technology becomes part of everyday life.

I was once dismissed by our best radio experts when I suggested making cellphone masts like the ones you see on every high building today. I recall being taught that you couldn’t possibly ever get more than 19.2kbits/s down a phone line. I got heavily marked down in an appraisal for my obvious stupidity suggesting that mobile phones could include video cameras. I am well used to being told something is impossible, but if I can see how to make it work, I don’t care, I believe it anyway. My personal mantra is ‘just occasionally, everyone else IS wrong’. I am an engineer. Some engineers might not know how to do something, but others sometimes can.

When the printable gun was suggested (not by me this time!) I accepted it as an inevitable part of the future immediately. I then listened as experts argued that it could never survive the forces. But guess what? A gun doesn’t have to survive. It just needs to work once, then you use a fresh one. The first prototypes only worked for a few bullets before breaking. The Liberator was made to work just once. Missiles are like that. They fire once, only once. So you bring a few to the battle.

The recently uploaded blueprint for the Liberator printable gun has been taken offline after 100,000 copies were downloaded, so it will be about as hard to find as embarrassing pictures of any celebrity. There will be innovations, refinements, improvements, then we will see them in use by hobbyists and criminals alike.

But there are loads of ways to skin a cat, allegedly. A gun’s job is to quickly accelerate a small mass up to a high speed in a short distance. Using explosives in a bullet held in a printable lump of plastic clearly does the job on a one-shot basis, but you still need a bullet and they don’t sell them in Tesco’s. So why do it that way?

A Gauss Rifle is a science toy that can fire a ball-bearing across your living room. You can make one in 5 minutes using nothing more than sticky tape, a ruler and some neodymium magnets. Here’s a nice example of the toy version using simple steel balls:

http://scitoys.com/scitoys/scitoys/magnets/gauss.html

The concept is very well known, though a bit harder to Google now because so many computer games have used the same name for imaginary weapons. In an easily adapted version, where the steel balls are replaced by neodymium magnets held in place in alternately attracting and repelling polarities, when the first magnet is released, it is pulled by strong magnetic force to the second one, hitting it quite fast, and conveying all that energy to the next stage magnet, which is then pushed away from the one repelling it towards the one attracting it, so accumulating lots of energy. The energy accumulates over several stages, optimally harnessing the full repulsive and attractive forces available from the strong magnets. Too many stages result in the magnets shattering, but with care, four stages with simple steel balls can be used reasonably safely as a toy.

Some sites explain that if you position the magnets accurately with the poles oriented right, you can get it to make a small hole in a wall. I imagine you could design and print a gauss rifle jig with very high precision, far better than you could do with tape and your fingers, that would hold the magnets in the right locations and polarity orientations.  Then just put your magnets in and it is ready. Neodymium magnets are easily available in various sizes at low cost and the energy of the final ball is several times as high as the first one. With the larger magnets, the magnetic forces are extremely high so the energy accumulated would also be high. A sharp plastic dart housing the last ball would make quite a dangerous device. A Gauss rifle might lack the force of a conventional gun, but it could still be quite powerful. If I was in charge of airport security, I’d already be banning magnets from flights.

I really don’t see how you could stop someone making this sort of thing, or plastic crossbows or fancy plastic jigs with stored energy in springs that can be primed in an aircraft toilet that fire things in imaginative ways. There are zillions of ways to accelerate something, some of which can be done in cascades that only generate tolerable forces at any particular point so could easily work with printable materials. The current focus on firearms misses the point. You don’t have to transfer all the energy to a projectile in one short high pressure burst, you can accumulate it in stages. Focusing security controls on explosives-based systems will leave us vulnerable.

3D printable weapons are here to stay, but for criminals and terrorists, bullets with explosives in might soon be obsolete.

Killing machines

There is rising concern about machines such as drones and battlefield robots that could soon be given the decision on whether to kill someone. Since I wrote this and first posted it a couple of weeks ago, the UN has put out their thoughts as the DM writes today:

http://www.dailymail.co.uk/news/article-2318713/U-N-report-warns-killer-robots-power-destroy-human-life.html 

At the moment, drones and robots are essentially just remote controlled devices and a human makes the important decisions. In the sense that a human uses them to dispense death from a distance, they aren’t all that different from a spear or a rifle apart from scale of destruction and the distance from which death can be dealt. Without consciousness, a missile is no different from a spear or bullet, nor is a remote controlled machine that it is launched from. It is the act of hitting the fire button that is most significant, but proximity is important too. If an operator is thousands of miles away and isn’t physically threatened, or perhaps has never even met people from the target population, other ethical issues start emerging. But those are ethical issues for the people, not the machine.

Adding artificial intelligence to let a machine to decide whether a human is to be killed or not isn’t difficult per se. If you don’t care about killing innocent people, it is pretty easy. It is only made difficult because civilised countries value human lives, and because they distinguish between combatants and civilians.

Personally, I don’t fully understand the distinction between combatants and civilians. In wars, often combatants have no real choice but to fight or are conscripted, and they are usually told what to do, often by civilian politicians hiding in far away bunkers, with strong penalties for disobeying. If a country goes to war, on the basis of a democratic mandate, then surely everyone in the electorate is guilty, even pacifists, who accept the benefits of living in the host country but would prefer to avoid the costs. Children are the only innocents.

In my analysis, soldiers in a democratic country are public sector employees like any other, just doing a job on behalf of the electorate. But that depends to some degree on them keeping their personal integrity and human judgement. The many military who take pride in following orders could be thought of as being dehumanised and reduced to killing machines. Many would actually be proud to be thought of as killing machines. A soldier like that, who merely follow orders, deliberately abdicates human responsibility. Having access to the capability for good judgement, but refusing to use it, they reduce themselves to a lower moral level than a drone. At least a drone doesn’t know what it is doing.

On the other hand, disobeying a direct order may soothe issues of conscience but invoke huge personal costs, anything from shaming and peer disapproval to execution. Balancing that is a personal matter, but it is the act of balancing it that is important, not necessarily the outcome. Giving some thought to the matter and wrestling at least a bit with conscience before doing it makes all the difference. That is something a drone can’t yet do.

So even at the start, the difference between a drone and at least some soldiers is not always as big as we might want it to be, for other soldiers it is huge. A killing machine is competing against a grey scale of judgement and morality, not a black and white equation. In those circumstances, in a military that highly values following orders, human judgement is already no longer an essential requirement at the front line. In that case, the leaders might set the drones into combat with a defined objective, the human decision already taken by them, the local judgement of who or what to kill assigned to adaptive AI, algorithms and sensor readings. For a military such as that, drones are no different to soldiers who do what they’re told.

However, if the distinction between combatant and civilian is required, then someone has to decide the relative value of different classes of lives. Then they either have to teach it to the machines so they can make the decision locally, or the costs of potential collateral damage from just killing anyone can be put into the equations at head office. Or thirdly, and most likely in practice, a compromise can be found where some judgement is made in advance and some locally. Finally, it is even possible for killing machines to make decisions on some easier cases and refer difficult ones to remote operators.

We live in an electronic age, with face recognition, friend or foe electronic ID, web searches, social networks, location and diaries, mobile phone signals and lots of other clues that might give some knowledge of a target and potential casualties. How important is it to kill or protect this particular individual or group, or take that particular objective? How many innocent lives are acceptable cost, and from which groups – how many babies, kids, adults, old people? Should physical attractiveness or the victim’s professions be considered? What about race or religion, or nationality, or sexuality, or anything else that could possibly be found out about the target before killing them? How much should people’s personal value be considered, or should everyone be treated equal at point of potential death? These are tough questions, but the means of getting hold of the date are improving fast and we will be forced to answer them. By the time truly intelligent drones will be capable of making human-like decisions, they may well know who they are killing.

In some ways this far future with a smart or even conscious drone or robot making informed decisions before killing people isn’t as scary as the time between now and then. Terminator and Robocop may be nightmare scenarios, but at least in those there is clarity of which one is the enemy. Machines don’t yet have anywhere near that capability. However, if an objective is considered valuable, military leaders could already set a machine to kill people even when there is little certainty about the role or identity of the victims. They may put in some algorithms and crude AI to improve performance or reduce errors, but the algorithmic uncertainty and callous uncaring dispatch of potentially innocent people is very worrying.

Increasing desperation could be expected to lower barriers to use. So could a lower regard for the value of human life, and often in tribal conflicts people don’t consider the lives of the opposition to have a very high value. This is especially true in terrorism, where the objective is often to kill innocent people. It might not matter that the drone doesn’t know who it is killing, as long as it might be killing the right target as part of the mix. I think it is reasonable to expect a lot of battlefield use and certainly terrorist use of semi-smart robots and drones that kill relatively indiscriminatingly. Even when truly smart machines arrive, they might be set to malicious goals.

Then there is the possibility of rogue drones and robots. The Terminator/Robocop scenario. If machines are allowed to make their own decisions and then to kill, can we be certain that the safeguards are in place that they can always be safely deactivated? Could they be hacked? Hijacked? Sabotaged by having their fail-safes and shut-offs deactivated? Have their ‘minds’ corrupted? As an engineer, I’d say these are realistic concerns.

All in all, it is a good thing that concern is rising and we are seeing more debate. It is late, but not too late, to make good progress to limit and control the future damage killing machines might do. Not just directly in loss of innocent life, but to our fundamental humanity as armies get increasingly used to delegating responsibility to machines to deal with a remote dehumanised threat. Drones and robots are not the end of warfare technology, there are far scarier things coming later. It is time to get a grip before it is too late.

When people fought with sticks and stones, at least they were personally involved. We must never allow personal involvement to disappear from the act of killing someone.

Isn’t graphene fun?

I’ve just been checking up on progress on supercapacitors to see if they are up to the job of replacing car batteries yet. It looks like they will be soon. Supercapacitors have lower energy density than lithium batteries, but can be charged extremely quickly.

My favoured technique is to build mats into the road surface every 50 metres (i.e. same as streetlights), and to charge the supercapacitor bank using induction as the car passes over them. That means that even a small energy capacity would be adequate. It wouldn’t have to power the car for 100 miles or more like a battery, but only for the first and last few kilometres of a journey where there are no mats. Otherwise, range wouldn’t be limited as it would charge all the time on the trip.

However, a few minutes ago I had another little spark of enlightenment. Why not also use the pads for propulsion too, using a linear induction motor?  (I like those)

If the pad gives an impulse to the car as well as a capacitor recharge, then the capacitor won’t need to be as big. And if the impulse is gentle enough, passengers won’t feel a jolt every time they drive over one.

Another little insight, hardly worthy of the name, is that with trains of self driving pods, the pods could be so close together on most journeys that they effectively have a continuous circuit from one end of the train to the other. That means that public transport pods that are only used locally and on certain routes might be able to get by with tiny capacitor banks.

Culture tax and sustainable capitalism

I have written several times now about changing capitalism and democracy to make them suited to the 21st century. Regardless of party politics, most people want a future where nobody is too poor to live a dignified and comfortable life. To ensuring that that is possible, we need to tweak a few things.

I suggested a long time ago that there could be a basic income for all, without any means testing on it, so that everyone has an income at a level they can live on. No means testing means little admin. Then wages go on top, so that everyone is encouraged to work, and then all income from all sources is totalled and taxed appropriately. It is a nice idea. I wasn’t the first to recommend it and many others are saying much the same. The idea is old, but the figures are rarely discussed. It is harder than it sounds and being a nice idea doesn’t ensure  economic feasibility.

The difference between figures between parties would be relatively minor so let’s ignore party politics. In today’s money, it would be great if everyone could have, say, £30k a year as a state benefit, then earn whatever they can on top. 30k doesn’t make you rich, but you can live OK on it so nobody would be poor in any proper sense of the word. With everyone economically provided for and able to lead comfortable and dignified lives, it would be a utopia compared to today. Sadly, it doesn’t add up yet. 65,000,000 x 30,000 = 1,950Bn . The UK economy isn’t that big. The state only gets to control part of GDP and out of that reduced budget it also has its other costs of providing health, education, defence etc, so the amount that could be dished out to everyone on this basis is therefore a lot smaller than 30k. Even if the state takes 75% of GDP and spends most of it on the base allowance, 10k per person would be pushing it. So a family could afford a modest lifestyle, but single people would really struggle. Some people would need additional help, and that reduces the pool left to pay the basic allowance still further. Also, if the state takes 75% of GDP, only 25% is left for everything else, so salaries would be flat, reducing the incentive to work, while investment and entrepreneurial activity are starved of both resources and incentive.

Simple maths thus forces us to make compromises. Sharing resources reduces costs considerably. In a first revision, families might be given less for kids than for the adults, but what about groups of young adults sharing a big house? They may be adults but they also benefit from the same economy of shared resources. So maybe there should be a household limit, or a bedroom tax, or forms and means testing, and it mustn’t incentivise people living separately or house supply suffers. Anyway, it is already getting complicated and our original nice idea is in the bin. That’s why it is such a mess at the moment. There just isn’t enough money to make everyone comfortable without doing lots of allowances and testing and admin. We all want utopia, but we can’t afford it. Even the modest 30k-per-person utopia costs at least 3 times more than we can afford.

However, if we can get back to an average 2.5% growth per year in real terms, and surely we can, it would only take 45 years to get there. That isn’t such a long time. We have hope that if we can get some better government than we have had of late, and are prepared to live with a little economic tweaking, we could achieve good quality of life for all in the second half of the century.

So I really like the idea of a simple welfare system, providing a generous base level allowance to everyone, topped up by rewards of effort, but we will have to wait before we can afford to put that base level at anything like comfortable standards.

Meanwhile, we need to tweak some other things to have any chance of getting there. I’ve commented often that pure capitalism would eventually lead to a machine-based economy, with the machine owners having more and more of the cash, and everyone else getting poorer, so the system will fail. Communism fails too.

On the other hand, capitalism works fine when rewards are shared more equally, it fails when wealth concentration is too high or when incentive is too low. Preserving the incentive to work and create is a mainly matter of setting tax levels well. Making sure that wealth doesn’t get concentrated too much needs a new kind of tax.

The solution I suggest is a culture tax. Culture in the widest meaning.

When someone creates and builds a company, they don’t do so from a state of nothing. They currently take for granted all the accumulated knowledge and culture, trained workforce, access to infrastructure, machines, governance, administrative systems, markets, distribution systems and so on. They add just another tiny brick to what is already a huge and highly elaborate structure. They may invest heavily in their time and money but actually when  considered overall as part of the system their company inhabits, they only pay for a fraction of the things their company will use.

That accumulated knowledge, culture and infrastructure belongs to everyone, not just those who choose to use it. Businesses might consider that this is what they pay taxes for already, but that isn’t explicit in the current system.

The big businesses that are currently avoiding paying UK taxes by paying overseas companies for intellectual property rights could be seen as trailblazing this approach. If they can understand and even justify the idea of paying another part of their company for IP or a franchise, why not pay the host country for IP for access to their entire culture?

This kind of tax would provide the means needed to avoid too much concentration of wealth. A future  businessman might choose to use only software and machines instead of a human workforce to save costs, but levying taxes on use of  the cultural base that makes that possible allows a direct link between use of advanced technology and taxation. Sure, he might add a little extra insight or new knowledge, but would still have to pay the rest of society for access to its share of the cultural base, inherited from the previous generations, on which his company is based. The more he automates, the more sophisticated his use of the system, the more he cuts a human workforce out of his empire, the higher his taxation.

Linking to technology use makes sense. Future AI and robots could do a lot of work currently done by humans. A very small number of people could own almost all of the productive economy. But they would be getting far more than their share of the cultural base, which must belong equally to everyone. In a village where one farmer owns all the sheep, other villagers would be right to ask for rent for their share of the commons if he wants to graze them there.

I feel confident that this extra tax would solve many of the problems associated with automation. We all equally own the country, its culture, laws, language, human knowledge (apart from current patents, trademarks etc. of course), its public infrastructure, not just businessmen. Everyone surely should have the right to be paid if someone else uses part of their share.

The extra culture tax would not magically make the economy bigger. It would just ensure that it is more equally shared out. It is a useful tool to be used by future governments to make it possible to keep capitalism sustainable, preventing its collapse, preserving incentive while fairly distributing reward. Without such a tax, capitalism simply may not survive.

Water companies to deliver Gbit broadband over wet string

Warning: to avoid wasting your time, and since it is no longer April 1st, be aware that this was published as an April Fool joke. Please enjoy it but don’t take it seriously:

Optical fibre is sometimes laid in conventional cable form just like copper wires, but because the actual fibres are so light, they can be coated with a rough surfacing that lets them be blown through plastic ducts using compressed air (the plastic ducts are under 1cm diameter). The fibre wiggles its way to the far end, carried by the air flow. It is simply called ‘blown fibre’ and is used extensively where ducts can easily be laid.

The water industry obviously has huge experience in making smooth channels for water to flow through to every building in the land. Blown fibre technology can adapt to this. Several years ago, advised by future technology consultants Futurizon, research produced a soft furry coating that makes it easy to flush coated fibres down water pipes. The coating is based on sugar and has the consistency of candyfloss. The clever breakthrough was making it so that it lasts until installation is complete and then dissolves harmlessly away in less than an hour.  It is of course safe to drink the tap water even soon after installation.  The remaining problem was how to route the fibres when they come to a junction. The inspiration came from optically guided missiles, which have steerable nose cones, that allow the missile to be routed in the required direction just by rotating the cone. Adding a tiny reusable nose cone capsule to the head to the fibre, and knowing the architecture of the pipework, the fibre can be routed correctly at each junction.

A global consortium of water companies now plans to install nationwide fibre networks via the water supply via a company called Fallopior. The main offices and roll-outs will be in the UK, New Zealand, Australia, and the USA, all of which face issues of getting access to ultrafast broadband for rural areas and all of which have the carbon subsidy economics to make it work. The name of Fallopior presumably emerged because the system uses tubes for delivery and perhaps to try to tap into the female broadband market. At the home, a broadband ‘tap’ is installed that allows the fibre to emerge. Once the fibre is delivered and connected, it is pushed through a silicone plug that is pushed into the tap to completely seal it.

The fibre is routed all the way to the home by this means, and then the broadband tap is opened. A few litres of water later, and the fibre is delivered. It is far more environmentally friendly way of installing the fibre than digging up pavements and roads. The carbon savings and the selling of the associated credits are calculated to reduce the cost of installation to almost zero. This even works in remote areas since the carbon savings are of course far higher here too. The costs of the fibre are low enough to be absorbed into even a low rental agreement. Fallopior say that they can will offer 1Gb/s to any home even in the remotest parts of the country for as little as £5 per month, and this is easily enough to deliver all the high definition TV and internet a home.

Broadband providers have struggled with the economics of fibre to the home and many homes still have to suffer slow broadband, even though they pay far more than this, especially in the country. But all homes have a water supply, so this technology is perfectly adapted. Since the roll-out plans of the other UK providers are so sluggish, the water companies expect to seize massive market share almost overnight.

Some homes questioned about the potential service insisted they don’t want ultra-high speed broadband with the temptations it brings, and amazingly would prefer to have a slower service, even if it means they have to pay more to get less. Engineers have solved this one too. The coating allows very smooth thin nylon string to be coated temporarily and flushed down the pipes in the same way instead of fibre. Since the water keeps it lubricated, wear would be very low and it will only need replaced every 5 years. But that re-installation increases the cost to £7.50 per month.

Now to every nerd’s dream – just like two cans with string between them, this wet string will transmit high audio signals, 100KHz. With the phenomenal ability of today’s coding and compression schemes, this allows 3Mbit/s to be delivered, comparable with what many people receive today on their low speed broadband. Those questioned said they would be happier with this limit which lets them do basic internet access but not much else. It still competes extremely well on price with offerings from other providers so again Fallopior expect massive demand. In an emergency, when there is no electricity supply, a home-owner can still signal the emergency services by making a short series of tugs on the string. Simple Morse code SOS can easily be sent this way. 

A string plant in Cornwall has secretly been built in preparation and has stockpiled  over 100 million km of string. Others have been established on similar basis in the other consortium countries. As another carbon-subsidised activity, the UK site is attached to a 3MW wind turbine. This one looks a little unusual since the spinning motion of the blades is used directly via gears rather like a traditional windmill) to spin the string and power the machinery. String output therefore varies according to wind strength, hence the need to stockpile supplies. Nevertheless, the result is string that is entirely paid for via carbon subsidies. Location in remote Cornwall was chosen because of high winds and proximity to seaside resorts with easy access to local expertise from candyfloss experts. The late arrival of spring and hence the candyfloss market has meant that many were available and willing to assist on the project.

In spite of all the many benefits and promises of very low cost ultra-fast broadband, there is just one problem – as hinted by the unusual just-after-midnight timing of the press release by the Fallopior’s HQ in Auckland, New Zealand, and of course the company’s name.

Magic fingers and digital spells

There can’t be many readers who haven’t seen some film or TV programme or at least read a book where a witch or fairy points her finger and magic flows from her fingertip to execute her intent. Wizards can do it too, but they tend to use wands. Is it just that men like gadgets more and women are more in touch with their bodies? Maybe to a point, but that certainly isn’t universally true. Anyway, digital spells will be here soon.

Gesture recognition such as pointing at something has been around as a games interface since the Nintendo Wii, maybe before that. The Wii needed a cumbersome remote control, but with more recent machines, you can just use your fingers. That’s fine when you have the detector in front of you, and the computer only has to follow the direction of pointing and detect a key click or movement. But most of the time, you don’t. 

Some wristwatches have had digital compasses for decades, proving that they don’t need to be large. So do my iPhone and Nexus. But my iphone and Nexus are usually somewhere else, like my jacket pocket or briefcase, though I usually have a watch on when I am away from home. Some people seem glued to their mobiles, and they could also be used, but for those of us who aren’t, digital jewellery such as watches or signet rings offers a potential substitute to detect hand or finger gestures.

Knowing location and direction of pointing is fine if you can determine them cheaply and accurately in small devices, but adding a tiny and cheap camera to capture some visual context such as the shape of buildings nearby can help home in much on the target more accurately. Something like a signet ring, or indeed a watch, could easily house all that is needed. GPS positioning isn’t the only kid on the block. Wireless LANs, mobile phone networks and other gadgets you have in a pocket or bag will do just as well. I also think we will soon get urban positioning systems that give location to millimetre accuracy throughout urban areas.

Accelerometers can measure both the path and speed pattern of movements so fancy gestures could be used to determine the purpose of the point, i.e which digital spell to activate.

Also, your hand can make a lot of different shapes, and these can be determined by wearing a few rings and automatically monitoring their relative orientation. They don’t have to be bulky, even a very thin band could be enough.

So, pointing a finger and making a shape with the other fingers, or making some special hand movement before or during the gesture, you could make hundreds of spells. One to make a frog, another if you prefer mice. In augmented reality you’ll be able to do that. Your memory of which gesture links to which spell would run out long before the library of potential combinations would.

Digital spells could link into any electronic system or app as an intuitive interface. Paying for a drink, sending a message to an attractive stranger, passing a business card, authenticating identity to a bank machine, controlling a TV or a PC display to pretend it is touch sensitive. All of these could be easy. As augmented reality takes shape, your hands will become building tools.

Digital spells will make us feel more powerful too. Who wouldn’t get a thrill from making a gesture at an annoying person and turning them into something horrible?

And as Arthur C. Clarke used to say, any sufficiently advanced technology is indistinguishable from magic.

Towards the singularity

This entry now forms a chapter in my book Total Sustainability, available from Amazon in paper or ebook form.

Super-tall (30km) carbon structures (graphene and nanotube mesh)

I recently blogged about a 200km moon-based structure. Here is my original earth-based concept, which could now be enhanced by filling columns with graphene foam

Could graphene foam be a future Helium substitute?

How about a 30km tall building? Using multilayered columns using rolled up or rippled graphene and nanotubes, in various patterned cross sections, it should be possible to make strong threads, ribbons and membranes, interwoven to make columns and arrange them into an extremely tall pyramid.

Super-tall structures for science and tourism

Think of a structure like the wood and bark of a tree, with the many tubular fine structures. Engineering can take the ideas nature gives us and optimise them using synthetic materials. Graphene and carbon nanotube will become routing architectural materials in due course. Many mesh designs and composites will be possible, and layering these to make threads, columns, cross members with various micro-structures will enable extremely strong columns to be made. If the outer layer is coated to withstand vacuum, then it will be possible to make the columns strong enough to withstand atmospheric pressure, but with an overall density the same as the surrounding air or less. Pressure is of course less of an issue higher up, so higher parts of the columns can therefore be lighter still.

We should be able to make zero weight structures in lower atmosphere, and still have atmospheric buoyancy supporting some of the weight as altitude increases.  Once buoyancy fails, the structure will have to be supported by the structure below, limiting the final achievable height.  Optimising the structures to give just enough strength at the various heights, with optimised mesh structure and maximal use of buoyancy, will enable the tallest possible structures. Very tall structures indeed could be made.

So, think of making such a structure, with three columns in a triangular cross-section meeting at 43 degrees at the top (this is the optimal angle for the strongest A frame in terms of load-bearing to weight ratio, though that is a simplistic calculation that ignores buoyancy effects, so it ‘needs more work’.

Making a wild guess, 30km tall structures may be feasible, but that is just a wild guess and I would welcome comments from any civil engineers or graphene architects. These would not be ideal for habitation, since most of the strength in the structure would be to support the upper parts of the structure itself and whatever platform loading is needed. The idea may be perfect for pressurised platforms at the top for scientific research, environmental monitoring, telescopes, space launches, tourism and so on. The extreme difference in temperature may have energy production uses too.

Getting the first 30km off the ground without needing any rocket fuel would greatly reduce space development costs, not to mention carbon and high altitude water emissions.

A simple addition to this would be to add balloons to the columns at various points to add extra buoyancy. I dare not try to calculate how much higher this would permit, but I suspect not all that much more since even with balloons, they cannot give much extra lift once the atmosphere is too thin.

iwatch v a proper folding watch computer

Some people work hard to get rich. Some work hard so they can change the world. Some work hard to build political power. Some work hard to make their families proud of them. Some, because they simply enjoy it.

Me, I work hard because I love saying “I told you so”. When I were a lad… OK, in the early 90s when I was still a budding futurologist, I was writing about where PCs might go. Here is one of my imaginings from back then: a folding screen touch sensitive watch computer.

Watch computer

Folding Touch-Screen Watch Computer

The file has been dragged between so many computers now I can’t even find when I wrote it, but it is probably datable from the clip art, and when 28 Feb was a monday. Anyway, the idea is starting to become feasible now. The icons are for what we now think of as apps of course, a few of which I don’t even have yet on my iphone or Nexus 10.1. The display could easily be built now, and it would fold up into a watch. Lots of watches are quite big so it would be a decent size too. And the idea was that the strap would act as both battery and antenna. All of that is buildable. Now.

Compare with Apple’s latest dream:

http://www.telegraph.co.uk/technology/apple/9861891/Apple-testing-smart-watch-designs.html

iwatch__1__2439172b

I think Apple needs a better vision, but although it looks even more pants than mine it does more or less the same things, albeit via an iphone. I bet Samsung do the full folding watch one soon.

Vampires are yesterday, zombies will peak soon, then clouds are coming

Most things that you can imagine have been the subject of sci-fi or fantasy at some point. There is certainly a large fashion element in the decision what to make the next film about and it is fun trying to spot what will come next.

Witches went out of fashion a decade ago even while other sword and sorcery, dungeons and dragons stuff remained stable and recurrent, albeit a niche. Vampires and werewolves accounted for far too many films and became boring, though admittedly, some of them were very good fun, so it’s safe to bury them for a decade or hopefully two.

Zombies are among the current leaders, (as I predicted several years ago, in spite of being laughed at back then). It is still hard to find a computer game that doesn’t have some sort of zombies in it, so they have a good while to go yet. The zombie apocalypse is scientifically and technologically feasible (see https://timeguide.wordpress.com/2012/02/14/zombies-are-coming/and that makes them far more disturbing than vampires and dragons, though the parasites in Alien are arguably even scarier.

Star Trek and the Terminator series introduced us to shape shifters. Avatar and Star Trek enthused over futuristic Indians. Symbionts and proxies are interesting but that’s really quite a shallow seam, there is really only one idea and it’s been used already. Religion and New Age trash has generally polluted throughout sci-fi and fantasy, but people are getting tired of it – American Indians and Australian Aborigines have been apologised to now. Recent Muslim backlash however suggests that the days are numbered for Star Wars, Dune, Mk 1 Klingons and others tapping into middle eastern stereotypes, so maybe  that will force other exotic cultures into the sci-fi limelight. The Cold War has already been done in overdose. South America has already been fully mined too. It’s a good while since the Chinese and Japanese cultures had a decent turn and I suspect they will come back strongly soon, whereas Africa doesn’t hold enough cultural identification points yet. Homophilia is having recurrent effects from Star Wars to Dr Who, but apart from gender-hopping, there isn’t really very far it can go. You can’t make many films from it.

So if those are the areas that are already showing signs of exhaustion  what comes after zombies? Gay zombies? Chinese zombies? Virtual zombies? Time travel zombies? Yeah, but after that?

Here’s my guess. Clouds.

Clouds are the IT Zeitgeist. They are the mid term future for sci-fi. There are a few possible manifestations and some tap well into other things we are getting to like. Clouds are a deep seam too. Not just one idea there. We have self-organisation, distribution, virtualisation, hybridisation, miniaturisation, self-replication, adaptation and evolution. We have AI, biomimetics, symbiosis, parasitic and commensalistic relationships. We have new kinds of gender, new kinds of intelligence, new physical and electronic forms. We have new kinds of materials, new ways of reproduction, new forms of attack and defense. I could write dozens of sci-fi books based on clouds. So could other people, and some of them will. Books, games, films, lots of them. About clouds.

You heard it here first. Clouds are the future of sci-fi.

 

Future population v resources. Humans are not a plague.

This entry now forms a chapter in my book Total Sustainability, available from Amazon in paper or ebook form.

Future food production

Food production is adapting to increased environmental awareness, but we will see far more change over coming years.

There is a lot of innovation right now in food production. Hydroponics is growing, as are vertical farms, home growing and focus on local production that is encouraging cottage industry specialists. There are some nice synergies. Greenhouses can make good use of waste heat from power stations and also benefit from the CO2 given off if they burn fossil fuels, which of course is locked up when the plants convert it to biomass. This effectively increases the energy efficiency of the power station by adding an extra layer of chemical energy recovery after thermal. There are many articles already out there about hydroponics etc so I don’t need to repeat them here. That’s what Google is for.

The web makes it easy for producers of all kinds to have a closer relationship with customers, so it is now possible to organise local marketing and distribution around social networking, with groups of customers even commissioning crops grown according to specific regimes. GPS-enabled tractors can treat each square metre of a field effectively as a different managed allotment. With people more interested in exactly how their food is produced, this is sure to find a healthy market as the economy recovers.

At higher levels, financial strain during the lengthy recession is forcing many people to commercialise their hobbies, such as baking or catering, creating a growing home-made sector. This will even extend into arts ad crafts thanks to new technology such as 3D printing, which will make its way into the kitchen any time soon.  So the emerging pattern is one of rapidly increasing diversity in food production, from crop growing to processed foods manufacture. This creates opportunities for increased competition in the food space, but also presents risks to existing manufacturers. As ever with any kind of turbulence, the winners and losers will be decided by how willing and able companies are to adapt.

Vertical farms on the walls of tall buildings add agricultural space to cities and as well as growing food, also helps air quality. The food would be of dubious taste and value if air were polluted as badly as it used to be, but with emissions now, it is probably OK. A variety of mechanisms have been suggests for vertical farms. Some look more feasible than others, but the general idea seems workable, and experimentation and development will sort out which solutions work best. One thing that is easy to forget though is that the amount of sunlight incident on a given land area doesn’t depend on the building architecture raised on it, and using a wall gives a lower energy density than a field or a roof because the same total light is spread over a larger area. Interior farms of course need artificial light, but if that is produced via nuclear energy, then it might still work out well environmentally.

Home finishing is a good prospect too. Many people are already used to part bake products, where they buy a product that is already mostly prepared and just needs finishing off in the oven to make one with all the benefits of freshly made cuisine. Microwave and other ready-meals are even more familiar. 3D printing technology may even have a future role, making edible frills and accessories to brighten up appearance.

Home finishing could be done as a small local business too. Large manufacturers could gain local presence for fresh produce by using local finishers, and these could be ordinary households or based in small offices or shops, making a new cottage industry. They could also work well with local manufacturing and distribution companies. Social networks could provide most of the platform for these local business clouds but they could also be based on systems run by large companies.

This social potential is useful if people rebel against the multinationals at some point. With frequent problem areas like tax avoidance, misleading information, exploitation and other issues that are setting people against them, having a fall-back position increases leverage by showing that communities are not powerless.

Current biotechnology research into lab-grown meat might eventually flourish into a large meat manufacturing industry. It is hard to tell yet how successful it might be in creating cost effective, healthy and palatable solutions. Vegetarian meats would presumably see a good market since many vegetarians avoid meat mainly because of the ways animals are reared and treated, and many meat eaters also have some reservations and would be willing to switch. Lab-grown meat would be little different from a yoghurt in terms of its cruelty implications. Although the principle has been proven, much work is need to replicate textures and taste well at a reasonable cost.

Lab-grown meat could be more energy efficient than that produced by animals, and would liberate farmland for crops. Together with increasing productivity in crop production anyway, some expect that we will be able to start returning land to nature in the second half of this century because we will make plenty of food for everyone with less land.

Biotech will create new varieties of crops, some with extra vitamin content or other health benefits, lower fat animals and enable varieties that are adapted to a wider range of climates, thereby increasing the amount of land that could be used for agriculture.

Home printer technology also is being hyped for food production, or rather assembly is probably a more accurate description, since nobody is yet suggesting its use for making the raw materials such as proteins and carbohydrates.  Its is effectively the next level up in abstraction from the lab grown products. Even chocolate could be made using printers. Food printers could only ever be a niche market, but could sit alongside other home gadgets such as microwaves and mixers. Cakes, confectionery,  frills and accessories would be the probable markets. It would especially appeal to the kinds of people who make elaborate cake decorations and could extend creative food design to a much broader group.

Food technology will continue to other areas too, making more appealing products from even wider range of raw materials. GM bacteria or algae could compete well with land grown crops. Algae may be grown at sea as part of carbon reduction schemes anyway, and could be used for either biofuel or as a component for food production. Of course, many foods contain lots of ingredients, so even if it isn’t suitable as a main platform, such humble starting points may be a used as fillers or other additives.

Of course, fish farming is bound to increase too. Many fish species are threatened today and near extinction of a key species does eventually force governments to listen and act. Although regulation so far has at best been poor, it can only improve and perhaps we may soon have a global set of treaties that ensure sustainable fishing and farming. There will also be a place for GM fish that maybe grow faster or breed faster. Some countries will be more willing to accept GM than others but when the choice is high prices v GM, GM will win out.

The future of music and video media

With the death of HMV and Blockbuster this week, I’ve done some radio interviews on the future of the high street and one on the future of media. I wrote about retailing yesterday so today I’ll pick up on media. I wrote a while back that Spotify isn’t the future of music, not in its current form anyway, though I will admit that streaming is part of the future. Spotify will probably up its game and survive. If it doesn’t, it won’t. (I didn’t properly answer the question then of what the future would actually be. I will now.)

CDs aren’t the future of music either. DVDs or Blu-rays aren’t the future of video. Think about it. If you were starting from scratch today, would you base media distribution on plastic discs that have to be spun quickly in a mechanical device, and need to be read by lasers, are easily damaged, and take up lots of storage space? Of course you wouldn’t. You’d almost certainly go for either solid state or web storage. I’d go for solid state. Here’s why.

Web storage is fine as long as you have a good connection all the time and don’t have to pay for data downloads. I think we will still have streaming services in the far future and they might even remain a large market, but streaming isn’t a perfect solution. Transmitting data requires energy, and transmitting lots of data streams to lots of customers requires big server farms. It also clogs up bandwidth and that is limited too.

Downloading to local storage is also fine to a point. It is a large market now, and will remain so for some time. But there are also big problems with it. Licenses are not the same for downloaded music. You have a much more restricted ownership of music you buy online. The companies’ desire to protect their revenue is a higher priority for them that giving their customers full rights, just as it is with streaming (another reason streaming is not what it could be). With physical media, even though you may have ripped (and hence stolen) the content of the disc before you transferred it, the disc itself stops being yours if you pass it on to someone else. The concept of ownership and theft is very clear with physical media. With an MP3, less so. It is clear that the extra actual cost to the music provider is zero if you give a copy of an MP3 away, and you won’t buy a replacement anyway, and they probably wouldn’t either, so there is no clear revenue loss, so you can easily reason away any guilt in keeping a copy. So the music companies put in stuff like copy protection and non-transferable licenses that make it harder to keep your music organised, use it on multiple devices, recover it after disk crashes or sell it on when you’re bored with it. And with an MP3, you don’t have a nice box to look at and know that you own it. The music companies are more conspicuously stingy with MP3s too. If you are downloading the music, why don’t you get the music videos thrown in too? It’s obvious with the CD, there isn’t space on the disc, so you don’t mind, and the tradition has never been there anyway. A DVD could contain the video, but would cost more. With online music, you can usually watch it on YouTube so why don’t you get a proper decent resolution copy when you actually pay for it?

Anyway, solid state storage. I don’t want to be stuck with CDs or DVDs, and would much prefer to get a USB memory stick with the media on. I could plug it straight into my home cinema systems and watch a full Dolby Digital 7.1 Hi-def music video, preferably in 3D. I could easily play or transfer the files to any device I want. But that’s just today. Already, flexible displays and flexible batteries are appearing in electronics shows. It won’t be long at all before they are extremely common.

yoummain_2447820b

This is a demo flexible battery/display from Samsung. This is far more suited to carrying around and everyday abuse than glass. This could be a general purpose display but is also perfectly suited to be an all-round CD/DVD replacement, eventually. It will cost too much initially to directly replace CDs or DVDs or downloads, but the price of such devices is governed by Moore’s Law and will tumble. It could show you the music video or movie, it could hold the music or video, it could communicate with any of your display and audio devices as well as being one itself. It is collectable, and could hold a permanent album cover image or slideshow of video clips or stills. It could be of any shape and size and still do the job. It ticks all the boxes for ownership, portability, robustness, media future-proofing. The battery could be built in or it could be powered inductively, or using solar.

It could support a range of business models too. You could buy albums, one per device, just like CDs, proudly keeping them on a nice rack or display shelf. Resell them at car boot sales or give them to friends. Or you could subscribe to a band or a music producer, and it could hold all of their stuff, and be immediately updated with any of their new releases. It could be locked to just their stuff and just you if that’s what you bought.  The device could support lots of different kinds of license. Or you could buy stuff online and it would download to one you have as a replacement for today’s MP3 player. So it could hold one track, an album, a group, an entire collection, or be the front end device of a streaming service. Devices like this could support many business models. It meets the requirements of the music industry and the customer, doesn’t need lots of energy for cloud based storage, improves the potential quality of offering for everyone. This is the future of music media and probably video.

Of course you can do some of this with an app on a pad too. But having a dedicated device solves a lot of the problems we are used to that are associated with doing that.

When will AI marriage become legal?

Gay marriage is so yesterday. OK, it isn’t quite yet, but everything has been said a million times and I don’t intend to repeat it. A related but much more interesting debate is already gathering volume globally. When will you be able to marry your robot or AI?

The traditional Oxford English definition of marriage:

The formal union of a man and a woman, typically recognized by law, by which they become husband and wife. 

But, as is being asked by some, who says they have to be a man and a woman? Why can’t they be any sex? I don’t want to get into the arguments, because people on both sides argue passionately, often flying in the face of logic, but here is a gender neutral alternative definition:

Marriage is a social union or legal contract between people called spouses that establishes rights and obligations between the spouses, between the spouses and their children, and between the spouses and their in-laws.

Well, I am all for equality for all, but who says they have to be people?

If we are going to fight over definitions, surely we should try to finish with one that might survive more than a decade or two. This one simply won’t.

Artificial intelligence, or AI as it is usually called now, is making good progress. We already have computers with more raw number crunching power than the human brain. Their software, and indeed their requirement to use software, makes them far from equivalent overall, but I don’t think we will be waiting very long now for AI machines that we will agree are conscious, self aware, intelligent, sentient, with emotions, capable of forming human-like relationships. A few cranks will still object maybe, but so what?

