Category Archives: technology

Will China be the global winner from COVID?

A joint blog by Tracey Follows, Bronwyn Williams and ID Pearson

Will China be the global winner from COVID?

There have been many conspiracy theories about China suggesting that the virus was deliberately made. We may never know the whole truth.

Regardless of that, it is clear that, however unlikely, there is a greater than zero chance the virus could have been man-made. More importantly, a new virus could be man-made. Now that the West has shown its economically suicidal response to this one, there is a massive temptation for any rogue regime or terrorist group to produce a GM virus variant that is as or more lethal, as or more contagious. Death cults that want population reduction (such as environmental reasons) might well consider sponsoring such virus production in secret labs.

There is already one clear win for China: No-one is really debating democracy versus authoritarianism as it pertains to Hong Kong any more. But then no-one is really debating that choice anywhere because nation-states like the UK, France and USA, built on the core notions of freedom, have removed liberty and imposed a lockdown. Indeed, the few governments who have resisted – or even just delayed draconian encroachments on hard-won human rights to freedom of speech, movement and trade have found themselves cast as at best ignorant and at worst downright villainous by the popular press. This, despite the fact that the epidemiological and economic data and models projecting the socio-economic costs of the various paths of action (or inaction) available to authorities are questionable at best, downright misleading at worst. Perhaps Friedrich Hayek put it best when he said “The curious task of economics is to demonstrate to men how little they really know about what they imagine they can design.”. In other words, when faced with incomplete information, the first priority for any government should be to do no harm. When it comes to complex systems, seemingly simple solutions can have serious unintended consequences. This, however, is easier said than done in the face of an imminent threat when citizens, accustomed to having their every need met by their leaders are baying for someone to do something. This may well prove to be the biggest threat of all because populations can get awfully content being told what to do and relying on authorities to make all the tough decisions for them. Some may even be persuaded that this kind of big state, this kind of total state, isn’t really so bad after all.

The trouble is that authoritarian measures – such as state surveillance of health and cellular data and restrictions on freedom of movement or trade – adopted during times of crisis do not tend to simply disappear after the short term threat is passed.. As military men and women will tell you, it is much easier to get into wars than to get out of them. Likewise, it is much easier to lose civil liberties than it is to regain them. Have any governments who have removed or restricted citizen rights outlined any form of exit strategy for how to return those privileged post pandemic? No. The long-term normalisation of surveillance and authoritarianism driven by short-term fear threatens to create a global generation of Stockholm syndrome sufferers, grateful to the generosity of their gilded cage key keepers.

Result: China 1  – West 0

Perhaps what is most notable is that there have been several pandemics in recent memory: Zika, SARS, Ebola, swine flu, bird flu. None of these caused similar panic. The question is why. The answer lies in the way the current crisis has been handled by both mainstream and social media, both of which thrive on the spread of panic (a viral disease in and of itself), and panic, in turn creates an opportunity for authorities to capitalise on the crisis and consolidate both power and capital to their own ends. New deadly diseases emerge from nature frequently and next time the first news breaks on a future outbreak, the panic cycle we have witnessed in recent months is likely to repeat itself. Panic buying will follow, the media and the public will demand action, stock markets will fall, governments will be tempted to rush to close airports and print more money and take on more debt, and so on so as not to be the last man standing. That means that future outbreaks, however caused, will likely cause panic, confusion and likely major economic damage.

After spending tens or more likely hundreds of billions of pounds to get through COVID19, it may well be the case that the economy is only starting to recover before the next outbreak. The economy may not recover properly until we can end that cycle.

However, China, with its now proven technology to control its people, its centralised economy, and its much more compliant populace, conditioned over centuries of dictatorial rule to obey or face the consequences, would be more able to avoid such crashes.

The West will learn that the only way to avoid coming off second best in a crisis is to emulate its opponent, further eroding human rights and freedoms in the process. 

That is, of course, the rub: liberty has proven to work for the West in the long run. However, in the short run, there are trade offs. Authoritarians can do things that free men and women will not. From current events and reactions, it does not appear that the West has the short term courage (or citizens with the personal responsibility) to pay the price of long term liberty.

China 2 – West 0

Even as it becomes clear that China covered up the initial outbreak, denying other nations the benefits of foresight, and manipulated mortality rates, skewing economic and epidemiological models that could have been used to make better policy decisions, we may never know the full extent of China’s responsibility for this one. However, we can be sure they won this round, and will be the long term winners too, if our response here in the West is anything to go on.