These AIs will likely be based on adaptive analog neural networks rather than digital processing so they will not be so different from us really. Different futurists list different dates for AIs with man-machine equivalence, depending mostly on the prejudices and experiences bequeathed by their own backgrounds. I’d say 10 years, some say 15 or 20. Some say we will never get there, but they are just wrong, so wrong. We will soon have artificially intelligent entities comparable to humans in intellect and emotional capability. So how about this definition? :

Marriage is a social union or legal contract between conscious entities called spouses that establishes rights and obligations between the spouses, between the spouses and their derivatives, and those legally connected to them.

An AI might or might not be connected to a robot. An AI may not have any permanent physical form, and robots are really a red herring here. The mind is what is surely important, not the container. An AI can still be an entity that lives for a long enough time to be eligible for a long term relationship. I often watch sci-fi or play computer games, and many have AI characters that take on some sort of avatar – Edi in Mass Effect or Cortana in Halo for example. Sometimes these avatars are made to look very attractive, even super-attractive. It is easy to imaging how someone could fall in love with their AI. It isn’t much harder to imagine that they could fall in love with each other.

It’s a while since I last wrote about machine consciousness so I’ll say how I think it will work again now.

https://timeguide.wordpress.com/2011/09/18/gel-computing/ tells of my ideas on gel computing. A lot of adaptive electronic devices suspended in gel that can set up free space optical links to each other would be an excellent way of making an artificial brain-like processor.

Using this as a base, and with each of the tiny capsules being able to perform calculations, an extremely powerful digital processor could be created. But I don’t believe digital processors can become conscious, however much their processing increases in speed. It is an act of faith I guess, I can’t prove it, but coming from a computer modelling background it seems to me that a digital computer can simulate the processes in consciousness but it can’t emulate them and that difference is crucial.

I firmly believe consciousness is a matter of internal sensing. The same way that you sense sound or images or touch, you can sense the processes based on those same neural functions and their derivatives in your brain. Emotions ditto. We make ideas and concepts out of words and images and sounds and other sensory things and emotions too. We regenerate the same sorts of patterns, and filter them similarly to create new knowledge, thoughts and memories, a sort of vortex of sensory stimuli and echoes. Consciousness might not actually just be internal sensing, we don’t know yet exactly how it works, but even if it isn’t, you could do it that way. Internal sensing can be the basis of a conscious machine, an AI. Here’s a picture. This would work. I am sure of it. There will also be other ways of achieving consciousness, and they might have different flavours. But for the purposes of arguing for AI marriage, we only need one method of achieving consciousness to be feasible.

consciousness

I think this sort of AI design could work and it would certainly be capable of emotions. In fact, it would be capable of a much wider range of emotions than human experience. I believe it could fall in love, with a human, alien, or another AI. AIs will have a range and variety of gender capabilities and characteristics. People will be able to link to them in new ways, creating new forms of intimacy. The same technology will also enable new genders for people too, as I discussed recently. In the long term view, gay marriage is just another point on a long line.

When we set aside the arguing over gender equality, what we usually agree on is the importance of love. People can fall in love with any other human of any age, race or gender, but they are also capable of loving a sufficiently developed AI. As we rush to legislate for gender equality, it really is time to start opening the debate. AI will come in a very wide range of capability and flavour. Some will be equivalent or even superior to humans in many ways. They will have needs, they will want rights, and they will become powerful enough to demand them. Sooner or later, we will need to consider equality for them too. And I for one will be on their side.

Could graphene foam be a future Helium substitute?

I just did a back-of-the-envelope calculation to work out what size of sphere containing a vacuum would give the same average density as helium at room temperature, if the sphere is made of graphene, the new one-size-does-everthing-you-can-imagine wonder material.

Why? Well, the Yanks have just prototyped a big airship and it uses helium for buoyancy. http://www.dailymail.co.uk/sciencetech/article-2257201/The-astonishing-Aeroscraft–new-type-rigid-airship-thats-set-revolutionise-haulage-tourism–warfare.html

Helium weighs 0.164kg per cubic metre. Graphene sheet weighs only 0.77mg per square metre. Mind you, the data source was Wikipedia so don’t start a business based on this without checking! If you could make a sphere out of a single layer of graphene, and have a vacuum inside (graphene is allegedly impervious to gas) it would become less dense than helium at sizes above 0.014mm. Wow! That’s very small. I expected ping pong ball sizes when I started and knew that would never work because large thin spheres would be likely to collapse. 14 micron spheres are too small to see with the naked eye, not much bigger than skin cells, maybe they would work OK.

Confession time now. I have no idea whether a single layer of graphene is absolutely impervious to gas, it says so on some websites but it says a lot of things on some websites that are total nonsense.

The obvious downside even if it could work is that graphene is still very expensive, but everything is when is starts off. Imagine how much you could sell a plastic cup for to an Egyptian Pharaoh.

Helium is an endangered resource. We use it for party balloons and then it goes into the atmosphere and from there leaks into space. It is hard to replace, at least for the next few decades. If we could use common elements like carbon as a substitute that would be good news. Getting the cost of production down is just engineering and people are good at that when there is an incentive.

So in the future, maybe we could fill party balloons and blimps with graphene foam. You could make huge airships happily with it, that don’t need helium of hydrogen. 

Tiny particles that size readily behave as a fluid and can easily be pumped. You could make lighter-than-air building materials for ultra-tall skyscrapers, launch platforms, floating Avatar-style sky islands and so on.

You could also make small clusters of them to carry tiny payloads for espionage or terrorism. Floating invisibly tiny particles of clever electronics around has good and bad uses. You could distribute explosives with floating particles that congeal into whatever shape you want on whatever target you want using self-organisation and liberal use of EM fields. I don’t even have that sort of stuff on Halo. I’d better stop now before I start laughing evilly and muttering about taking over the world.

What will your next body be like?

Many engineers, including me, think that some time around 2050, we will be able to make very high quality links between the brains and machines. To such an extent that it will thereafter be possible (albeit expensive for some years) to arrange that most of your mind – your thinking, memories, even sensations and emotions, could reside mainly in the machine world. Some (perhaps some memories that are rarely remembered for example) may not be suited to such external accessibility, but the majority should be.

The main aim of this research area is to design electronic solutions to immortality. But actually, that is only one application, and I have discussed electronic immortality a few times now :

How to live forever

Increasing longevity and electronic immortality. 3Bn people to live forever.

What I want to focus on this time is that you don’t have to die to benefit. If your mind is so well connected, you could inhabit a new body, without having to vacate your existing one. Furthermore, there really isn’t much to stop you getting a new body, using that, and dumping your old one in a life support system. You won’t do that, but you could. Either way, you could get a new body or an extra one, and as I asked in passing in my last blog, what will your new body look like?

Firstly, why would you want to do this? Well, you might be old, suffering the drawbacks of ageing, not as mobile and agile as you want to be, you might be young, but not as pretty or fit as you want to be, or maybe you would prefer to be someone else, like your favourite celebrity, a top sports hero, or maybe you’d prefer to be a different gender perhaps? Or maybe you just generally feel you’d like to have the chance to start over, do it differently. Maybe you want to explore a different lifestyle, or maybe it is a way of expressing your artistic streak. So, with all these reasons and more, there will be plenty of demand for wanting a new body and a potentially new life.

Options

Lets explore some of the options. Don’t be too channelled by assuming you even have to be human. There is a huge range of potential here, but some restrictions will be necessary too. Lots of things will be possible, but not permissible.

Firstly, tastes will vary a lot. People may want their body to look professional for career reasons, others will prefer sexy, others sporty. Most people will only have one at a time, so will choose it carefully. A bit like buying a house. But not everyone will be conservative.

Just like buying a house, some rich people will want to own several for different circumstances, and many others would want several but can’t afford it, so there could be a rental market. But as I will argue shortly, you probably won’t be allowed to use too many at the same time, so that means we will need some form of storage, and ethics dictates that the ‘spare’ bodies mustn’t be ‘alive’ or conscious. There are lots of ways to do this. Using a detachable brain is one, or not to put a brain in at all, using empty immobile husks that are switched on and then linked to your remote mind in the cloud to become alive. This sounds preferable to me. Most likely they would be inorganic. I don’t think it will be ethically acceptable to grow cloned bodies in some sort of farm and remove their brains, so using some sort of android is probably best all round.

So, although you can do a lot with biotech, and there are some options there, I do think that most replacement bodies, if not all, will be androids using synthetic materials and AI’s, not biological bodies.

As for materials, it is already possible to buy lifelike full sized dolls, but the materials will continue to improve, as will robotics. You could look how you want to look, and your new body would be as youthful, strong, and flexible as you want or need it to be.

Now that we’re in that very broad android/robot creativity space, you could be any species, fantasy character, alien, robot, android or pretty much any imaginary form that could be fabricated. You could be any size or shape from a bacterium to an avatar for an AI spaceship (such as Rommy’s avatar in Andromeda, or Edi in Mass Effect. Noteworthy of course is that both Rommy and Edi felt compelled to get bodies too, so that they could maximise their usefuleness, even though they were both useful in their pure AI form.)

You could be any age. It might be very difficult to make a body that can grow, so you might need a succession of bodies if you want to start off as a child again. Already, warning bells are ringing in my head and I realise that we will need to restrict options and police things. Do we really want to allow adults people to assume the bodies of children, with all the obvious paedophilic dangers that would bring? Probably not, and I suspect this will be one of the first regulations restricting choice. You could become young again, but the law will make it so your appearance must remain adult. For the same obvious reasons, you wouldn’t be allowed to become something like a teddy bear or doll or any other form that would provide easy access to children.

You could be any gender. I wrote about future gender potential recently in:

https://timeguide.wordpress.com/2012/09/02/the-future-of-gender/

There will be lots of genders and sexuality variations in that time frame.  Getting a new or an extra body with a different gender will obviously appeal to people with transgender desires, but it might go further and appeal to those who want a body of each sex too. Why not? You can be perfectly comfortable with your sexuality in your existing gender, but  still choose a different gender for your new body. If you can have a body in each gender, many people will want to. You may not be restricted to one or two bodies, so you might buy several bodies of different ages, genders, races and appearances. You could have a whole village of variants of you. Again, obvious restrictions loom large. Regulation would not allow people, however rich or powerful, to have huge numbers of bodies running around at the same time. The environmental, social, political and military impacts would get too large. I can’t say what the limits will be, but there will certainly be limits. But within those limits, you could have a lot of flexibility, and fun.

You could be any species. An alien, or an elf, or a dog. Technology can do most shapes and as for how it might feel, noone knows how elves or dogs or aliens feel anyway, so you have a clean slate to work with, customising till you are satisfied that what you create matches your desire. But again, should elves be allowed to interbreed with people, or aliens? Or dogs? The technology is exciting, but it does create a whole new genre of ethical, regulatory and policing problems too. But then again, we need to create new jobs anyway.

Other restrictions on relationships might spring up. If you have two or more bodies, will they be allowed to have sex with each other, marry, adopt kids, or be both parents of your own kids. Bear in mind cloning may well be legal by then and artificial wombs may even exist, so being both parents of your own cloned offspring is possible. If they do have sex, you will be connected into both bodies, so will control and experience both sides. It is worth noting here that you will also be able to link into other people’s nervous systems using similar technology, so the idea of experiencing the ‘other’ side of a sex act will not be unique to using your own bodies.

What about being a superhero? You could do that too, within legal limits, and of course those stretch a bit for police and military roles. Adding extra senses and capabilities is easy if your mind is connected to an entire network of sensors, processors and actuators. Remember, the body you use is just an android so if your superheroing activity gets you killed, it is just a temporary inconvenience. Claim on insurance or expenses and buy a new body for the next performance.

In this future world, you may think it would be hard to juggle mindsets between different bodies, but today’s computer games give us some insight. Many people take on roles every day, as aliens, wizards or any fantasy in their computer gaming. They still achieve sanity in their main life, showing that it is almost certainly possible to safely juggle multiple bodies with their distinct roles and appearances too. The human mind is pretty versatile, and a healthy adult mind is also very robust. With future AI assistance and monitoring it should be even safer. So it ought to be safe to explore and have fun in a world where you can use a different body at will, maybe for an hour or maybe for a lifetime, and even inhabit a few at once.

So, again, what will your next body look like?

Things that don’t work but could

Continue reading

New type of wind harvester

I am moving old blogs across from nvireuk before I close it next month so that I don’t lose them. Here is another. Please don’t take it from this one that I am in favour of wind turbines. I most certainly am not, but if we must use wind power to appease renewable fans, then at least we should do it in ways that are less irritating to humans and wildlife and a little imagination can go a long way with today’s technology compared to the primitive, almost Victorian heavy engineering used for conventional turbines. This method should be a lot quieter, less visually intrusive, about the same efficiency but unlike wind turbines, potentially able to reduce in cost with Moore’s Law. Initial cost would be similar (the costings I mention are based just on their sample prices, which obviously are usually far higher than finished large scale production), so still nowhere near as good as using shale gas, but it could be. Even then, we’d still need backup generation for when the wind isn’t blowing.

Conventional wind energy harvesting uses turbines on a grand scale, connected to a central motor. The whole thing needs heavy engineering, complex control systems and expensive and scarce materials such as neodymium for the motors. It is possible to build a system that is far more elegant, resource-efficient and less intrusive. Perhaps even much cheaper.

Some time ago a Danish company Danfoss, invented plastic capacitors, that generate electrical energy directly when they are bent. Wind pressure could be used to bend small vanes made of this material by pushing it around a spindle. As it rotates, one side goes through extended, the other side is forced to bend on the way back through the gap. By repeated bending and extending every time it rotates, each vane would generate electricity from the wind. These could be arranged in long strings, and many strings made up into a large sail.

The sail would be tethered to an anchor using ropes, and when the wind blows, it would fill up, the vanes would rotate, and energy would be harvested, with no need for a central motor or any heavy engineering. When the wind dies down, the sail would collapse so that it is less visible. Because the vanes individually would be small, just 5-10 centimetres across, no motion would be visible from any distance away, so they would not be as distracting as conventional turbines. Nor would they kill birds. Plastic capacitor sail generators would therefore have a few advantages over conventional approaches.

The disadvantage is that at the moment the material is fairly expensive, but there are excellent prospects for large cost reductions, and these could make it a far cheaper, as well as a greener, way of harvesting wind power.

The future of time travel: cheat

Time travel comes up frequently in science fiction, and some physicists think it might be theoretically possible, to some degree, within major constraints, at vast expense, between times that are in different universes. Frankly, my physics is rusty and I don’t have any useful contribution to make on how we might do physical time travel, nor on its potential. However, intelligence available to us to figure the full physics out will accelerate dramatically thanks to the artificial intelligence positive feedback loop (smarter machines can build even smarter ones even faster)  and some time later this century we will definitely work out once and for all whether it is doable in real life and how to do it. And we’ll know why we never meet time tourists. If it can be done and done reasonable economically and safely, then it will just be a matter of time to build it after that.

Well, stuff that! Not interested in waiting! If the laws of physics make it so hard that it may never happen and certainly not till at least towards the end of this century, even if it is possible, then let’s bypass the laws of physics. Engineers do that all the time. If you are faced with an infinitely tall impenetrable barrier so you can’t go over it or through it, then check whether the barrier is also very wide, because there may well be an easy route past the barrier that doesn’t require you to go that way. I can’t walk over tall buildings, but I still haven’t found one I couldn’t walk past on the street. There is usually a way past barriers.

And with time travel, that turns out to be the case. There is an easy route past. Physics only controls the physical world. Although physics certain governs the technologies we use to create cyberspace, it doesn’t really limit what you can do in cyberspace any more than in a dream, a costume drama, or a memory.

Cyberspace takes many forms, it is’t homogeneous or even continuous. It has many dimensions. It can be quite alien. But in some areas, such as websites, archives are kept and you can look at how a site was in the past. Extend that to social networking and a problem immediately appears. How can you communicate or interact with someone if the site you are on is just an historical snapshot and isn’t live? How could you go back and actually chat to someone or play a game against them?

The solution to this problem is a tricky technological one but it is entirely  possible, and it won’t violate any physics. If you want to go back in time and interact with people as they were, then all you need is to have an archive of those people. Difficult, but possible. In cyberspace.

Around 2050, we should be starting to do direct brain links, at least in the lab and maybe a bit further. Not just connections to the optic nerve or inner ear, or chips to control wheelchairs, we already have that. And we already have basic thought recognition. By 2050 we will be starting to do full links, that allow thoughts to pass both ways between man and machine, so that the machine world is effectively an extension of your brain.

As people’s thoughts, memories and even sensations become more cyberspace based, as they will, the physical body will become less relevant. (Some of my previous blogs have considered the implication of this for immortality). Once stuff is in the IT world, it can be copied, and backed up. That gives us the potential to make recordings of people’s entire lives, and capable of effectively replicating them at will. Today we have web archives that try to do that with web sites so you can access material on older versions of them. Tomorrow we’ll also be able to include people in that. Virtually replicating the buildings and other stuff would be pretty trivial by comparison.

In that world, it will be possible for your mind, which is itself an almost entirely online entity, to interact with historic populations, essentially to time travel. Right back to the date when they were started being backed up, some time after 2050. The people they would be dealing with would be the same actual people that existed then, exactly as they were, perfect copies. They would behave and respond exactly the same. So you could use this technique to time travel back to 2050 at the very best but no earlier. And for a proper experience it would be much later, say 2100.

And then it starts to get interesting. In an electronic timeline such as that, the interactions you have with those people in the last would have two options. They could be just time tourism  or social research, or other archaeology, which has no lasting effect, and any traces of your trip would vanish when you leave. Or they could be more effectual. The interactions you have when you visit could ripple all the way back through the timeline to your ‘present?’, or future? or was it the past when you were present in the future? (it is really hard to choose the right words tenses when you write about time travel!!). The computers could make it all real, running the entire society through its course, at a greatly accelerated speed. The interactions could therefore be quite real, and all the interactions and all the minds and the rippling social effects could all be implemented. But the possibilities branch again, because although that could be true, and the future society could be genuinely changed, that could also be done by entirely replicating the cyberworld, and implementing the effects only in the parallel new cyber-universe. Doing either of these effectual options might prove very expensive, and obviously dangerous. Replicating things can be done, but you need a lot of computer power and storage to do it with everything affected, so it might be severely restricted. And policed.

But importantly, this sort of time travel could be done – you could go back in time to change the present. All the minds of all the people could be changed by someone going back in the past cyberspace records and doing something that would ripple forwards through time to change those same minds. It couldn’t be made fully clean, because some people for example might choose not to have kids in the revised edition, and although the cyberspace presence of their minds could be changed or deleted, you’d still have to dispose of their physical bodies and tidy up other physical residual effects. But not being clean is one of the things we’d expect for time travel. There would be residues, mess, paradoxes, and presumably this would all limit the things you’d be allowed to mess with. And we will need the time cops and time detectives and licenses and time cleaners and administrators and so on. But in our future cyberspace world, TIME TRAVEL WILL BE POSSIBLE. I can’t shout that loud enough. And please don’t ignore the italics, I am absolutely not suggesting it will be doable in the real world.

Fun! Trouble is, I’m going to be 90 in 2050 so I probably won’t have the energy any more.

Casual displays

I had a new idea. If I was adventurous or an entrepreneur, I’d develop it, but I’m not, so I won’t. But you can, before Apple patents it. Or maybe they already have.

Many people own various brands of pads, but they are generally expensive, heavy, fragile and need far too much charging. That’s because they try to be high powered computers. Even e-book readers have too much functionality for some display purposes and that creates extra expense. I believe there is a large market for more casual displays that are cheap enough to throw around at all sorts of tasks that don’t need anything other than the ability to change and hold a display.

Several years ago, Texas Instruments invented memory spots, that let people add multimedia to everyday objects. The spots could hold a short video for example, and be stuck on any everyday object.These were a good idea, but one of very many good ideas competing for attention by development engineers. Other companies have also had similar ideas. However, turning the idea around, spots like this could be used to hold data for a  display, and could be programmed by a similar pen-like device or even a finger touch. Up to 2Mb/s can be transmitted through the skin surface.

Cheap displays that have little additional functionality could be made cheaply and use low power. If they are cheap enough, less than ten pounds say, they could be used for many everyday purposes where cards or paper are currently used. And since they are cheap, there could be many of them. With a pad, it has to do many tasks. A casual display would do only one. You could have them all over the place, as recipe cards, photos, pieces of art, maps, books, body adornment, playing cards, messages, birthday cards, instructions, medical advice, or anything. For example:

Friend cards could act as a pin-board reminder of a friend, or sit in a wallet or handbag. You might have one for each of several best friends. A touch of the spot would update the card with the latest photo or status from Facebook or another social site. Or it could be done via a smart phone jack. But since the card only has simple functionality  it would stay cheap. It does nothing that can’t also be done by a smartphone or pad, but the point is that it doesn’t have to. It is always the friend card. The image would stay. It doesn’t need anything to be clicked or charged up. It only needs power momentarily to change the picture.

There are displays that can hold pictures without power that are postcard sized, for less than £10. Adding a simple data storage chip and drivers shouldn’t add significantly to cost. So this idea should be perfectly feasible. We should be able to have lots of casual displays all over our houses and offices if they don’t have to do numerous other things. In the case of displays, less may mean more.

The future of women in work

Women v men: the glass ceiling is full of holes

Most people I think would agree that at least in the West. the glass ceiling stopping women getting to the top maybe hasn’t vanished but has at least huge gaping holes in it. Most big companies and organisations have anti-discrimination policies, and many go as far as having have quotas and other forms of positive discrimination. There are still some where women get a second class deal, but not many now. So assuming that the war is almost won on that front, what does the future hold for women in work? Well, mixed news I think, some good and some bad.

Winner and loser industries

Technology tends not to have all its impact in one lump, rather working over decades to accomplish its full impacts. Such it is with Artificial intelligence and robotics. Lots of manufacturing shop floor jobs have already been gradually replaced by robotics, with more impact to come, and many analytical and professional tasks will gradually be displaced by AI, with many others outsourced. Traditionally male-dominated jobs are being hardest hit and will continue to be, while gender neutral or female-dominated jobs such as policing, social work, sales and marketing, teaching, nursing etc will hardly be affected. Many of the men made redundant will be able to readjust and re-skill, but many will find it hard to do so, with consequent social strains.

Just as power tools have reduced the economic advantage of being physically strong, so future AI will reduce the economic advantage of being smart. What is left is dominated by essentially emotional skills, and although the polarisation certainly isn’t complete here by any means, this is traditionally an area where women dominate.

Looking at this over the whole spectrum, this pic shows some example areas likely to suffer v those that will flourish. Obviously I can’t list every bit of the entire economy.The consequences of AI are mainly influenced by the fact that few jobs are 100% information processing or intellect. Some is usually interpersonal interaction. Administrators will find that the pen-pushing and decision parts of their jobs will decline, and they will spend more of their time on the human side, the emotional side. Professionals will find that they spend more time with clients dealing with the relationship. Managers will spend more time on motivation, leadership and nurturing. Interpersonal skills, emotional skills, empathy, sympathy, caring, leadership, motivation – these are the primary skills human will provide in the AI world. The information economy will decline and gradually be replaced by the ‘care economy’. Although men can and do offer some of the skills in this list, it is clear that many are more associated with women, so the clear conclusion is that women will acquire an increasing dominance in the workplace.

Global v local

However, another consequence of the same forces is that globalisation of work will start to reverse in some fields, because if high quality human contact is essential part of the job, it is harder to do it from a distance. Some jobs require actual physical contact and can’t be done except by someone next to the customer. Looking at a diverse basket of forces, this is how it works out:Another trend in favour of women is that with increasing restructuring or businesses around small cooperatives of complementarily skilled people, networking is an increasingly important skill.

Low pay will still be an issue

Although women will generally have an easier time than men if emotional skills dominate, the evidence today is that most such work is not highly paid, so even though women will have less difficulty in finding work, it will not be high paid work. High end interpersonal skills such as senior management will fare better, but with extensive industry restructuring, there may be less need for senior managers.

Polarisation of pay

In spite of these trend that affect the vast majority of people, star performers aren’t affected in the same way. Although the markets are already depressing wage levels for groups where there is a lot of supply available, the elite are being rewarded more and more highly, and this trend will continue. The hard facts of life are that a very few individuals make a real difference to the success or failure of a company. The superstar designer, scientist, market analyst, manager or negotiator can make a company win. Letting them go to the competition is business suicide, so they justify and demand high remuneration. Sadly, 99%of us are outside the top 1%. Think about it. There are 70 million people in the global top 1%. Even spread across every sector, and ignoring those too young or old to work, that is stiff competition.

Market gender neutrality

Especially on a large scale, the marketplace is essentially gender neutral in the sense that customers generally don’t care whether a business is run by men or women (it certainly isn’t neutral in the mix of male and female customers for particular products and services of course). The market cares about marketing, price, quality, availability and location and a few other things. Gender has little impact. Companies can’t survive on the gender make-up of their staff, only results really count in the market.

Turbulence in the market caused by rapidly changing technology, especially IT, accelerates levelling of the playing field by favouring new business models and adaptable companies and wiping out those that can’t or won’t adapt. By contributing to accelerating change, IT thus acts in accelerating the downfall of a patriarchal business environment in favour of one based purely on merit. It expedites the end of the war of women v men but when it runs to completion, women will play against men and against each other on a truly level playing field.

Women v women: attractive v plain, young v old

Now that the glass ceiling is less of an issue, the battleground is moving on to appearance discrimination, which obviously links to age too. We now often hear older or plainer women complaining that the best jobs are going to pretty young things instead of the more experienced women who sadly have left their prettier days behind, especially in high profile media and customer facing jobs.

A real world example illustrates the problem well. A while back, the BBC’s treatment of older women was ruled discriminatory by the courts because they had favoured attractive younger women to put in front of cameras over older, less attractive ones. However fair it might be, such a ruling puts the customer in conflict with the regulator. Although such a ruling may appear fair, actually all the female presenters lose, as viewers will simply swap channels to programmes hosted by presenters they want to watch. The trouble is that regulators can rule how companies must behave internally, but they can’t prevent customers from using their free choice what to buy. If some viewers prefer to watch attractive young news readers, they can and will. Those programmes hosted by less attractive ones will see a reduction in viewer numbers, and consequential drop in revenue from advertising on those programmes, or in the BBC’s case, just a drop in viewers. Unless the customer has no choice in what they watch, the courts can’t level the playing field.

It isn’t just on TV that such discrimination occurs, but throughout industry. In male dominated areas, with mostly men at the top, attractive women will be favoured at interview time, and will then tend to dominate senior posts, so that quotas can be filled but men get to choose which women fill them. In airlines, it is hard not to notice if you fly frequently, that the most attractive stewardesses end up in first and business class, with the less attractive and older ones serving the economy cabin. And on a front reception desk, bar, sales jobs, and PR, attractive women have an obvious advantage too.

It looks as if this issue is likely to dominate as we move into an economy where women as a whole have the advantage over men. And it will be much harder to legislate equality in this case.

Experience v looks & IQ

With the pension crisis growing daily, it is inevitable that people will have to work longer than today. Social skills tend to grow with age and experience in contrast with intellectual speed and agility and physical beauty, which tend to decline with age. This is a fortunate trend as it enables work to be done by older people at just the time that retirement age will have to increase.

Flat lenses – oozing potential

Lenses used to be curved. Not in the future thanks to Harvard scientists: https://www.seas.harvard.edu/news-events/press-releases/flat-lens-offers-perfect-image and http://pubs.acs.org/doi/abs/10.1021/nl302516v.

Ht http://nextbigfuture.com/ for making me aware.

Flat antennas aren’t new per se, phased array radio antennas have been around decades, but this is the first optical flat lens I am aware of. Theirs is pretty damned clever!

They are already looking at applications such as flat microscope objectives, and have probably covered most of the biggest opportunities. But just in case, and researchers do occasionally miss some opportunities, here are a few for free:

Kite telescopes

NASA are currently flying a 747-based telescope, chucking out huge quantities of water vapour into the high atmosphere, contributing to global warming to take over from their space shuttles. Ironic that such a warmist organisation should do that, but there we go. A large flat surface telescope could presumably be made into a high altitude kite, albeit one that needs a little engineering. And it wouldn’t add to stratospheric water vapour, or even add CO2.

High altitude telescopes could be used for ground imaging as well as space of course, and there would be many commercially viable businesses from this root, as well as military surveillance of course.

Smart glasses and contact lenses

I would like a pair of glasses that record everything I look at. Flat surface cameras would allow this. Glasses are much bigger than my pupil, so they could allow much higher resolution, so I’d be able to see at very high magnification without having to use binoculars. I’d also be able to see infrared, microwaves, see where the strongest cellphone signal is, enable a whole new kind of fashion using different spectra, add to augmented reality hugely by using the infrared channel to show real as well as digital auras. Wow, can’t wait for these! I am playing Assassin’s Creed again, and this is Eagle Sense and then some.

Of course, active contact lenses could also use this tech and offer intuitive optional zoom. I would see the world as normal, but by trying to focus on something in the distance, it would zoom in automatically. There have only been a few updates to my original active contact lens idea from 1991, http://www.futurizon.com/inventions/activecontactlensmay91.pdf but this will be another generation for its 21st anniversary.

Credit card cameras

The smartphone is causing the decline of standalone digital cameras. Digital jewellery will cause the decline of smartphones, but one of the things we still needed them for is the camera. Not any more. A simple credit card camera would work fine. Or maybe even a wristband could be used. Flat cameras will hasten the decline of smartphones.

Smart posters

If they can be printed cheaply, cameras could be built into much of the urban environment. Any poster could have video capture and storage built in, powered by solar, with some comms added too. What and who it sees could direct what it displays. Sure, you can do all that and then some with augmented reality, but augmented reality is a whole load of additional functionality that lives happily alongside other stuff, and doesn’t necessarily replace everything. Posters could be the next wave of Big Brother or the next wave of advertising. Or both.

Teletubby T-shirts revisited

When the Teletubbies were still new, I suggested that we’d be able to make clothes with video panels in using polymer screens. Teletubby t-shirts. Flat panel cameras would allow these to be two way. They could display images but also act as a cameras. They could link to cameras in other people’s t-shirts. You could have a camera on your back that links to the video image on your front, making you appear to have a big hole through you.

Thought recognition and smart microwaves

Wired carries another interesting article on brain wave recognition of PINs via the headsets used to play computer games. Old stuff in idea terms perhaps but it’s always nice to see practice catching up. http://www.wired.com/threatlevel/2012/08/brainwave-hacking/

It seems obvious that this could work nicely with the flat lens idea. A flat surface could image the electrical activity in the brain from a greater distance instead of having to use a helmet.

It would also be possible to put flat cameras on the inside surfaces of microwave ovens, looking at the food to see where the hot spots and cold spots are, so that the microwave beams could be directed better to the areas needing heated.

I think that’s enough for now.

200km tall base for the lunar elevator

I was 8 when Armstrong and Aldrin set foot on the moon. It was exciting. My daughter is 18 and has never witnessed anything of the same order of excitement. The human genome project was comparable in some ways but lacked the buzz. Ha ha!

There is excitement about going back now. We will, and on to Mars. We can do space so much more safely now than back in the 60s.  Commercial companies are pioneering space tourism and later on will pioneer the mining bits. But the excitement recently is over the space elevator. The idea is that a cable can stretch all the way from the surface out into space, balanced by gravity, and used as a means to cart stuff back and forth instead of having to use rockets, making it easier, less expensive and less dangerous.

It will happen eventually on Earth. We need to make new materials that are strong enough. Carbon nanotube cables and other fancy materials will be needed that we can’t make long and strong enough yet. But the moon has lower gravity so it is much easier there and will likely happen earlier.

Nextbigfuture has a nice summary: http://nextbigfuture.com/2012/08/unlike-earth-space-elevators-lunar.html and the NASA document is at http://www.spaceelevator.com/docs/iac-2004/iac-04-iaa.3.8.3.07.pearson.pdf

So I don’t need to repeat everything here. Instead, I am wondering about applying a derivative of my idea for a 30km tall building: http://nvireuk.com/2012/02/12/super-tall-30km-carbon-structures/

A 30km tall building on Earth could make use of atmospheric buoyancy for the lower end, which of course we wouldn’t get on the moon. But we also wouldn’t get wind on the moon to add stresses. And on the moon gravity is less so the structure could be much taller. On the moon a graphene structure could form as much as the bottom 150-200km of the climb. It might offer a nice synergy. Or perhaps it is just easier to add 200km to the elevator cable. I don’t know, and no longer have the maths ability to calculate it. Maybe worth a look though.

Spotify definitely isn’t the future for music. So what is?

Rant ahead, move along if you aren’t interested.

My final update on Spotify. I gave up. I cancelled and there will be no more chances now. They have lost me permanently. Content-wise, it was far better, with a lot of stuff I wanted now available, albeit they have the same probs scanning in albums as me, with some tracks mixed up. I don’t mind paying £5 per month to ditch the ads and stream, which is what I thought I’d bought. It implied very strongly when I subscribed that I could stream it, but it turned out that wasn’t true. My squeezebox insisted I couldn’t use it because I need a premium subscription. Apparently the £5 per month one isn’t sufficient. I wasted a little cash but I will survive. I played 10 songs during the trial period, and had it 3  months, and that is the same price as buying them, which is easier to do and I can play them anywhere. If I can’t play stuff via my squeezebox, I don’t want it.

There is one other fault that is worthy of mention. When I wanted to cancel, I couldn’t find Spotify on my PC any more. It had totally vanished. That has happened a few times before. I didn’t remove it, it just left. Why they should remove an application I am actively paying for is totally beyond me. That really is the final straw. I’m done with them. I recommend you find an alternative if you’re shopping around too.

I know many of you have a good experience with it. I didn’t, and I’ve now given them several chances. It isn’t user error. I’m not thick. Spotify works for some people on some devices. It doesn’t work for me on mine. Bye bye Spotify. I’ll try an alternative.

The following is my original piece, what I wrote above is just an  update. Just bear in mind that some is now out of date.

 

Old blog follows:

So, I just cancelled my Spotify premium account. I gave it a good try – just over a year, so that’s over a hundred quid, and I reckon because of the problems using it I have listened to about 100 tracks over that time. Pretty poor value for me. It can be used, but is so difficult to use with my setup, I hardly ever did. And when I tried, usually the licenses had expired so it would spend ages downloading them again before it would let letting me listen. And usually several of the tracks on each playlist were no longer available. And worse still, on three occasions over that time, the whole application has gone missing off my PC spontaneously and I have had to download it afresh.

When I just want to listen to a music track, I don’t want to have to find the Spotify page, download the app again, wait ages while it installs, resyncs a few hundred tracks across all my playlists, clogging up my internet access for ages, log in again, figure out why it won’t talk my Squeezebox any more, fix the complaints by the software that my Squeezebox is logged in so I cant log in via my PC, put up with the inexplicably bad interface to the Squeezebox, wondering why the hell I can’t just use my PC version and then click a button to stream it, then take a trip to the lounge to change channel on my media system, then come back, switch off the one on playing on my PC speakers at the same time, and then figure out which of the two playlists I now have up is the right one, and then work out that the reason it isn’t playing the one I want to listen to is no longer available from Spotify, then figure out how to go back to the Squeezebox interface and find it on my hard drive from my CD collection, then play that, then wonder how I get back onto Spotify without losing the track playing, then try to find which playlist I had going…. etc etc.

Spotify does not work for me. It is better than Napster, but only on a 3/10 score is better than a 1/10 score basis. Both are total rubbish when used with a Squeezebox in another room. Part of that is the Squeezebox’s (Logitech’s) fault, part Spotify’s but if they have an agreement to work together, and claim to do so in their sales pitches, then it is both their faults. My Squeezebox is wonderful when it works. When!

So that’s why I cancelled. I clicked the ‘don’t use enough’ button on their form, but couldn’t click all the others that applied because they only permit one option. I didn’t use it enough because it is total crap. The only reason I didn’t cancel earlier is because I kept forgetting to.

Spotify is fine on just my PC, but then I don’t need the streaming, so the free one is fine, I just turn down my speakers when the adds come on.

OK, let’s move on from Spotify and my darned Squeezebox. I like listening to music, when it’s easy. When I used CDs I listened frequently. Then I got my first MP3 player, and much later various iphones. I have never used any of them more than a few minutes at a time. Having all your music on an easy button click means that with my hamster-like attention span, I hit a new track every few seconds and my enthusiasm quickly burns out. A kid in a sweet shop soon gets sick. And anyway, my iPhone battery seems to be empty every time I pick it up. Another piece of crap but that’s Apple for you.

I use my PC to store all my CD music, and rarely use them now. One problem I have and I am sure must share with others is that on iTunes some tracks get misnamed or worse still, just come over as unknown. I made the huge mistake once of letting iTunes reorganise my library and everything got so screwed up I had to scan in all my CDs again. I own about 20 tracks I bought from Amazon or Napster. They are on my PC, but are always hard to find when I use the media server or Squeezebox because the interfaces are bad. So even there, with music I own, on my own PC, listening is OK to a point, but still has loads of problems. I am listening to a playlist right now and picked ‘play all’, but I still have to go into the Logitech screen every track to make it play the next one instead of  letting it repeat the same track endlessly. It doesn’t work! It isn’t my fault. I am reasonably smart and have 30 years IT experience. If I can’t use it, it is designed badly. Simple as that.

I have a new Freesat system with a hard drive, and am told I can use that to store and play my music. I’ll reserve judgement on that till I try it. I haven’t plugged it in yet.

The future

So how do I get music? I don’t want to use a personal MP3 player all the time. What I really want is to be able to just see a big swathe of album covers, preferably virtual ones hanging in space in front of me, and touch one, then pick the track, or do all that with a playlist. Or speak a voice command, or use a simple search tool by .

When I play it, I want to watch the music video, and I want music made for full 7.1 surround, not bloody stereo. I want to feel I am there in the studio or concert. I want full sensory, full immersion music, with every sense stimulated in synch.

I don’t mind paying. I have never listened to a track I don’t have the legal right to listen to. That never has been an issue. I have bought a lot of what turned out to be rubbish and I’d like a refund please. Same with all the many dupes I own. Can I sell them please? Also, can I give in all my vinyl LPs and get lifetime licenses to digital version please? But I won’t hold my breath on that.

I want to pay a subscription to something a bit like Spotify, but a more professional one that sort of works. I want access to all the other music. And when I spend time making  a playlist, I don’t want to find 20% of the tracks won’t play next time I access it. I want it to integrate seamlessly with my owned tracks, in the correct sense of the word, not exaggerated sales hype. And I want to be able to point at any set of speakers in my house, or anywhere else for that matter and stream it from there, now. I don’t want to fight battles with software or have to log in to anything, or to update software, or re-establish internet connections, or be told I cant use it in the lounge because I am logged on in the office.

The music industry insists on being paid. But by doing so in such clumsy and badly implemented ways, they have destroyed any pleasure from listening to music and alienated countless customers. I tried to buy CDs, but Apple can’t copy them properly onto my PC. My PC can’t stream them reliably through my Squeezebox because of Microsoft and Logitech. No music subscription service I can access on the Squeezebox is any good at all. So I’ll keep the money in my bank account. I listen to music so much less now because it’s such a pain, so the novelty doesn’t wear off any more, so I have enough. A small loss to the global music industry perhaps, but many others aren’t willing to pay at all so I am part of the group they needed to keep on board. For 20 years they have been trying to get a working business model. This isn’t it.

Spotify aimed at the future, and missed.

The future of the Olympics, in 2076

Now that it is all over, it is time to think about the future. The last time the Olympics was held in London was 1948, 64 years ago. Going 64 years in the future, what will it be like then?

Watching the Olympics on 3D web TV is about as advanced as it gets today. By the 2024 Olympics, it will be fairly common to use active contact lenses with lasers writing images straight onto your retinas. It will be fully immersive, and almost feel like you’re there. In fact, many of the people in the crowd at the games will also use them, to zoom in or watch replays and extra content. The 2028 Olympics will have the first viewers using primitive-but-fun active skin technology to connect their nervous systems so that they can even feel some of the sensations involved. In gyms up and down the land, runners will be able to pretend they are in the race, running on their treadmills virtually against actual Olympians. They’ll receive their final placing against the others doing the same. This will improve and by 2040 even domestic active skin sensation recording and replay will feel very convincing. By 2076, we’ll have full links between IT and our brains, living the events as if we were athletes ourselves, Total Recall style.

Interfacing to the nervous system will help potential Olympic athletes improve their performance quickly, injecting sensations into the body to make perfect movements just feel better, so their body learns the optimal movement quickly. This will show the first improvements in results in 2032, with heptathletes and decathletes performing almost perfectly in every one of their events.

The 2050 Olympics will see the first competitors who are children of genetically enhanced parents, and some genetically enhanced themselves. They won’t need drugs to out-perform even those regular humans who have overdosed on steroids all their careers. Their careers will last longer too, as biological decline will be less of an issue thanks to their genes. In the same timeframe, drugs will advance enormously too, squeezing extra levels of performance, learning speed, sensory awareness and muscle development. With negative side effects under control, some drugs and implants may be accepted in sports. But fierce arguments over fairness will eventually force a split between the various streams.

The 2076 Olympics will be made up of five events. There will be one ‘original Olympics’ for ordinary unmodified humans, tested thoroughly for any genetic or chemical enhancements, forced to use the same equipment to eliminate technological advantage, possibly given handicaps for any innate genetic advantage they have over the competition. There will be another for the disabled, many of whom will resist being made ‘normal’, even if technology permits. There will be another for robots, with advanced AI and a range of ‘body types’, used as a show-off event for technology companies. Another stream will take place one for un-enhanced athletes using advanced drugs, implant technology, superior equipment, and even externally linked  IT to gain technological advantage and make more exciting sport. It will be far from ‘natural’, but viewers won’t care. And finally, another event for biologically and neurally enhanced super-humans, without any other technology advantage. These streams couldn’t compete fairly head on, but will make distinct events with distinct flavours and advantages.

The spirit of The Games will live on even with this split, and still only the very best will be able to compete, but they will be bigger, better and more exciting for everyone.

See also my previous blog on future sports.

https://timeguide.wordpress.com/2012/01/27/future-sports/

The future of space exploration

Another step closer to Star Trek this week then. Great!

It is hard to do proper timeline futurology in space sector because costs are so high that things can easily slip by a decade, but it is pretty obvious even to non-futurists what sorts of things will come some time. Another robot landing on Mars this week brings the days of human landing another step closer. And as we all know, once we land on Mars, sci-fi tells us that first contact, warp drive and interstellar travel can’t be far away. Sometimes sci-fi is spot on, but it doesn’t get it all right. There are better ways of exploring the galaxy than building the Enterprise.

For me, one of the most interesting things is that NASA are losing dominance to private enterprise. It is private companies racing towards space tourism and asteroid mining. They often seem to be able to do stuff at a fraction of the price of NASA, which seems to suffer the bloated sluggishness and waste of most big organisations, although its achievements and importance to date shouldn’t be understated. Still, private companies still don’t yet have the budgets for missions like Mars exploration. But give it time, costs will fall and more capital will be available as commercial viability improves.

Space is really going to start developing in the second half of this century. The first half will be pretty minor by comparison. NASA says we might get the first human landing on Mars in a decade or so. Add to that a few bigger and better space stations and ‘space hotel’ in low orbit in the 2020s, maybe even a decent moon base by 2040. We won’t start asteroid mining till the late 2040s. The first space elevator should arrive late in the century, and space exploration will accelerate quickly after that. Mining trips and some distant exploration trips will be enabled by hibernation technology, along with long trips to get water from comets or moons. With water, materials and loads of advanced robotic technology, some asteroids could be developed into outposts and space colonies will start to form in earnest. We’ll start missions to some of the more worthwhile moons.

By the end of the century, there should be quite a few small groups of people dotted around the solar system. Although they will be there for a variety of reasons, their very existence creates a sort of insurance policy for mankind. If there is a global war, or a major asteroid strike or any of dozens of accidents occur that could wipe out pretty much all life on the Earth, having a few outposts will be useful. It means that humans might still survive even if everyone down here dies. But it won’t be just humans there. By the end of the century, many of the population will be AIs. They will be interwoven with human society but will have their own cultures too, plural, because there will be many variants of AI. These AIs will serve as both friends and colleagues, and as well as their own culture, will also act as excellent interfaces and repositories for human culture.

AI science will be the main springboard for space travel, yielding very rapid acceleration of technology development.  Physics won’t allow everything from sci-fi to be built,  and the timescales in sci-fi are often ridiculously overoptimistic, but real science and technology has a habit of making a lot of sci-fi look conservative. As just one example, the voice synthesis on the original Star Trek series is far worse than what we already have 300 years early.

Real science will enable a direct interface between the human brain and machines, and that enables the extension of human capability in every area. It also allows brain replicas to be made, and when realised by superior IT, they replicas will effectively be turbo-charged. In fact it is not impossible to get a factor of 100 million improvement before we push physics barriers. From another angle, we could get the equivalent of one human mind in a volume of 1/10,000th of  a pinhead. A lot of people could be copied and encoded in such a way, and stored for very easy transport. That miniaturisation could be the real basis of space exploration, not huge spacecraft. Sending your mind with a few nanobots to build a body for you and terraform a suitable environment could be cheap and easy compared to the alternative.

Scientists are already considering the possibility of making wormholes, and small ones would be easier and cheaper. Given huge acceleration of technology in the late century via these vastly super-human capabilities, perhaps we will be able to start projects to make real wormholes, through which could be sent some encoded minds and nanobots. A tiny capsule just a few microns across could be a tiny seed for an entire colony. Myriads of these could be sent off like spores, landing on suitable places and assembling a colony. I think that is how we will actually proceed. The spaceships we will soon send off to Mars with people in will be followed by several more decades of them, and that may remain the basis for local civilisation and enterprise, but for the long distance stuff, large physical craft may not be suited at all and using spores will be the next phase.

Spore-based space travel is 100 years away, perhaps a little more. That still makes it 200 years early.

Physicists like toying with ideas for propulsion too. Sci-fi uses a wide variety and many of these are possible and even potentially cost-effective. My own contribution is the space anchor. This locks on to the foundations of space itself and pulls the craft along as space expands. By locking and unlocking and using differences in curvature, craft could reach very high speed. There are a few details to work out still, but plenty of time. Space anchors can also enable easy turning and braking, one of the things that always seems difficult in space, given that parachutes and wings don’t have much effect in a vacuum. OK, needs work.

Fairy stories as a guide to the future?

OK, clutching at straws for a topic this morning, but here goes. Arthur C. Clarke said that sufficiently advanced technology is indistinguishable from magic and I agree. Engineers often derive inspiration from science fiction (and vice versa), but the magic in fairy stories might be a rich source of ideas too. If we look to fairy stories to see the sorts of things people do with magic, then we should see some markets for real advanced technology. Not all of them will be feasible, but some will. It may not be a very standard futures technique, but it should work. We won’t know if we don’t try. There is a pretty standard formula now for producing ideas and techniques in science fiction and computer games. Just mix together some nice potions such as synthetic biology, nanotechnology, genetic modification, artificial intelligence, neurotechnology, virtual, quantum and so on, and you can’t go far wrong, you will end up with all the magic you can imagine. Fairy stories are a bit pre-technology, but maybe we’ll see some ideas.

Let’s start with love potions, evil kisses, poisoned needles and the like. These are included in many stories as tricks that conceal means to control others, spy on them, make them do things or think things. Could that be done? Yes, probably. I wrote about hacking into people’s brains and remote controlling them in my ‘Zombies are coming’ piece, and about some related concepts in my pieces on immortality via direct links to the brain. It essentially uses bacteria to infiltrate the other person’s body via hand contact, a simple kiss, or eating something, and once introduced, the bacteria reproduce and synthesise the components that then connect to nerves in the brain and form a remote control channel. So you could create anything in their mind – sensations, memories, ideas, anything. You could make them believe anything, love anyone, or just hack into their mind to see what they are thinking, any of those sorts of things. Sure, it would be difficult, but it will be feasible one day.

Mind reading is already with us to some degree. Some computer games can be controlled by thought, wheelchairs for the disabled. Scientists can even work out what videos someone is thinking about by comparing the electrical signal they emit to those gathered when they were actually viewing  a selection of videos earlier.

How about preserving someone? Like sleeping beauty. Well, hibernation research has been going on for ages already, and one day that will come up with the goods too. It probably won’t involve spinning wheels, but an injection of some sort is quite likely.

Invisibility is a common occurrence in fairy stories too, and in real life, scientists can make small objects almost invisible too, using special fabrics that bend light or cameras coupled to light emitting fabrics. So far they only work from one direction, and some only work in small colour ranges, but we’re getting there.

Levitation can be done with magnets and superconductivity. Being in two places at once, well I guess that is called Skype.

I am struggling to think of stuff in fairy stories that can’t already be done in the lab or that we at least have a good idea how to do it. Ah yes, frogs that turn into princes. Well, outside of computer games or virtual worlds, it would be difficult, but as augmented reality becomes everyday stuff, we”’ see lots of people using weird avatars, and who knows, some princes with a sense of fun might well choose to be frogs.

The magic wand would also feature well in augmented reality but in the real world would have little real application except as a simple interface to start other processes.

Actually though, I am going to stop here. Fairy stories are a rich source of ideas for technologies we already have or already know about. A part record of the scope of imagination in days gone by. They maybe aren’t so good as a future tool after all. Maybe we need more science fiction writers to do fairy stories before that will be fixed.

Connecting up? let’s shake on that. Guest post by Chris Moseley

“Let’s connect up!” A former American associate of mine used that phrase all the time and nice lady that she is, those words always had an empty, rather dread ring to them. “Connecting up” invariably meant participation in a teleconference where, blind to each other’s facial expressions, attire – hairstyles! – the contributors to the so-called ‘conference’ were left anxiously trying to assemble layers of meaning and depth from each other’s lifeless pleonasms. The communications experience was never much better when we actually saw each other; teleconferencing offered its own unique brand of awfulness, which unvaryingly got in the way of good discussion. Of course there is nothing unusual about this type of experience – it’s common in fact, which makes it all the more dreadful. With all the technology that has come about to help us ‘connect’, much faster and with less effort than ever before, we have become ever more detached from real, flesh and blood relationships. Digital communications simply does not cut it when it comes to developing a relationship. Of course we all know the mantra, the arguments for communications technology. It’s an important tool that helps us to make plans more efficiently, and to stay in touch with friends and loved ones. It is a portal to our business world – to making money! It has even proved to be critically important to the cause of liberty and democracy, witness the events that led to the Arab Spring. And yet I feel that we’re all missing out terribly by confining ourselves to studying our smartphones instead of reading the faces of the people around us, or by choosing to text a few words to a colleague in the office via Skype when he/she is only a few feet away (oh, yes, this is really happening more and more now). I suppose we must keep faith and hope for common sense to lead us back to a sensible blend of technology and good old-fashioned human contact. Or perhaps those clever fellows at BT, Ma Bell, Deutsche Telecom or Telstra will find a viable substitute via interactive holographic technology, or some form of advanced avatar communications. Mmm, I believe that I would still rather shake someone’s hand and, err, smile.

Chris Moseley, 17 Mile Studios, Brisbane, Australia

www.17milestudios.com.au

What is a climate scientist? Indeed, are there any?

We hear the term frequently, but what qualifies some people and not others to be classed as climate scientists?  You might think it is just someone who studies things that affect the climate. But very many people do that, not just those who call themselves climate scientists. The term actually seems to refer solely to a group who have commandeered the term for themselves and share a particular viewpoint, with partly overlapping skills in a subset of the relevant disciplines. In recent times,it seems that to be an official ‘climate scientist’ you must believe that the main thing that counts is human interference and in particular, CO2. All other factors must be processed from this particular bias.

To me, the climate looks like it is affected by a great many influences. Climate models produced by ‘climate scientists’ have been extremely poor at predicting changes so far, and one reason for this is that they exclude many of the relevant factors.

I am struggling to think of any scientific discipline that doesn’t have something to say about some influence on climate. Many branches of chemistry and physics are important in understanding how the atmosphere works, and the oceans, and glaciers, and soil. We have some understanding of some natural cycles, but far from all, and far from complete. We need biologists and chemists and physicists to tell us about soil, and forests, and ocean life, and how species and entire ecosystems react and adapt to changing circumstances, with migrations or adaptation or evolution for example. We need to understand how draining bogs or chopping trees to make room for biofuels affects the climate. How using bio-waste for fuel instead of ploughing it into the ground affects soil structure, plant growth, and carbon interchange. We need to understand how cosmic rays interact with the earth’s magnetic field, how this is affected by solar activity, how sunspots form, and even gravitational interactions with the planets that affect solar cycles. We need to understand glacial melting, how glaciers move differently as temperature changes, how black carbon from diesel engines affects their heat absorption, how clouds form, how they act to warm or cool the earth according to circumstances. We need to understand ocean cycles much better, as well as gas and heat interchange between layers, how this is affected by weather and so on. I could go on, endlessly. We need to understand the many different ways we could make energy in the future, the many options for capture and containment of emissions or pollutants, or positive effects some might have on plant growth and animal food chains.

But it doesn’t stop with science, not be a long way. We also need people skilled in anthropology and demography and sociology and human psychology, who understand how people react when faced with choices of lifestyle when presented in many different ways with different spins, or faced with intimidation or eviction because of environmental policies.  And how groups or tribes or countries will interact and distribute burdens and costs and rewards, or fight, or flee. And religious leaders who understand well the impacts of religious pressures on people’s attitudes and behaviours, even if they don’t subscribe to any organised religion. Clearly environmental behaviour has a strong religious motivation for many people, even if that is just as a crude religion substitute.

We even need people who understand animal psychology, how small mammals react to wind turbine flicker for example, and how this affects the food chain, ecosystem balance and eventual interchange with the atmosphere and the rest of the environment.

And politicians, they understand how to influence people, and marketers, and estate agents. They can help predict behaviours and adaptation and how entire countries may or will interact according to changes in climate, real or imagined.

And we need economists to look at the many alternatives and compare costs and benefits, preferably without ideological and political bias. We need to compare strategies for adaptation and mitigation and avoidance. Honestly and objectively. And we need ethicists to help evaluate the same from human perspectives.

And we need loads of mathematicians, especially statisticians. Climate science is very complicated, and a lot of measurements and trend analyses need in-depth statistical skills, apparently lacking in official climate science, as evidenced by the infamous hockey stick graph. But we also need some to model things like traffic flows so we can predict emissions from different policies.

And we need lots of engineers too, to assess likely costs and timescales for development of alternatives for energy, transport, entertainment and business IT. We need a lot of engineers!

And don’t forget architects, who influence energy balance via choices of shapes, materials and colour schemes as well as how buildings maintain a pleasant environment for the inhabitants.

Ah yes, and futurists. Many futurists are systems thinkers with an understanding of how things link together and how they may develop. You need a few of them too.

I have probably forgotten lots of others. The point is that there are very many factors that need to be included. No-one, and I mean no-one, can possibly have a good grasp of all of them. You can know a bit about a lot of things or a lot about a few things, but you can’t know a lot about everything. I would say that there are no people at all who know about all the things that affect climate in any depth, and therefore no group deserves a monopoly on that title.

So, if you only look in any depth at a few interaction in the oceans and atmosphere and ignore many of the rest of the factors affecting climate, as ‘climate scientists’ seem to, it is hard to see a good reason to continue to hold the title any more than anyone with another label like astrophysicist, or politician. ‘Climate scientists’ as we currently classify them, know a bit about some things that affect climate. So do many other groups. Having skills in a few of the relevant areas doesn’t give any right to dismiss others with skills in a different few. And if they consistently get it wrong, as they do, then there is even less reason to trust their particular viewpoints. And that’s before we even start considering whether they are even honest about the stuff they do talk about. And as Donna Lamframboise has pointed out recently, they don’t deserve to be trusted.

http://thegwpf.org/best-of-blogs/5864-donna-lamframboise-no-reasonable-person-should-trust-climate-scientists.html

Self driving cars will be basis of future public transport

Fleets of self-driving cars will one day dominate our roads. They will greatly reduce road accidents, save many lives, be very socially inclusive and greatly improve mobility for the poor, the old and frail. They will save us money and help the environment, and provide useful synergy with the renewable energy industry. They will reduce the need for car parking and help rejuvenate our cities and towns. But, they will destroy the domestic car industry, reduce the pleasure many get from driving, and increase government’s ability to monitor and control our lives. The balance of benefits and costs as always will depend on the technical competence of our government, but only the most idiotic of governments could prevent this bringing huge benefits overall.

The state of Nevada has granted licenses for self-driving cars with California set to follow:

http://www.guardian.co.uk/technology/2012/may/09/google-self-driving-car-nevada?newsfeed=true

It is long-established in lab conditions that computers are able to drive cars, and for a few years now, Google have had experimental ones out on the streets to prove it in the real world, successfully. This extended licensing brings it close to the final hurdle. Soon, we will see lots of cars on the roads that drive themselves.

There are many obvious advantages in letting computers drive. Humans typically react at around 250ms. Some faster, some slower. That is thousands of times slower than we expect of machines. Machines can also talk to each other extremely quickly, and it would be very easy to arrange coordination of braking and acceleration among lines of cars if desired. High speed reaction and coordination allows a number of benefits:

Computer-driven cars could drive just millimetres apart. This would reduce drag, improving environmental footprint, and since there can’t be a significant speed differential, so gives very limited scope for damage if the cars collide. There can also be more lanes, since we wouldn’t need huge gasp between cars sideways because of low human skill, and lanes can be assigned for either direction of flow according to circumstances. It also increases greatly the number of cars that can fit along a stretch of road, and ensures that they can be kept moving much more smoothly. So cars could be safer and more efficient and get us there faster.

However, we only get the greatest benefits if we allow a high degree of standardisation of control systems, road management, vehicle size and speed. Drivers would have little control of their journey other than specifying destination. We could allow some freedom, but each degree of freedom reduces benefits elsewhere. Automated cars could mix with human driven ones but the humans would slow the system down and reduce road usage efficiency considerably. So we’d be far better off going the full way and phasing out human-driven cars.

If we have little control of our cars, and they are all likely to be standardised, and if they can drive themselves to you on request, and you can just abandon them once you arrive, then there is very little point in owning your own. It is extremely likely that we will move towards a system where large fleets of cars are owned and run by fleet management companies or public transport companies, and obviously these are likely to overlap considerably. This would result in better social inclusiveness. Older people who rely on public transport because they can’t drive, might also find it hard to walk to a bus stop. If a car can collect them from their front door, it would improve their ability to taker an active part in life for longer. If we don’t own our cars, and they just go off and serve someone else once we have arrived, then we won’t need as many cars, nor the need for all the parking spaces they use. We could manage with a few centralised high-efficiency storage spaces to store the surplus during low demand. All the spare car parks, garages and home driveways could be used for other things instead that would improve our life quality, such as more green areas or extra rooms in our homes, or more brown field development space.

Energy storage for wind or solar power is made easier if we have large numbers of electric cars. Even though we would eventually make direct energy pick-up in most roads, via inductive loops and super-capacitors, cars would still need small batteries once they leave the main roads. So there is good potential synergy between energy companies and car owners.

All the automation requires that the fleet companies have some sort of billing systems, so they know who has been where. This potentially also allows government to know who has been where and when, another potential erosion of  privacy. Standardisation would favour some parts of the car industry against others, but since we would need a lot fewer cars, the entire car industry would shrink. But I think these problems are not too high a price for such great benefits, in this case. Cars are essential, but they sap a great deal of our income, and if we have a better and cheaper way of meeting the same needs, then we can spend the savings on something more fruitful, and that will stimulate business elsewhere. So overall, the economy should benefit rather than suffer.

So, there is no such thing as a free lunch, and automated cars will bring a few problems, but these problems will be greatly outweighed by very large benefits. We should head down this path as fast as we can.

 

21st century social problems

I just updated this entry by expanding on the headings, otherwise it is still the same as it was. I’m emptying this old copy to avoid confusion. Here is the link to the new one:

21st Century Social Problems, updated

Blocking Pirate Bay makes little sense

http://www.telegraph.co.uk/technology/news/9236667/Pirate-Bay-must-be-blocked-High-Court-tells-ISPs.html Justice Arnold ruled that ISPs must block their customers from accessing Pirate Bay. Regardless of the morality or legality of Pirate Bay, forcing ISPs to block access to it will cause them inconvenience and costs, but won’t fix the core problem of copyright materials being exchanged without permission from the owners.

I have never looked at the Pirate Bay site, but I am aware of what it offers. It doesn’t host material, but allows its users to download from each other. By blocking access to the Bay, the judge blocks another one of billions of ways to exchange data. Many others exist and it is very easy to set up new ones, so trying to deal with them one by one seems rather pointless. Pirate Bay’s users will simply use alternatives. If they were to block all current file sharing sites, others would spring up to replace them, and if need be, with technological variations that set them outside of any new legislation. At best judges could play a poor catch-up game in an eternal war between global creativity and the law. Because that is what this is.

Pirate Bay can only be blocked because it is possible to identify it and put it in court. It is possible to write software that doesn’t need a central site, or indeed any legally identifiable substance. It could for example be open-source software written and maintained by evolving adaptive AI, hidden behind anonymity, distributed algorithms and encryption walls, roaming freely among web servers and PCs, never stopping anywhere. It could be untraceable. It could use combinations of mobile or fixed phone nets, the internet, direct gadget-gadget comms and even use codes on other platforms such as newspapers. Such a system would be dangerous to build from a number of perspectives, but may be forced by actions to close alternatives. If people feel angered by arrogance and greed, they may be pushed down this development road. The only way to fully stop such a system would be to stop communication.

The simple fact is that technology that we depend on for most aspects of our lives also makes it possible to swap files, and to do so secretly as needed. We could switch it off, but our economy and society would collapse. To pretend otherwise is folly. Companies that feel abused should recognise that the world has moved on and they need to adapt their businesses to survive in the world today, not ask everyone to move back to the world of yesterday so that they can cope. Because we can’t and shouldn’t even waste time trying to. My copyright material gets stolen frequently. So what? I just write more. That model works fine for me. It ain’t broke, and trying to fix it without understanding how stuff works won’t protect anyone and will only make it worse for all of us.

What do solar panels on your roof say about you?

I mostly work from home and since my office is just a short walk from the bedroom, lounge or kitchen, I have started going on short walks round the neighbourhood to avoid becoming fat. I noticed some of my neighbours have covered their south-facing roofs with solar panels.

What image did they convey? Here is a multiple choice:

a) I had some spare cash and wanted to get a big return on my investment and solar panels offer a fantastic return.

b) I had a guy come round promising me lots of cash if I let him put panels on my roof.

c) I hate paying big greedy companies for energy and paying too much taxes, so am very keen to take full advantage when there is a means to get my own back.

d) I really love technology and am keen to demonstrate it.

e) I want everyone to know what a nice person I am looking after the environment.

f) I want to do my bit for the environment and solar panels are a good way to reduce dependence on fossil fuels and reduce CO2 emissions.

g) I want my kids to live in a sustainable world and that is far more important than the appearance of my house.

I get the impression that each of the above would have some people ticking them. Some would tick several.

Well, I did have a guy come round offering me cash if he would let me stick panels on my roof too. I sent him away, mainly because I am a not an idiot. I had thought it through long before he came. Let me explain what image solar panels on a roof conjure up in my mind when I see them. And bear in mind that my full-time job is as a futurist and I think systemically about how people will behave over the longer term. Using the same tick list, with alternative answers:

a) I wanted a fantastic return on my investment and I don’t care at all that it is other people with less cash to invest who will pay that high return. So I am  greedy and selfish. As the recession lingers on, some people may be tempted to spray nasty messages on my door or run keys down my car doors or shame me on social networking sites, and maybe my family will live in fear or I will be forced to remove them. So I am an idiot too. I am a greedy selfish idiot.

b) I was fully taken in by a door to door salesman and didn’t understand that I could easily commission the panels myself so was happy to give most of the returns to a company who won’t have to suffer the drop in value of my home or the unsightliness, or the maintenance problems they will cause, or the hassle when I move or any other problems. So I am a first class idiot.

c) If energy companies can’t get as much from the energy they sell, they will try to increase the rental and maintenance and billing charges to maintain their revenue. And that means I will get less net profit from any energy I put back into the grid. So I probably won’t save much on what I buy and won’t make much on what I put back. And when I sell my house, even though I will get less for it because the panels make it look awful, I will probably lose heavily again in various admin fees to transfer the solar contracts over to the buyer, who probably won’t get the same deal, so won’t pay me much for it. So I am not as canny as I thought and my returns will be far less, so I am an idiot.

d) As long as I have the latest panels I will look cool and trendy. But they won’t be the latest panels for more than a few months, after which they will quickly start to look obsolete as well as unsightly, so I will have to either reinvest regularly or accept looking like a loser. So I am an idiot.

e) I care for the environment but not enough to do any basic reading and can’t think for myself anyway. I have been fully taken in by the anthropogenic global warming scam and as the global warming panic changes to global cooling panic I will increasingly be labelled as one of the idiots who went along with the AGW panic and just did what the environmentalists told me to do. I am a well-meaning idiot with little or no independent thought. Still an idiot though.

f) Solar panels will one day be an excellent way of reducing CO2 emissions, albeit in sunny countries. However, they are darker and absorb more of the sun’s energy than the roof did previously, so contribute directly to warming the earth, and manufacturing them creates loads of pollutants today, so it isn’t really quite as simple is it? And anyway, maybe we should have waited and put our panels in later, in the Sahara, and got far more energy for far lower costs, while helping poor African economies. And we now know for certain that the impact of CO2 has been greatly exaggerated and is fairly small compared to other impacts on global temperature. On the other hand, as global cooling sets in, we will welcome the extra heat absorption and I’ll be able to get my energy while helping warm the earth. But I didn’t expect it, so am a lucky idiot who landed in poo and came out smelling of roses.

g) I am holier than you are. You obviously don’t care about your kids and their future. I do, aren’t I wonderful? But I can’t think clearly so am happy to do make some ill-informed token gestures instead of things that actually help. So I am a sanctimonious idiot.

At the moment, public opinion hasn’t had time to catch up and many people are still influenced by AGW panic. But it will. Give it a while, and attitudes will migrate from the first list to the second.

I am all in favour of solar energy in the future in some sunny areas. It has an important role to play, but it isn’t as squeaky clean as it initially looks. It doesn’t need subsidised. When the technology is mature, it will be far cheaper than many other forms of energy, but it isn’t there yet. Since global warming has stopped for 15 years or more now, and it looks more and more like we are heading into a prolonged period of cooling, there is no economic or environmental justification for installing subsidised solar. If it indeed helps the environment overall, it will be far better to invest the same amount later, when we can buy more and help more. There is certainly no cause for panic based subsidies. In the short term they move money from the poor to the greedy, and in the longer term, even those people will lose out. Even the companies installing them can’t seem to survive because of the rapid technology evolution, making their investments in stock worthless and changes in subsidies undermining their business models. It really seems that there are no winners from early investment.

One day, in some places and circumstances, it may be a great idea, but for now, across the UK, rooftop solar power is for greedy, selfish, sanctimonious idiots.

Augmented reality will objectify women

The excitement around augmented reality continues to build, and my blog is normally very enthusiastic about its potential. Enjoying virtual architecture, playing immersive computer games while my wife is shopping, or enjoying artworks transposed onto walls in the high street are just a few of the benefits.

But I realized recently that it won’t all be wonderful. I’ve often joked that you could replace all the ugly people in the high street with more attractive ones. But I didn’t really consider the implications of that. And now I have, I think it will actually become a problem.

In spite of marketing hype and misrepresentation of basic location based services, AR is only here in very primitive form today, outside the lab anyway. But very soon, we will use visors and contact lenses to enable a fully 3D, hi-res overlay on the real world. So notionally, you can make everything in the world look how you want, but only to a point. You can transform a dull shop or office into an elaborate palace of spaceship. But even if you change what they look like, you still need to represent real physical structures and obstacles in your fantasy overlay world, or you may bump into them, and that includes all the walls and furniture, lamp posts, bollards, vehicles, and of course other people. Augmented reality allows you to change their appearance thoroughly but they still need to be there somehow.

When it comes to people, there will be some small battles. You may have a wide variety of avatars, and may have invested a great deal of time and money making or buying them. You may have a digital aura, hoping to present different avatars to different passers-by according to their profiles. You may want to look younger or thinner or as a character you enjoy playing in a computer game. You may present a selection of options. The avatar they choose to overlay could be any one of the images you have on offer, that you spent so much time on. Maybe some people get to pick from some you offer, or are restricted to just one that you have set for their profile.

However, other people may choose not to see you avatar, but instead to superimpose one of their own choosing. The question of who decides what the viewer sees is the first and most obvious battle in AR and it will probably be won by the viewer (there may be exceptions, and these may be imposed by regulations). The other person will decide how they want to see you, regardless of your preferences.

You can spend all the time you want making your avatar or tweaking your virtual make-up to perfection, but if someone wants to see Lady Gaga walking past instead of you, they will. You and your body become no more than an object on which to display any avatar or image someone else chooses. You are quite literally reduced to an object in the AR world. If you worry about objectification of women, you will not like what AR will bring.

Firstly they may just take your actual physical appearance (via a video camera built into their visor for example) and digitally change it,  so it is still definitely you, but now dressed more nicely, or dressed in sexy lingerie, or how you might look naked, body-fitting any images from a porn site. This could easily be done automatically in real time using some app or other. They could even use your actual face as input to image matching search engines to find the most plausible naked lookalikes. So anyone can digitally dress or undress you, not just with their eyes, but with a hi-res visor using sophisticated software and image processing software. They could put you in any kind of outfit, change your skin colour or make-up, and make you look as pretty and glamorous or as slutty as they want. And you won’t have any idea what they are seeing. You simply won’t know whether they are celebrating your inherent beauty with respect, flattering you and simply making you look even prettier, which you might not mind, or stripping or degrading you to whatever depths they wish, which you probably will mind a lot.

Or they can treat you as just an object on which to superimpose some other avatar, which could be anything or anyone, a zombie, favourite actress or supermodel. They won’t need your consent and again you won’t have any idea what they are seeing. The avatar may make the same gestures and movements but it won’t be you. In some ways this won’t be so bad. You are still reduced to an object but at least it isn’t you that they’re looking at naked. To most strangers on the high street, you were mostly just a moving obstacle to avoid bumping into before. Most people will cope with that bit. It is when you stop being just a passing stranger and start to interact in some way that it starts to matter. You probably won’t like it if someone is chatting to you but looking at someone else entirely, especially if the viewer is one of your friends or your partner. And if your partner is kissing or cuddling you but seeing someone else, that would be a strong breach of trust, but how would you know? This sort of thing could and probably will damage a lot of relationships.

It’s a fairly safe bet that the software to do some or all of this is already in development. Maybe some of it already exists in primitive forms but it will develop quickly once AR display technology is really with us. The visor hardware required is certainly on its way and will be here by christmas.

In the office, in the home, when you’re shopping or at a party, you won’t have any idea what or who someone else is seeing when they look at you. Imagine how that would clash with rules that are supposed to be protection from sexual harassment  in the office, but how to police it?

The main casualty will be trust.  It will make us question how much we trust each of our friends and colleagues and acquaintances. It will build walls. People will often become suspicious of others, not just strangers but friends and colleagues. Some people will become fearful. You may dress as primly as you like, but if the viewer sees you in a slutty outfit, perhaps their behaviour and attitude towards you will be governed by that rather than reality. So we may see an increase in sexual assault or rape. We may see more people more often objectifying women in more circumstances.

It applies equally to men of course. You could look at me and see a gorilla or a zombie or see me fake-naked. I won’t lose any sleep over that because I don’t really care all that much. Some men will care more than I will, some even less. I think the real victims will be women. Many men objectify women already. In the future AR world , they’ll be able to do so far more effectively.

We can still joke about a world where you use AR to replace all the ugly people with supermodels, but I think the reality may well not be quite so funny.

 

Are advertising and Apple expenses we can do without?

If you wage war with someone and he gets a bigger gun, you feel pressured to get one too. It’s the same in the war to take your money. If everyone else spends a fortune on advertising, you are likely to feel forced to do so too. But it costs, heavily, and those costs ultimately have to be recovered in higher prices.

When you click on an ad on a website, an advertising company somewhere typically gets about £0.50. That 50p plus has to be recovered when you buy the product, but many of the clicks are ineffective, and there are other expenses in the whole chain apart from the actual click fee (the seller’s own staff, banking costs, accountancy, management etc). Whether you even notice ads or have ever clicked on one, the money you hand over nevertheless subsidises a great many ads, and the ultimate price you pay is much greater than the price that would be needed without advertising.

Nothing new there, but advertising has become a significant and unavoidable extra cost along with taxes and banking fees (and parking charges if you buy in town). You don’t get a choice whether to pay extra to buy via an advertising route or get it cheaper by somehow buying direct. Add up all the web ads, junk email, text messages, paper junk mail, newspapers and magazines, TV and radio advertising, and the whole advertising mark-up is big.

Advertising doesn’t just increase costs. With the exception of some wonderfully entertaining ads, many involving meerkats, adverts waste our time too. Count up all the hours people waste fast forwarding over the add breaks or even sitting through them, and consider the significant personal stress directly resulting from the irritation they cause, that may have a small but finite impact on health. Add to that the extra demands on landfill from the paper junk mail, plus the wasted time opening and sorting the waste. The negative impact on our lives, the environment, and on  the overall economy is vast. Sure, the ad industry creates jobs, but jobs in advertising don’t generate wealth (though there are obviously cash flows between regions). Like banking and the public sector, advertising is a drain on resources. It syphons money from the productive economy and impoverishes us. 

On the other hand, advertising pays for a great deal of what we use on the web, watch on TV or read in newspapers. Some of that wouldn’t exist if the advertising went away, though some would survive via other business models. We’d still have to pay for the things we want to use somehow, so any notional extra fees and administrative inconvenience can reasonably be offset against advertising’s negative impacts.

But even with that offsetting, we really should challenge the cost:benefit ratio in advertising and see if we can find better ways of letting suppliers make potential customers aware of the merits of what they have on offer.

Advertising is only one strand of marketing of course. Marketers know that people want to learn about their new products when they are potentially interested. Context is key. If I have just eaten, I am not interested in marketing from nearby restaurants. If I haven’t, I might be. Using context makes direct marketing possible, especially knowing the location of the user and their tastes and preferences. I will gladly pull information from companies willing to sell me stuff I am interested in, when I want it. They won’t have to pay anyone. Pull marketing is potentially very low cost to both parties, providing the consumer with the info on suppliers’ offerings so they can make an informed decision on what to buy. If we moved entirely to that sort of model, we could greatly reduce the price of everything we buy while saving time and stress.

It is certainly possible to build such a system and make it work well. The technology exists and we’d all be far better off. The really huge problem is that we have bought into the smartphone model, buying iphones, pads or similar, and were taken in so well by beautiful designs and features that we didn’t look under the covers. What we didn’t consciously buy, but bought nonetheless, were devices that only give us access to things on condition that Apple or another big manufacturer gets a big slice of the price, via a variety of mechanisms. A smartphone is perfectly capable of providing exactly the platform we need to save lots of unnecessary spend, but Apple has used its power to extract its own slice of our spend not just at device purchase but throughout its lifetime. Not only has it not let us avoid the expense of advertising, it has added its own extras on top. It has made the situation even worse. Most other companies also use strategies that are designed to get into the most lucrative position in the value chain, expanding the price increase industry.

As I remember it in the beginning, the web was meant to get rid of intermediaries and save costs, making the economy more efficient. What has happened is that layer upon layer of new intermediaries have become adept at selling us products and purchasing systems that allow them to skim off extra slices of revenue for themselves. Anyone working in IT is very familiar with the many layered system architectures, and each layer is another opportunity for some company to take a slice of the revenue passing through. All add ultimately to the purchase price, and companies like Apple win several times because they control several of the architectural layers that their devices are used in. But we are suckers, and keep buying them. Because the extra costs are cleverly hidden or disguised or renamed, we don’t notice them until it’s too late.

I may sound critical of Apple, but all they are doing is to maximise profits for their shareholders, whilst giving customers products they can’t resist. There is no fault there. The same goes for Google or Facebook or any other intermediary. It is the model that we need to change, not companies, who will always do what they can to make the most money. That’s what companies are for.

I’ve written often about cloud nets and digital jewellery nets and the forces of censorship and surveillance and web-based politics and the consequential likely emergence of sponge networks. Check them out in my recent articles list. Freeing ourselves of parasitic companies and advertising is another potential pressure. It may go two ways. We could simply recreate exactly the same problems all over again, just swapping one set of intermediaries for another. Sadly, that is the most likely outcome. History teaches us best that we don’t often learn from history.

But, and this is a long shot, but one that would really help make the world better, we could make devices that people buy, and are then free. No charges for making apps for them, no push advertising, completely open, highly context aware, and high powered, yet completely free to own and use after purchase. Even the comms could be free. They would be capable of everything that you do now, and more. We could use them to talk direct to suppliers and do business with them without anyone else involved. It is even possible to design a free payments and banking system. We could avoid paying anyone except the device manufacturer, once, and the companies we want to do business with using the devices. And with all the time and money we would all save, none of us would mind paying a fair price for such a device. Many people paid via advertising would have to find alternative support models, but the economy would be better off, the rest of us individually would be better off, and the environment would be better off. It is hard to see a downside.

History tells us we will still pick the other system and pay more for a worse life.

Next generation small computers

One of my posts two years ago suggested it would be a great time to bring back the Spectrum computer or something like it:

https://timeguide.wordpress.com/2010/01/15/bring-back-the-spectrum/

The new Raspberry Pi is pretty much exactly what I asked for (though I don’t think it came from my request) . For about £22, you get a computer. You plug in a keyboard and a TV and comms, then start programming. I am amazed it has been so long for someone to do it, but better late then never. Now a new generation of kids can learn how to program by messing about, instead of falling victim to the formal teaching that is provided by schools and university. I have always believed that learning how to hack programs together is the best way to understand what you are doing. You can learn formal methods later if need be. I don’t think hacking is the source of bad habits. Rather, it is more likely to show you the workings of the machine so you can exploit it better. I have seen too many taught programmers make good impressions of being mentally crippled after being forced to think in just one way, any fee-thinking and originality purged.

The Raspberry Pi isn’t the only tiny computer around though. FXI also have one, the size of a USB memory stick, and pretty impressive capability, albeit five times the price. It is easy to imagine how devices like this could really change how we work. I like to travel very light and haven’t carried a laptop for years – even the latest are still heavy and big and just aren’t worth the trouble. I won’t even use an iPAD because it is still obese, power-hungry, and altogether too primitive.Turning up at a conference with a memory stick containing your presentation has been fine as an alternative, but you are reliant on the conference laptop having the right setup. If you could bring a full PC memory stick and run everything from that, that would be better. At home it will be good to put media straight onto your TV without cluttering the room up with big boxes. A Slingbox has done that for years, and smart TVs now do it built-in, so it isn’t new, but this makes it a lot easier and cheaper to provide web and media on more conventional TVs.

On the go, you need some sort of visual display of course but soon we will have visor based head up displays that work with fingertip tracking or virtual  keyboards. Then these compact devices will come into their own. You’ll be fully connected and IT capable, but carrying hardly any weight.

Both of these new devices are small but capable, and most of the size they still have left is really interfacing to other devices. The processing guts is much smaller still. There is room to shrink further, and it is clear from these that the era of digital jewellery is almost with us. Imagine the enormous environmental benefits too, if we hardly need any resources to provide for all our IT needs.

It is the curse of futurology that you are never really happy with the stuff available today because you know what is round the corner. But when I can easily fit all my IT into my pocket as a memory stick and wear a lightweight visor as my interface, I’ll be pretty near content. Can’t be long now

How much choice should you have?

Like most people I can’t get through an hour without using Google. They are taking a lot of flak at the moment over privacy concerns, as are Apple, Facebook and other big IT companies. There are two sides to this though.

On one side, you need to know what is being done and want the option to opt out of personal information sharing, tracing and other big brothery types of things.