About Tracey Follows

company: https://futuremade.consulting

twitter: twitter@traceyfutures

side hustle: https://www.femalefuturesbureau.com

Forbes contributor: tracey follows 

About Bronwyn Williams

Bronwyn Williams is a futurist, economist and trend analyst, who consults to business and government leaders on how to understand the world we live in today and change the world’s trajectory for tomorrow. She is also a regular media commentator on African socio-economic affairs. For more, visit http://whatthefuturenow.com

Twitter: twitter@bronwynwilliams

About ID Pearson

Dr Pearson has been a full time futurologist for 29 years, tracking and predicting developments across a wide range of technology, business, society, politics and the environment and is a chartered Fellow of the British Computer Society and Fellow of the World Academy of Art and Science

twitter: twitter.com@timeguide

timeguide.wordpress.com

15 basic technologies could help reduce exposure

  1. In lifts (elevators if you’re a Yank), or indeed any room that gets a lot of people traffic and may therefore spread infections, a simple passive infrared detector could monitor whether there are people in it, and if not, a strong UV light could be activated, which would help kill any viruses and bacteria present.
  2. Portable UV sterilisation boxes could reduce contamination on face masks in between uses so that it’s clean again before you go back out there
  3. Tethered drones equipped with strong (and directional) UV lights could continuously sterilise surfaces in some key areas. Untethered drones that can rapidly recharge could also help.
  4. High powered air filters that can remove viruses could be installed in train carriages, hospital wards and corridors etc.
  5. Industrial and domestic smoke and particulate scrubbers could be adapted to reduce the concentration of  airborne viruses in any area with high concentrations of people. Systems that use plasma or static electricity also exist.
  6. In corridors, either of these air cleaning mechanisms could be used alongside blowing the air in a vortex to maintain a narrow channel of purified air, so that limited filtering can still maintain a safe corridor.conjuction with high pressure
  7. Voluntary ‘digital air’ subscription could enable ‘cookies’ or markers to be collected by your mobile phone as you walk around. If other subscribers that have been in contaminated areas are nearby, your phone could alert you so you can stay clear.
  8. Just as we already have pollen and pollution forecasts, virus detectors could produce real-time information on areas to avoid, or that are safe to visit for exercise.
  9. Bongs (bottles that pass the air through a liquid) could be adapted to use rapid anti-viral fluids). Ultrasonic transducers could further continuously mist the anti-viral medium so that a large air volume is exposed to allow longer decontamination periods with a small amount of fluid.
  10. Spiky net face-masks (like an orange bag with soft spikes on each junction) could prevent people touching their faces.
  11. People could voluntarily wear ‘smart bindis’ made from thermal colour-changing materials similar to those used in cheap fish tank thermometers. You could tell at a glance if someone has a fever or not.
  12. Face masks and surface covers could be made from fabrics that contain nanospikes, attached to pizoelectric vibration devices that can send ultrasonic waves through the materials, physically rupturing virus and bacteria.
  13. Piezoelectric misting could also be used to make forehead mist generators that occasionally bathe the face in anti-viral mist
  14. People living nearby should be able to combine online orders to maximise logistics efficiency
  15. Gloves with antiviral insides that sterilise hands when worn. Obvious alternative is to sterilise inside and outside.

 

 

 

The rise of Dr Furlough, Evil Super-Villain

Too early for an April Fool blog, but hopefully this might lighten your day a bit.

I had the enormous pleasure this morning of interviewing the up-and-coming Super-Villain Dr Furlough about her new plans to destroy the world after being scorned by the UK Government’s highly selective support policy. It seems that Hell has no fury like a Super-Villain scorned and Dr Furlough leaves no doubt that she blames incompetent government response for the magnitude of the current crisis:

Bitmoji Image

Dr Furlough, Super-Villain

“By late January, it should have been obvious to everyone that this would quickly grow to become a major problem unless immediate action was taken to prevent people bringing the virus into the country. Flights from infected areas should have been stopped immediately, anyone who may have been in contact with it should have been forcibly quarantined, and everyone found infected should have had their contacts traced and also quarantined. This would have been disruptive and expensive, but a tiny fraction of the problem we now face.  Not to do so was to give the virus the freedom to spread and infect widely until it became a severe problem. While very few need have died and the economy need not now be trashed, we now face the full enormous cost of that early refusal to act.”