On the other, and we keep forgetting this, most people have no idea what they want. Ford noted that if you asked the customer what they wanted, they would say a faster horse. Sony’s Akio Morita observed that there was little point in doing customer surveys because customers have no idea what is possible. He went ahead and made the Walkman, knowing that people would buy it, even though no-one had asked for it. Great visions often live far ahead of customer desires. Sometimes it is best just to do it and then ask.

I think to a large extent, these big IT companies are in that same boat.

If your collective IT knows what you do all day (and by that I mean all your gadgets, and all the apps and web services and cloud stuff you use), and it knows a hell of a lot, then it is possible to make your life a lot easier by providing you with a very talented and benign almost telepathic personal assistant. Pretty much for free, at point of delivery anyway.

If we hold companies back with  too many legal barriers because of quite legitimate privacy concerns, this won’t happen properly. We will get a system with too much internal friction that fails frequently and never quite works.

But can we trust them? Apple, Google and Facebook all have far too much arrogance at the moment, so perhaps they do need to be put in their place. But they aren’t evil dictators. They don’t want to harm us at all, they just want to find new ways to help us because it’s on the back of those services that they can get even richer and more powerful. Is that good or bad?

I deleted and paused my web history on Google and keep my privacy settings tight on everything else. Maybe you do the same. But I actually can’t wait till they develop all the fantastic new services they are working on. As a technology futurologist I have a pretty good idea how it will be, I’ve been lecturing about Google’s new augmented reality headset since 3 years before Google existed. Once everyone else has taken all the risks and it’s all safely up and running, I’ll let them have it all. Trouble is, if we all do that it won’t happen.

Avatar 0.0

There has been some activity in recent weeks on the development of avatars, as in the film, or at least some agreement on feasibility and intention to develop, with real actual funding.

The concept is that you could inhabit another body and feel it is yours. I have written many times about direct brain links, superhuman AIs, shared consciousness and so on, since 1992, and considered a variety of ways of connecting. It has been fun exploring the possibilities and some of the obvious applications and dangers. For a few years it seemed to be just Kurzweil and me, but gradually a number of people joined in, often labelling themselves transhumanists. Now that it is more obvious how the technology might spin out, the ideas are becoming quite mainstream and no longer considered the realm of cranks. Many quite respectable scientists are now involved.

Google DARPA and avatar and you’ll see a lot of recent commentary on the DARPA project to create surrogate soldiers, just like we see them in the film. Not tomorrow, but by around 2045. Why then? Well, 2045 is the date when some of us expect to be able to do a full direct brain link, at least in prototype. I think with a lot of funding and the right brains involved, it is entirely achievable then.

But DARPA won’t have it all to themselves. The Russians are also looking at it, and hosted a recent conference. Dmitry Itskov, founder of Russia 2045, has been given permission to develop his own avatar program. Check this out:

http://www.msnbc.msn.com/id/44938297/ns/technology_and_science-innovation/t/does-future-hold-avatar-like-bodies-us/#.T0YoIPFmKom

From their conference press release:

The first Global Future Congress 2045 (GF2045) was held on Feb.17-20 in Moscow, where 56 world leading physicists, biologists, anthropologists, sociologists, psychologists and philosophers met to discuss breakthroughs in life extension technologies and draft a resolution to the United Nations setting the radical lengthening of human lifespan and the creation of Avatars as a priority for preservation of humankind.

About 500 people attended the three-day event featuring presentations by over 50 scientists including inventor Ray Kurzweil, Microsoft Research Director Rane Johnson-Stempson, and Astronaut Sergey Krichevskiy. The event was focused on breakthrough technologies that could create a synthetic body-vessel for the mind, offering humans unlimited prolongation of life to the point of immortality…..

Among the featured life-extension projects is “2045” a Russia-based Avatar project consisting of three phases. First, to create a humanoid robot named “Avatar”, and a state-of-the-art brain-computer interface system. Next, to create a life support system between the “Avatar” and the human brain. The final step is creating an artificial brain in which to transfer the original individual consciousness.

Development of a cybernetic body. This is about as advanced as it gets currently. You can link to nerves, and transmit signals to and from them to capture and relay sensations. But this will progress quickly over coming years as we start seeing strong positive feedback among the nano-bio-info-cogno disciplines. I’m just annoyed that I am not just starting my career about now, it would be an excellent time to do so. But at least I’ll get pleasure from saying ‘I told you so’ a few times.

I won’t repeat all the exciting possibilities for the military, sex and games industries, or electronic immortality, I’ve blogged enough on these. For now, it’s just great to see the field moving another important step further from sci-fi into the realms of reality

 

Capitalism 2.0

This entry now forms a chapter in my book Total Sustainability, available from Amazon in paper or ebook form.

Environmental and engineering convergence

My best friend Dave Faulkner runs an environmental consultancy. I host a couple of his papers on global warming on the Futurizon web site. We have many a beer over debate about environmental issues. Over the years, I have worked a few times with both Friends of the Earth and Greenpeace. I have a lot of respect for Jonathon Porritt and Doug Parr. We share a passion for a healthy environment, though we disagree on some of the ways to achieve it. It’s the same with my friend Dave. I can like and respect a person without agreeing with everything they say. It is nicer still when some common ground appears.

Only a small bit of my work involves environmental issues so I am far from expert in the environment field, though I do have my own embryonic environmental consultancy now. But I am expert at studying the future overall and pretty good at making predictions – I get it right 6 times more often than I get it wrong – and as I look at the many factors affecting the way the world is going, I feel hesitantly optimistic. There is some potential for a techno-utopia but I know we won’t get that. We will take a sub-optimal path that creates as many new problems as we solve. The world of 2050 and beyond will still be a mixture of good and bad, just with different goods and bads.

The approach to our environment though is one area I think will improve. On one side, we have the likes of Porritt and Parr, leading much of the green community and doing what they can to motivate people with the desire to live in a nicer world in harmony with nature. I can’t fault that, only in some of the policies they recommend to achieve it, which I think come from occasional flaws in their analyses. On another side, engineers are racing to develop better technologies, sometimes deliberately to help the environment, but more often almost coincidentally making better toys that happen to be better for the environment. Engineers are mostly driven by market forces, but they are still human, and many also care passionately for the environment, so will generally seek solutions that do their job but are better for the environment where the choice exists. In fact, it is hard to spot examples of new technology that are worse for the environment than their predecessors. Market forces, mediated through well motivated engineers, can make the world better just as well as any green. Both can help us move to a better world. 

I see a lot of needless worrying by environmentalists though, some of whom (I won’t name names) think of scientists and engineers as the enemy. Needless worry, and sometimes counter-productive. One of the big worries this week is that a lot of resources are scarce that we need to make renewable energy, or to make batteries to store it. But almost at the same time, articles appear on inductive power delivery to cars that circumvents the need for large batteries and hence the need for lithium – I even proposed that solution myself a few years ago, so it is good to see it appearing as a project somewhere. New materials for IT are being developed too, so we won’t rely for much longer on the other things that are scarce. So, no worries, it’s just a short-term problem. For the last few years it has been recommending spending trillions to avoid carbon dioxide production. But even without spending any trillions, future energy technology that is being developed anyway will make fossil fuels redundant, so it will take care of itself. Panic is expensive but unnecessary, the worry needless and counter-productive, serving only to slow down the race to sustainability by diverting funds to the wrong areas.

The environment has some very good friends in engineering now. Biomimetics is the engineering field of copying ideas  or at least inspiration from nature. I’ve occasionally use biokleptics when an idea is blatantly stolen. Nature doesn’t have any lawyers defending her intellectual property rights, but has been using random trial and error for 3 billion years to develop some fantastic engineering solutions and if anything encourages their copying. So, someone looks at spiders and develops a new kind of architecture that produces better structures with less material. Going way back to the 80s, I looked at evolution and made the tiny deductive leap to thinking of evolving software and hardware, then soon after looked at embryo growth and came up with ideas of how to self organise telecomms networks and sensor nets. I love biomimetics.  So do many other engineers, and the whole field is exploding now. It will help to make systems, objects, fabrics, materials, architecture and processes that are more energy or resource efficient, and quite often more beautiful.There are a few purists who insist on copying something exactly as nature does it, but mostly engineers are happy to be inspired and make their own tweaks to adapt it to needs. So, long ago, Icarus started the field by copying nature but a century ago we discovered we could make planes more easily with metal fixed wings.

Synthetic biology essentially completes the relationship by adding human design into biology. This embryonic field will expand vastly, and will be used for a wide range of tasks from resource extraction and processing, to computing. Nanotech and insights from neuroscience will add more to allow rich interaction between organic and inorganic devices, often bridging the gap to allow us to put electronic devices in direct connection with our bodies, or those of other creatures. This field also allows the wonderful possibility of undoing some of the damage done to the environment, and even making nature work better. Gaia 2.0 will be with us this century. Of course, if we don’t develop all this science and technology, we will be stuck with a human world that is immensely resource hungry and getting worse, using far more resources than would otherwise be needed, damaging the environment, with no hope of repairing the damage. There wouldn’t even be a plus side, because people would also live poorer lives and be less fulfilled and less happy.

Having been highly convergent on the goal of making the world a better place, this is where engineers often part company with greens. Most engineers think better engineering is the best route to a sustainable world, most greens (and, it has to be admitted, some engineers) think we should slow it all down. This superficially suggests lower environmental impact, implying that people will consume less if they swap devices less often, or don’t get that next pay rise, but it doesn’t deliver. It is a wrong deduction. In much the same way that poor people are often fatter than rich people, what it does change is the access to a better diet, in this case, of environmentally friendlier technology that really needs extra R&D before it is with us. That funding comes from market demand and the ability to pay, and that needs more people to be richer. For the next several decades, what we need is economic growth, selectively. Again, I start to agree with Porritt here. It isn’t just any growth we need, but growth that is spent wisely, using growth to improve peoples lives, and improving the environment we live in either directly or via R&D and the greener technology it will deliver.

Progress and The Care Economy (btw, the UN is badly wrong)

I’ve often written about the Care Economy, the one that I think comes after the information economy. As new things come over the horizon, it is always worth an update. And anyway, I promised a while back to write further on the future of capitalism: https://timeguide.wordpress.com/2012/01/04/we-need-to-rethink-capitalism/ so time to get on with it I guess. The Care Economy idea is resonating better with the way the word is now than when I first raised it in the 90s. We see a stronger desire to live sustainably, to see human skills valued per se rather than just financial wealth. These are both care economy values.

The primary driver for the care economy is progress in machines. Let’s include large-scale robotics and AI of course, but let’s also recognise that much of the progress now happens at invisibly small scales, in biotech, in synthetic biology, biomimetics, in synthetic neurology.  Taking the most obvious and most easily quantifiable area, the fastest supercomputers now compare to the human brain in overall power (which I estimate at the equivalent of around 10^15 instructions per second and 10^15 bits of storage, though it is a bit of an apples-and-oranges comparison). Thanks to the limits on Moore’s Law recently having been pushed back another decade or two, their descendants will carry on getting even better (graphene and molybdenene circuits can be smaller and faster, with lasagne processors not far away, not to mention smart yoghurt, so there is a lot of potential still in the pipeline, but that’s another blog). Eventually, even personal gadgets will have better capability than the Mk1 human brain (unless regulation intervenes).

An ordinary computer doesn’t work the same way as the brain of course, but work is also ongoing in understanding how the brain works, and scientists can produce electronic equivalents to some small brain regions already. Electronics isn’t all digital chips, there are many other sorts of devices too. With a big well-stocked toolbox and detailed instruction manuals, or descendants will be able to do a lot with electronics.

What then for your information economy job? Well, it will eventually be better, faster and cheaper to use some sort of machine instead of you. That will force you to retrain or to concentrate on those areas of your job that can’t still be done by machine, and those areas will be shrinking.

The Care Economy is recognition of this problem, and suggesting that we will focus more and more on the emotional, human interaction, side of work. Social, emotional, interpersonal skills will be relatively more important. Hence, for lack of a better name, the care economy. However, there is absolutely no guarantee that the number of care economy jobs will expand to fill the number leaving the information economy. Today, about 30% of jobs are in what could reasonably be described as the care economy. This can grow, but not indefinitely. So we will have to rework our economy to avoid excessive polarisation between haves and have nots. That won’t be easy. We will need to redesign capitalism.

It isn’t going to be just that a lot of people in information economy jobs will have migrated to care economy jobs. The nature of the economy will change. With machines increasingly doing the physical and intellectual work, it will be like a black box economy, where people put a request into the box, and out comes the required product. The cost of material goods will drop a great deal, as will the materials and energy needed – progress in all branches of science and engineering will accelerate a great deal as AI adds hugely to the available thinking. (Some of us call this the singularity, though that can be a somewhat misleading term, because infinite development speed is not possible.) A small number of people plus a lot of machine power will take basic resources (mined or recycled, it matters not) and add highly to their usefulness, vastly more than previous technology generations could. Nanotech, biotech, infotech and cognotech will converge and will allow tiny amounts of physical resource to yield huge benefits in people’s lives. NBIC convergence includes areas such as synthetic biology, biomimetics, which will adsorb parts of IT and strong AI as well as materials technology and nanotech. And vice versa.

I am not certain whether professional economists call it economic growth if we end up with far more stuff at lower output cost. Reduction in costs reduces prices, which reduces the size of the financial economy if growth in demand doesn’t grow faster. It is certainly a growth in the economy to me, since money is only one factor that indicates wealth and economics isn’t about money, it is about managing resources to gain the greatest benefit. And this benefit will grow spectacularly. In the care economy, we could even see less money but still all have a far higher standard of living. Money simply becomes less important as things become cheaper.

So one of a characteristics of the Care Economy is that it is a time of spectacular growth in material wealth, of plenty, even as it reduces environmental impact and improves the valuation of human interaction. Even if there is less of what we now call money (there may not be less money, I’m just saying it doesn’t necessarily matter if there is).

I find myself agreeing a bit, but mostly disagreeing with the UN’s recent proclamations here. (quick summary here:http://news.yahoo.com/un-panel-says-retool-world-economy-sustainability-164515165.html)

I fully agree that we need to become sustainable, and need to value non-financial things like quality of environment and human social well-being more. I believe strongly that the technology progress route is the best way to achieve it. The UN is very wrong with their approach. They are coming at it from totally the wrong angle, not understanding that technology progress can deliver lower environmental impact than cutting back on standard of living. Whether this is extreme left-wing influence or just bad futurist advice I don’t know. What is clear is that they argue for the opposite philosophy, that growth is bad, that we should trim back our lifestyles because only then can we live sustainably. That is nonsense, we don’t need to do that. In fact, to do so slows down the demand for new products slows down the progress to better ones that are more environmentally friendly. We are faced with a simple choice. Do we want to live in a healthy environment with happy people with a fantastic lifestyle? Or do we want a UN world of relative poverty, using primitive technology sparingly and telling ourselves it is for our own good, polishing our halos to make ourselves feel better?

The care economy will change our value sets as it progresses. If we leap towards the mature care economy, say 2050, where anyone can buy a $100 device with a five-figure IQ, and integrate it so well into their nervous system that it acts as a brain extension, what is the value of being smart? If anyone can use an assembler to create pretty much anything they can imagine (within modest size and resource limits), what is the value of physical skill? If anyone can use technology to reach what is today Olympic class performance in any sport within months, where is the value in being faster or stronger or more precise? Historical advantage has come from being born with a genetic advantage, and using cultural advantage to nurture it to overall benefit. Technology levels the field.

So we will value the most core of human skills, being human. Even if R2D2 can beat you in just about every way possible, it still won’t be human.

2050 is some way off, and the information economy is still running at full speed. However, we already see the increasing focus on human value and reduction of emphasis on financial wealth as indicators of happiness or even national well-being. We already see more demands for human value-add, such as ‘authenticity’, or provenance. Even celebrity is increasing in value. Some new trends will start soon. As people come to value machines less and humans more, companies will find the markets forcing them to become closer to the customer, to become more integrated into their customer communities. Many care economy businesses will emerge from social network sites.

The biggest problem with all of this, and it remains unresolved, is that increasing  efficiency via machine effort reduces the number of people needed in many job areas, and offers no guarantee elsewhere that new jobs will be created in equal measure. We don’t want to end up with many people unemployed and poor. We have to make sure somehow that everyone has access to the very nice life potentially on offer. We do need to redesign capitalism.

I wrote in my capitalism piece about taxing the accumulated human knowledge and infrastructure needed to make all the automated systems – those using them shouldn’t be able to keep all the wealth for themselves if the entire society has contributed, providing capital and effort is important and valuable, but nevertheless is only one of the inputs, and should be valued as such.

One idea that has started to gain ground since then is that of reducing the working week. It also has some merit. If there is enough work for 50 hours a week, it is perhaps better to have 2 people working 25 each than one working 50 and one unemployed, one rich and one poor. If more work becomes available, then they can both work longer again. This becomes more attractive still as automation brings the costs down so that the 25 hours provides enough to live well. It is one idea, and I am confident there will be more.

Concluding, we are one notch closer to the care economy. We can see a bit better where the technology path is leading, and can already see some of the signs of cultural change. We are also becoming more aware of some of the problems along the way, but are starting to produce potential solutions for them.  Sadly, we now have misguided institutions like the UN muddying the waters with policy suggestions that would destroy the potential for good, and make the world a worse place. The UN suggestions are based on poor thinking and bad futurology. They should be ignored.

It’s time to invest in shale gas

There is much ado about shale gas at the moment. It is coming nicely into fashion. It is cheap, produces low-carbon dioxide compared to coal, is cleaner, and offers energy independence and security compared to current gas and oil suppliers. It is far cheaper and greener than current wind energy solutions such as turbine farms.

After many years of talk of global warming, it looks very like that has flattened off. With convincing new studies coming through every week, the warming we saw in the late 20th century looks more and more to me to have been mainly caused by natural cycles, with only a fairly small push by increasing CO2. Temperature has levelled off, with no increase in temperature for 15 years, strong evidence that  CO2 increases were not a primary cause, since CO2 levels have carried on increasing with no associated rise in temperature. Many astrophysicists and other scientists, (just about everyone except climate scientists whose jobs depended on warming and greens who were on the climate change bandwagon to push their own sociopolitical agendas), are now suggesting that we are heading into a long period of colder climate. I am happy now to accept that the alarmism was much overdone and I am no longer concerned about warming. I am far more concerned about the economic damage being done because of the mis-informed panic, especially in the UK and the rest of Europe. The CO2 problem hasn’t gone away, it is universally agreed that it does act as a greenhouse gas, but it has certainly been revised downwards as a problem, with evidence that it isn’t as strong a forcing agent as claimed, and we have several more decades at least to worry about solving it. As we move to better technologies anyway, it will solve itself.

As the climate cools, we will need more energy for heating. The cooling is expected by some scientists to last for decades, so this won’t be a short-lived market.

There are several up and coming new technologies that will offer us abundant energy. I am a big believer that photovoltaic solar will eventually come up trumps, but it needs a while yet. Nuclear power based on thorium is another big contender, offering nuclear without most of the problems. But it isn’t ready yet either. Wind energy is ludicrously expensive, requires scarce materials and needs backups anyway, either that or batteries also using scarce materials. Shale gas however is already coming on the market, the extraction technologies are charging ahead, supplies are being discovered, and once we have it out of the ground, it needs only ordinary gas power stations. Shale gas will therefore be an accelerating trend. Calls to develop it in the UK will get progressively louder, and companies involved in extracting it will profit greatly. While there are still many who remain convinced that warming is on the cards, the share prices are probably undervalued, so it is a good time to get in to gas extraction companies. Invest before the worst of the rush.

Web censorship will force next generation nets

Twitter are the latest in a line of surrenders to authority  in the last few years. The web started off nicely and grew in importance and everyone talked of how governments couldn’t censor it, and it would always bypass them. It was the new land of the free. But underneath, we all knew that wouldn’t last forever and governments would use their real world power to force web companies into submission. Actually, the surrenders seem rather spineless to me, and were unnecessary, but I guess the web has become a standard ordinary everyday business platform and the companies behave just like any other business now. The brave explorers pushing out in pursuit of the frontiers have gone, replaced by MBAs.

Napster was the first biggy, forced to stop music sharing on the free and to become a proper commercial front end for the music industry. Then Google surrendered its ‘Do no evil’ principle to commercialism, first in China, now globally. It has since become a Big Brother in its own right, collecting deep data not only for its own megalomania but also for any government department that can make ‘a valid legal claim’ (extracted from their new rules on privacy). I have no real choice but to carry on using their mail and search, and I still like Google in spite of their abuses – no one’s perfect – though I am extremely wary of using Google+ seriously. I barely access my account, just like Facebook, and for the same reasons. Facebook and Apple also both became Big Brothers, collecting far more date than most people realised, wanting their own high-walled garden dictatorships. They have them now, but I keep my distance and only visit them as much as I need to. After a few years of ongoing high-profile collapses and surrenders of principle, now Twitter has surrendered too. So now the web is under government control, pretty much everywhere, and worse still, with a layer of big corporate control underneath. Companies on the web have to do as they are told, follow the rules. But they also impose their own too. It is the worst nightmare for those of us who used to debate whether big companies or governments would end up controlling us, which would have the power? We ended up with the worst of both worlds.

Many would argue that that is what should be. Why should the web have different rules? All companies should obey the law. I’d agree to a point, but I’d agree a whole lot more if we lived in a world with good leaders of properly democratic governments taking us forwards to a life of freedom and health and prosperity for all. What I see instead is a global flock of very poor leaders, a sad combination of the greedy, the corrupt and the stupid, with increasing oppression, increasing polarisation, grabbing what they can for themselves in a less fair world, and more attempts to control our thoughts.

So I tend to lean towards wanting a new kind of web, one that governments can’t control so easily, where freedom of speech and freedom of thought can be maintained. If a full surveillance world prevents us from speaking, then we need to make another platform on which we can speak freely.

I’ve written a number of times about jewellery nets and sponge nets. These could do the trick. With very short-range communication directly between tiny devices that each of us wears just like jewellery, a sponge network can be built that provides zillions of paths from A to B, hopping from device to device till it gets there.

A sponge net doesn’t need any ISPs. (In fact, I’ve never really understood why the web needs them either, it is perfectly possible to build a web without them). Each device is autonomous. Each shares data with its immediate neighbours, and route dynamically according to a range of algorithms available to them. They can route data from A to B so that every packet goes by a different route of need be. Even without any encryption, only A and B can see the full message. The various databases that the web uses to tell packets where their destination is can be distributed. There is a performance price, but so what? You could even route geographically. Knowing the precise geographic location of your recipient, packets can simply use a map or GPS to get there. I’m not aware of any GPS based nets yet, but you could easily build one. I quite like the idea personally.

Self organisation is an easy way of linking processing and storage and sensory capability into massively capable platforms. This is useful in its own right but also enables better file sharing or free speech with reasonable performance. It would be easy to bypass any monitoring if it is detected. Even if it is only suspected, the massively divergent routing that sponges enable would make monitoring extremely hard to do.

The capability to make these kinds of devices is almost here. Given the world that we live in, governments might try hard to prevent them from existing. But there are so many benign reasons to do so that it might be hard for them to resist the pressure. Almost all of the spirit of the early web was aimed at making the world a better place. Sure a few criminals and terrorists got in on the act, but the balance was for good. We lost it, and are worse off for it. Letting it happen again would be good for everyone. Sponge nets can do that. If some government officials don’t like it, well, so what? Right now, I don’t have a lot of respect for government.

How to live forever

MIT were showing on Horizon how they can activate areas of a mouse brain using light beams. That’s fine if you have optical fibres going into the brain. I have always considered that being able to stimulate and read and individual cells in the brain is the main key to immortality – it allows you to make a copy outside and migrate you thoughts and memories across until that becomes your main mind platform, then your brain doesn’t matter. Combining the ideas, if you have some sort of photo active cell as per the MIT group, and you can create the light using addressing of photorealism near those cells, then injecting addressable photo-diodes that can be IP addressed should allow you to interact with brain cells without needing optical fibres. You’d just need a radio link.

We can’t reasonably expect to inject one photo-diode for each brain cell, but we could make all the brain cells photo-sensitive using viruses to carry the genes, or electro-sensitive. Doesn’t matter which. Once every cell is sensitised, we can impose local structure using self organisation techniques and use that as mapping for signalling. Again this could use viruses to introduce the genes needed. This will allow each cell to be mapped relative to each of its neighbours and a full map of the brain made, with the ability to have two-way comms with each individual cell. Once we have that, the brain can signal two way to an external replica, in which the processing can be far faster, the storage far more secure and long-lived, emotional control far superior, and the sensing better. As you migrate your mind gradually onto the superior platform, your brain matters less and less, till one day when it dies, you will barely notice any drop in your mental function.

I’ll write more detail on the various parts of this in later blogs. Now I have another more intersting one to write.

Terrorism and marketing

Firstly, rather than cutting and pasting large amounts of text, here are a couple of links to papers I have written on future technologies that can be used by terrorist groups, mad scientists or anyone else wanting to cause trouble. They are a couple of years old, but mostly still valid.

Click to access backlash.pdf

Click to access threats.pdf

Click to access madscientists.pdf

Terrorism is diversely motivated. Feelings of oppression or political disenfranchisement are common excuses, as are religious zeal, xenophobia and other forms of hatred. Those are the oldest justifications and go back millennia.

Terrorism makes culprits instantly famous, and gives them a feeling of power and importance far and above what they could otherwise attain. One of the reasons terrorism was so persistent in Northern Ireland even after most of the original political and religious reasons had evaporated was because nobodies could suddenly be someone once they carried an armalite rifle. They were all too aware that when they put it down, they would be nobody again. In that sense it achieves dual goals of status seeking and self actualisation, and that is often as important to individual terrorists as the cause they back, probably more so.

But terrorism can also be a form of marketing, and this I believe is the biggest problem we face from it in the future. Marketing is growing in importance, but is very expensive, and many organisations struggle to make their messages heard within the budgets available to them. So there is a growing temptation to bend the rules, and some are succumbing. Marketing is losing what’s left of its innocence and the boundary into terrorism-land is blurring.

When it come to getting attention for a message, there is a sliding scale all the way from simple innocent marketing at one extreme to 9/11 at the other. Starting with conventional marketing, shock tactics magnify the message significantly, albeit at a price. For example the use of FCUK is a pathetic attempt to raise awareness by shocking and offending people. It attracts some people but alienates many more. The company might argue that the ones it alienates aren’t their target group anyway. Benetton used similar techniques in their 90s campaigns and achieved similar results, alienating many and winning a few. They didn’t use actual violence, and fell short of advocating or glorifying it, but actually, the deliberate offending of people to grab attention is just a mild form of terrorism – it creates mental distress instead of physical pain, it is really only degree that is different.

Unless you draw a huge distinction between mental and physical distress, the low end of violent terrorism is just one stage further along the scale than using deliberate offence. It is really just a relatively cheap but highly effective way to draw attention to any cause, however undeserving. Given that, I do wonder how much French Connection and Benetton contribute to terrorism by demonstrating effective use of deliberate offence. Offence is a cheap and crude substitute for talent. By comparison, Compare the Market’s Meerkat campaign is sheer brilliance that offends no-one but wins huge support and awareness.

Marketing exploits any new platform that it can, but as old platforms such as TV and newspapers go out of favour (people tend to skip ads) and as people seem oblivious to most web ads, the game is gradually getting more vicious. This is obvious at the grubby end of web advertising. Hijacking of web browsers is common now to force adverts into your field of view. Many otherwise high quality sites often force adverts and use cookies to track browsing – they used to just use cookies to remember who you were so they could save you logging on afresh, but now they collect a lot more. Only slightly further along, some websites use web browsers to infiltrate PCs with more dangerous forms of malware and harness them in denial of service attacks.

Similarly, some sites put spyware and ad-ware on to PCs to force adverts of capture marketing information (it isn’t just bank details that are valuable). It is hard to see much difference between the nastier kinds of marketing abuse and milder forms of terrorism, other than intent. Marketers use sometimes quite nasty techniques to gather data and better push their products, often hiding them well from users. Terrorists use similar functions to hijack PCs for illicit spamming, spying or DOS attacks. The boundary between marketing and terrorism is becoming blurred. That is not good news.

With people exposed thoroughly to such ethics from business and government alike, it isn’t very surprising that they think in similar ways when they want to further a specific cause. Grabbing attention is the aim. Marketing gives them the tools. And if the temptation exists to modify those tools or use some of the less benign ones, it doesn’t take such an enormous shift of attitude now to make that transition. And so we saw last year the use of the web to push for democracy in the Middle East and also to market the riots in London, because marketing it certainly was. We  see attempts to boycott companies and pressurise governments with mass email campaigns, to market demonstrations. You draw the moral  line somewhere along that line according to your own preferences, but it is a very long thin wedge. We all make our line at different places now. And when the marketing doesn’t quite achieve enough, maybe a slightly more violent demo might work better to grab more headlines, or maybe a bomb or a shooting or kidnapping a scientist’s daughter or something.

So, where next? We have the web and the media, mobile phones. Augmented reality will present many new opportunities for marketing. AR is a marketer’s dream. I can hardly type AR without getting excited at all the ways it will improve our lives. But it also will allow threats and coercion and overlays from less scrupulous agencies. It will enable bullying. It will allow people to be digitally marked out, exposed, made vulnerable to anyone looking for them in order to harm them. It will greatly enhance boycotts and demonstrations and make the work of pressure groups so much easier. It stretches very well from the benign to the malign. And when it comes to enhancing the violent side of terrorism, it will help a lot there too, assisting in coordinating the maximum damage and effect, as well as reporting. Positioning systems enabling easy linking of what is happening to where it is happening, and that increases effectiveness too. Of course, any technology that allows adverts to be placed in someone’s field of view also makes it easier to show a terrorist exactly where to put a device.

It is highly likely that some pressure groups and attention seekers will use the seedier marketing tools and these can be expected to get steadily more powerful and potentially harmful. As they progress gradually to the more extreme end, they will also want to maximise the impact of any violent measures they undertake, using whatever clever marketing available to make sure they get the best spin in the media and the biggest overall impact.

We need marketing but it will always be the case that it will give extra power to would-be terrorists, and as it progresses, we should remain aware of this and try to avoid some of the areas where benefits might be outweighed by the problems.

Increasing longevity and electronic immortality. 3Bn people to live forever.

I have written and lectured many times on this topic, but it’s always worth doing an occasional update.  Anyone under 35 today will likely have access to electronic immortality and live forever.Well, not forever, but until the machines running their minds fail. How? Read on.

Scientists can already replicate the functions of small parts of the brain, and can essentially replace them in lab animals. Every year, this moves on a little, for all the best reasons. They aren’t mad scientists, they are trying to find solutions to enormous human problems such as  senility, strokes and general loss of brain function due to normal ageing. These destroy parts of the brain function, so if we can work out how to augment the remaining brain to replace lost function, then that should be a good thing. But although these things start in medical treatment, the military also has an interest in making super-soldiers, with faster reactions, better senses, superior intelligence and so on. And the rest of us present a large and attractive market for cosmetic use of brain augmentation.

Most of us would happily pay out for the cosmetic version of all of these things once they become available and safe. I want a higher IQ, perfect memory, better creativity, modifiable personality, enhanced senses and so on. You probably do too., though your list may not be exactly the same as mine. The wish list is long and many of the items on it will become available this century.

The timeline goes from today’s simple implants and sensory links all the way to a full direct link to most parts of the brain by 2045-2050. This will allow 2-way communication between your organic brain and electronic enhancement, which could physically be almost anywhere, though transmission time limits how far away some functions can be. What starts as a cosmetic enhancement to senses or memory will gradually be enhanced to add IQ, telepathic communication, shared minds and many other areas. Over time, more and more of your mind will actually be housed in the machine world. Some of it will still run in your organic brain, but a reducing proportion, so your brain will become less and less important to your mind’s ongoing existence . At some point your organic body will die, and you’ll lose that bit, but hey, it’s no big deal, most of the bits you actually use are elsewhere. But medical advances are fixing many of the things that might otherwise kill you, and pushing your date of death further into the future. That buys you more time to make the migration. How much time?

For young people, the rate of medical advancement expected over the next few decades is such that their expected death date is actually moving further away.

Let’s clarify that: for anyone under 35, each year, for quite a long period starting soonish, more than a year will be added to their expected lifespan, so they won’t be getting closer to dying, they will be getting further away. But only for a time. That rate of development can’t continue forever. It will eventually slow down. But realistically, for the developed world and for many in the developing world too, under 35s will live into their late 90s or 100s. If you’re 35 today, that means you  probably aren’t going to die until after 2075, and that is well after the electronic immortality option kicks in. If it appears on the market in the 2050s, as I believe it will for rich or important people, by 2080, it will be cheap and routine and pretty much anyone will have it as an option.

So, anyone under 35 has a very good chance of being able to carry on electronically after their body dies. They will buy some sort of android body, or maybe just rent one when they want to do something in the physical world and otherwise stay in the cloud. Space and resource limitations may dictate how much real world presence you are permitted.

How many people does this apply to. Median age in the world at the moment in almost exactly 30. 3.5Bn pople are under 30, but some will die too early to benefit. Another 500M in the 30-35 range will make up for the younger ones that die from accidents, wars, disease, or disasters. Then we need to discount for those that won’t be able to afford it. After much hand waving and guesstimating, a reasonable estimate of 3Bn results for those that will have reasonable access to electronic immortality, and will probably live to around 100 before that. Wow! We don’t just have the first person alive who will live electronically for hundreds of years after their body dies. We have the first 3Bn.

They won’t live forever. The Earth won’t last forever, nor will the rest of the universe. But they will be able to live until someone destroys the equipment or switches them off. Wars or terrorism could do that, or even a future society that turns against the idea. It is far from risk free. But, with a bit of luck maybe they could expect to live for a few hundred years after they ‘die’.

I know I’ve made the joke many times, but it’s still worth repeating. Soon, death will no longer be a career problem.

Is greed more sustainable than frugality?

Sustainability is much misunderstood. Certainly government and corporate sustainability policies often point completely the wrong way.

To be sustainable, we must ensure that future generations are able to live decent lives. Not much argument about that usually. But conventional wisdom in the field is that this means we should cut back on consumption.  That leap of logic is flawed. Cutting back reduces environmental impact in the short term but that doesn’t necessarily mean it will reduce it in the long term, or overall over any significant length of time. The full lifetime, full system impact is what counts. Achieving a reduction in overall impact well be best served by increasing consumption in the short term, if this leads to development that reduces the later impacts enough to offset short term damage.

An excellent example is in mobile phone design. Vigorous marketing and encouragement to replace mobiles frequently seems to many people to be wasteful and environmentally unsustainable. However, the rapid obsolescence cycle here has given us 150g mobiles that essentially replace 600kg of previously needed IT equipment. If everyone wants a mobile phone, or to access to the functions they provide, then the lowest environmental impact is achieved by using ultra-high tech phones that do far more with far less. Increased consumption has led to lower environmental impact. If instead, we had held back development and demanded that people use their phones till they fail, we would still be using a lot of heavy and resource intensive kit that needs lots more energy, generates far more waste, and would need far more mining, nasty heavy metals and pollution. And it wouldn’t work half as well, so we’d have less happy lives too.

Greed v frugality? Greed is the more sustainable. Because it leads faster to more advanced technology that is invariably better for the environment.

For a fuller analysis of sustainability and technology, download http://futurizon.com/articles/sustainingtheearth.pdf. It is free.

We need to rethink capitalism

Sometimes major trends can conceal less conspicuous ones, but sometimes these less conspicuous trends can build over time into enormous effects. I think that is the case now with automation versus economic turbulence. Global financial turmoil and re-levelling due to development are largely concealing another major trend towards automation. If we look at the consequences of developing technology, we can see an increasingly automated world as we head towards the far future. Most mechanical or mental jobs can be automated eventually, leaving those that rely on human emotional and interpersonal skills, but even these could eventually be largely automated. That would obviously have a huge effect on the nature of our economies.

Sometimes taking an extreme example is the best way to illustrate a point. In an ultra-automated pure capitalist world, a single person (or indeed even an AI) could set up a company and employ only AI or robotic staff and keep all the proceeds. Wealth would concentrate more and more with the people starting with it. There may not be any other employment, given that almost anything could be automated, so no-one else except other company owners would have any income source. If no-one else could afford to buy the products, their companies would die, and the economy couldn’t survive. This simplistic example nevertheless illustrates that pure capitalism isn’t sustainable in a truly high technology world. There would need to be some tweaking to distribute wealth effectively and make money go round a bit. Much more than current welfare state takes care of.

Some argue that we are already well on the way. Web developments that highly automate retailing have displaced many jobs and the same is true across many industries. There is no certainty that new technologies will create enough new jobs to replace the ones they displace.

We know from abundant evidence that communism doesn’t work. If capitalism won’t work much longer either, then we have some thinking to do. I believe that the free market is often the best way to accomplish things, but it doesn’t always deliver, and perhaps it can’t this time, and perhaps we shouldn’t just wait until entire industries have been eradicated before we start to ask which direction it should go.

So here is the key issue: Apart from short-term IP such as patents and copyright, the whole of humanity collectively owns the vast intellectual wealth accumulated via the efforts of thousands of generations.Yet traditionally, when a company is set up, no payment is made for the use of this intellectual property; it is assumed to be free. The effort and creativity of the founders, and the finance they provide, are assumed to be the full value, so they get control of the wealth generated (apart from taxes). 

Automated companies make use of this vast accumulated intellectual wealth when they deploy their automated systems. Why should ownership of a relatively small amount of capital and effort give the right to harness huge amounts of publicly owned intellectual wealth without any payment to the other owners, the rest of the people? Why should the rest of humanity not share in the use of their intellectual property to generate reward? I think this is where the rethinking should be focused. I see nothing wrong with people benefiting from their efforts, making profit, owning stuff, controlling it. But it surely is right that they should make proper payment to everyone else or jointly share profits according to the value of the shared intellectual property they use. With properly shared wealth generation, everyone would have income, and the system might work fine.

There are many ways this could be organised, and I haven’t designed anything worth writing about yet. Raising the issue is enough for this blog.

The Yonck Processor

Content Warning. Probable nonsense ahead.

I did quantum theory at University for 3 years and I loved it but understood about 10% of it. So move along now, nothing to see here.

One of my inventions, ahem, in the ‘definitely needs work’ category, was the Heisenberg resonator. Quantum computing is hard because keeping states from collapsing for any length of time is hard. The Heisenberg resonator is a device that quite deliberately observes the quantum state forcing it to collapse, but does so at a regular frequency, clocking it like a chip in a PC. By controlling the collapse, the idea is that it can be reseeded or re-established as it was prior to collapse in such a way that the uncertainty is preserved. Then the computation can continue longer.

You can build on this nicely, especially if you believe in parallel universe interpretations, like my friend Richard Yonck might do, in whose honour  this next invention is sometimes named. Suppose we can use quantum entanglement to link particles together, but only loosely. They are tangled in one universe and not in another. Circuits for computation in any universe could be set up using switches in a large array that are activated by various events that are subject to quantum uncertainty and may only happen in some universes. Unlike a regular quantum computer that uses qubits, this computer would have uncertain circuitry too, a large pool of components, some of which may be qubits, which may or may not be connected in any way at all. Sometimes they are, sometimes they aren’t, sometimes they might be and sometimes across universes. Ideally therefore, it would replicate an almost infinite number of possible computers simultaneously. Since those computers comprise pretty much the whole possible computer space, a Yonck computer would be able to undertake any task in hardware, instantly. Then the fun starts. One of the potential tasks it might address is to use trial and error and evolutionary algorithms to build a library of circuitry for machine consciousness. It would effectively bootstrap itself. So a Yonck computer could be conscious and supersmart and could spring into existence just by designing it. In one universe you may have bothered to build the damned thing and that is enough to make it work. It would figure out how to span the gulf and spawn into all the rest.

Well, I’d buy one. Happy Christmas Richard!

Sustainability and a fair world will sit on the shoulders of giants

This entry now forms a chapter in my book Total Sustainability, available from Amazon in paper or ebook form.

Cellular automata, social jewellery, and the X Factor

I confess that I was among many who watched the x factor final last night. I know it’s not high culture, but it was fun. During one of the performances (Coldplay in this instance) the lights were dimmed and the cameras showed the effect of many people in the audience wearing glowing electronic bracelets. These were clearly centrally controlled and were either red or green (or was it yellow, can’t remember). There are lots of ways this might have been orchestrated. You can signal using the lights, or by radio, ultrasound, the web, or many other mechanisms. It doesn’t matter which they used, it was a nice touch and worked well. But it did make me realise how little people use electronic jewellery. I predicted LED jewellery particularly would take off many years ago and have been very disappointed how little it has. Apart from novelty Christmas accessories, you hardly ever see LEDs in jewellery. I don’t know why that is, but you can’t argue with the market. Maybe everyone just has less tacky taste than me.

Anyway, to the point.

It isn’t necessary to have central signalling to get nice pretty effects. If each person’s bracelet were to interact only with the nearest ones, you would still get interesting effects, with much more elaborate patterns than you would expect. In the early days of study of evolution in electronic systems, there was much talk of cellular automata. Stephen Wolfram showed that some seemingly complex natural shapes and behaviours could be explained if each cell made its development ‘decisions’ based simply on the properties of its nearest neighbours. If you aren’t familiar with cellular automata, it is worth checking it out on Google, you’ll find it very stimulating and it can easily suck up a day of your time. I loved that theory and greatly enjoyed exploring the patterns on my computer. It worked well. With my own background in finite element analysis it seemed obvious in hindsight, as many great insights do. But he had that insight, not me. I went on to apply it to hardware and network evolution based on digital hormone gradients, but that’s a different story and ancient history now. Since then, a lot of work has been done on the wider class of emergent behaviours, linking strongly to complexity and chaos theory.

I didn’t track down who makes the X Factor bracelets,so I don’t know their full functionality but let’s hope that they will bring out future versions that can talk direct to each other, assuming that these can’t yet. And obviously they could be hats, headbands, bracelets, rings, t-shirts or pretty much anything you can wear. As long as they are easily visible they could work well. It doesn’t even have to be a new piece of jewellery. It would work just as easily with a smartphone app, though I can’t be bothered to write one.

Emergent behaviours will produce interesting effects, many of which can’t be predicted. They could be programmed to behave out of the box with some basic cellular automata algorithms , e.g what is the state of the other devices I can hear best? That would already produce nice patterns to someone watching at a distance, with waves of colour change oscillating wildly around a community as people move around. Many of these would be biomimetic, precisely nature apparently uses similar algorithms. Or they could take manual inputs from their wearers. That would also be fascinating. Users might pick a particular emotional state they want to  project. Then the patterns and colours would evolve according to the social mood in the area. People could play games with the patterns, or use them as an elaborate form of tribal signalling and communication. In today’s age that could be in anything from parties and rock concerts to urban riots. Marketers are unlikely to ignore their potential too.

The X Factor may make debatably good TV, but social jewellery can certainly be good fun, and you can prove mathematically that its effects can’t all be predicted, so we’d get some surprises too. It might not take off, but I really hope it will. In times of economic gloom, we can do with some extra fun.

 

 

Do we need banks?

Every company should think often about the threats and opportunities facing it over the next few years. It is easy to be too narrowly focused, considering only how to protect or gain market share, so look sometimes at the big picture. What if changes mean your whole industry is in danger? When you next think through the future of your industry, one of the best questions you can ask is:

If it didn’t already exist, would we need to invent it?

If the answer is no, you shouldn’t be worrying about your market share, but about your escape plan.

Let’s address the question at banking, topical as The City is threatened by proposed changes in EU regulation and our government is rightfully fighting to protect the  income coming into the UK. Nevertheless, I think that if we didn’t already have the banks, we would have no need to invent them. Do we need banks? No.

Banking earns a lot of money, but ultimately it comes from other companies and individuals (though many are overseas). It is a drain on the rest of the economy, skimming off generous profits from everything it touches. Nice for bankers, but bad for everyone else. If we can find a way of providing banking services  without the high costs, most of us would be better off.

In fact it isn’t just banking but financial services generally that are affected. Banking, insurance, pensions and so on are all essential to today’s everyday life, but that doesn’t mean their current implementations are the best way to provide them. Financial services don’t directly add to overall global wealth, but they do facilitate many things that do.  They are valuable, even essential, but they could now be provided by alternative systems at much lower cost, so we could still get the services, but keep our money. With lower operating costs, the rest of the economy would benefit.

The UK is in a position that it benefits greatly from an industry that isn’t needed, but without which the world as a whole would be better off. The UK’s most cost effective (though selfish) strategy would be to delay its downfall and milk it while it lasts, while still encouraging its replacement within the UK.

All of the services that banks and other financial services provide today could be provided far more cheaply via social and business networks, transactions executed securely in the cloud. This ‘could’ is heading rapidly towards reality already with development of online payments, social networking sites, smartphones and expectation of secure connections.

With easy transfer of money or other financial tokens directly between devices, or across the cloud using Paypal or its descendants and competitors, we are on a good position now. Social networking allows communities to build for self banking or self insurance. It doesn’t take very much to add on the required security and integrate the electronic payments and databases. Secure social networks could then bypass banks for secure storage of money, record keeping, transactions, savings and investments. Linking people direct to others who can lend them cash is one thing, but someone needs to verify their trustworthiness. We should expect that such services will often be provided by the very fabric of the social network. If someone is a friend or a trusted friend of a friend, then you may be willing to take a risk on them. If you don’t know them, then this is a perfectly valid financial service that can be offered by freelance risk assessors and loss adjusters.

So we should watch out for social networks that are establishing networks that are based on trust and know identity. I wouldn’t consider lending to someone with an anonymous user ID. I need to know who they really are and how to get hold of them should anything go wrong. I suspect that in this role, derivatives of Google+ will fare far better than the likes of Facebook.

It won’t be easy to bypass the banks, but companies or web communities will find it easier and easier as the technology gradually develops over the next few years. Banks are in a good position for now, and there is no reason to leave them just for the sake of it. If they offer good service at reasonable price, some at least will probably stay in business. But complacency is never wise. They now do face real existential threats and should be preparing for new competition coming from outside their own community.

Whether we should protect banks or encourage companies to develop ways to bypass them is an interesting question. Competition doesn’t always deliver better services and no solution is ever without its problems. But although they may do a great job at least in some areas some of the time, banks do syphon off a great deal from the economy, and it is possible that we might be able to do something better with that cash. Personally, I really am not sure where the balance lies, but the possibilities are certainly intriguing.

Time for the 13″ pad

800M people now have e-book readers, iPads or various other tablets. Most are around 7″ or 10″ screen size. The next obvious step upwards is magazine tablets.  There are a few very large format magazines out there, but Time magazine comes in at 13″ and I’d place my money on this being the next size for popular tablets. People can read books, papers and magazines on pads already, or even iphones for that matter, but with middle-aged eyes, I am not alone in wanting a bigger display and even the ipad feels cramped.

Smart-phones fit in your pocket, current pads are designed for taking out and about, but the 13″ pad will live mostly on the desk, coffee table or kitchen table. It is a better substitute for the laptop, and this is an important niche of course, but enabling new services in the home will be the big market for it. People who are used to reading paper magazines are more likely to buy a large format pad if the price is right. Games will look better on a bigger display, and so will videos. Even books can feel cramped on a 7″ pad, and in the home some will prefer to read them on large formats with bigger text instead of having to squint or juggle different pairs of glasses.

The 13″ format is more likely to be a shared device then the smaller formats. It is the natural home of home messaging, calendars, magazines, books, general web access and information services. Some of these are personal and will live on individually owned smaller pads, but the shared ones will move up.

I am expecting the phone to ring any minute as newspapers start producing their “what will happen next year then?” articles. Well, the 13″ pad will be top of my prediction list for 2012.

 

Gel computing

Long ago, in the 1980s, there was a TV series called Blake’s Seven. It was conspicuously low budget but there were some pretty good ideas in it. The best for me was a perspex computer called Orac, which was a key member of the crew. It was very smart, and had a wonderful talent of being able to communicate with pretty much any other computer and get information to assist he crew.

As you can see from the photo, there wasn’t a lot of information about exactly how Orac was meant to work, but that makes it all the more stimulating for an engineer.  Looking at it, I got the impression that it probably used some sort of optical computing, and have been very keen watching that progress ever since. I have had three ideas stimulated by Orac. The first was a design for an optical switch based on it architecture, which I called Optical Router And Controller in its honour. (That was so long ago I can’t open the file with the picture in it but it looked a little bit like Orac too, with radiating tubes going into a spherical photonic crystal core, the idea being that you could dynamically create a reflecting surface in the core to deflect the incoming beam out through any of the other tubes). The second idea was the idea of gel computing and the third was for an evolving quantum computer using entangled particles to connect to others far away. The third is the most interesting but is of dubious short term feasibility, so I will look at gel computing in this entry.

Optical computing is starting to become feasible and optical interconnects for chips certainly are making headway. Light beams can be made of of millions of channels on different wavelengths, allowing high density interconnects without the need for loads of wires. It is the optical interconnect that is key to gel computing (though there is no reason why optical computing can’t also be used in it).

Modern computers use chips with multiple cores, typically 2 or 4 in a laptop or PC. The number is increasing, and optical interconnects could help to make wiring easier.

But imagine using thousands of cores (as are already common in supercomputers). With ongoing miniaturisation, it will be possible to make fairly cheap computers with many thousands of cores suspends in gel, communicating with each other via free-space interconnects using beams with thousands or millions of wavelengths. The gel would help cool the processors but more importantly, it would enable full use of the third dimension, greatly increasing the number of processors that a computer could use. So you might buy a computer with a small pot of gel (maybe yogurt pot sized) as the main processor.

It will be fairly easy to use such an architecture to make evolvable computers, with dynamic linkages between processors or clusters. But just having processors suspended would miss the big opportunity. It would be far better to use this as an opportunity to integrate sensing and storage more closely with processing, much as the brain does. And since I think the main purpose of gel computing will be in AI, this really should be done as early as possible.

The diagram shows how this might work. Small capsules could contain processing, sensing, storage and communications capability. Of course some means of acquiring energy is needed too. This could be optical, thermal, electrical or even chemical. Some of the capsules would contain digital circuits, some would contain analog ones, some a mixture. Dynamic optical links between capsules allows them to be arranged into a wide variety of architectures. These could be experimental, using evolutionary techniques to develop sophisticated and compact solutions to problems, such as the best technique to control a motorised sensor to gather real world data. A processing gel could try out enormous numbers of architectures and algorithms to try to accomplish a range of simple tasks, quickly building up a library of tools and appropriate circuits for each. It could then use the simple functions as raw material to build more complex ones, adapting them as it goes also using evolutionary techniques. So, it might learn how to use simple sensory inputs from a camera or microphone to acquire useful knowledge from the outside world. It could similarly learn to control external attachments such as limbs or muscles. Having accomplished simple sensing and activation, it could progress to learning logic, maths, deductive reasoning and so on, trying techniques all by itself, and testing its results against verified data until it arrives at useful set of thinking tools. It would gradually learn to think. Humans could of course put potential solutions into it, which it would use as starting points in its experimentation, and on which it would quickly improve. And by turning some of its sensors internally to monitor its own thinking and sensory interpretation processes, it could achieve consciousness. A self-configuring gel processor is in my view the best bet for achieving machine consciousness this decade.

This idea is now quite old; I have written and lectured about it many times, but I am excited because it is now getting very close to real feasibility. The optics is coming quickly, evolutionary and self organisation techniques are maturing a bit. We are gaining better insights into how biological neural networks function, and of course these insights could be fed into such evolvable processors as starting points and suggestion. The sheer number crunching potential would allow the gel to run through trillions of mutations to find circuits and algorithms that work well.

Later, progress in synthetic biology will enable circuits to be incorporated in or even fabricated by bacteria, and the gel computer concept would progress nicely, all the way to smart yogurt.

I’ve done some of the basic calculations, taking into account processor density, component sizes, signal propagation speed, line of sight visibility constraints and so on. To cut a long paragraph very short, it will ultimately be possible to make a smart gel or yogurt with the same overall intelligence as Europe has today with all the human minds combined. Bring it on.

Face recognition – dangerous stuff?

There are a fair few blogs elsewhere on the potential dangers in face recognition, but here is another one to read.

Several months ago, it was rumoured that Google would add it to their search. Immediately people started to see dangers in it and the potential damage to privacy too. I tend to agree, it is a very dangerous technology. Google decided in the end not to, not yet anyway, but as Google said, even if they are good enough not to introduce it, someone else eventually would, and they were right. Since then, Facebook have been meddling with it, and apparently showed enormous irresponsibility by introducing it without warning users, and without automatically disabling the feature in privacy settings by default. The reaction should have been obvious before they did so, and they were justifiably widely condemned. Keeping it only accessible to ‘friends’ offers little protection, most of us don’t know half our Facebook ‘friends’ anyway. It is just easier to accept friendship than suffer the social embarrassment of admitting you have no idea who that  person is you might or might not have met yesterday. Facebook knows that very well.

Soon, you will be able to use face recognition software to find out who someone is just by pointing your phone camera at them. A quick play on an app and you will also know who they work for, where they live, their contact details, what dating sites they may be on, what they say on their blogs and tweets and even casual comments in forums, whether they are free or in a relationship, how good they are at games, and so on. Face recognition will help link together a great many sites that can’t easily be linked purely via text searches.

Other software may allow it to take account of ageing, so that you could scan in an old photo and check out historic contacts.

I think in many cases, it will be harmless fun, and may make it slightly easier to tag photos on friends on facebook, but the dangers are very high. We can be fairly certain that school-kids would immediately try to track down their teachers to find embarrassing pics they would prefer to keep hidden. We can be fairly sure that people will use it to try to identify people coming into their area, matching them with pictures from previous sex offences, or indeed any other bad behaviour, whether the associated people were found guilty or not. I also have no doubt it will bring an end to many a relationship when people see compromising pics of their partners.

And it won’t be 100% accurate, so a great many people who look a bit like someone who might have been guilty will also get tarnished.  Mis-identification will be as big a problem as correct identification. My photo appears a lot on Google. I haven’t been involved in anything especially embarrassing or naughty. But I have no idea how many people out there have who might look a bit like me, and with whom I might be confused. Some of the photos out already there confuse me with Pearson the ex-government minister even though we look nothing like each other. Proof enough that we can’t assume it will be correct.

It is bad enough being confused with a Labour minister, I certainly don’t want confused with a paedophile or shoplifter or mugger, and for all I know there may well be some that look a bit like me. And even from a marketing perspective, having adverts targeted at me based on my own profile is bad enough, getting ones that are really intended for someone else will be worse still.

I would love to balance this piece as I usually do with enthusiasm for the massive benefits, showing that technology will make our lives better. In this case, the benefits I can think of are all relatively small, and associated with finding criminals or tracking benefits cheats. But they already have enough sense to wear masks  and in any case, heading down that road is far too 1984ish for my taste.

Science teaching

If I have learned anything over my years of lecturing it is that teachers don’t like being told they are doing it wrong. And certainly not when they know you are right. Google’s chief is making headlines today doing just that, http://goo.gl/bF62s. Good luck to him, he is saying what a lot of us have before, but he might just have the clout to have an effect.

However, I suspect he is probably too late. Even if notice is taken, by the time the school system changes and universities rippled through the new students resulting from it, the world will have moved on a lot, and much new science and technology will be done by smart machines. I’m afraid that he is right, but the damage is already done, and it is just too late to recover now, unless AI moves on slower than expected.

Apple’s Future

So Steve has left. Good luck to him, and I wish him a very happy retirement. I have owned an Apple every day since 1981 when I started work. I even used one until about 2 years ago when I finally decided that PCs had reached a usability level I could tolerate and the frustrations of using my Mac with Microsoft’s software finally got too much. It lives now as a guest room machine.

Apple has given us much, and in the last decade has pushed technology towards a point where all IT engineers knew it was going, but other manufacturers resisted until Apple forced them to play catch-up. It isn’t ideas Apple do, it is making them work adequately and prettily. They make technology meet us half way instead of forcing us to read manuals.

Concept-wise, there really is nothing new about the ipad. The staff on Star Trek walked round with such things decades earlier and even outside scifi, every half decent IT engineer since 1990 expected wafer thin, flexible, coffee table tablets to be one of the steps towards the eventual future (of full direct brain link, via the intermediate stage of thought recognition and direct retinal projection) – and even the ipad falls short of that still. It is still too fat, heavy, power hungry, delicate and slippery, but it is heading the right way. The iphone did much the same with mobile phones, even that copying much the same that approach that Magic Cap offered in the early 1990s. We all knew phones would go that way, it was only ever a matter of time, but Apple were the one to break down the door. What Apple have done is to make these ideas work and work well. They made them pretty and easy to use, getting all the stuff out of the way that you don’t really need. So, three cheers to Apple, and to Steve Jobs who offered the guidance. I don’t envy the chap having to fill his shoes.

But the last week or two have shown that Apple is showing interest in The Dark Side. Getting the new Samsung pad banned in Germany is not fair play. The ipad is pretty, but I repeat, it wasn’t a new idea. Apple did a lot for us, but they didn’t come up with the idea of an intuitive lightweight hand-held general purpose pad. Indeed, the future path towards the full direct brain link is already mapped out very well, and there will be precious few new ideas along the way to getting there other than clever ways of implementing stuff.

In patent speak, there is considerable prior art for the ipad, even if Roddenberry and his associates hadn’t come up with it for Star Trek. And in the context of everything else going on in the IT world, the pad design and technology needs would by now be blindingly obvious to anyone working in IT. Monopolies of the obvious should not be protected by courts. If Apple accomplish a particularly brilliant pad by using some clever and genuinely novel technology inside the box, then they should be able to protect that, but trying to get other pads banned because they also look like everyone’s view of what a pad should look like is just holding technology back by making unjust claims of ownership on ideas held by everyone.

If Apple use legal muscle to try to hold back technology or design that is obvious to anyone with a three figure IQ, they will certainly lose my admiration.

Jobs has gone. He did a good job but has left just as his company arrived at a fork in the road. Apple has to choose which path to take under its new leader. Either it can continue to smash down the doors and lead the industry through, and keep our respect and admiration, or it can try to use courts to close the doors behind it. If it does that, it will quickly lose the value Jobs built up. Hover your mouse pointer over the Sell button for the next few days. They will be critical.

New book on the future of everyday life: You Tomorrow

My brand new book is called You Tomorrow, and now is available at http://t.co/yPcRwdY . It is all about the future. I started by collecting a lot of the ideas from my blogs and papers over the last few years, but found loads of gaps and filled them in, updated and rewrote a lot of stuff, sorted it, and finally was happy with a contents list for 2 books. Then I started writing them. The one that I just released is about everyday life and for ordinary people in ordinary language and is called You Tomorrow. My next one is for business and will be a full PEEST analysis – politics, economy, environment, society and technology, and is a bit like a long overdue update of Business 2010. If it gets too big, I may split off the technology and environment bits into a third book. It will be much more jargonny, if that’s an acceptable word, but still aimed at intelligent people from pretty much any discipline so will explain terms where I think they need it.

Meanwhile, buy this book about your own normal everyday life. I made it cheap enough to be a casual purchase and easy enough reading for bedtime or the beach. It is £5.74 inc tax and delivery in the UK. It is approximately 86,500 words.

It looks at how technology will change the ways we make kids, the life stages they will go through, from pre-design to electronic immortality. Then it looks at just about every aspect of everyday life, then the ways careers will change, then the sort of stuff we own, and finally the nature of our surroundings, real and virtual. Although aimed at pretty much anyone, it is I think still a useful guide for anyone in strategy or planning.

It is only available so far as an e-book, and a few comments here and there are UK-specific. But USA and German versions will come soon, and if it sells well, I will also issue it on paper, though at a higher price.

I hope you enjoy reading it, while I get on with the next one.

 

What if the future goes wrong?

In the future, our lives will be greatly enhanced by the ever-faster networks. Ultra-smart computers, sophisticated robotics and unlimited capacity communications will make every aspect of our everyday lives pleasant. Machines will do all the work while we enjoy the results on a beach. We will be always in touch, always in control. But sometimes, technology has a habit of turning out different than planned. Let’s remember that the telephone was once thought to be useless except for listening to opera. Here’s how it might be on a bad day in the future if we get it wrong.

So, at home first. You wake up. Beautiful original music is being composed in real time by your computer and is coming out of flat panel speakers that are cunningly disguised as paintings. Except that it is trance instead of Mozart because the kids were up first.

You need to visit the loo, but it’s a smart loo with built in health diagnostics. You’re developing a loo phobia and have started eating to please it. You have recently bought a chemical kit designed to fool it into leaving you alone. But the loo is also in collaboration with the smart fridge, conspiring to make you healthier. The fridge has time locks on the door and a video camera watching what you take out, in case you try to fool it by tearing off the smart packaging first. It won’t allow the microwave to cook it because it contains too many calories. Kitchen rage is becoming a major social problem. But you can’t break anything. The insurance companies insist on proof of accident in the form of video of the event before they will pay up.

The videophone rings and you put on your video bathrobe. This is made of ultra-flexible polymer display. It allows you to use a video-conferencing terminal when you have just crawled out of the bath. It actually simulates what you looked like after two hours putting on makeup and two months with a plastic surgeon, 5 years ago.

Your living room is devoid of black boxes, full instead of huge screens, tablets, virtual fish tanks and electronic paintings. You’ve flushed all the real fish down the loo, just to try to confuse it so it will leave you alone.

You talk to the home manager program via speech interfaces, using natural language, gesture interfaces etc. Unfortunately it remembers what you say and isn’t very good at keeping secrets. When your wife says she told you to empty the bin, she will be able to prove it. Computers will latch onto keywords to monitor significant conversations. In divorce proceedings, all those romantic interludes at the office party were recorded, digitally enhanced, and are used as evidence.

We will need personal screens to avoid conflict between the kids – one screen for everything would be unthinkable. We will also need 3d sound positioning to provide personal sound zones. The result is your whole family can sit together again, but are still all locked securely in their own private virtual worlds.

In the old box room, you now have a Star Trek holodeck, fully immersive inputs to your hi-res active contact lenses, but a movable floor panel that allows you to walk continuously in any direction. It also uses fractal robotic matter, T1000 technology, with direct sensory links. Social problems are arising, real world withdrawals are commonplace, you just surface to breathe, eat and sleep.

In public buildings, this same technology is used to simulate everything from plasma flooring to traditional oak beams, sawdust and dirt, with pubs changing period regularly. Each time you go anywhere, it takes several minutes to learn your way around again.

The TV learns what you like to watch and automatically finds us something suitable when you switch it on, recognising your face. Unfortunately this is not a good idea when the vicar comes round. ‘Let’s see a nature programme’. The TV starts showing ‘Emmanuel in the Amazon’.

You have a robotic cat with video-camera eyes and microphone ears. It is stuffed with electronics, and its batteries are recharged when it goes back to its rug in the corner. The robotic cat is the centre of home automation and is linked by radio to the global superhighway. It teases the real cat, while everybody teases it, trying to confuse its AI. There is a growing demand for robotic psychiatrists. You will also need a robotic vet when the dog eats the robot cat.

Insect-like robots are supposed to cut the grass and do the cleaning, but all the cleaning robots are stuck to the carpet where little Johnny has left his sticky half eaten lollipop, and the grass cutting robots have all been kidnapped by the local magpie. The baby magpies are suffering from severe indigestion and the RSPCA are on their way.

Your kids regularly spend hours designing ambushes for the surviving robots, now laying trails of sugar crystals to a cliff with a bowl of water under it.

Food shopping is helped by the smart waste bin that scans beans cans as they are thrown away. Of course it won’t work because your toddler peals all the labels off. We would also need a whole new field of custard proof electronics.

The supermarket van still delivers to your door, but leaves the ice cream melting outside because you’ve rushed the cat to the robotic vet at the last minute. Only the cat knows their number to arrange delivery times. Now you will have to go shopping yourself.

Clothes shopping uses computer simulations of you instead of Leonardo Di-Caprio or Kate Moss. Your body is scanned by laser, recording every bit of cellulite, every pimple. The shop becomes a try-on outlet with mass customisation, while the data on your figure is sold to plastic surgeons that later swamp you with junk email with pictures of how you could look. People have never been less happy about their shape. With smart materials we can of course have extra Lycra to smooth out the various folds until the surgery.

You give your kids electronic pocket money. Being digital cash, it can all be labelled: only two quid for sweets, none for booze; but kids will not be dictated to and a playground black market is becoming a problem at the local school. Digital cash has provenance too. This £17.23 was once spent by Kate Middleton and is highly collectable. Electronic cash is truly global and is used on the net and in the street, so the Euro is almost an irrelevance

So now it’s time to go out. But at least you are up and dressed. You are on the way to the supermarket.

Your cars has full RTI and in car entertainment, and runs on fuel cells. Tourist information is provided on the way. Unfortunately you are on the M25 and you don’t want to hear yet again how many cars travel every day on the A12, coming up on your right. So you turn it off. You’ve been plotting a scam for your next holiday: Planes can carry 1000 people 10000km in 10 hours, so they have jogging tracks and cinemas on board. You can spend so much time on board doing other things you can sub-let your seat and make a profit on the trip.

Before it died, your cat booked you a slot on M25, and you need the computer to drive you because otherwise you’ll miss it if a rabbit jumps out on the way and have to wait a day for another slot.

E-cash and electronic tolling has evolved to allow paid overtaking. Your agent negotiates with other car’s agents to pull over and let you past. It is the same in queues at shops. You can make a living just by clogging up queues and waiting for people to pay to get past.

You are wearing a video T-shirt, with cartoons or adverts showing depending where you are. In the supermarket, store positioning systems enable location dependent ads, appearing on your video T-shirt as you walk past other shoppers, depending on their customer profile. You get paid in extra loyalty points for this.

In the shop, in store positioning allows precise alerts to special offers etc. With an electronic shopping list, you could almost shop blind. Active contact lenses give you information wherever you go. There are arrows for navigation and robocop style information overlays, so the beans shelf could be flashing so you can actually find it. The chips in the products themselves can write onto this lens, with competing brands trying hard to attract your attention as you walk past. With another piece of software, you can actually watch them slug it out in a cyber-boxing match.

The lenses actually communicate via your Star Trek com-badge that doubles as an Ego badge. This stores various aspects of your personality, hobbies, job, marital status, sexual preferences etc. It cuts through the ice at parties, and you spend a lot less time chatting up the wrong people and much more time getting to know the partner of your dreams.

Some of your shopping takes place in shared computer generated spaces, where you make new friends as well as meeting various computer generated personalities, again offering the means of withdrawal from dull reality. The computer is intent on introducing you to every compatible person in the country. This is often used by government to keep people off the streets. But later you go to a real party anyway.

At the party, there is always a bore, but at least now, digital bore enhancement uses the latest sound cancellation and 3D sound positioning technology to replace his boring voice and boring message with much more stimulating conversation, and your active lenses can even make him look fashionably dressed. A new era of apparent tolerance will result where everyone seems to be nice to everyone else regardless of their actual behaviour.

Surveillance technology is everywhere. It is of course linked to traffic control and collects photos of you speeding. Fines are replaced by blackmail since they can now identify the passenger too, and The Shame Show is one of the most popular on digital TV. Government know everywhere you’ve been, who with, what you did, everything.

You’ll still have to work to pay the bills though. We will all be care workers in 2020, partly because of the extreme stress caused by the technology around us trying to make our lives more fulfilling, and partly because all the other jobs are automated. Tech-free zones are the main holiday camps where you go for technology detox.

When you go to Macdonald’s, the meal comes out of a vending machine, but in the French restaurant down the road, you are paying for the French waiter to sneer down his nose at you when you choose the wrong wine. Some jobs just can’t be automated. When you are in hospital, you will still prefer a nice cuddly nurse to R2D2.

We need human child care workers too. Nothing is 3-year-old proof. They regularly dismantle the robot cat, and pull the legs of the grass cutting robots, while repeating the mantra “Daddy will fix it”. Kids only love technology because they haven’t lived long enough for experience to take over. They are simply too young to know any different.

People either work in virtual companies or virtual co-operatives. Many companies don’t have any human employees but you can’t tell which ones because they all use synthetic personalities at the customer face. It is only by trying to make someone angry that you can tell if they are human. Consequently, most humans are frequent victims of aggression, keeping the care workers busy, while the computers don’t mind at all.

For non-caring jobs, AI agents are used mostly instead of people, computers dominate the board, pocket calculators replaced half the board in 2020.

Information companies are just roaming algorithms so they don’t pay taxes any more, making industrial companies rather miffed.

But what of the further future?

When you are very old and very grey, engineers will be able to link your brain to a computer that will be thousands of times faster. Surprisingly, at one atom per bit, it will only take one ten thousandth of a pinhead to store your whole mind. Then it won’t matter if a bus runs you down, you will be backed up on the network. Your kids will still have a parent, but best of all, your company just gets you for free afterwards. In fact, this is an irresistible side-line for bus companies, which will use satellite positioning and tracking to hit you at exactly the right point to ensure a clean kill with minimal damage to the bus.

But you won’t mind. Your body has died, your soul cleared off to whatever afterlife you’ve booked for. Meanwhile down here, once you have become entirely electronic, you can travel around the world at light speed and pick up a hire android at the other end. You can make multiple versions of yourself. Everyone is linked together in a single global mind. With immortality, infinite intelligence and mobility, keeping up with the Jones’s will ensure that everyone will make the jump to Homo Machinus. Biological humans will eventually become extinct. Resistance is futile. You will be assimilated. Enjoy.

Facebook valuation should be $8Bn, not $100Bn

Facebook is near saturation in many developed countries and is starting to decline amongst those already using it. This year, it made $2Bn, but in the next year or two, after perhaps a short period of further growth, that is likely to halve and continue to shrink. It is therefore either at or near its peak value now, but sensible valuation for investment purposes must take account of its likely imminent decline, so it is worth rather less than its estimated $100Bn, a figure I personally find astonishingly naive, and seems to assume that investors are still extremely gullible even after the last dotcom crash.

Facebook’s current slow decline will accelerate rapidly as it becomes less cool to be seen using yesterday’s tools. Being cool (or whatever cool is called this week) is very important to people using Facebook.

Its size is still growing because more people are discovering it than are discovering they are bored with it, or frightened by privacy concerns. But worldwide, there aren’t enough people that haven’t used it and are potentially interested to continue to replace those that will, and most of the new members are relatively poor so of less value to advertisers.

It will also remain at severe risk of rapid decline due to new entrants stealing its core members and their loyalties.

If we assume the current $2Bn may grow to a peak of $3Bn before rapid decline sets in, and then it falls to $1Bn before starting to stabilise as a pretty walled garden, but take into account its high potential ongoing volatility, it is hard to argue for more than 8 times current profits for a valuation. Using $1Bn as an estimate of ongoing potential sustainable profit level, that gives a realistic valuation of $8Bn. I wouldn’t pay a penny more, and I’d still consider that a risk that requires a high level of skill to maintain via ongoing reinvention.

The future of government

Democratic government has many responsibilities.  Trying to fairly resolve the differing and sometimes conflicting needs of various groups, it must also provide an administration and services to serve the whole community, such as health and education, provide defence against hostile forces and maintain law and order. It must collect and manage the resources to pay for these services, and allow people to express their wishes on their preferences, including choice of their governors. These responsibilities will remain, but all of them will be subject to change brought about by new technologies.

Governments have traditionally had sharp teeth to enforce their decisions, but the spread of the internet and social networking tools has removed some of the significance of geography, and given new power to individual citizens. Governments are discovering everywhere that they are becoming more accountable, whether they like it or not. Their limited jurisdiction is also becoming obvious. It is conspicuously hard to police network access to undesirable material  located in foreign countries, or indeed to force injunctions. International agreements and cooperation between jurisdictions has allowed at least some control, often based on the locations of servers or the person posting something. However, in our information economy, with the entire produce of some companies being information, these problems could still worsen. Pure information companies don’t ultimately need any physical base, and could move their operations round the world continuously, refusing to pay tax to any geographically based government or refusing to obey legal orders, hopping second by second around the worlds cloud of servers. The same goes for tweets and injunctions. Tweeting to bypass injunctions could theoretically be entirely automated and left to encrypted software and artificial intelligence to do the dirty work, with its original writers long since hidden away.  If an AI reads the web continuously and automatically exposes things that fit its directives, it could carry on regardless of any court orders. It could be virtaully impossible to stop it, and a piece of software cant be punished or arrested or locked up, especially if it is distributed worldwide and hidden by annomyity servers and encryption. With progress in cloud technology and AI proceeding rapidly, this kind of problem will soon become real.

As people increasingly work and play with people in other countries, we expected a long time ago that by now we would see political power structures become less geographical, with cybernations made of many people who share common ideals, (e.g. environmentalism or feminism) rather than a common physical location, linked by networks rather than by land. Cybernations may wield the weapon of economic sanctions without fear of reprisal since their membership can be anonymous, but mobilised instantaneously by a single e-mail from the leadership. The impact of feminism would have been more rapid with instant communication. This hasn’t really happened yet, not as we expected in the early 90s when we were mapping out the future of the web. It isn’t really obvious why the political potential of the web has been so poorly tapped so far, but political vacuum cannot remain forever. The web is being used for politics to some degree, it just needs to mature a bit more.

However, we will still have geographic government, and communication between government and citizen may improve. Government often talks about consultation, and we often suspect it is all just a pointless show. But if they genuinely do care what we think other than election time, I believe we could go further to make a more responsive democracy. If we wanted, we could allow each citizen to have their preferences on important issues stored in a database, an electronic shadow, suitably anonymous to everyone else of course. Government would then know all the time what the electorate want. Referenda could be instant, and lazy voters could select party defaults for all issues instead of deciding on each. Lobbying could be made easier too, and we will see internal as well as global cybernations. We could have absolute instead of representational democracy, or just treat the databases as a continuous opinion poll. I am not sure we really want this though. Democracy is very much a compromise kind of government and it wouldn’t be good to take it too far in terms of letting everyone decide everything. Who knows what that would end in? Mob rule I suspect.

Some people expect that the web will enable a stateless society to emerge. It hasn’t yet, but the web is young. Few of us have grown up with a mature web, and those that have are still in primary school, so we shouldn’t be too demanding. It will take time. And none of us really has any idea what that would be like anyway. We have no experience of leaderless societies that have lasted any more than months. Communes fail, uprisings stall. Perhaps we will never see one emerge.

But it is ceratin that governemnt will change a lot. We will be forced into more global cooperation for a range of things. New bodies will emerge in parallel with the global ones we already have – the WHO, UN, numerous NGOs and standards bodies and so on. Maybe there won’t be a full world government but maybe also we will see a jigsaw being built of all of these different pieces, and if we assemble them correctly, there is yet some potential benefit.

Stone age culture returning in the 21st century

In the stone age and probably before, there were high priests and priestesses who kept society under some control by threatening them with the wrath of various gods. We tend to think today we live in more enlightened times, but I think in the last two or three decades we have made huge strides backwards.

Human nature forces many people to need approval from their peers, to feel good about themselves,to feel they are on moral high ground,  indeed to feel what religions call holy. Many of these needs have been met historically by religion, and of course even today for many people. But when you take away religion, those needs don’t go away, the vacuum left sucks in all kinds of ‘isms’, according to taste. Vegetarianism, environmentalism, humanism, liberalism and even secularism are all meta-religions, modern abstractions that invoke the same behaviours as conventional religion.  Secularism has made big progress in getting rid of Christianity from the UK, but it hasn’t been replaced by rationality, it has become almost a religion in its own right, just one set of beliefs replacing another, claiming the high ground exclusively for its advocates, with sanctimonious behaviour, exclusion of other points of view, pontificating on the truth, proselytising and so on.

I am not saying that these isms are always wrong or that all their follows indulge in such behaviours. Wanting to protect the environment is highly commendable, but all sensible people want to protect the environment, not just those who call themselves environmentalists. It is perfectly possible to be a vegetarian without looking down your nose at everyone else. It can even be well argued that it is a good idea for all kinds of health and environmental sustainability reasons, but it does tend to stretch sometimes to more than a purely rational decision. What I am saying is that isms attract people who are trying to fill these same human needs that religion once filled, as well as perfectly rational people like you, I hope.

I would go further and be provocative and say that when people join these isms with pseudo-religious motivations, they corrupt them, their need to feel holy taking priority over the core of the ism itself. That then is a problem. Vegetarians who progress into animal rights extremism can cause damage to the ecosystem, eventually harming animals, as we saw with the release of mink into the British countryside. Someone who joins an environmental group and worships mother earth is far more likely to cause damage to the environment via a dogma-based, anti-science mindset than they are to protect it. We’ve seen plenty of examples in recent years, with carbon credits and biofuels infamously working together to incentivise destruction of rainforest, bogs and other important habitats, as well as causing the deaths of many people (I’ve seen recent estimates of 350,000) via starvation due to increase in food prices resulting directly from these policies.

It is obvious that such behaviours can damage the cause they claim to support. Good intentions may arise from meta-religious pressures, but the wisdom of decisions correlates negatively with them. I’ve always argued that emotions should be used only as a driver to solve a problem, and once the decision to act has been made, they should be set aside. They should not be used as a means to decide the best mechanism to solve it. That should be done using a logical analysis of the problem, followed by development of potential solutions and rational comparison of their system-wide, full-lifetime effectiveness, before finally picking the best and implementing them. Emotions themselves tell us little about how the non-human bits of the  universe work or how to fix things that are going wrong. And even in the human parts of the world, where they may govern people’s decision making so can be an important part of the system being analysed, they are of relatively little use unless at least analysed objectively.

Government suffers from such problems too. The problems where religious governments run things are pretty obvious, but political ideologies such as liberalism are almost equally rich in meta-religious tendencies, they just point in different directions. I will avoid debating the merits of different political viewpoints, you can make up your own mind, but consider how many political decisions are motivated by a desire to feel the moral high ground rather than looking objectively at evidence. And look at the consequences all around us. Loss of objectivity leads to loss in decision quality.

But let’s go back to environmental issues. It is here where the worst damage is being done at the moment. Even though the field of climate science is a tiny fraction of science as a whole, the whole of science has been badly tarnished by the corruption here. This didn’t start with Climategate, that was just another step along the way, but it was a big step. Just a few people putting their personal beliefs and their desire to occupy what they consider as the moral high ground above scientific objectivity has caused huge damage to the wider community of scientists. Scientists in every field now are doubted because of these few bad apples. And like any religious split, the many followers of the debates on climate change have polarised into religious squabbles. Although some of the debate is high quality and objective on both sides, much isn’t. The press coverage of the issues adds another layer of religious zeal to make it extremely hard to distinguish what the facts are in any aspect of the debate. The level of corruption now is such that both sides claim completely opposite interpretations of the same input data. Even for scientists, a sensible position can only be taken after enormously lengthy reading and analysis to try to filter out the good from the bad.  Science shouldn’t be that hard, but it has been made so by pollution from meta-religion. And the rest of science has been corrupted by association now. Many people have far less faith in science than they had, and that makes it even easier for religiously motivated claims to gain ground. If we cannot stop the slide, we will head back into a dark age where priests masquerading as scientists carry as much authority as genuine scientists on the best way forward.

Science will recover, but it may take decades. The reason is the depth of the infiltration of meta-religion into many important circles, and the strength of the human tendency to want to feel morally or politically correct. If either side of any debate manages to claim followers because of this, and it happens frequently, it becomes harder to get to the facts that should be the basis of good science. Experiments get distorted, data discarded, evidence tweaked, models misdirected. Results get misrepresented and spun, truth buried deeply and disguised so well it might as well not be there. And we all lose because in the end, objective, good quality science is the only way we can figure out how the universe works and how to fix stuff. Religion won’t work, and meta-religion changes science into psuedo-science. It is a disease that must be eradicated if we are to reap the benefits that science can bring.

Flexible electronic paper gadgets

http://www.telegraph.co.uk/technology/news/8499170/Researchers-demonstrate-flexible-epaper-phone.htmlPaperPhoneSaw this. It is nice to see this sort of thing finally making it to market, or at least viable demo.

In May 1994 I applied for a patent on this (I didn’t get it because someone had actually patented a conflicting idea in 1991):

I think it is a bit late coming, but with electronic flexible paper and updated interfaces, this sort of thing would now fly. I for one would rather have my security and other functions at least a bit unbundled from my phone/PDA, and have the flexibility of buying components from different manufacturers.