“With all non-essential travel now blocked”, Dr Furlough explained, “many people have had their incomes totally wiped out, not through any fault of their own but by the government’s incompetence in handling the coronavirus, and although most of them have been promised state support, many haven’t, and have as Dr Furlough puts it ‘been thrown under a bus’. While salaried people who can’t work are given 80% of their wages, and those with their own business will eventually receive 80% of their average earnings up to £2500/month whether they are still working or not, the two million who chose to run their small business by setting up limited companies will only qualify for 80% of the often small fraction of income they pay themselves as basic salary, and not on the bulk of their income most take via dividends once their yearly profits are clearer. Consequently many will have immediately dropped from comfortable incomes to 80% of minimum wage. Many others who have already lost their jobs have been thrown onto universal credit. The future high taxes will have to be paid by everyone whether they received support or were abandoned. Instead of treating everyone equally, the state has thus created a seething mass of deep resentment.” Dr Furlough seems determined to have her evil revenge.

Bitmoji Image

With her previous income obliterated, and scorned by the state support system, the ever self-reliant Dr Furlough decided to “screw the state” and forge a new career as a James-Bond-style Super-Villain, and she complained that it was long overdue for a female Super-Villain to take that role anyway. I asked her about her evil plans and, like all traditional Super-Villains, she was all too eager to tell. So, to quote her verbatim:

“My Super-Evil Plan 1: Tap in to the global climate alarmist market to crowd-fund GM creation of a super-virus, based on COVID19. More contagious, more lethal, and generally more evil. This will reduce world population, reduce CO2 emissions and improve the environment. It will crash the global economy and make them all pay. As a bonus, it will ensure the rise of evil regimes where I can prosper.”

She continued: “My Evil Super-Plan 2: To invent a whole pile of super-weapons and sell the designs to all the nasty regimes, dictators, XR and other assorted doomsday cults, pressure groups, religious nutters and mad-scientists. Then to sell ongoing evil consultancy services while deferring VAT payments.”

Bitmoji Image

“Muhuahuahua!” She cackled, evilly.

“My Super-Plan 3: To link AI and bacteria to make adaptive super-diseases. Each bacterium can be genetically enhanced to include bioluminescent photonic interconnects linked to cloud AI with reciprocal optogenetic niche adaptation. With bacteria clouds acting as distributed sensor nets for an emergent conscious transbacteria population, my new bacteria will be able to infect any organism and adapt to any immune system response, ensuring its demise and my glorious revenge.”

laugh cry

By now, Dr Furlough was clearly losing it. Having heard enough anyway, I asked The Evil Dr Furlough if there was no alternative to destroying the world and life as we know it.

“Well, I suppose I could just live off my savings and sit it all out” she said.

 

HS2 is world class stupidity

£106Bn is the new estimated cost of HS2, with a new delivery date of 2040

https://www.theguardian.com/uk-news/2020/jan/20/hs2-costs-government-review-west-midlands-manchester-leeds

We hear figures in the billions all the time, and I guess politicians especially lose their sense of what they really mean. A few billion here, another few billion there, so £106Bn just sounds like a decent sized public infrastructure project, equivalent to a few power stations, what’s the big deal? Let’s do some simple sums to find out and get some perspective.

The money has to come from tax and regardless of the diverse routes it takes, people ultimately pay all that tax. There are 66.5 million people in the UK, so that’s only £1600 each. Most of those people will never or hardly ever use HS2.

However, according to the Office of National Statistics, HMRC, only 31.2 million of those people pay income tax, so they contribute an average £3400 each. But actually the top 50% of those, 15.6 million people, pay 90% of the tax, so that means HS2 will effectively cost them £95.4Bn, a whopping £6115 each. I could go more sums but you get the point.

It’s a fair bet that the half of UK taxpayers paying over £6000 each for HS2 could write a long list of things they’d rather have than the option to buy an expensive rail ticket that might save some people, but probably not them, 20 minutes on a journey to London, but for most people might actually take them longer if they have first to get a slow train to one of the privileged HS2 stations.