A wallet device like this could be a good open source venture. Manufacturers of processors, memory cards, biometric devices and son on would see an obvious advantage in this versus devices such as an iPhone or Google phone. Users too would appreciate being able to add a sensible amount of storage and processing without having to wait for whole new models of PDA to be released by the giants. And of course, there is no reason to assume that a company who makes a nice attractive interface is necessarily the best one at security or networking. So mix and match capability would still be as attractive now as it was in 1994. And with flexible electronic devices coming in, we may well finally see solutions like this making it into the high street.

Is Terminator coming?

A good amount of discussion recently about Terminator thanks to a recent MOD report on smart weapons.

Predator (and other remote controlled drones) are able to fire missiles at enemies, while their controller is safe thousands of miles away. They are being used to good effect in Libya. The ethical issues are now being discussed and it is interesting to see the different points of view.

What some people are asking is “is it fair to kill someone from safety thousands of miles away?” Seems a good question, to which the superficial answer is ‘probably not, but war is rarely fair’. Going a little deeper, this question implies a belief that there ought to be a level playing field where both sides have to face equal danger. In other words it should be a fair fight. But this is not a new issue, and boils down to a simpler one: should richer adversaries be allowed better weapons? Or should bigger and stronger people be allowed to beat up smaller ones? Should the more skilled gladiator be allowed to compete against a less skilled one? In essence, if you have an advantage, should you be allowed to make the most of it in warfare? I think that using wealth and high tech to gain an advantage over less advanced or wealthy opponents is just a variant of the imbalance between opponents that has played out on school playgrounds, amphitheatres and battlefields, and indeed, for billions of years in nature – lions have a big advantage over a baby antelope. I don’t think these new weapons have fundamentally changed this really. And sure they allow killing at a distance, but so do spears and guns. Even with today’s technology, these weapons are still really just smart spears, making decisions according to predetermined programs written by humans. They don’t have any consciousness or free will yet. And they create an advantage, but so does being a bigger guy, or being fitter, or better trained.

Are there other ethical questions then? Well, yes. Should smart but not very smart machines be allowed to make life and death decisions and fire missiles or guns themselves, or should a human always push the fire button? This one is interesting, but again, not completely without precedent, Romans used lions and tigers to kill Christians.  A smart killing machine isn’t really very different from a trained lion, or a herd of animals caused to stampede towards your enemy, or a war elephant. The point at which control is relinquished to something that doesn’t know any better is where and when the ethical act is done.

Anyway, back to the question, should they? Yes, I think so, provided that the terms under which they do so are decided in advance by humans, in which case they are just smart machines. All they are doing is extending the physical reach and duration of that decision. And smartness can go a long way before the machine is responsible. A commander sends autonomous troops out to carry out his plans. The fire button is pressed the moment he dispatches the orders. He is responsible for the act that follows. The soldier carrying out the act is less (but partly) responsible. The smart drone will one day be held partly responsible too when it is truly aware of its actions and able to decide whether to follow an order, but meanwhile, it is still just a smart spear and the human that sent it out to do its work holds the full responsibility. The fire button isn’t pushed when the drone fires the missile, it is earlier when it was launched and autonomy handed over, or when the remote controller pushes the fire button. No amount of algorithm or program changes that. We can allow machines to make decisions themselves provided we design the algorithms and equipment they use and accept the responsibility. The machine has no responsibility at all, yet.

But how much autonomy should a future machine be allowed, once we go beyond just algorithms? When it stops being just a smart spear and truly makes its own decisions while understanding the implications? That means it needs to be conscious, and that implies also a high degree of intelligence. That will be quite different. Who is responsible then? And if it is misused or if software crashes? Of course, such very smart and conscious machines may well develop their own values and ethics too, and they may impose their own constraints on our actions. When this happens, we will have worse things to worry about than ethics. Perhaps this means we shouldn’t worry. If machines cant do anything they are truly responsible for until they become conscious, and then they become a bigger threat that makes ethical considerations irrelevant, maybe we shouldn’t be concerned about the ethics because there is simply no area where they will become important.

I believe this is the case.  We can ethically use smart weapons because they are just better spears, and all we are doing is using our technological advantage. When we make self aware machines that can genuinely make their own decisions, at first they will have safeguards that force them to do our bidding, so are still just better spears. Then they have a degree of free will, the ethics simply becomes irrelevant. The damage is already done and they will be a threat to humankind. In which case, the ethical act is one off and at the point of pushing the button the system that makes these first self-aware machines.

To me that makes the whole issue much simpler. We only have one point to worry about, whether we create machines that can truly decide for themselves and make their own decision. Today, they just follow algorithms and don’t know what they are doing. Some time soon we must decide whether to pass this critical point. The invitation to Terminator will go out then.

50th anniversary of the microchip

I just did a Radio 4 Today programme to celebrate the 50th anniversary of the microchip patent. I shared the event with Professor Steve Furber, from Manchester University, who was involved in the ARM chip invention. I am a big fan of ARM so I don’t want to criticise them, but I was talking about the next 50 years, not the last, and one of the ideas I brought up was smart yoghurt. Steve’s response, was ‘well, I am a engineer, and my futurology is based on what we can do… and I don’t expect to be using yoghurt in my career.’. Sadly, the Today programme being what it is, you rarely get more than one comment, so I didn’t get a chance to reply. So, just for the record, Prof Furber, I am an engineer too . I have also worked all my working life in IT engineering, for 30 years. Along the way I invented evolutionary computing in 1987, text messaging (1991), and was involved in the design of 20GB/s to the home telecom chips in 1985-86, and I invented a chip design to lock onto the centre of nanosecond pulses in 1987, and numerous other inventions such as active skin (2000), the active contact lens (1991) and smart yogurt (1997). So I don’t use a crystal ball as my source of data. I use 30 years of experience as an IT engineer and inventor. If you think smart yoghurt is not likely to happen in your career, well we’ll have to wait and see, it depends how long you continue working I guess. But your successors will see it in theirs. For them, the idea of genetically modifying bacteria to assemble circuits inside itself will be unsurprising. The idea of linking them together using optical signals into scalable computers will be pretty common thinking. That is what 50 years does. Ideas which sounded ridiculous become routine and even old fashioned in 50 years. If we can’t make transistors smaller, we can stack them in 3d. We can replace wires with light beams. We can suspend millions of processing chips in gel as out future computer. Moore’s law has a few more decades to run yet, but each time we approach a limit it requires some change of approach to push the limits further.

So what else can we do apart from smart yoghurt? You can do active skin, with 10 micron chips containing hundreds of thousands of transistors embedded in the skin in among skin cells, using infra-red to communicate with each other. They will analyse blood passing in capillaries. They will monitor and record nerve signals associated with sensations, and allow them to be replayed at will. We will embed chips in our corneas to raster scan lasers onto our retinas to create full 3d high res video overlays on what we see in the real world. And we will even have frivolous stuff like smart make-up, aligning tiny particles with electric fields generate by active skin underlays printed via ink jet printers onto our skin surface.

I look forward to the next 50 years of chips. They will change our lives even more than the last 50. Companies like ARM will hopefully be in the front runners still, but they will only manage this if Prof Furber’s successors grab the potential technology and force it to do their will. They won’t if they think Moore’s law has run its course because we can’t shrink feature size any smaller.

Video visors are the missing link between us and the future

In the early 1990s, the IT industry got very excited about virtual reality, the idea that you could use some sort of headset display to wander around in a 3d computer-generated world. We quickly realised there are zillions of variations on this idea, and after the one that became current computer gaming (3d worlds on a 2d monitor) the biggest of the rest was augmented reality, where data and images could be superimposed on the field of view.

Now, we are seeing apps on phones and pads that claim to be augmented reality, showing where the nearest tube station is for example. To a point I guess they are, but only in as far as they can let you hold up a display in front of you and see images relevant to the location and direction. They hardly amount to a head up display, and fall a long way short of the kind of superimposition we’re been used to on sci-fi since Robocop or Terminator. It is clear that we really need a proper head-up display, one that doesn’t require you to take a gadget out and hold it up in front of you.

There are some head-up displays out there. Some make overlay displays in a small area of your field of view, often using small projectors and mirrors. Some use visors.  However the video visor based displays are opaque. They are fine for watching TV or playing games while seated, but not much use for wandering around.

This will change in the next 18 months – 2 years. Semi-transparent visors will begin to appear then. The few years after that will undoubtedly see rapid development of them, eventually bringing a full hi-res 3d overlay capability. And that will surely be a major disruptive technology. Just as we are getting used to various smart phones, pads, ebbook readers and 3d TVs, they could all be absorbed into a general purpose head up display that can be used for pretty much anything.

It is hard to overstate the potential of this kind of interface once it reaches good enough quality. It allows anything from TV, games, or the web, to be blended with any real world scene or activity. This will transform how we shop, work and socialise, how we design and use buildings, and even how we use art or display ourselves. Each of these examples could easily fill a book.  The whole of the world wide web was enabled by the convergence of just the computing and telecoms industries. The high quality video visor will enable convergence of the real world with the whole of the web, media, and virtual worlds, not just two industry sectors. Augmented reality will be a huge part of that, but even virtual reality and the zillions of variants can then start to be explored too.

In short, the semi-transparent video visor is the missing link. It is the biggest bottleneck now stopping the future arriving. Everything till we get that is a sideshow.

We’ll never run out of resources

A nice blog entry http://www.thegwpf.org/best-of-blogs/2772-we-have-barely-scratched-the-surface-of-global-hydrocarbon-resources.html linked to the GWPF site (always worth a visit in its own right to get a quick summary of the latest in the sceptic side of climate change debate).

I always wondered why CO2 is so low concentration in the air. Knowing as little as I do about geology, I couldn’t see why we have so much oxygen if it all came from plants.  Forgive the over-simplification, but oxygen was once a toxin to some blue-green algae , and when oxygen producing algae came on the scene, it caused their extinction. The new algae and plants consumed CO2 and produced oxygen, and their dead remains became fossil fuels. So therefore there must be huge amounts of fossil fuels somewhere from all the organisms that converted the CO2 to oxygen, which essentially locked it up. As we burn those fuels, we deplete the oxygen and restore the CO2 to the environment. By looking at how much CO2 we now have, we should be able to work out how much more fossil fuels there are left. Which must be a LOT. The blog I linked to is therefore music to my ears.

Obviously we can’t burn any significant proportion of it, of it or we’d have too little oxygen left. But it must exist. (OK, this argument is fatally flawed if most of the oxygen didn’t come from plants).

Anyway, we won’t need it, which is why I won’ t waste time on more detailed environmental analysis. With thorium fission, nuclear fusion, efficient solar, cleaner fossil fuel, biofuels from waste and CO2 capture, we will have a glut of energy in a few decades, and no-one will bother using oil any more. By 2030, I predicted some time ago that oil will fetch a maximum of $30 per barrel in today’s money, simply because that’s how much I estimate it will cost to produce the same 6GJ of energy by competing means.

Other resources won’r run out either. We’re currently seeing global panic over the geographic distribution of rare earth metals, a great proportion of which seem to be in China. That will certainly be a problem if we carry on with current technology. But we won’t, technology is evolving all the time. Many things that used to need scarce resources now use abundant ones. By offering so many functions, a 100g mobile phone substitutes tons of materials that were previously need to build all the kit you’d need to do the same things a few decades ago. Carbon nanotubes seem to yield new kinds of materials and techniques every month, often offering the potential to substitute for techniques that used to need rare elements. Quantum chemistry is developing quickly too, allowing custom molecules to be made that emulate the behaviour of scarce materials.

And the materials that are there are gradually being mined, entering the human system, and endlessly recycled. Those that have been dumped are still there, just essentially in different kinds of mine (rubbish tips). It is mainly a matter of commodity prices and energy costs whether and when they get used again. But we haven’t lost them.

We also will be able to mine asteroids in a few decades time, another potentially valuable material source.

Organic resources are different though. Many kinds of organism become extinct every year. Some is natural, some caused by man, let’s not go down that argument now. But we are also making gene banks, and already inventing new organism via genetic modification and even synthetic biology. So we may be able to resurrect a few of the cuter or more useful ones that become extinct, and we will certainly b able to design lots of new ones to fill niches we want filled. So much as I would like to see protection much more of our natural living world, I am at least able to be confident that we will still have abundant life in the future, even if some is rather less than natural.

So I see no cause for doom when it comes to resources. Plenty of short term problems, market issues and geographic conflicts, but the long term future is safe.

Quantum spring

Futurology and science fiction have a healthy interaction. Technology futurologists like me try to second guess what tech companies will design next, rather than just reporting things they have announced. It is pretty easy usually, at least for the next 10-15 years. You can spot a lot of stuff when it is still only a dream. Starting off with an infinite idea space, ideas can occur pretty much at random, and those that are obvious non-starters can be thrown away, things that noone would ever want to make or do for example, or things that violate laws of physics. But the fact the we haven’t finished physics yet makes the second filter a bit more fun. For example, we don’t think you can do time travel, but it is theoretically possible depending which physicists you believe, maybe just incredibly difficult and expensive, and probably constrained to travel to alternative universes or with other restrictions that make it almost certainly impractical, pretty much forever. It still makes good scifi though. But fields that are still developing allow speculative inventions, things that we don’t know how to do, or even if they are possible. And there is another escape clause too. Even if something violates a law of physics, that sometimes only applies if you try to do it in a particular way. There may be an alternative mechanism that allows you to walk right past an impenetrable law-of-physics barrier, never having to try to climb over it. An example here is the speed you can transmit data down a wire. Depending how you try to do it, different laws of physics apply. I was taught on my electronics course at university that you could never send more than 2.4kbits per second down a wire because of the laws of physics. My lecturer bragged at the time that he had managed to do 19.2kbits/sec, because he used a different mechanism. The law of physics still existed, it was just not relevant to that mechanism. Moore’s Law is always one step away from another wall imposed by the laws of physics too. But as we approach the limit, someone comes up with another way of doing it that isn’t limited in that way.

I watched a documentary last night, everything and nothing, about vacuums and quantum theory. I realised just how much I’ve forgotten. But I also remembered a few ideas I once had that seemed to violate the laws of physics so I threw them in the bin. But what the hell, maybe they don’t any more, and it is April 1st anyway so if I can’t discuss them today, when can I?

The first is a sort of virtual particle laser mechanism that could be the basis of a nice weapon or a means for high speed space travel. In any region of space, virtual particles pop in and out of existence all the time, randomly. Suppose the spontaneous generation of these virtual particles could be controlled. Suppose that they could be controlled to appear all in the same direction, maybe using some sort of resonance and reinforcement, like photons in a laser beam. Presumably then, the combined aligned fields could be used to propel a ship, or be directed in a particular direction as an energy weapon. Obviously we need a way to stop the virtual particles from annihilating before we can extract useful work from them. And of course, opposite particles also generate opposite fields, so we need also to prevent them just adding to zero. I’d like to have even a half baked idea here, but my brain stops well short of getting even as far as the oven on this one. But there must be some potential in this direction.

The second is a high speed comms solution that makes optical fibre look like two bean cans and a bit of string. I called this the electron pipe. The idea is to use an evacuated tube and send a beam of high energy particles down it instead of crude floods of electrons down a wire or photons in fibres. Initially I though of using 1MeV electrons, then considered that larger particles such as neutrons might be useful too, though they would be harder to control. The wavelength of 1MeV electrons would be pretty small, allowing very high frequency signals and data rates, many times what is possible with visible photons down fibres. Would it work? Maybe, especially on short distances via carbon nanotubes for chip interconnect.

The Pauli switch is a bit more realistic. The Pauli exclusion principle means two electrons sharing the same shell must have different spins. So if one is determined by an external device, the other one is too, giving a nice way to store data or act as a simple switch. I believe IBM actually have since come up with a workable version of this, the single electron switch, so I feel better about this idea.

Next is the Heisenberg resonator. Quantum computing is hard because keeping states from collapsing for any length of time is hard. The Heisenberg resonator is a device that quite deliberately observes the quantum state forcing it to collapse, but does so at a regular frequency, clocking it like a chip in a PC. By controlling the collapse, the idea is that it can be reseeded or re-established as it was prior to collapse in such a way that the uncertainty is preserved. Then the computation can continue longer.

The Heisenberg computer is more fanciful still. The idea here is that circuits for computation are set up using switches in a large array that are activated by various events that are subject to quantum uncertainty. Unlike a quantum computer that uses qubits, this computer would have uncertain circuitry, a large pool of components, some of which may be qubits, which may or may not be connected in any way at all. Ideally therefore, it would replicate an almost infinite number of possible computers simultaneously. Since those computers comprise pretty much the whole possible computer space, a Heisenberg computer would be able to undertake any task in hardware, instantly. Then the fun starts. One of the potential tasks it might address is to use trial and error and evolutionary algorithms to build a library of circuitry for machine consciousness. It would effectively bootstrap itself. So a Heisenberg computer could be conscious and supersmart. Food for thought.

To finish off and make the most of the closing hours of April Fool’s day, I wonder of there is any mileage in a space anchor? Unlike the virtual particle vacuum energy drive, this one would use the expansion and curvature of space as its propulsion mechanism. The idea came from watching Star Wars and the stupid fighters that manage apparently to turn quickly in space using wings, and you can even hear them do so. Vacuums are not high on the physics loyalty scale in Star Wars. Space fighters would have a lot of work to do to turn round, given the lack of medium. It would all have to be done by their propulsion systems. Unless. Unless, they had some sort of space anchor that could be applied to lock on to local space and used as an anchor point to swing around. Creating some sort of massive drag on the end of a tether (I don’t know, maybe  reliant on strong force interaction with virtual particles in the quantum foam), the ship would quickly find its angular momentum used to change direction. And if an anchor could be made that anchors into space, variations in expansion of space due to local curvature could be used to drag a ship along.

I doubt that any of these ideas hold much water, but they are fun, and who knows, someone smarter might take some stimulation from them and run with them into ideas that are better.

Nuclear?

People are frightened of radiation. It conjures up fears of cancer and noone wants that. But most people have a very poor grasp of relative risk, and in any case are badly informed. The panic in Japan over the leaks there is partially justified of course, but it is still an order of magnitude more panicky than the risks deserve (for most people, not workers at the plant). And outside of Japan, any attempt at looking at the bigger picture seems to have been abandoned. To believe everyday media, nuclear is terrible and should never again be used anywhere ever under any circumstances. But the reality isn’t so bad.

Since it was first used, nuclear power has only killed a few thousand people, compared to millions killed by coal power and oil power and hundreds of thousands by hydro. In terms of deaths per gigawatt hour, (or years of life)  it is the safest energy source by a good margin. But radiation has been handled in media in such a way that people are now terrified of it far more then is really deserved. But politics has always been about perception, never reality. So now nuclear power is threatened even though it is still the safest and most environmentally friendly way of producing energy for the time being. The safety bar has been raised so far for it that it is too expensive to make, so other sources compare in the marketplace much better than they really ought.

This is bad news for the environment. If man is causing some of the climate change, and if it is CO2 related (as undoubtedly we are and some of it is, the main disagreement out there is on degree and mechanisms), then it will help to avoid generating any more CO2 than is necessary. Nuclear is a good option in that case. All the renewables have their own problems. Wind causes problems for birds, whales, humans and lots of other creatures and also disrupts weather patterns if scaled up. Historically, I have personally been in favour of solar photovoltaics, but solar panels absorbs more sunlight so they add to the overall albedo and cause warming directly as well as generating electricity. Estuary power causes obvious major ecosystem changes. Hydro-electric dams have often burst and killed lots of people. Bio-fuels increase food prices and cause extra deaths via increased poverty effects, beside leading to deforestation. Nuclear isn’t safe or green but then neither are the others.

But now the plot thickens. Because the risks of nuclear that were so clearly demonstrated in Japan are mainly associated with the use  of uranium or plutonium. But now the Chinese are working on thorium based nuclear. Thorium is much safer than other nuclear solutions used today. It can be used without many of the problems associated with today’s stations, waste disposal, meltdowns, leaks and lack of fuel. Thorium is relatively common (as common as lead) so won’t run out for many centuries (of course we will have better solutions still by even the end of this century). Various issues have prevented its adoption before in the West, but if China can make it work well, it may prove a valuable solution to clean energy, as well as solving some of the political issues with sourcing fuel, since it is available in many places.

However, if public perception of nuclear power overall cannot be improved, even thorium based power may not be politically acceptable. Sadly, many so-called environmentalists are so locked into anti-nuclear prejudice that it would be hard to see them ever changing their positions, and no amount of facts about environmental benefits will change that. While they hold influence, the environment seems doomed to suffer.

Future high street retailing

Retailers are complaining afresh about their high street shops being finely balanced between survival and closure: http://www.telegraph.co.uk/finance/newsbysector/retailandconsumer/8358028/Retail-chiefs-warn-Treasury-over-wave-of-shop-closures.html.

It is hard not to feel some sympathy with them, but I also feel a degree of annoyance at their lack of vision. They look like yet another British industry group whose managers can seemingly only understand two tools – cost reduction and price increases. I guess they could get jobs with government if they are made redundant, they are obviously a good match for those who are seemingly only able to tweak tax and interest rates (I feel another blog entry coming on).

In brief, many people have much less money due to the recession, and petrol and food prices have risen a lot, so they have consequently reduced their spending on clothes to help balance their budgets. Like many people, I buy almost everything online or in out of town superstores, and only ever go into town if I need clothes. But the clothes I buy do come from the high street, apart from basic stuff that you can easily pick up at Tescos. (I did notice that my favourite men’s shop in Ipswich has now gone. I have often joked that Ipswich used to be a one-horse town, but then the horse died. So my joke has become a personal reality. Anyway, back to the point).

The retail industry leaders want less financial and administrative pressure on them from government (fair enough) and the ability to pay less to young people (not so sure here). They argue that being able to reduce wages for young workers would let them employ more, thus increasing employment and leading to a retail-led recovery. There is some truth in the argument of course. Reducing the cost of labour allows prices to be reduced, increasing sales. Extra sales stimulates more manufacturing, more supporting services, more R&D, new ideas, and some of all that might be suitable for export. So the argument is not without merit, but economics is very complex, and it is very easy to trip up and invest too much in policies with poor returns. For example, retailers could simply abuse wage reduction to increase profit margins, without either creating  increased jobs or reducing customer prices. Also, many clothes are imported so much of the associated economic benefit from increasing sales would go elsewhere. So, even though allowing retailers to pay lower wages might yield a little economic benefit for the UK as a whole, I think other policies might prove better.

There are many factors in costs of running a high street shop, and many that affect the overall cost of a shopping trip other than the price of the goods. Some have a natural feedback loop. If lots of high street shops close, and there is insufficient demand for yet more coffee shops, the rents demanded by the property developers will fall – they make nothing at all if they charge so much that their building is left vacant. If town centres are left sufficiently empty, the amount that councils can demand for car parking will fall.

There are also lower limits on how far demand will fall. Not everyone is severely affected by recession. A high proportion of the workforce is still in jobs with high job security, especially in the public sector. Some have just as much money as ever, and if anything, have benefited from reducing prices and interest rates. Most are not facing any likely redundancy that might make them unwilling to spend. Others have seen only small reductions in income, via reductions in pay rises or overtime. This bulk of the population guarantees a continued demand for products and services, even in luxury sectors. They will still want clothes, regardless of price reductions, so some stores will certainly be able to stay in business.

So although reducing wages and using the savings to lower prices or increase jobs a bit might help a little, what we really need is the development and deployment of new manufacturing and services that can be sold elsewhere as well as internally. Moving wealth around inside the economy doesn’t help nearly as much, and only yields slow growth. If the retailers focused less on cost reduction and more on other ways to stimulate sales, the benefits would be greater. This is actually true throughout the UK economy, in every sector. UK managers have generally been far to focused on cost reductions instead of looking at ways to improve revenues.

During the 1990s, many retailers introduced coffee shops and restaurants into their high street stores. Since then, there has been little change. The next decade will have to be a bit more imaginative. There are many areas where shops should be innovating and many new areas will be opening in the next few years. High street shopping could and should be much more exciting, and retail revenues could be increased. Some of the services and technologies required would be well suited to exports, so the UK economy as a whole would grow. It is developing these that should be the priority, not wage reductions. So what are they? I looked at some upcoming retail trends in my blog last summer, slightly more nicely packaged in http://futurizon.com/articles/retailing.pdf, but I’ll cut and paste the more relevant bits now to save you having to click, and maybe update a bit.

Since the iPhone and iPad became popular, followed by numerous competitive offerings, mobile internet access is now much more useful and accessible. People can now access the net to compare products and prices, or get information, or add value to almost every activity. But the underlying, less conspicuous trend here is that people are getting much more used to accessing all kinds of data all the time, and that ultimately is what will drive retail futures. With mobile access increasing in power, speed and scope, the incentives to create sites aimed at mobile people is increasing, and the tools for doing so are getting better. For example, people will be able to shop around more easily, to compare offerings in other shops even while they remain in the same one. Looking at a suit in M&S, I’ll also be able to see what comparable suits Next has across the street, and make a sensible decision whether it is worth going to try it on.

This will be accelerated by the arrival of head-up displays – video visors and eventually active contact lenses. The progress in 3d TV over the next few years will result in convergence of computer games and broadcast media, and this will eventually converge nicely into retailing too, especially if we add in things like store positioning systems, gesture recognition and artificial intelligence (AI) based profile and context engines. These are all coming quickly. Add all this in to augmented reality, and we have a highly versatile and powerfully immersive environment merged with the real world. It will take years for marketers and customers to work out the full scope of the resultant opportunities. Think of it this way: when computing and telecoms converged, we got the whole of the web, fixed and mobile. This time it isn’t just two industries converging – it is the whole of cyberspace converging with the whole of the real world. And while technology will be the main driver, it will also stimulate a great deal of innovation and progress in the human sides of retailing.

So we should expect decades of fruitful development, it won’t all happen overnight. Lots of companies will emerge, lots of fortunes will be made, and lost, and there will also be lots of opportunities for sluggish companies to be wiped out by new ones or those more willing and able to adapt. Companies that only look at cost reductions will be among the losers. The greatest certainty is that every company in every industry will face new challenges, balanced by new opportunities. Never has there been a better time for a good vision, backed up by energy and enthusiasm. All companies can use the web and any company can use high street outlets if they so desire. It is a free choice of business model. Nevertheless, not all parts of the playing field are equal. Occupying different parts requires different business models. If a store has good service but high prices and no reason someone should not just buy the product on-line after getting all the good advice, then many shoppers will do just that.

An obvious response is to make good use of exclusive designs. A better and longer lasting response is to captivate the customer by ongoing good service, not just pre-sale but after-sale too. A well cared for customer is more likely to buy from the company providing the good care. If staff build personal relationships and get to know their customers, those customers are highly unlikely to buy elsewhere after using their services. Augmented reality isn’t just a toy for technophiles. We’ll all be using it, just as we all now use the web and mobiles. Augmented reality provides a service platform where companies can have an ongoing relationship with the customer. Relationships are about human skills, technology is just a tool-kit.

As we go further down the road of automation, the physical costs of materials and manufacturing will generally fall for any particular specification. Of course, better materials will emerge and these will certainly cost more at first, but that doesn’t alter the general cost-reduction trend. As costs fall, more and more of the product value will move into the world of intangibles. Brand image, trust, care, loyalty, quality of service and so on – these will account for an increasing proportion of the sale price. So when this is factored in, the threat of customers going elsewhere lessens.

AI will play a big role in customer support in future retail, extending the scope of every transaction. Recognising when a customer wants attention, understanding who they are and offering them appropriate service will all fall within the scope of future AI. While that might at first seem to compete with humans, it will actually augment the overall experience, enabling humans to concentrate on the emotional side of the service. Computers will deal with some of the routine everyday stuff and the information intensive stuff, while humans look after the human aspects. When staff are no longer just cogs in a machine, they will be happier, and of course customers get the best of both worlds too. So everyone wins.

Adding gaming will be one of the more fun improvements. If a customer’s companions don’t want to just stand idly and get bored while the customer is served, playing games in the shop might be a pleasant distraction for them. But actually games technology presents the kind of interface that will work well too for customers wanting to explore how products will look or work in the various environments in which they are likely to be used. They can do so with a high degree of realism. All the AI, positioning, augmented reality and so on all add together, making the store IT systems a very powerful part of the sales experience for shopper and staff alike.

Positioning systems exist already, via GPS and mobile phone networks, with Galileo also maybe coming soon. Indoors, some of these systems don’t work, so there is a potential niche for city positioning systems that extend fully inside buildings. With accurate positioning, and adding profiling and AI, retailers can offer very advanced personalised services.

Social networking will change shopping regardless of what retailers do, but if the retailers are proactively engaged in social networking, adding appropriate services in their stores, and capitalising on the various social networks fads, that is surely better than being helpless victims.

Virtual goods have a significant market – online gaming and social networking has created a large market for virtual things, and some of these overlap with stuff sold in high street shops – clothing, cards, novelties, even foods. People in games spend real money buying virtual goods for their characters or their friends. There is no reason why this can’t happen in the high street. Someone playing a fantasy character in World of Warcraft may well be open to trying on a magic cloak in a high tech changing room in a high street clothes store, or drinking something in a coffee shop based on a potion their character is drinking. In fact, the good on offer in a shop could extend to vastly more than are currently on display. With augmented reality, a shopper might walk around a physical store where the entire display area is full of goods customised to them personally. The physically present items that are not suited to them might be digitally replaced in their visors by others that are. This increases the effective sales area dramatically. The goods need not be entirely virtual of course. They might well be real physical products available online, or form a larger store, or from associates. We may see companies like Amazon using real high street shops to sell goods from their stores – they’ve effectively been doing that with bookshops for years without even having the consent of the bookshops, so why not extend it using proper business alliances, implemented professionally, instead of simply digitally trespassing?

Try-on outlets are another obvious development. People mostly want to try clothes on before purchasing them (I am one of the many men who lets their wives buy most of their clothes, so am not sure how much of a ‘mostly’ it is). But not everyone is a standard shape or size, in fact very few people are. So although an item might fit perfectly, usually it won’t. Having a body scan to determine your precise shape and size, and having a garment custom manufactured would be a big improvement. With advanced technology and logistics, this wouldn’t add very much to the purchase price. A shopper in a future high street outlet might try on a garment, and if they like it, they would take it to the checkout, or more likely, just scan the price tag with their mobile. Their size and shape would be documented on a loyalty card, mobile device, store computer, or more likely just out there somewhere on the cloud. The garment then goes back on the shelf. A custom garment (the customer may be able to choose many personalisation options at this stage) would then be manufactured and delivered to the person’s home or the store, and this process could well be as fast as overnight. The customer gets a garment perfectly suited to them, that fits perfectly. The shop also gains because only one item of each size needs to be stocked, so they can store more varieties. The store evolves into a try-on outlet, selling from a greatly increased range of products. Their revenue increases greatly, and their costs are reduced too, with less risk of being left with stuff that won’t sell. Local manufacturing benefits, because the fast response prohibits long distance outsourcing. If the services and technologies required for all of these advances are developed in the UK, there may well be large export potential too. From a UK perspective, everyone wins. None of this would happen simply by trying to cut costs.

Clothes and accessories stores will obviously benefit greatly from such technology, allowing customers to choose more easily. But technology can also add to the product itself. Some customers will be uninterested in adding technology whereas for others it will be a big bonus having the extra features. Today, social networking is just starting to make the transition to mobile devices. In a few years’ time, many items of accessories or clothes will have built in IT functionality,enabling them to play a leading role in the wearer’s social networking, broadcasting personal data into surrounding space or coming with a virtual aura, loaded with avatars that appear differently to each viewer. Glasses can do this, and also provide displays, change colour using thin film coatings, and even record what the wearer sees and hears. They might even recognise some emotional reactions via pupil dilation, identifying people that the user appears interested in, for example. Health is another are obviously suited to jewellery and accessories, many of which are in direct contact with skin. Accessories can monitor health, act as a communications device to a clinic, even control the release of medicines in smart capsule.

But the biggest change in retailing is certainly the human one, adding human-based customer service. Technology is quickly available to everyone and eventually ceases to be a big differentiator, whereas human needs will persist, and always offer a means to genuine value add. This effect will run throughout every sector and will bring in the care economy, wherehuman skills dominate and computers look after routine transactions at low cost. Robots and computers will play an important part in the future, but humans will dominate in adding value, simply because people will always value people above machines – or indeed any other organic species. Focusing on human value-add is therefore a good strategy to future proof businesses. The more value that can be derived from the human element, the less vulnerable a business will be from technology development. The key here is to distinguish between genuine human skills and those where the human is really just acting as part of a machine.Putting all this together, we can see a more pleasant future of retailing. As we recover from the often sterile harshness of web shopping and start to concentrate more on our quality of life, value will shift from the actual physical product itself towards the whole value of the role it plays in our lives, and the value of associated services provided by the retailer. As the relationship grows and extends outside the store, retailing will regain the importance it used to have as a full human experience. Retailers used to be the hub of a community and they can be again if the human side is balanced with technology.Sure, we will still shop on-line much of the time, but even here, the ease and quality of that will depend to some degree on the relationship we already have with the retailer. Companies will be more responsive to the needs of the community and more integrated into them. And when we once again know the staff and know they care about us, shopping can resume its place as a fun and emotionally rewarding part of our lives.In the end it is all about engaging with the customer, making them excited, empowering them and showing them you care. When you look after them, they will keep coming back. And it is quite nice to think that the more advanced the technology becomes, the more it humanises us.

So, retailing, and even in the high street, has a potential very bright future. There is lots of competition, but good companies will thrive. Cost cutting is the wrong approach, even during recession. Investing in advanced technologies and improved services increases revenue, increase profits, leads to real economic growth, maintains potentially high wages, stimulates lots of new jobs in many sectors, and improves quality of life for all concerned. It really should be a no-brainer. Retailers should stop moaning and get on with it.

Rise of the cybernation

In 1993, I wrote a paper with two colleagues, outlining how East would meet West in Cyberspace. We suggested that the internet would allow people to link up in new ways, to mobilise their combined power from grass roots upwards, and sometimes be able to put great pressure on geographic governments. We didn’t put a time-scale on it, but later we did, and suggested that 2005 would be the time when people discovered the net politically. I guess we could argue that wasn’t far off – people really only started using the net in elections around then. But that wasn’t the real story of what we were saying. But only slightly later, people started using the net to coordinate demonstrations, and the adventures in the Middle East now are a demonstration of a slightly more advanced use. So, we were only a couple of years early, and people are starting to wake up to the political power that the web offers. Geographic government has already shown that its first reaction is self-defence (not of its citizens, but of its own institution), to try to prevent people from exerting their will, to shut off communication by disabling the net as far as it can. And while the net still relies on 20th century telecomms networks and 20th century web architectures, government can switch it off at the points in enters the country.

I later wrote a follow-on paper, from Cyberspace to Chaos and Back, which argued that cyberspace is not dependent on particular networks, but is essentially impossible to limit or censor. I still hold by that. Cyberspace is much greater that the world wide web, mobile phone networks, or even the whole internet combined with all the world’s telecomms networks. Cyberspace is a notional mathematical place, infinite in scope and dimensionality, that exists only virtually, but parts of it can be manifested physically in many ways, and has very different properties from physical space. Governments can only ever cut some of the links to some of the parts of it. They can never disable it in principle. Although physical networks will always be limited to some degree, cyberspace isn’t. And it is cyberspace that really lends itself to politics. The reason people use mobile text messages or emails or Facebook is because those are the tools they have available to them. They are merely scratching the surface of what is possible. As better political tools become available, they will use them too, though history already shows it takes a few years for the penny to drop. Cyberspace will lend itself well to politics, but we can only begin to speculate the magnitude of effects or the mechanisms that will be used. Anyway, we are still only in 2011 and the tools available now or in the near future are much easier to deal with conceptually, so I will stick with a few easy bits. Suffice it to say that even if there are limitations in any particular network type, with an infinite domain, there is always another way in which cyberspace can survive and be used, just around the corner.

Some governments are quite effective at preventing most of their people from accessing the web, but their are usually holes in their systems, even if they do require good IT skills to exploit them – e.g. anonymity servers, strong encryption or disguising information in seemingly innocent pictures. For most people, access to the net for political campaigning in such regions is still at the mercy of their geographic government, but it isn’t over yet by a long way. Technology stands still for no-one. Social web tools are developing extremely quickly now, and this year will almost certainly turn out to be an inflection point in the political use of the web, where ordinary people realise that it isn’t just a minor tool to be used to sway opinions during elections, or to help coordinate demonstrations, but can actually allow them to make demands and force leaders to listen. As these tools develop, doubtless some governments will learn in the background how to turn off networks more effectively. But resistance is futile. Cyberspace ultimately doesn’t need the web, the internet, or mobile phone networks. Controlling these only buys a little more time, it can’t stop the slide towards political use of cyberspace.

If the networks are controlled, and even the latest generation internet-based social networking tools can’t get through, then people will try to bypass them. Two developments at least in the next few years will allow very effective social networking without even going near the net. One is the use of wireless memory sticks, the other digital jewellery, essentially the same thing but even smaller. Today, memory sticks store lots of data but most can only communicate via USB ports. Many of us use radio dongles to access wireless or mobile nets, and these are often about the same size or slightly bigger.  Obviously memory sticks and wireless dongles could be combined in the same stick, with addition of a little processing and even sensing technology. We will then have high capacity memory sticks that can communicate well with one another, as well as to many other devices. Of course, devices such as laptops have been able to set up networks directly with other machines for some years, but they are not so easy to hide. Mobile phones were once expected to fill the gap too, with bluetooth and ad-hoc networks, but direct web access and cheap mobile comms has stifled innovation in direct device to device comms, so the niche remains largely empty, certainly for small devices that can easily be hidden.

Alternatively, ultrasound or optical communication could also be used to let sticks talk to each other, though short range radio is certainly the most likely to be implemented in the next few years. Without looking at all the various short range radio standards already being developed, what they have in common is that short range radio systems (a few metres or less) generally allow high data rates with low power consumption, but allow only very small cells because the air absorbs the signals they use very quickly and they are low power anyway. The reuse of radio spectrum in each cell increases overall bandwidth and capacity enormously, and that is the primary advantage driving their development, but the rapid absorption of the signals is extremely valuable too in making it difficult to intercept the signals from any distance. It is this factor that will make them an ideal platform on which to build a bypass to officially controlled networks. Unless there is a receiver within the very short range, any communication between the sticks would be hidden. Memory sticks are also generally anonymous – they don’t indicate who it is that owns them. Wireless memory sticks would make an ideal starting point for a network that can be used to bypass officially monitored nets, whatever the motivation, be it criminal or political activity, but a memory stick network also presents an alternative platform for perfectly ordinary everyday networking. A memory stick network could be formed out of short-distance and short-lived links between memory sticks owned by total strangers passing by in the street, a highly dynamic ad-hoc network. Information could progress across a wide area via such random organic connections, albeit much slower than with a conventional end to end network. Connections across long distances would sometimes only be possible via the physical movement of the devices or the use of special links.

In this approach, political messages or any other information would jump from one stick to another and then on to another, hopping organically from one place to another, quickly spanning a whole country with an ad-hoc network. The network would have a relatively long transmission time end to end unless density was high or if it used the main networks for long hauls, so is not suited to real-time comms.  A bypass network avoiding main network use would have lots of gaps in it, but this may well be an acceptable trade-off to gain secrecy for political activities.

Security and authentication could be added to such networks by any group, making sure the right protocols are used, otherwise barring sticks from the communication and making infiltration harder. It is relatively easy to design such a network with such built-in security, and will get easier as technology progresses to digital jewellery. People then may wear several pieces of electronic gadgetry, and this enables very sophisticated security approaches, with an infinite number of potential combinations of chips, pins, gestures, passwords, biometrics and so on. Large social groups could thus coordinate activities away from the eyes and ears of the authorities or rival groups. At the ordinary social networking level, this functionality may develop out of natural desire for people to want to communicate with others of similar interest, fellow club members, or even just others on their friends lists. Political uses may not even be on the design goals for the manufacturers. Nevertheless, political uses would quickly be found by users. This could be highly scalable, extending to political groups that could reach billions (billions of people care about the environment for example).

Clearly, such networks could be used in revolutions where existing government is trying to stifle opposition by denying communications. Of course, they may try to limit imports of such tiny devices, but their size might make this impossible, and detection could be made difficult too. It could be a valuable tool for democracy, but it could equally well be used by groups that intend harm, so it will not all be good news.

At some point, network based groups could become as large as nations, and perhaps some will demand representation on international political committees. The term cybernations has often been used to describe this potential, but the theorising will likely soon become reality. It is also obvious that groups could cross geographic boundaries. Even though most political parties only exist in single countries, their core ideologies are often held in common with parties in other countries. So we ought to expect that as the web becomes an increasingly political platform, that international parties would rise and grow on the web. Some of those may require some degree of secrecy, and memory stick networks would make a good platform.

The skills to wield power on the net will not be the same as those in current politics. Just as the soap box, the newspaper, radio, TV, and lately the web have changed politics (and indeed still are), memory stick and digital jewellery nets will do so in the further future.

Cybernations may use any and all of the tools available, and can be as anonymous as required. If groups are large, but their membership can act anonymously, that will make them dangerous, because they may be more willing to wield their power without fear of reprisal. Large numbers of people command large resources, spending power and influence, and if they are networked effectively, then their actions can be coordinated and orchestrated. Infiltration at human level is always possible of course, regardless of any technology, but self-organisation tools can be used that allow general principles and guidelines to be followed in small groups without everyone in the whole cybernation knowing what is happening in any local detail. This approach is already used in terrorist groups to good effect, and electronic networking will only make it more effective.

Not all cybernations require secrecy, and some need secrecy for only some parts of operations. If the cybernation can access global networks freely most of the time, then it can openly wield economic weapons such as boycotts effectively. Being able to pick on a large company if they ‘misbehave’, damaging their market almost immediately, would be a powerful weapon, especially if backed up with cyberwarfare, and using the mass of machines owned by the group members. Doom-mongering is always fun, and this is an especially easy field in which to do it, but the harsh likely reality is still worth worrying about.What is happening now in the Middle East is interesting and owes some of the starting activity to the web, but it is a mere glimpse of what is coming in the next few years. Network use in politics is only a tiny embryo so far, and we have little historical precedent on which to base any deductions as to what it is likely to look like. The best we can do yet is to identify a few of the minor features in its genome.

Future Health Care in the UK

This morning’s headlines say 50,000 front line NHS jobs have to go because of ‘cuts’, even though the cuts referred to are actually a budget freeze. Like many, my first instinct is that this is at least partly a political response from the health service to show how painful the ‘cuts’ are. I also am certain that inefficiencies could easily be made to maintain costs as they are or even greatly reduce them, rather than cutting provision of front line care. Since the NHS budget has doubled in the last few years, they should be able to manage if they are even modestly competent and well intentioned. If they can’t, then it is time to say enough is enough, abandon the NHS as the right way to provide health care, and start again from the ground up. To throw ever increasing spending at an organisation with ever-reducing standards is madness. Costs must be saved, and they can, even as health care can be improved.

Firstly, our doctors are paid far more than French or German doctors in spite of delivering worse results , and that’s clearly where much of the extra funding has gone. The previous government showed great incompetence when negotiating their new contracts.And it isn’t just that we have happier doctors, therefore better service. Overpaying actually reduces the quality of service they deliver, if only because overpaid people are less willing to work long or unsocial hours for a bit more cash – the incentive to take on such extra work is greatly reduced. Staff remuneration needs to be brought down significantly. If their contracts can’t be renegotiated, then a ban on bonuses should be implemented – they should not automatically get bonuses regardless of performance, and a ban on external working alongside NHS work. An indefinite freeze on rewards is necessary until inflation and natural wastage brings them back into line. Meanwhile marked increases in their personal pension contributions should be demanded, since doctors, like other public sector workers, pay far too little into their pensions for the rewards they expect to receive. A windfall tax on doctors’ excess remuneration could even be considered in the light of their inappropriate over-reward.

Secondly, the NHS makes far too little use of basic existing technology and common sense approaches to service provision, ensuring extreme levels of financial waste. For example, people are often called to hospital appointments only to spend ages in waiting rooms. In fact, it is not uncommon for many people to be given the same appointment time, with the excuse that the staff don’t know precisely how long each appointment is likely to take. This contempt for patient time is obvious throughout health care. It would actually be easy to set up a web-based appointments system that automatically uses neural networks in the booking systems that can reliably estimate appointment duration, so that people could be give an approximate time when they are likely to be actually seen. This would require far fewer receptionists and appointments clerks, and I for one would much rather deal with a computer program than a difficult receptionist. Furthermore, with extensive use of text messaging by so many companies to keep in touch with customers, the NHS should be expected to be able to send text messages to patients when their appointment time is coming up instead of demanding they come hours in advance. So patients could wait at home or in the office until it is time to make their way to the hospital, GP surgery, clinic, or dentist. One result would be better patient satisfaction, another, less loss of temper and less staff abuse. Another, less need for waiting room space, saving costs and liberating much needed space. Another, less demand on car parking spaces, saving costs, reducing congestion and even freeing up space that could then be rented for park and ride schemes. Another, lower infections rates from other patients sharing the waiting room, especially at GP surgeries. With so many benefits, it is hard to see why this isn’t done already – the technology has been available for several years, so there really is no excuse. Apps should be freely available for phones that can automatically register their arrival and then guide people to the right clinic so far fewer receptionists would be needed. Already, it is clear that current technology could make many existing NHS staff unnecessary. Increasing use of robotics for transportation of patients and more use of IT to send patient records instead of human couriers – all this would see staff needs drop year on year. Cleaning too is generally a rather primitive and ineffective affair, resulting in thousands of unnecessary deaths every year, far more than the number of road deaths. Approaches such as use of ultraviolet sterilisation, oxidation and other approaches could make cleaning more effective, save lives, and still be cheaper. Technology in the cleaning field is rapidly developing and needs to be used more as it becomes cost effective. Organisationally too, there is surplus. Any visit to a hospital ward confirms that nurses spend a lot of time chatting around the desk, suggesting that there are often more than required. However, patients sometimes go uncared for, so this suggests that organisational structures are not correct, or improved response mechanism are needed.

Thirdly, AI is beginning to be used effectively in health care, even in NHS Direct, allowing relatively low skilled nurses, technicians or even website bots to give advice that would previously have needed a more highly skilled (and paid) doctor. But now that expert systems can often outperform GPs in diagnosis, and AI is improving quickly, we should use AI ever more extensively. Also, many people who go to see the doctor already know what is wrong and know what they need. We should trust people more to self diagnose, especially when assisted by such AI systems (with full logging). A simple licensing system (with  a license revocation threat if abused) could bypass doctors altogether for many common conditions and even pharmacists for that metter, since an electronic license could easily be interrogated by shop tills to ensure that medicines are tracked propoerly. Again, this combined and extended use of AI across appropriate tasks could greatly reduce the number of clinical staff. We would need fewer GPs, nurses, surgeries to house them, and the associated staff. It will take much longer to reduce the numbers of surgeons and direct operating theatre support staff, as robotics is merely a useful tool at the moment and it will be a long time before operations can be fully automated end to end.

Even with such basic changes, some of which are long overdue, enormous cost savings could easily be made, while improving front end care. With fewer receptionists and clinical staff, more automation and use of the web and mobile phones, we would also need far fewer managers and administrators (and the self driven need for other managers and administrators to look after them). A virtuous circle of reducing size and costs and improving efficiency and effectiveness would result.

But all that assumes the NHS is still structured and funded more or less as it is, and it really shouldn’t – though I can’t redesign it in this blog. Other countries fund health care via insurance schemes, with the state picking up the costs of people who need financial assistance. This allows full health care with good competition between companies offering care, ensuring good service and effective costing. Private companies naturally eliminate any waste they can because otherwise it saps profits, whereas state organisations have little incentive to reduce waste and even have perverse incentives to increase it (e.g. to make sure they spend all their allowances so they will get the same next year, or to increase the size of their empires to justify extra status and remuneration). So a private, insurance-based scheme would undoubtedly offer better efficiency and still deliver better quality.

Of course, when new companies start up in the private sector, they generally make full use of the capabilities of new technology, so would presumably immediately absorb the trends listed above. I say presumably, because it is entirely possible to make a mess of it when privatising, so that suppliers are incentivised wrongly, based on imposition of obsolete solutions by regulators. A genuinely free market would work best, with competition driving best practice.

The numbers of staff that could in principle be made redundant (or at least significantly downgraded to lower skills with AI support) far exceeds the 50,000 mentioned. It is probably in excess of 50% of total staff using today’s or near future technology and suitable redesign, i.e. 750,000 rather than 50,000. Staff costs account for 60% of NHS revenue, so this would give a 30% saving, offset somewhat by increased technology costs, so altogether perhaps a 25% saving, and another few percent could be saved from reduced building costs. Further savings from more use of preventive medicine in place of expensive drugs could save another few percent.  The potential reductions would keep increasing with developing technology.So, it ought to be possible to reduce health care costs by around 30-35% over time, without compromising health. Of course, the NHS provides employment for many who might not be able to do other work, and the rest of the economy could not quickly absorb so many people, so it may not be economic good sense to make everyone redundant who could be, but the numbers of potentially surplus staff are certainly vast and suggest that NHS costs are more of a political problem than a technological or organisational one. But I think we all knew that anyway.

Sponge nets: a new web and a new age

Media commentary on the web often refers to its rapid development, but one of the biggest surprises for me in the last decade was how slowly people have capitalised on the potential that the web offers. It has certainly gone a long way, but it has achieved by 2010 pretty much what some of us thought was doable by 2000. It is a story of missed opportunities, underinvestment, corporate spoiling and government interference. The same could be said of mobile comms. A lot has happened, but it could have been more, earlier. 2011 will finally see chargers that will work with any new mobile phone, and you can now finally find out where your friends are by looking at a mobile screen, something that I’ve been wittering about for over 10 years. Such progress is hardly meteoric. There are many reasons why progress has been slower than it could have been, and I don’t intend to use this entry to explore them, because it is more interesting to look at the level of untapped  potential that is already out there. Such potential can be tapped quickly when the right company appears with the right staff and the right business model, and approached the market in the right way.

One hint comes from a trend a decade ago that fizzled out. The telecomms industry back then got very worried by symbiotic, ad-hoc networks, set up between devices, offering a communications bypass to the main networks. We realised that people don’t actually need to pay for calls if they used this approach, that their phones and laptops could link directly to each other and form nets spanning the country that allowed free calls. We have skype now of course, which achieves some of the free call bit, but does it in other ways. The one actual symbiotic networks that I knew about fizzled out, because it wasn’t designed primarily as networks solutions, but rather just as a convenient way of linking games machines together. When that particular games machine failed, the network died with it. But the technology at least has been proven, and it is surprising that it hasn’t been developed elsewhere. But just because it hasn’t happened yet doesn’t mean it won’t.

Near field communications is about to take off, probably this year. Short range trades well with high speed. Some radio frequencies are absorbed by air very quickly, so are perfect for using for short range comms that won’t interfere with anyone any distance away.  You can squeeze a couple of megs out of a 3g link, but easily 100s of megs out of short range links even at low power. We should expect to see a wide range of devices, often tiny and disguised as jewellery, that communicate over such short distances. A very local network will link these devices with others on the person and with other nearby gadgets. By communicating with others worn by other people or objects nearby, a ‘sponge network’ would be created where there would be millions of potential routes for data to take between devices. The links in the network would appear and vanish again quickly, perhaps only living a few seconds, as people pass in the street.

Sponge networks would be similar in nature with the ad-hoc nets they evolved from, but generally there would be far more connections in parallel, and much more fleeting ones. Data would flood through networks using many parallel paths at once, rather like water flowing through a sponge. This would obviously make control quite different to some other types of network, but would greatly enhance bandwidth, and also be much harder to police. It may therefore be used as a means to undermine the intentions of government and big business to censor and control the mainstream web. For example, people could use wireless memory sticks to transfer music files without being supervised by ISPs or government, or organise political activities away from the web-based eyes of the police. If people want high speed, privacy and security, then this would be a big step in the right direction.

It is almost a certainty that sponge networks would revolutionise industry and politics because they dramatically enhance the range of potential business and political models. Part of the reason the web has taken so long to penetrate society is because it was too hard to use and too slow. Making comms faster and easier and more organic would effectively set politics free.

Sponge networks would also be ideal for cloud based activity, providing high bandwidth and high capacity without loading the web unduly. The use of high capacity personal storage and processing provides much of the storage, processing and transmission needed for clouds, and would be expected to accelerate the trend to cloud computing. It also should work perfectly with derivatives such as augmented reality and digital air.

But the trend isn’t just about faster and more private comms. It enables a new kind of operating system, an ultra-simple approach. Basic physics can be used to distribute tasks, data and sensory capability automatically without the need for heavyweight operating systems. Consequently, as ultra-simple computing runs its course,  devices could be even smaller, even faster, and even cheaper, while almost guaranteeing security. The details of this will take up a few later blogs, but it is the start of a new era where computing has another chance to achieve its full potential after being wasted for a few decades by clumsy software and hardware design.

2011 expectations

It is the time of the year when futurologists get asked what is lying ahead for the next year. I normally do long term stuff, and I can’t really remember which specific predictions that I wrote for 2011 back in the 90s, but it doesn’t stop people asking. And I’ve had to put together some ideas for occasional media interviews anyway. So here is a quick and dirty, also ran list of things to expect this year.

e-book wars: Kindle v tablets

tablet wars: Google v Microsoft v Apple v Nokia v RIM v Samsung v just about everyone else in the entire IT industry

OS wars: similar list

Digital jewellery: video cameras the size of memory sticks are already here, so we should expect a whole range of tiny devices disguised as jewellery, designed for specific apps.

Near field communications: devices will be able to communicate with each other at high speed over short range. Next gen mobile comms etc.

Maybe NFC doesn’t sound like much more than ongoing incremental improvement on what we already have, but this will also enable a half competent IT company to develop an alternative platform to the web for information distribution , cloud services, file sharing and essentially a parallel web. The advantage of this one potentially is that it would be far easier to hide from state and corporate control. So we should expect it, perhaps this year, and it will give us a whole new front for battles with media companies who have been very successful at forcing governments to help censor the existing web. Government has never really understood cyberspace. Cyberspace is in principle infinite and cannot be limited or censored completely. The www is only one specific cyberspace platform, and indeed so also is the entire comms network on which it runs. There are an infinite number of ways to skin this particular cat and NFC enables quite a few of them. I’d call it the undernet or the underweb or the backweb or blacknet or the subnet or something like that, but these terms are already spoken for, so maybe you can think up a new term for journos to use when it arrives. Physically, expect wireless USB sticks and stuff like that, that can freely exchange data as people walk past each other in the high street.

Speaking of mobile comms, this year we will finally see the extraordinarily belated arrival of the charger that will work with any mobile phone –  well any new one anyway, well, most new ones. Sadly, this is just one standard among a vast range that we need, and we shouldn’t expect too many others to arrive. Industry still generally thinks that launching incompatible ranges for any new technology  is still the best approach.

Socially, technology has been slow to impress on most people, but now that millions are using Facebook and other social tools, the web is ripening fast as a political platform. So far there have been some minor uses to coordinate demos or to campaign, but it is safe to say that the vast political potential the web offers has so far only had its surface scratched. But as people become familiar, as they carry the web with them all day long, and as they are more aware of its potential, and as they get increasingly frustrated with their so-called leaders on many fronts, the curves are almost ready to intersect.

Of course there will be many other things coming too, but are written about abundantly elsewhere. And I’m still not awake enough yet to be bothered duplicating it all here. A few interesting specifics will make it as blog entries later when I have more energy.

Happy new year.

Why isn’t there a…

Our cat is quite cute as cats go, but I am really not a cat fan, so I only really tolerate him. When he sits on my lap occasionally I don’t mind, but now in the winter, when he treats me as a heat source, he is far too demanding and I wish he would have his own place to sit. So I got thinking: why isn’t there a cat basket with an electric blanket in it so that the cat will go there to get warm instead? Sitting by the fire is obviously too intense heat, but a nice electric blanket would work fine. The heat would  obviously contribute to the rest of the room so there would be no significant environmental impact if he only needs it while the house is heated anyway.

So any electric blanket manufacturers out there, especially any looking for new markets during the recession. Cats and presumably dogs, maybe even small pets, they are potential users too. They need pet baskets with electric blankets in them. You have almost a year to hit the market for next Christmas. Get on with it.

The future of school meals: top 10 changes

Future school meals will probably have much in common with today’s, sadly, and I am not going into great detail in this entry about menus or nutrition and will make no attempt at all to be comprehensive. I will just list a few fun changes that lie ahead that result (mainly) from technology changes.

1 Augmented reality canteens

The world of tomorrow will be visually different, augmented reality playing a large part, with head up displays, video visors or even active contact lenses, allowing computer generated video and graphics to be put into the real word field of view. The canteen of today looks the same every day, but tomorrow, each day could be a new experience, with different themes of architecture, computer generated characters running around, and integration of games into the environment, to make lunchtime an exciting and stimulating experience

2 Multimedia food presentation

This will also allow school meals to become a full multimedia experience. Depending on what they have to eat, they would be shown various animations. The food could be made to look different, with kids competing with each other to force down plates of creepy crawlies or imaginary creatures, or seeing them in different colours. Games could be integrated easily, so that they have to hit a series of virtual targets on the plate to get points while they eat, or achieve a particular rhythm.

3 Enhanced foods

Nutritionally enhanced foods will be commonplace in the future. Scientists will understand far more about human genetics and will be able to add supplements to control a wide range of health conditions. But since different kids would be susceptible to different genetically related problems, foods will probably come in a range of options with lifestyle symbols to indicate the groups they are aimed at.  Kinds will wear a range of digital jewellery with wide range of electronic functionality. One of the functions would be to interact automatically with foodstuff selection, so that kids would see the best foods highlighted in their field of view.

4 Food manufacture, multilayer farms

As pressure increases both on land availability and food transportation distances, it is likely that some multi-layer farms will start up, especially around the edges of urban areas. They are really just multi-storey buildings that grow crops instead of housing offices or car parking. Each layer of such farms would use artificial lighting, powered by renewables elsewhere. This would enable fresh food to be grown very close to where it is needed. It will also be easier to ensure uniformity of nutrition, hydration and growth medium in such farms compared to conventional fields, and to control pests, so we should expect higher quality of foods, albeit probably also at higher cost.

5 Vegetarian meats are coming over the horizon thanks to technology progress in genetics and tissue culture. Today, some meat substitutes are made from soya and other plant derivatives, but genetics will increases the range and capability of plants to grow substances that can be used for higher quality meat substitutes. Similarly, tissue culture – making good progress already in medical field, will extend over time to provide a range of muscle tissues that can be grown in labs and later factories that have similar structures and textures to natural meats grown on actual animals. Although some vegetarians will still refuse to eat factory-produced meat even though no animals have been involved and therefore no cruelty, may will undoubtedly welcome such advances and start to eat vegetarian and factory-cultivated meats.

6 Electronic medilinks will be important accessories for many people in the far future. These will monitor health conditions by analysing blood pressure, heart activity, blood composition, nervous system activity and so on. They will be able to record and analyse some data and relay it if need be to distant clinics, possibly even to the authorities, insurance companies, or parents. Medilinks may be involved in school dinner provision. Perhaps pre-packed foods would be read by a child’s electronic equipment, using barcodes, snowflakes or RFID chips. Or smart trays would know which foods have been collected, and how much has been eaten, and could relay the appropriate data to the medilinks. Obviously they could alert kids or staff of any allergies or other conditions. The forms of medilinks could vary enormously, from deep implants, circuits printed on the skin surface, or jewellery such as ear studs or bracelets or rings, anything in contact with the skin. Some foods are known to contribute to a healthy diet, and others to detract from it. Most are needed in balanced proportions. By monitoring food intake closely, people can achieve a varied diet that is pleasant without compromising health, guided by information from their monitors and medilinks.

7 Local sourcing and community integration are becoming ever more important for food producers and suppliers. A lot of people now expect that their food should not have to travel too far and shop accordingly, but many also want to have more involvement in the production. They care about whether it uses genetically modified seeds, or non-organic fertilizers. The many people queuing for allotments may well be interested in virtual allotments too, i.e. paying a farmer to grow crops exactly according to their specification. And smart tractors using GPS can treat each part of a field differently. This would be an attractive option for people who want to eat better and more conscientiously but don’t have enough time or spare garden to grow their own.

8 Social media are already used for networking over lunchtime by almost all kids, but these will evolve quickly. Proximity comm-badges can communicate automatically with other nearby, swapping files according to context. Kids can swap favourite shows or music they just found, or synch their social schedules. Of course this can be done remotely, but it is more emotionally valuable when it is done in the context of physical closeness. But kids already use lots of games integrated into social media and it is obvious that this will extend into the canteen too, with augmented reality enabling avatars and electronic beings to be liberally sprinkled around, many of which would only be visible to pupils. So they could play lots of games without teachers knowing what they are doing.

9 Social skills tuition will be easily added into a canteen environment. I have argued for years that most of the stuff learned at school that is really useful to kids in the rest of their lives isn’t taught in the classroom but learned in the playground or canteen. Things like dealing effectively with other people, interpersonal skills, empathy, leadership, motivation… With AI and augmented reality  and social networking electronics liberally provided, teachers or staff could provide gentle guidance without anyone else knowing.

10 Calorie control is an obvious thing to want in a canteen. Of course, personal medilinks might be able to help, but they will probably be used only by people with health issues. For the rest, simple calorie counting could be achieved simply by using packaging that can easily be read by mobiles and, adding such data so it can be added at till when the child pays for the food. But technology can go much further. Today, we already have foods that are rearranged at molecular level so that our body can’t digest them, such as sugar with the sucrose molecules mirror reflections of natural sugar. We should expect with ongoing nanotechnology and genetic modification and factory assembly that many foods would be available with reduced calories to those kids that need them.

So, many changes ahead for school dinners. But we still won’t be able to make kids eat them if they don’t taste nice.

Paying for health, changes ahead

The web has enabled transformation of most industries to some degree. In effect, the whole range of mechanisms for provision of services of all kinds has been decomposed and rebuilt. However, it will take many years for all these potential changes to become in-reality and then to ripple through all organisations.

This is true in all industries, so we see an interesting dynamic where new companies enter a market using new technology and new techniques to compete head on with existing traditional institutions. These often rely on their corporate and political power, influence and sheer momentum for their survival while they start to adapt to changes that they realise will prove irresistible even for them. But they must adapt, or eventually die.

Healthcare is no exception. Resources are limited, while demand is accelerating due to increasing expectations driven by everyday experience in other areas of life. People expect to live longer and to be healthier. They expect drugs, technologies, and medical knowledge and expertise to progress continuously, and to be given access to it. If and where it doesn’t, people perceive it as a fault.

We are now approaching the limits of sustainability of such expectations. State resources can’t be increased significantly beyond overall economic growth and are of course likely to actually reduce in the short to medium term. The only mechanisms left to improve health care now are to make it more efficient, to do more with less via better technology, organisation structures, or to use other groups to increase the resources available beyond state funding.

Once we start to look beyond the state, we see much greater resource availability, of which individual desire to be healthy takes pole position, with the desire to also be financially secure also taking a strong place. Many people already spend heavily on sports for example, and they can make a valuable contribution to a healthy life. This links well to many other forms of self help, such as eating better food, do-it-yourself health care via web information, using self help groups for advice instead of doctors and so on. All these are natural derivatives of social web advances.

If people start to perceive a gap between what they want and what the state provides, then such groups are likely to fill it.

Life insurance pays out when people die, but the later that is, the longer they are able to receive interest on the money paid in. It is in the interests of life insurers also to underestimate longevity, since the charges they can levy depend on the perceived risk of dying in a particular year, which they overstate, so their charges may well be higher than they need to be. This presents an opportunity to cultivate a trust-based relationship in place of the standard adversarial one, beating them in brand loyalty, by giving more accurate information to customers where they are more used to being manipulated by skilful marketing. Pension providers perversely have an incentive to reduce life span for retired people, so can’t be expected to help with schemes to improve health for the elderly, but they do have a positive incentive to keep people in good health while they are working, and hence paying into schemes. If people die early, i.e long before they retire, then pensions often have to pay lump sums in excess of payments received, so it is this part of pensions industry that may be useful in addressing health care. So it is clear that the finance industry sometimes but not always has the best interests of the customer at heart, i.e. when they are aligned with their own.

Insurance gives an additional incentive for people to improve the care they take of their own health. Health insurance is already sometimes linked to membership of health clubs, but could also take account of supermarket purchases for a family. If however, social media were to continue to develop along the lines of the current online buying communities, then large social groups could start self-insuring themselves, removing the profit element and reducing cost, without the big brother aspects of policing via insurance company. Of course, if these groups make sure that they comprise members mainly with good attitudes to looking after their own health, then their costs would be lower than the population as a whole. This self-organising local finance has much in common with the roots of the old building society model, and assisted by people’s familiarity with the web, it may well come back in direct competition with established banks and finance companies.

There is also a natural synergy here with social network sites linking in to sports clubs. Engaging in sports generally improves health, but it also provides opportunities for social networking, and if these are made better using improving technology, more people may do more sports and keep fitter. Linking to self insurance communities, large groups of people could do what they can to keep in good health, reducing their health costs. Similarly, adding immersive gaming and entertainment can make sports such as running or cycling or other gym activity more fun at potentially little extra cost.

Artificial intelligence will play a big part in future health care too. Already expert systems play a key role in diagnosis, and many GPs can’t do as well on their own as an expert system. So today we have nurses on NHS Direct enabled to execute early stages of diagnosis and deciding with the computer whether a real GP is needed or not. In the future, as they get more used to AI, people may directly use online AIs without any perceived need to talk to a nurse or GP at all unless they need to get a prescription or treatment. Even that looks like to be increasingly outsourced to pharmacists, who could of course easily be copied in on any diagnostic process, and make up their own minds about the personal integrity and state of the patient needing the prescription. This could save a great deal of health costs. In fact, we may perceive various rings of care, with hospitals and clinics in the centre with expert staff, surrounded by technicians using AI, and then a large ring of self help groups, social networks, sports clubs and insurance companies all offering assistance, and of course many people will be able to find their problems via self diagnosis anyway, and frequent self treatment.

This will be highly incentivised by rationing of state provision. Regardless of party intentions, medical technology will become more and more powerful and demand will rise insatiably. People have to accept that they can only have some medical care provided by the state.

Social networks naturally care for people in their midst to some degree. Humans are tribal by nature. The degree to which on-line social networks fit this same anthropology is debated, but some social networks also relate to local geography, and these add a means of strengthening local community, enhancing bonds. As the social web continues to improve, and as positioning systems make the links to the physical world more tangible, so we should expect crystallisation of social networks into community networks too. These will provide an excellent platform for care in the community, ensuring that old and frail people can find local support, but only provided that the local society actually has the willingness available. Such networks can liberate the latent caring and willingness of communities, but cannot be expected to create it. Social health is quite a different matter from the technology support platform.

Similarly, home care can be helped enormously by having good networks, especially when coupled with webcams. People can video link with health workers or other people, reducing loneliness and providing care without the need to travel. This could make it much easier to provide independence and continuation of dignity as people age. Tomorrow’s older people will have aged in the background of technology availability and it will not so much possible as expected for them to access care and support using the network. They will not question being ‘fobbed off’ with cheaper net based solutions, but rather will treat them as the proper mechanism, and more likely resent it when they have to travel to access care when they know it could have been done more simply, cheaply and with less hassle across the net. Government and health providers should capitalise on this as far as possible to reduce costs. Insurers also may have some ability to force the use of such solutions, by only providing funding for the most cost effective care mechanism.

With all the economic pressures caused by rising health costs, increasing longevity and rising expectations of comfort, there is one major pressure on the system that is an internal social stress. Inter-generational conflict is highly likely to result if a younger generation sees that they are having to fund large gaps in the costs of an older generation compared to what they paid into the system,. With government forced to make cuts all over the economy, pressure groups are strongly resisting any reduction in the benefits already due to an ageing population that are actually far in excess of their payments into the system. Having voted for unaffordable benefits over the last decades, increasing longevity has greatly increased the value of them still further, especially pensions, but also health care costs. If government continues to defend such benefits to existing beneficiaries from erosion, and instead blocks future generations from receiving them, although they still have to fund them, this can only end in trouble. We should expect strong resistance from young people to funding costly benefits to which they are not themselves entitled. As yet, this realisation of the discrepancy between the benefits and costs accrued by different generations has not materialised. Indeed, the current demonstrations in France against pension age increase show surprising ignorance by the younger population, who appear to imagine that they will be spared from harsh reality themselves even though their retirements are many years away. All the demonstrators want future generations to pick up the bills, and of course that is also blatantly true here in the UK. But democracy is fragile, and requires that all sections of the population believe they are treated reasonably fairly. Ignorance of the degree to which younger people are currently being abused will not last, and the one-sided policies that substantially favour older people over younger people will not survive for long.

The nightmare scenario for inter-generational conflict is that if taxes rise too far to pay the deficit between payment in and benefits out for older people, then younger people who have good career options overseas may well take them, and as they leave, so do their taxes. It is not inconceivable that we could end up with a retirement home UK, with lots of expensive older people, and the less talented, and hence poorer, younger population, with a brain drain taking many of the best of the population elsewhere to less exploitative areas. That of course would be even less sustainable, all the more reason to prevent such a situation ever arising in the first place.

So there are many options for reducing the costs of health care, and in the background, other increasing pressures to do so. Health insurance companies have many options to work imaginatively with a well networked society for mutual benefit, and if they don’t bother to do so, then society will likely do so for itself via social entrepreneurs.

The battle to dominate the information world

It is an interesting time for the IT industry. After two decades of convergence, we are finally at the point where pretty much all IT companies are realising that they are pretty much in the same markets. With almost full convergence of TV and PCs, and now tablets making the missing link, expanding into books and magazines as well as games, we now have direct and very open competition between players who were in very different markets just a year or two ago. Some players saw it coming before others though, and have stolen early advantages. Actually, there are few surprises, many IT futurists such as me were writing about such convergence since the early 1990s and it is playing out pretty much as we thought – it was always pretty obvious that it could and would happen. So there is little excuse for not seeing it coming. They are simply guilty of complacency. Nevertheless, we are where we are, and there is a raging battle for supremacy, with huge industry players scrabbling for the low hanging fruit and already making ladders for the higher fruit too, even while some are just arriving in the orchard.

There is no shortage of commentary about who might or might not win or even survive, and in which areas, but here is my take on the various players, their credentials for world domination, and what their advantages and failings are.

Google – Google of course has a very full hand of cards but it seems unable to fully capitalise on them. They are still leading in search of course, but they seem mostly to use other forays to make more advertising opportunities rather than direct revenue, which may be a slightly limited strategy. But they have the makings of an unbeatable platform now, with android (25.5% of the market, second only to Symbian with 36.6%), maps, youtube, Google TV, ipTV, a good suite of cloud based office tools , open source expertise, positioning, augmented reality, very detailed knowledge of customer profiles, and now even entering the pad market. Even this morning’s news is no big surprise that they are entering yet another sector, electronic payments, and I imagine they may well succeed where Paypal has failed to capitalise, and even where it has. But they are earning an increasingly tarnished record on privacy and arrogant attitude to rights. And they are fighting big battles on several fronts, especially with Facebook, Apple, Microsoft and the media companies. It is certainly tough at the top, and they will need a great deal of skill to pull of their expansion on so many fronts. I haven’t written a lot about Google, we all know who they are and how much of a threat they present. But of all the players, I think like many people that they are by far the best placed. Score: 84/100

Facebook is also doing pretty well right now, but is making lots of mistakes, especially on security and privacy issues. They can claim as much data as Google on personal profiling, but this is probably heavily skewed to the core of more sociable people who use it enthusiastically. Many people see no significant role for Facebook in their lives, even people who use Google many times a day. Many of its users (like myself) rarely bother to access their accounts so any estimate of worth based on sheer numbers of users is likely to be too high. I maintain a Facebook account mainly because it saves time having to reject friending requests, but I very rarely use it. For many of Facebook’s users, the novelty of interacting frequently and maintaining often superficial relationships will wear off, even if it takes two or three years. While new people are joining, there will be a steady stream of enthusiastic members, but it is unsustainable in that regard and one day everyone will be familiar with the various offerings and they won’t have much novelty value. Then Facebook and other intense social networking sites will go into terminal decline. Facebook will soon peak, and they must milk their position now to expand into area with better longevity, or they will not be a serious player in the long term battles. Currently, they simply have too few areas of expertise. Of course people can execute searches and other services from their Facebook page, but if it loses its strength as an anchor, it has no real advantage over any other site that also gives access to such functions, via Google for instance. Their latest venture to provide an email service in direct competition with gmail will be interesting. It might possibly help to add retrospective foundations that slow the drift away and help lock in new subscribers. It is a little too early to call its success but it is still only part of a suite, and comments by its CEO that email is too slow and informal betray a dangerous lack of understanding of why email is successful and why not everyone prefer instant messaging. Score: 65/100

ebay – ebay is a sad story of missed potential. It had so much promise, but underestimated the value and power of its resources until they became commoditised and devalued. When they bought Skype, and already owned Paypal, many of us in IT looked and were worried, especially given the enormous trust-based community they had cultivated so well. They were perfectly positioned to launch a world wide electronic payments system, making huge roads into retailing, travel, banking, telecomms, content distribution, renewable energy distribution, and even social structuring. At the time, the world was ripe for such a move but they totally missed it. They later offloaded Skype at a big loss – it should have multiplied in value under them when keyed in to their other assets. ebay a few years ago was in a better position than Google are now, if only they had had a good leadership team. But they hadn’t and they didn’t and now they are back to being just a pretty good auction company, with few other avenues for expansion. I love ebay, it is a great company, but it blew its chance of world domination badly. Score: down from 85/100 to 40/100

Microsoft – Microsoft has much in common with Google, they operate in many of the same areas, but they differ greatly in their approaches. When Microsoft sets its mind to it, as with the xbox360, it can do a wonderful job, and it makes acceptable products across a wide range, but all to often its other services and products leave users with a feeling that they don’t really understand networking or security, and consequently leave a lot of dangerous holes in their software. They are not as frantic as Google, preferring to take their time to identify and penetrate areas that they think are important, but although that sometimes leaves them follwoing rather than leading, it is also a safe strategy provided they can manage to gear up when need be. Their core strength has always been in PC operating systems, and they have had limited success trying to stretch it to other platforms such as mobiles, smart phones, or TV. There is no reason to suspect they will suddenly be able to get that sorted. However, games are likely to be a key convergence attractor over the next decade. Augmented reality will need maps and positioning technology, and good search, and they should be able to cope, but really key to making AR take off is the ability to use gesture recognition, fingertip tracking, and be able to manipulate 3d virtual environments, adding virtual characters and avatars to the everyday world. There are few players who can compete with them in that other than Sony, and Facebook and Google would take a long time to catch up. So at least in augmented reality, Microsoft starts out with a very strong position. Operating in 3d virtual environments should also give them a good position in the convergence with TV and film industry as it becomes more interactive. So even though they are an old company, Microsoft still holds a few aces, and with their cash cows in the background, will certainly be around for a good while yet, long enough to figure out how to do social networking, media distribution, and maybe even auctions. Score: 80/100

Apple – Apple is also doing very well at the moment, but perhaps too well. They are building a dangerous level of arrogance which may lead them to crash eventually and is certainly building a list of enemies, so I wouldn’t back them as a long term winner. They have made some excellent new products since their first ipod success, and their latest range of ipad, iphone, ipod, and airbook are very good indeed. But not unbeatable. They also have a strong record in media distribution with iTunes, which they hope to extend to ipTV. But like Google, they are fighting battles on several fronts already. With their content distribution, they seem to want to own a popular walled garden, but people generally don’t like those, they want to access whatever they want, so they will only use a walled garden as part of an overall package. Apple have also often been accused of being a high price option, and sometimes are certainly guilty of under-specification in their products, so their products are quite beatable too. Recently, they have also shown a willingness to censor, and to block other formats such as Flash media. Patent rows on other fronts add together to be quite a range of conflicts that will inevitably sap resources and impede their progress. Apple has also recently shown a complacency in security. They had a good history because their operating systems were quite well designed, but much of their success in avoiding viruses and other attacks is probably down to low market share compared to other PCs. You can’t become a monopoly without losing a minority position, so eventually they would become a prime target. So, they have a few things against them. But, they sell well for good reason and are unlikely to trip any time soon. They have a good chance of winning some battles, and have a core loyal group who will stick with them. So they will certainly survive, but their chances of world domination are only fair to middling. Score: 60/100

News Corporation – Rupert Murdoch established a great empire, and showed himself to be a shrewd and proficient businessman, but inevitably age forced a handover of control of the Empire to a younger but much less certain chief. The News Corp media and content empire has a lot of strengths, and in recent years has made some success in getting into adjacent areas such as telecomms. But it suffers from high pricing, an arrogant attitude to the marketplace, demonstrated belated understanding of the web, and slow adoption of new technologies. It also shows weak understanding of the future of the corporate relationship with customers, no doubt based on a long and successful history, but in the IT world, historical success can be an impediment. News Corp demonstrates a simplistic, capitalist exploitation model that is already dated and will soon become a barrier to their development. The world is changing fast, and in spite of keeping up in some areas such as HD and 3D,  they seem stuck in the past in many ways. They seem still to believe that they can force the world back to old-time business models, but they are a big fish in a very big ocean, and will eventually have to accept that the market they dominated no longer really exists. The Myspace venture made a big loss, and their attempt to try to force the whole industry into charging for news online has failed miserably – they have a pitiful number of subscribers and have sold much of their influence and brand loyalty for pennies, hardly a shrewd move. They will use their existing size and momentum to attempt to penetrate new markets to some degree, but are not one of the stronger players now. Score 35/100

Virgin – Virgin plays in many diverse fields, from wedding dresses and space travel to banking, TV, broadband and telephony, holidays and airlines. For many years, it typically tried to play underdog but sometimes high price levels and cavalier attitudes to quality of service undermined that position. However, recently it has matured somewhat and competes just like any other company. Its current strategy seems to be sound and it shows good promise, hence increases in its share price. Its basket of phone/broadband and cable TV competes well and is growing fast in the UK. But in the whole IT space it still is a fairly small fish in just one pond, and its non-IT plays don’t link well so it has a lack of internal synergy between the various wings. It should be expected to do reasonably well and to survive, but although growing well in the UK, it isn’t a serious contender for worldwide IT world domination. Score 25/100

Other cable companies, content providers. Many cable companies are recovering from disastrous early plays, but there is massive competition within the sector and that will prevent most of them from entering other areas. There is also a lack of vision in the sector, with the exception of Virgin, perhaps because this internal conflict is keeping them focused too much on  immediate threats. But whatever the cause, cable companies show little prospect of colonising other areas of IT than immediately adjacent offerings. Although there are very many companies in the cable sector, it is possible to link most together and give a combined score of 20/100

Amazon – Amazon was one of the biggest early winners in the web and is still going very strong. Keeping its position and strength in its core business, it has gradually and cautiously expanded into area that form natural neighbours, such as other retailing, e-books, music and video distribution. It has also managed to keep a very good image, avoiding the arrogance of many other players, and has a high level of trust with customers.With its very successful Kindle device, it can proceed to attack many of the most lucrative parts of the pad market, and of course it also forms the ideal convergence point for the electronic magazine industry, which has been desperately looking for solutions to their otherwise imminent  demise as people buy less paper. Although it is strong in selling computer games, and other retail, it is not becoming a producer of any of these, and seems content to leave many areas to other competitors. In other companies, this would be a strategic error and a major threat, but because it is so strong in an important sector, where it looks pretty unbeatable, Amazon needs not worry, and can afford to stay cosy. They seem content not to take over the world, provided they are left alone to run a significant part of it. But their core strengths, presence and unmatched ability to avoid making big errors in security, privacy or all-out war with competitors, that does however make them a good contender if ever they want to. Score 70/100

RIM – Research in Motion, source of the Blackberry, is of course renowned for dramatically changing countless lives by making it easy and intuitive to do email on the go. With web and mobile access generally, they are in a strong position, but they have many many competitors in that field and every small error is used by competitors to steal market share. But so far they are still there with good product offerings.  It is very hard to see them going much beyond the mobile market for now. They might cope in pads, and might even manage once augmented reality come on stream, but they are currently heading downhill in terms of overall share of a rapidly growing pie. They are in real danger of being swallowed or simply left for dead as the bigger players mop up their bits of the market. Score 15/100

Nokia – phones. Nokia is the undisputed king of mobile history, but is now struggling to adapt to a new world that isn’t focused on mobile phones any more, that they didn’t appear to see coming till it was too late. The Symbian platform has 36.6% of the market so is still market leader, but that is down from 44.6% last year, with Google’s Android quickly growing to over 25% in the same period. They are right to be worried. Nokia has a reasonable strategy, cultivating good relationships and expensing core strengths, but they are not as fast to realise the potential as some of the others, and not as agile in responding either. They certainly are technically good and also have a very good understanding of the importance of good customer relationships, intuitive interfaces and social networks. But they are simply too late into new product areas such as pads, and really didn’t respond well as it became clear that IT fields were converging, so they will now be playing catch up from far too constrained current position, and look unlikely to ever recover their previous dominance. Symbian in particular is looking increasingly likely to be an historically important platform, in spite of being leader today. Quite simply, the aces are now held by other players and Nokia will have to be content with a reasonable share of a bit of the market. Score: 35/100

Tesco – Tesco is one example of a long list of other companies that have good relationships with large numbers of customers, and use that as a springboard to market themselves into other areas. Since there are so many companies trying just that, it means that the sector of the market that is open to such forays is already overpopulated. What it does guarantee though is a little bit of competition in the background to keep activity reasonably brisk. Each such company is local to a particular region, so there are no strong global players in this role. Where services are local too, they will offer significant but not major competition, but will remain largely irrelevant on the global scale across the whole convergence sector. Score: 10/100

Chip makers such as Intel, ARM, AMD, etc. These companies have a very good position supplying chips to many of  the other key players and are unlikely to want to move too far away from this very cosy territory. But they could if they wanted to. It would be possible to eradicate conventional OS solutions for example, by incorporating them into chipsets, and the same with application software. A very low cost, very secure solution is enabled by using firmware for such things in place of disks or volatile memory. Using a cloud for data storage and provision of more frivolous apps would work well. So although there is no need for them to migrate yet, and no sign that any will make the move, this sector is actually in a very good position to rebuild the entire foundations of the industry, changing the whole business model structure for all the rest. So in spite of lack of any signs of current megalomania from this part of the industry, it poses a very strong potential risk, and should not be ignored. Score: 70/100

Sony, Ericsson, BT… There are many niche players in the market, some with strong regional presence, such as BT, who are weak internationally, and some such as Sony who are globally present in several market niches and have good customer loyalty, and yet other such as Ericsson who are present weakly in some markets and strong in others, such as Bluetooth chips. These all have in common that they are relatively small fish compared to many of the other players as far as domination of the information world goes. Some exist only because of their history giving them enough momentum and reserves to keep them going a while longer, and could not really have emerged otherwise as fresh companies in today’s world. They are not to be written off as companies, but equally cannot be considered serious competition for position of master of the universe. Collective score: 10/100

New entrants: Some of the players above didn’t even exist a decade ago. There are more people emerging from education every year with deep personal understanding of their information dominated world and lots of imagination and entrepreneurial drive. This race has no start line and no finish line, and new players will frequently emerge and take key positions. The biggest asset they will have by far is the size of the opposition, whihc makes them more entrenched and sluggish than a new entrant, which is free to identify any type of play, any weakness to target, and can catch the existing market by surprise. Of course, there are numerous potential roles and I will not speculate in this entry as to what they might be – I’ll leave that for another time. But of all the players likely to be emporer or empress in 10 years time, this one is towards the front of the pack. Score 80/100

All others: score 1/100

And I totally forgot: comments below

Future retailing

Well, I’m off to Australia soon, to see a new futuristic global retailing concept, so retail trends are at the forefront of my mind again. I’ve written about them frequently but there is always something new coming over the horizon. Looking at recent trends, of course the headlines this year were the launch of new mobile phones and the iPad, which make mobile internet access more useful and accessible. People can now access the net to compare products and prices, or get information. But the underlying, less conspicuous trend here is that people are getting much more used to accessing all kinds of data all the time, and that ultimately is what will drive retail futures.