6000 quid, each, 12k for a professional couple. For a slightly faster train? Remember, the original spec was for very fast trains, but they had to wind the speed down because it was discovered that trains might sometimes derail due to lethal combinations of aerodynamics and subsidence, so the realistic spec is about 150mph, compared to 125mph for a normal intercity.

This is the economics of the madhouse.

Trains are 19th and 20th century technology. 21st century technology allows driverless pod systems that would be far cheaper, far more versatile, far more socially inclusive, and far faster end to end. Pods could carry people or freight. Pod systems could start off mixing with conventional trains by grouping to make virtual trains. As antique old stock is gradually upgraded, along with stations, we would end up with a totally pod-based transport system. Pods could just as easily run on roads as on rails. The rails could be ripped up and recycled, railways tarmacked over, and public transport could seamlessly run on roads or the old railways. With potential occupancy of up to 95%, compared to the 0.4% typical of conventional rail, the old railways could carry 237 times more traffic! That wouldn’t eliminate congestion – there would still be some choke points – but it would make one hell of a dent in it. It would be faster because someone could have a pod pick them up at their home or office, maybe swap onto a shared one at a local node, and then go all the way to their destination at a good speed, with hardly any delays en-route, now waiting for the next scheduled train or having to make pointless journeys to get to a mainline station. They could simply go straight to where they want, and save much more time than HS2 would ever have saved.

Pod systems could serve the whole country, not just the lucky few living near the right stations. Fixing ‘the North-South divide’ still favours pod systems, not HS2. Everyone benefits from pods, hardly anyone benefits from HS2. Everyone saves money with pods, everyone is worse off with HS2. Why is the idea still flying?

The problem we have is that too few of our politicians or senior civil servants have any real understanding of technology and its potential. They are blinded by seeing figures in billions sever day, so have lost their understanding of just how much £100Bn is. They are terrified of pressure groups and always eager to be seen to be doing something, however stupid that something might be if they examined it.

HS2 is a stupid idea, world-class stupidity. It is 20th century technology, an old idea long past its use-by date. It locks in all the huge disadvantages and costs of old-style rail for several more decades We should leapfrog over it and go instead for a 21st century solution – cheap driverless pods. We’d save a fortune and have a far superior result.

 

 

Optical computing

A few nights ago I was thinking about the optical fibre memories that we were designing in the late 1980s in BT. The idea was simple. You transmit data into an optical fibre, and if the data rate is high you can squeeze lots of data into a manageable length. Back then the speed of light in fibre was about 5 microseconds per km of fibre, so 1000km of fibre, at a data rate of 2Gb/s would hold 10Mbits of data, per wavelength, so if you can multiplex 2 million wavelengths, you’d store 20Tbits of data. You could maintain the data by using a repeater to repeat the data as it reaches one end into the other, or modify it at that point simply by changing what you re-transmit. That was all theory then, because the latest ‘hero’ experiments were only just starting to demonstrate the feasibility of such long lengths, such high density WDM and such data rates.

Nowadays, that’s ancient history of course, but we also have many new types of fibre, such as hollow fibre with various shaped pores and various dopings to allow a range of effects. And that’s where using it for computing comes in.

If optical fibre is designed for this purpose, with optimal variable refractive index designed to facilitate and maximise non-linear effects, then the photons in one data stream on one wavelength could have enough effects of photons in another stream to be used for computational interaction. Computers don’t have to be digital of course, so the effects don’t have to be huge. Analog computing has many uses, and analog interactions could certainly work, while digital ones might work, and hybrid digital/analog computing may also be feasible. Then it gets fun!

Some of the data streams could be programs. Around that time, I was designing protocols with smart packets that contained executable code, as well as other packets that could hold analog or digital data or any mix. We later called the smart packets ANTs – autonomous network telephers, a contrived term if ever there was one, but we wanted to call them ants badly. They would scurry around the network doing a wide range of jobs, using a range of biomimetic and basic physics techniques to work like ant colonies and achieve complex tasks using simple means.

If some of these smart packets or ANTs are running along a fibre, changing the properties as they go to interact with other data transmitting alongside, then ANTs can interact with one another and with any stored data. ANTs could also move forwards or backwards along the fibre by using ‘sidings’ or physical shortcuts, since they can route themselves or each other. Data produced or changed by the interactions could be digital or analog and still work fine, carried on the smart packet structure.