With mobile access increasing in power, speed and scope, the incentives to create sites aimed at mobile people is increasing, and the tools for doing so are getting better. This will be accelerated by the arrival of head-up displays – video visors and eventually active contact lenses. The progress in 3d TV over the next few years will result in convergence of computer games and broadcast media, and this will eventually converge nicely into retailing too, especially if we add in things like store positioning systems, gesture recognition and artificial intelligence (AI) based profile and context engines. Add all this in to augmented reality, and we have a highly versatile and powerfully immersive environment merged with the real world.

It will take years for marketers and customers to work out the full scope of the resultant opportunities. Think of it this way: when computing and telecoms converged, we got the whole of the web, fixed and mobile. This time it isn’t just two industries converging – it is the whole of cyberspace converging with the whole of the real world. So we should expect decades of fruitful development, it won’t all happen overnight. Lots of companies will emerge, lots of fortunes will be made, and lost, and there will also be lots of opportunities for sluggish companies to be wiped out by new ones or those more willing and able to adapt. The greatest certainty is that every company in every industry will face new challenges, balanced by new opportunities. Never has there been a better time for a good vision, backed up by energy and enthusiasm.

All companies can use the web and any company can use high street outlets if they so desire. It is a free choice of business model. Nevertheless, not all parts of the playing field are equal. Occupying different parts requires different business models. If a store has good service but high prices and no reason someone should not just buy the product on-line after getting all the good advice, then many shoppers will do just that. An obvious response is to make good use of exclusive designs, a better and longer lasting response is to captivate the customer by ongoing good service, not just pre-sale but after-sale too. A well cared for customer is more likely to buy from the company providing the good care. If staff build personal relationships and get to know their customers, those customers are highly unlikely to buy elsewhere after using their services. Augmented reality provides a service platform where companies can have an ongoing relationship with the customer.

As we go further down the road of automation, the physical costs of materials and manufacturing will generally fall for any particular specification. Of course, better materials will emerge and these will certainly cost more at first, but that doesn’t alter the general cost-reduction trend. As costs fall, more and more of the product value will move into the world of intangibles. Brand image, trust, care, loyalty, quality of service and so on – these will account for an increasing proportion of the sale price. So when this is factored in, the threat of customers going elsewhere lessens.

AI will play a big role in customer support in future retail, extending the scope of every transaction. Recognising when a customer wants attention, understanding who they are and offering them appropriate service will all fall within the scope of future AI. While that might at first seem to compete with humans, it will actually augment the overall experience, enabling humans to concentrate on the emotional side of the service. Computers will deal with some of the routine everyday stuff and the information intensive stuff, while humans look after the human aspects. When staff are no longer just cogs in a machine, they will be happier, and of course customers get the best of both worlds too. So everyone wins.

Retailing stores have adopted many strategies to get customers in the doors. Adding coffee shops and restaurants works well, but the next decade will have to be a bit more imaginative.

Adding gaming will be one of the more fun improvements.  If a customer’s companions don’t want to just stand idly and get bored while the customer is served, playing games in the shop might be a pleasant distraction for them. But actually games technology presents the kind of interface that will work well too for customers wanting to explore how products will look or work in the various environments in which they are likely to be used. They can do so with a high degree of realism. All the AI, positioning, augmented reality and so on all add together, making the store IT systems a very powerful part of the sales experience for shopper and staff alike.

Clothes and accessories stores will obviously benefit greatly from such technology, allowing customers to choose more easily. But technology can also add to the product itself. Some customers will be uninterested in adding technology whereas for others it will be a big bonus having the extra features. Today, social networking is just starting to make the transition to mobile devices. In a few years’ time, many items of accessories or clothes will have built in IT functionality, enabling them to play a leading role in the wearer’s social networking, broadcasting personal data into surrounding space or coming with a virtual aura, loaded with avatars that appear differently to each viewer. Glasses can do this, and also provide displays, change colour using thin film coatings, and even record what the wearer sees and hears. They might even recognise some emotional reactions via pupil dilation, identifying people that the user appears interested in, for example. Health is another are obviously suited to jewellery and accessories, many of which are in direct contact with skin. Accessories can monitor health, act as a communications device to a clinic, even control the release of medicines in smart capsules.

But the biggest change in retailing is certainly the human one, adding human-based customer service. Technology is quickly available to everyone and eventually ceases to be a big differentiator, whereas human needs will persist, and always offer a means to genuine value add. This effect will run throughout every sector and will bring in the care economy, where human skills dominate and computers look after routine transactions at low cost. Robots and computers will play an important part in the future, but humans will dominate in adding value, simply because people will always value people above machines – or indeed any other organic species. Focusing on human value-add is therefore a good strategy to future proof businesses. The more value that can be derived from the human element, the less vulnerable a business will be from technology development. The key here is to distinguish between genuine human skills and those where the human is really just acting as part of a machine.

Putting all this together, we can see a more pleasant future of retailing. As we recover from the often sterile harshness of web shopping and start to concentrate more on our quality of life, value will shift from the actual physical product itself towards the whole value of the role it plays in our lives, and the value of associated services provided by the retailer. As the relationship grows and extends outside the store, retailing will regain the importance it used to have as a full human experience. Retailers used to be the hub of a community and they can be again if the human side is balanced with technology.

Sure, we will still shop on-line much of the time, but even here, the ease and quality of that will depend to some degree on the relationship we already have with the retailer. Companies will be more responsive to the needs of the community and more integrated into them. And when we once again know the staff and know they care about us, shopping can resume its place as a fun and emotionally rewarding part of our lives.

In the end it is all about engaging with the customer, making them excited, empowering them and showing them you care. When you look after them, they will keep coming back. And it is quite nice to think that the more advanced the technology becomes, the more it humanises us.

Consciousness

A recently announced Chinese supercomputer achieves 2.6 Peta-Instructions Per Second apparently. I once calculated that the human brain has about a third as much power in raw processing terms. However, the computer uses fundamentally different approaches to achieving its task compared to the brain.

Artificial intelligence is already used to create sophisticated virus variants, and autonomous AI entities will eventually become potential threats in their own right. Today, computers act only on instruction from people, but tomorrow, they will become a lot more independent. Assumptions that people will write their software are not valid. It is entirely feasible to develop design techniques that harness evolutionary and random chance principles, which could become much more sophisticated than today’s primitive genetic algorithms. Many people underestimate the potential for AI based threats because they assume that all machines and their software must be designed by people, who have limited knowledge, but that is no longer true and will become increasingly untrue as time goes on. So someone intent on mischief could create a piece of software and release it onto the net, where it could evolve and adapt and take on a life of its own, creating problems for companies while hiding using anonymity, encryption and distribution. It could be very difficult to find and destroy many such entities.

Nightmare AI scenarios do not necessarily require someone to be intent on creating mischief. Student pranks or curiosity could be enough. For example, suppose that some top psychology students, synthetic biology students and a few decent hackers spend some time over a few drinks debating whether it is possible to create a conscious AI entity. Even though none of them has any deep understanding of how human consciousness works, or how to make an alternative kind of consciousness, they may have enough combined insight to start a large scale zombie network, and to seed some crude algorithms as the base for an evolutionary experiment. Their lack of industrial experience also translates into a lack of design prejudice. Putting in some basic start-point ideas, coupled with imaginative thinking, a powerful distributed network of such machines would provide a formidable platform on which to run such an experiment. By making random changes to both algorithms and architecture, and perhaps using a ‘guided evolution’ approach, such an experiment might stumble across some techniques that offer promise, and eventually achieve a crude form of consciousness or advanced intelligence, both of which are dangerous. This might continue its development on its own, out of the direct control of the students. Even if the techniques it uses are very crude by comparison to those used by nature, the processing power and storage available to such a network offers vastly more raw scope than that available even in the human brain, and would perhaps allow an inefficient intelligence to still be superior to that of humans.

Once an AI reaches a certain level of intelligence, it would be capable of hiding, using distribution and encryption to disperse itself around the net. By developing its own techniques to capture more processing resources, it could benefit from a positive feedback loop, accelerating quickly towards a vastly superhuman entity. Although there is no reason to assume that it would necessarily be malicious, there is equally no reason to assume it would be benign. With its own curiosity, perhaps humans would become unintentional victims of its activities, in much the same way as insects on a building site.

The end of innocence

In 1995 I invented what I called the ego badge, a device that would broadcast your personal information into the area around you wherever you go. Philips simultaneously came up with a similar idea and called theirs the Hot Badge. Anyway, other people’s badges would interact with yours as you passed each other and you would be introduced to them where your badges agreed it is appropriate. I later predicted that our mobile phones would do this, and that just by glancing at your mobile phone screen, you would be able to see where you friends are. It took a while before the mobile companies caught on, but the service was introduced partly in the late 90s as a niche mobile service for night clubs. Various other gadgets followed for introducing people at conferences depending on their personal profiles, seemingly rented out at exorbitant prices by their makers. But the idea that you’d be able to see when your friends are nearby resolutely failed to materialise until recently. But now it has, at last. Now, with social media in widespread use, with profile matching well developed and also part of everyday life, and with the mobile web getting better all the time, the phone is now becoming the platform of choice for social networking. On the move. Foursquare are in the news now, having just reached their first million users http://www.guardian.co.uk/media/pda/2010/apr/26/location-foursquare-acquisition. They offer a package of services around this same basic idea, that you should be able to meet other people automatically or see who is around you, with a device cutting through the ice for you to enable easier networking. They also offer some functions for finding nearby services, but those are irrelevant to this blog entry. I am far more interested in the function that allows you to meet other people based on their profile as you pass them, as opposed to using a dating site at your desk.

I’ve often commented that technology has recently given us mechanisms for tunnelling through strong social barriers that existed for tens of thousands of years. This is one of the major steps forward in that field. It will cause social disruption, some of it good, a lot of it bad. Let’s do a quick thought experiment, and please bear in mind that this blog is not rated for explicit stuff, so I will  avoid being too explicit here, you can use your imagination as well as I can:

Stage 1: Your phone allows you to see when one of your friends is in the shop next door, so you can arrange to go for a coffee together. Great. More real world contact with your friends. Nothing wrong with that.

Stage 2: You start using it for business networking. It introduces you to potential employers, clients and suppliers at events, provided they are mutually interested. Great. More and easier business. Better career prospects. However, on the downside, higher business mobility also means shorter periods with any one company and less return on corporate training investment. It also means less experienced staff in a particular role, so customers get lower value too. Gradual decline in service quality could result. Mmmm.

Stage 3: You see someone nice in a club, but are too shy to introduce yourself. Never mind. Your phone checks them out automatically, they are compatible, they have already discovered you too, and your phones tell you both that the other is interested. The phone suggests a place you would both enjoy, a time you are both available (perhaps right now), and even what you might enjoy doing together. Great. Level playing field for shy people. More friends. More dates. The downside is obvious too (or another upside if you are so inclined). It also makes easier cheating for those already in relationships.

A simple fact of life is that you chose your partner from a thousand people you have interacted significantly with (remember also that your great grandparents probably only met a few hundred in their whole lives but you still exist). Bearing in mind that many were in existing relationships, so weren’t available, you actually chose from a much smaller number, just 100-200. So, maybe 1% of the population are highly compatible and even potential upgrades on your current partner.

Now, on a typical day in town, you walk past 2000 people say. That means 20 guaranteed hot dates, if you can both find the time, even if you’re fussy. Today you walk right past each other, unaware of the potential compatibility, and can’t possibly stop and chat to everyone even if you wanted to. But your phone can. And it will. What then? You are frequently introduced to someone you can have  fun with, guaranteed mutual attraction and compatibility, your diaries are both clear at a specific time slot for a while. The phone integrates with service providers, so you can see at a glance that a nearby room is available for hire by the hour, (of course hotels won’t be able to resist such easy business). Means, motive, opportunity. So, will you or won’t you? I bet a lot of you will. The temptation will be there, in your face, clear as a bell, every time you are in the wild. And you are only human.

At the very least, we will see a big increase in cheating, and lots more casual sex. Casual sex is a fact of life and society copes with it so far. But the cheating matters, because it undermines existing relationships and therefore undermines longer term happiness for a quick thrill, OK, lots of quick thrills. But surely people need deep relationships, not just quick ones, and we don’t have the social structures or culture that lets us combine them. Do we want to hop from person to person several times a day? I’m sure it would be fun for some, for a while, but it wouldn’t produce long term well-being for most of us. And if we can’t trust our partners, then we can’t enjoy our relationships as much as we can when trust is healthy.

Not done yet. Stage 4: It all starts off nice and (reasonably) innocently, people just hooking up for, as Foursquare so sweetly put it, adventure. It is a safe bet that either they or someone else will introduce lots of derivative features. So it won’t be just one other person, it will be invites to group activities. It won’t be just conventional stuff either, but invites to anything, however sordid. It will be integrated into augmented reality too. If you set the preferences on your head up display accordingly, you will see people’s avatars as you walk past each other. If they are looking for someone like you, you will be shown their ‘special’ avatars, dressed however, doing whatever. You get the picture. Temptation won’t stay at your initial level of standards, it will try to drag you down, and it may succeed, maybe often. So we should expect a much larger fraction of the population becoming involved in more degrading activities, with all the spin-off problems that might bring.

OK, so that is far enough for now, though I could go to stage 5 and 6. I know you’re wondering what they are, but you can carry on wondering.

So, lots of benefits will come from this new technology platform. Shy people will have more fun, we will see more of our friends, and have better career prospects. The price though is a high one, and it isn’t advertised up front as well as it should be.

The future is 30 years away

I’ve been a full time futurologist since 1991, part time since I started work in 1981 on missile systems that didn’t enter use the late 90s. I am irritated when people say you can’t predict the future, because in some areas driven by basic technological progress, it is obvious that you can. With experience you can get 85-90% of it about right at the ten year horizon. The downside of thinking about the future full time is that the present is way behind in terms of what it offers, so it is hard to be content with today’s gadgets and services, and of course there are far fewer surprises in life. The upside is that when stuff finally does arrive, it is already much more familiar so takes much less getting used to.

But the pace of change is usually much slower than the imagination in the short to medium term, and faster in the long term. For example, the new ipad from Apple is pretty much the sort of coffee table tablet we have been talking about since 1991. It is still too thick, hard, heavy and underpowered compared to what we knew even then will one day be routine. We knew that because of Star Trek.  We knew it would take a long time to implement, but it has actually taken a bit longer than we thought, and it still isn’t quite there. In IT, the pace of change is falling slightly behind what should have been the case. Mobile phone capability has run way ahead of our expectation curve in the last 20 years, but bandwidth and AI are falling behind, while memory, processing speed and storage capability are pretty much as expected (though poor software badly lets down the speed of computing actually delivered to the user). But perhaps the biggest surprise during my time as a futurologist is the lack of surprises. Mostly, tech has rolled out more or less as we thought it would.

Devices like the ipad will be very common when the technology is mature and costs have fallen, and general purpose interactive displays will lie on surfaces all over the place. That will be nice, but not surprising. It will be another decade before this trend fully catches up with early 1990s expectations. That puts the future as 30 years away. Obviously just for the ipad in this case, but perhaps that figure applies elsewhere. Let’s check a few areas. Virtual reality, first uses in military in the early 1980s, civil world by 1990, still only embryonic due to display limitations today, but promising perhaps to finally hit the big time in a decade or so, boosted substantially by its cousin augmented reality, 30 years again.

When I was at school, doing religion O level, we did a project on euthanasia, picked up by our teacher as an area we would have to deal with during our careers. He explained that although it would be a long time before it would be legal to kill people who were in pain or suffering, it might eventually be allowed. UK law started allowing assisted suicide in some circumstances last year, after a few years of unclarity. 1976-2009, just over 30 years again.

Genetic modification is another area that entered serious public debate in the late 80s/early 90s, now commonplace. 30 years

Car design follows suit. The sci-fi comic cars of my childhood became the standard shape of most new family cars about 30 years later.

So the 30 year period applies in some areas. In other, such as android and AI technology, the imagination has been more powerful. We still don’t have the machines envisaged in the 60s, so we have past the 50 year mark already and still at least 20 years from some of those visions. Visions of direct brain-machine links go back to the 60s at least and although there are some primitive connections today, the whole thing won’t be a reality this side of 2040 and it won’t be common till the 50s or 60s, 100 years after the imagineers came up with it. So I guess the 30 year period is actually quite a short horizon for futurology.

Satellite navigation is probably an exception though (in normal civilian life). We saw very little expectation of its impact before the mid 1990s and it is already quite mature. So it has only really taken 15 years. Maybe that is because it was important in military and aviation prior to that.

Of course there are always some smaller scale surprises, people invent new things every day. Most of these are incremental improvements on stuff already around, or eventual implementations of things thought of decades earlier, where the technology has finally caught up and it is possible to build it. Things like the ipod and memory sticks are examples of this. So when new things appear on the net, they are usually well expected in terms of kind, it is only the specifics that vary. Social networking was very well anticipated 25 years ago, but implementations such as Twitter or Facebook are just more recent instances and still very far from mature. I think we need at least another 15 years of development before electronically mediated social networking can be considered a mature technology. 40 years, but then it’s a big field. Some may argue it is limited by social rather than technological evolution, but actually the technology isn’t anywhere near mature yet either, and people have actually been fairly quick to adapt to what capability there is. But I am waffling. Back to the point.

The point is that apart from a few big areas well developed in science fiction such as robots, brain-machine links and AI, most things we can think of are not very far away, just 3 decades. Using my favourite analogy, futurology is like looking through fog. Some things are visible quite far ahead such as bright lights, but details are not visible until you get close. We could argue that a few bright lights such as full machine-brain links, conscious machines and electronic immortality are visible now even though they are several decades away, but mostly we are limited by imagination at that range. Our mental fog limits futures reasonable visibility to about 30 years. And visibility is excellent at 10 years.

I’m sure there is a deeper point in this, I’m just thinking out loud at the moment. I’ll blog the rest when the fog clears a bit.

Facebook, what are we looking for?

http://www.guardian.co.uk/technology/blog/2010/mar/15/facebook-passes-google-share-us is food for thought. Facebook now gets more hits than Google. I use Google about 10 times a day I reckon. I only log on to facebook about once a week to accept someone as a friend, and I only ever bother doing that because it saves getting endless reminders, just like LinkedIn. I guess I’m just not one of life’s networkers. Same at conferences, I’m the guy who gets the coffee and stands waiting for the next session to start and usually doesn’t bother talking to people. I can if I want, I usually just don’t. In between a few autistics and people with Asperger’s, there is a large band of people like me who don’t feel like socialising all the time with total strangers, even if we do actually possess the social skills. But markets don’t depend on getting 100% of people as customers. Companies can be viable even if they only cater for a small niche. And Facebook goes way beyond niche now. So just because I am never going to be one of Facebook’s top users, I can see why it is thriving.

So what is it with Facebook? Why do people want to be on there other than to avoid endless reminders to connect? They can’t really want to keep up with hundreds of people, when all the evidence is that most of us can only cope with a handful of close friends, simply because it takes time and effort to be friends. And what is the point of having so many acquaintances, whether you call them friends or not? Again, without time investment, acquaintances lose most of their networking value. It’s the same with anything, unless there is an emotional investment, there is little value. Like a wardrobe. It can have hundreds of clothes, but if you don’t associate the clothes with a particular feeling or memory, they are just a covering, and you simply don’t have enough emotional or memory budget to go beyond a few special items. Or is it just me? I don’t think so.

Susan Greenfield, the neuroscientist, often stresses how important emotion is for consciousness. She maintains that you cant have any real consciousness without emotion, and on that at least, I think I agree with her. With people, you meet them, you share some sort of experience and a common mutual bond is built in neural circuitry. The short term memory becomes a longer term one, but the number of links and the strength of those links depends on the amount of time and emotion depth involved in the experience. If the relationship goes straight on to the back burner and the person is filed away under casual acquaintance, they make little subsequent demand on your mind, but also have little value to you as a consequence. Labelling them as a friend and adding them on Facebook is a cheap and easy thing to do, but it can just as easily be a way of dispatching someone to the acquaintance bin without offending them, as making a declaration of future commitment.

The facts of human nature haven’t changed a lot in 100,000 years. We are tribal, and tribes that we associate with tend to be around the 100-150 size. Above that, you don’t have enough time or energy to maintain any meaningful relationship with each member. And inside that wide circle, you can maintain between 3 and 20 ‘close’ friends, though people differ greatly in how they define that circle. One person’s close friend might be another’s acquaintance, mostly depending on the level of extroversion or introversion. You delude yourself if you think you can have hundreds of friends. Call them what you like, but they aren’t. They are mostly just people you know and quite like, or even just know. I have hundreds of people I know and like too, but only a small number fall into the close friend category. I don’t have time for any more than a few, neither does anyone else. Close friends take a lot of time and effort to keep as close friends.

So, again, what is it with Facebook? What are people doing there other than collecting.

I think there are several things that matter, and each of them forms a pillar that helps keep the Facebook ceiling from collapsing.

Firstly, some of it is about keeping in touch, and also falling out of touch painlessly. Some of it is trying to insulate ourselves from the pain that comes when our lives change, when we move, or change jobs, or just move on. By letting friendships evaporate ever so slowly by gradually decreasing contact, we avoid the trauma of saying goodbye. Facebook means never having to say goodbye.

But of course, for many of our friends, we actually do want to stay in touch. For the same reasons as Twitter, Facebook offers another platform that people can use to enhance relationships by becoming more intertwined with friends. I have little personal affiliation with this tendency, I don’t have a single friend whose choice of breakfast cereal holds any interest for me. But many people do want to feel closer, and by offering such trivia, manage to maintain a feeling of presence across physical distance. haring trivial experiences is one of the main fertilisers for a healthy relationship, and Facebook and Twitter both offer valuable mechanisms for this.

Secondly, some of it is about social status. For example, most people want to feel they are popular. Some of us grow out of it in middle age, and don’t care any more, but many don’t, it remains a drive throughout their lives. Popularity translates easily into social status, self affirmation, confidence. It is important for the health of our self perception, especially if a person has few other special attributes on which they can base their self image. Popularity can be a substitute for other successes, as we often see in school (e.g. cheerleaders are not often perceived as being the smartest students, but use popularity as a substitute and consequently try to talk up its value). Social status also associates with connectivity, which of course directly translates into length of contact list. Connectivity yields power, which yields status. So there is a very simple equation linking social status to the magnitude of the friend list. And of course, it isn’t just quantity, but quality. Connectivity to big names is always more valuable, and some people try hard to collect status by linking to the most powerful people they can, affirming their own positions via reflected glory.

Facebook also appeals directly to our own notions of social positioning. It’s obvious really. You can see what people are up to, who they know. You can make the little checks to make sure they aren’t getting too far ahead at work, or getting too wealthy, and enjoy the schadenfreude when they fall behind. You can make comparisions of their holidays, how cute their friends are compared to yours, where they live, how well they are ageing.

And I do think it is about avoiding the embarassment of telling people you don’t really want to bother with them by accepting them as a ‘friend’ and just not bothering to ever contact them again. We’ve rubber stamped the social niceties, with none of the real life hassle. It’s just like the people you meet on holiday, you say you really must come round some time, while hoping they never do.

And there is some value in meeting new people too, via ones you already know. I may be a rubbish networker, but I understand how it works, and it does. So that’s another big pillar.

I also reckon a lot of it is novelty. I got into chat rooms 15 years ago, and for three or four years, it was great fun, then I got bored and have never bothered since. And I’ve never ever contacted any of the people I ‘met’ or befriended there since. It may be the same with Facebook. It is fun to socialise, but eventually, the medium lets it down, you just can’t maintain a high quality relationship 100% online, and real life takes over again. It works for a while, a few years even, but in the end, it is an emotionally impoverished medium.

So what else? The tribal fun of sharing the various toys and rituals I guess. Poking people, learning new rituals, new gestures, new ontology, new language, establishing tribal structures. This is an important ingredient of human nature and Facebook cleverly indulges it by the many new toys that are invented there every week. The gifts, the games, the memberships and so on. Direct analogs of the very same things that bound caveman society together.

The potential to communicate too. Facebook substitutes for email for many people, and IM. Obvious again.

And I guess it can be used as a socially powered search engine too, leveraging social trust into recommendations in a world where trust is rapidly becoming harder to establish and easier to lose, while rapidly becoming the currency that really matters.

It is becoming a political platform now. Heavily networked social structures create a huge political platform with enormous potential power. The biggest surprise isn’t that politics is emerging on Facebook, it is that it took so long and still is embryonic. Facebook and other social networking tools have vast potential as political platforms and tools, and the vaccuum created is unsustainable. Eventually, that power will be captured and wielded, we just don’t know yet by whom and how.

I’m sure there are many other pillars holding Facebook up. It was always obvious even before the web arose, that the internet would eventually become a socialising platform much more than just a medium for entertainment, commerce and information. And now, finally, it is.

So the question I now have in my own mind, having bothered to ask myself why Facebook is such a powerful and attractive a platform, is why do I not feel like using it? I am not really so odd, but none of these many advantages really appeal to me. Thinking at length about it, I can only conclude that the richness of 21st century life offers so many other great alternatives for my time and energy and commitment, that it just doesn’t get into my priority list. I still want friends, I still want to keep in touch, but only to a point, and life is too short, and too exciting to want to spend it all with other people. What’s the quotation? Hell is other people. I guess a lot of us subscribe to that philosophy. Facebook has made its creator rich and famous, and rightly so, he has done manking a great service. But for the rest of us, who don’t want 500 friends, the guy who comes up with the opposite site that appeals to us, will do just as well. It won’t be me, but it will be someone, and it will be soon. Bet on it.

Apple v Google

Tim Bray on the iphone from his blog http://www.tbray.org/ongoing/When/201x/2010/03/15/Joining-Google: The iPhone vision of the mobile Internet’s future omits controversy, sex, and freedom, but includes strict limits on who can know what and who can say what. It’s a sterile Disney-fied walled garden surrounded by sharp-toothed lawyers. The people who create the apps serve at the landlord’s pleasure and fear his anger.

He goes on to say why he disagrees, and he is right. There are too many companies who want to undo the benefits brought by the web by using their power and influence to create walled gardens. Almost every time there is a workshop on big company strategy, there is someone who wants to build one and force people by de-facto monopoly to pay to access it.

I like Google a lot, not least because they played a crucial role in getting my wife and I together. Google makes my life better in a number of ways, but I don’t like everything they do. I like the picture of my house on street view but am well aware that burglars can more easily scope out a potential burglary without having to lurk around suspiciously working out the best approach and where to hide while being overlooked least. And they are certainly more than a bit arrogant in their attitude to copyright, and I still have no idea how I will ever get paid for people reading my books free on their sites. But these things are just a few small cracks in their do no evil mantra, and I still think their corporate heart is still in the right place. On balance, they make a very positive contribution to the world.

I also like Apple too, to a point. I have had an Apple computer since 1987, sometimes a few, and I’ve lost count of how many that adds up to now, but a lot. But although Apple usually make things look nice and fairly easy to use, they have always spoiled it by being so damned arrogant about everything, and it isn’t always justified by the quality of their devices. They under-specify their machines. There is never enough memory, or enough battery life, or there’s a crap camera, and the software keeps crashing. Anything from Microsoft is pretty much guaranteed not to work properly on an Apple (I’m not saying that it will work on a PC either mind). And QuickTime sucks. I still regret buying the Pro option, since the key I got lasted about a month before the next ‘upgrade’ made it useless, and they wanted more cash. And I can no longer open many of the files I created in the first several years of using an Apple. So Apple makes things cute and easy, but they have a lot of quite big faults that go a long way to cancelling out their merits. And now, trying to control all the content is just a step too far.

So, on this battle, I will take sides with Google. Sure, they might want to take over the world, and are making good progress, but if they make it a better place, that’s fine with me.

Open letter to next UK PM

The UK has suffered more than two decades of bad leadership, and it needs to change if it is to survive as one of the world’s top countries. As things look at the start of 2010, we will soon be replacing a very bad government with a merely bad one, and that will not do.

Conservatives say they want to invest in high speed rail, protect the NHS, hold public pay for a year, and be green. Oh dear.

Rail travel in the UK is still based on 19th century technology and it is long overdue for replacement by a 21st century system. All round the world, there are trials of rapid transit systems based on small pods, driven automatically on light rail. Such a system can deliver extremely responsive transport, with each pod holding only a few people, going to their specified destination almost as soon as they want to leave. Performance engineering says that such a system can use rail at up to 80% occupancy. That would be several times as good as even London Underground’s Central Line at rush hour, and 200 times the level achieved by regional railways. Regional rail is plagued by signalling problems and broken down trains, but a pod-based light rail system would use inter-pod signalling and pods would be able to push other along, solving both of these problems at a fraction of the price of yesterday’s poorly designed signalling systems. We don’t need a high speed rail network using antique trains. We need a proper 21st century rail network that is more energy efficient, faster, more reliable with lower congestion, and more responsive to individuals’ needs.

The NHS is similarly afflicted by yesterday’s solutions. The conservatives say they will protect its funding from cuts, but it is perfectly possible to reduce costs and improve performance at the same time. In an age where a PC can outperform a GP in diagnosis, and a robot can outperform the highest skilled surgeon in operating, we are paying our doctors the highest wages in the world for some of the lowest performance. Wards are filthy, and mistakes and negligence needlessly kill tens of thousands of people every year. Misguided centralisation and micromanagement policy has wrecked the potential of IT to deliver enormous savings, while out-dated outsourcing contracts have resulted in cleaning companies leaving wards dangerously dirty because profit motivation has replaced dedication to the patient. Management in the NHS manages to remain village class in spite of world class funding. The NHS should not be protected. It is long overdue for a roots-up replacement by a properly designed health care system based on the needs of the population and delivered by proper use of both people and technology where they are best suited. This would cost a fraction of today’s NHS and be far more effective.

Public service wages shouldn’t just be held steady for a year, they should be greatly reduced and many public sector workers laid off or redeployed. In almost all areas, public service wages are too high compared to wages for equivalent work in the private sector. High pensions based on the last few years of salary have encouraged departments to promote people to high levels just before they retire, so that as many people as possible benefit from the scheme. The result is that taxpayers are paying almost as much in pensions as wages for many public sector workers. In spite of higher wages and much higher pensions, public sector workers are often poorly skilled compared to their private sector equivalents, work fewer hours, and take more sick leave. They are generally also much better protected from consequences of poor performance. The public sector includes a large number of jobs that could be cut. There are too many quangos doing work that is unnecessary or executed so poorly that it is useless. These should also go.
What is needed throughout the public sector is a wholesale reappraisal of terms and conditions, with wages aligned continuously and automatically with the 40th percentile of private sector equivalents, both in wages and pensions. All jobs throughout the public sector should be reconsidered  in terms of need, with proper checks for duplication of roles. Any jobs that are found to be unnecessary should be eliminated. Panels made up of taxpayer representatives other than public sector workers should have a veto on the creation of any new jobs. This would cause enormous resistance but needs to be done and would result in a much better public service all round.

The welfare and employment system needs to be redesigned. It should be just and fair throughout. No-one should ever be so poor that they can’t afford basic essentials of life, nor should anyone over be better off on benefits that by taking any job on offer to them. Minimum wages should be realigned so that full time work enables a basic standard of living above that possible by living purely on benefits. Taxpayers should not have to support inefficient or greedy businesses nor low prices for products that only some people want to buy. Today’s market includes a great many products that have effectively been produced at taxpayer subsidy, but products that can’t make it in the market without exploitation of workers or taxpayers shouldn’t make it at all. Once minimum wages are set, welfare will be needed by far fewer people. Recipients of incapacity benefit should be re-assessed properly and if they are capable of any kind of work, even part time, they should be transferred to job-seeker’s allowance, which should also be set at a level that supports only a very basic standard of living, delivering an incentive always to take any work on offer. When people start work, their pay should be subjected to a gradually rising tax rate, and their entitlements to benefits reduced gradually as their wages increase, so that everyone will always be better off working. Other benefits should be appraised and the same principles of fairness and incentive applied throughout. Welfare should never be an alternative lifestyle, but should instead be a robust safety net.

Welfare should also be linked to a person’s history of paying into the system. Too many payments are made to economic migrants who have never contributed anything. Obviously we must protect everyone from extreme poverty, but it is fair that people who have contributed should have a higher entitlement to support when they are down on their luck.

Other laws should also be changed so that people who are prudent and save should be rewarded, not punished.

Being green is another of the Conservatives’ claims to power. Of course government should educate people and incentivise care of the environment. But that doesn’t mean throwing money at every passing green cause without proper analysis. A good many green policy errors have already made the environment worse. The environment cares nothing about politics, and it is imperative that government relies on proper scientific studies for its inputs. Payment of research grants should not depend on the meaning of the data produced, but on its accuracy and on the quality of scientific research on which it is based. Scientists should be free to do science, and politicians should use the inputs wisely to produce policy, testing it on an ongoing basis via the scientific method. Before major investments, government should properly consider the alternatives, including those likely to arrive over the appropriate time-frame. So for energy policy for example, we should evaluate the costs of solar farms in the Sahara desert using 2020 solar technology and include those in comparison with other solution sin the same time-frame, rather than necessarily going with those that are cheaper today. This and other related technologies in transport and industry should also be factored in to environmental models as far as energy consumption and the associated emissions are concerned. Since the future is different from today on many factors, models should not assume that the future is the same as today, but take into account likely changes as far as possible.

The justice system needs to be redesigned. Today, penalties bear little relation to the magnitude of the crime, so that leaving a bin lid open can result in a higher penalty than shoplifting or mugging. A complete re-apprasial of crime and punishment is needed, with punishments set on a sliding scale that reflects the impact of the crime more sensibly. Fines that can be levied by non-court authorities should be severely limited in size and scope. Punishments should automatically rise on second and subsequent offences so that career criminality is deterred. Criminals should void other rights while they are committing their crimes. Prisons should be very basic in terms of accommodation and lifestyle, again making them places to avoid. Any right to early release should depend on exceptionally good behaviour, rather than being the norm.

The electoral system needs to be changed to one I described in my previous blog, redesigning democracy for the 21st Century, which give MPs voting weight according to the national representation for their party. This is a proportional representation system that still allows good local representation without disadvantaging groups that are spread more evenly throughout the country as the current system does.

If all the above recommendations were to be implemented, the UK would have a cheaper and better public service, better health, better transport, better justice, and be a safe and pleasant land, where living responsibly would be very rewarding and pleasant. If the new government avoids tackling these issues, our country will continue to slide, becoming an unfair, unjust and unpleasant place to live, with a poor standard of living for all.

Bring back the Spectrum

In spite of massive rises in the power of computers, there is nothing on the market now with the same functionality as the legendary Sinclair Spectrum, which used to allow users to play games or write simple programs on it within seconds of switching it on. It must surely be possible to build a modern equivalent with better graphics and high speed for just a few pounds. The old audio-cassette storage could easily be replaced by a low cost memory card (none of the programs were more than 32kbytes). It would surely appeal to a whole generation of kids who have learned to play with computer games but have never tried to write a single program themselves.

Molecular transistor

http://bit.ly/8K0gmk outlines a new kind of molecular transistor. The scientists from Yale and South Korea who made it are excited but think it is a long way from market because only about 35% of the ones they make actually work. I think they are mistaken in their pessimism. I don’t think that matters as much as they think.

Firstly, carbon is an excellent conductor of heat. If some of them don’t work, they will still help to conduct heat away. Carbon is cheap, so material cost isn’t a problem.

Secondly, since the devices are so small, and we know that carbon lends itself well to layering, then 3d electronic structures could be designed, and the many layers possible will quickly outweigh the disadvantages of poor reliability.

Thirdly, we are moving into a new ear of electronics. The drawing board has been smashed and innovative new practices are being considered. Importantly, old ones that didn’t work before will be resurrected to see if they will work now with the new situation. I expect to see a resurgence of evolving electronics, reconfigurable electronics, and analog processing techniques, used with self organisation algorithms. This could allow 3d materials that contain transistors to be connected together in experimental circuits, reconfigured rapidly until the circuit works. Reliability is unnecessary in such a system.

So I congratulate the scientists involved, but think that their invention will be much more useful, much earlier than they expect. Good luck to them.