(If you’re interested my protocol was called UNICORN, Universal Carrier for an Optical Residential Network, and used the same architectural principles as my previous Addressed Time Slice invention, compressing analog data by a few percent to fit into a packet, with a digital address and header, or allowing any digital data rate or structure in a payload while keeping the same header specs for easy routing. That system was invented (in 1988) for the late 1990s when basic domestic broadband rate should have been 625Mbit/s or more, but we expected to be at 2Gbit/s or even 20Gbit/s soon after that in the early 2000s, and the benefit as that we wouldn’t have to change the network switching because the header overheads would still only be a few percent of total time. None of that happened because of government interference in the telecoms industry regulation that strongly disincentivised its development, and even today, 625Mbit/s ‘basic rate’ access is still a dream, let alone 20Gbit/s.)

Such a system would be feasible. Shortcuts and sidings are easy to arrange. The protocols would work fine. Non-linear effects are already well known and diverse. If it were only used for digital computing, it would have little advantage over conventional computers. With data stored on long fibre lengths, external interactions would be limited, with long latency. However, it does present a range of potentials for use with external sensors directly interacting with data streams and ANTs to accomplish some tasks associated with modern AI. It ought to be possible to use these techniques to build the adaptive analog neural networks that we’ve known are the best hope of achieving strong AI since Hans Moravek’s insight, coincidentally also around that time. The non-linear effects even enable ideal mechanisms for implementing emotions, biasing the computation in particular directions via intensity of certain wavelengths of light in much the same way as chemical hormones and neurotransmitters interact with our own neurons. Implementing up to 2 million different emotions at once is feasible.

So there’s a whole mineful of architectures, tools and techniques waiting to be explored and mined by smart young minds in the IT industry, using custom non-linear optical fibres for optical AI.

Pythagoras Sling update

To celebrate the 50th anniversary of the Moon landing mission, I updated my Pythagoras Sling a bit. It now uses floating parachutes so no rockets or balloons are needed at all and the whole thing is now extremely simple.

Introducing the Pythagoras Sling –

A novel means of achieving space flight

Dr I D Pearson & Prof Nick Colosimo

 

Executive Summary

A novel reusable means of accelerating a projectile to sub-orbital or orbital flight is proposed which we have called The Pythagoras Sling. It was invented by Dr Pearson and developed with the valuable assistance of Professor Colosimo. The principle is to use large parachutes as effective temporary anchors for hoops, through which tethers may be pulled that are attached to a projectile. This system is not feasible for useful sizes of projectiles with current materials, but will quickly become feasible with higher range of roles as materials specifications improve with graphene and carbon composite development. Eventually it will be capable of launching satellites into low Earth orbit, and greatly reduce rocket size and fuel needed for human space missions.

Specifications for acceleration rates, parachute size and initial parachute altitudes ensure that launch timescales can be short enough that parachute movement is acceptable, while specifications of the materials proposed ensure that the system is lightweight enough to be deployed effectively in the size and configuration required.

Major advantages include (eventually) greatly reduced need for rocket fuel for orbital flight of human cargo or potential total avoidance of fuel for orbital flight of payloads that can tolerate higher g-forces; consequently reduced stratospheric emissions of water vapour that otherwise present an AGW issue; simplicity resulting in greatly reduced costs for launch; and avoidance of risks to expensive payloads until active parts of the system are in place. Other risks such as fuel explosions are removed completely.

The journey comprises two parts: the first part towards the first parachute conveys high vertical speed while the second part converts most of this to horizontal speed while continuing acceleration. The projectile therefore acquires very high horizontal speed required for sub-orbital and potentially for orbital missions.

The technique is intended mainly for the mid-term and long-term future, since it only comes into its own once it becomes possible to economically make graphene components such as strings, strong rings and tapes, but short term use is feasible with lower but still useful specifications based on interim materials. While long term launch of people-carrying rockets is feasible, shorter term uses would be limited to smaller payloads or those capable of withstanding higher g-forces. That makes it immediately useful for some satellite or military launches, with others quickly becoming feasible as materials improve.

Either of two mechanisms may be used for drawing the cable – a drum based reel or a novel electromagnetic cable drive system. The drum variant may be speed limited by the strength of drum materials, given very high centrifugal forces. The electromagnetic variant uses conventional propulsion techniques, essentially a linear motor, but in a novel arrangement so is partly unproven.

There are also alternative methods available for parachute deployment and management. One is to make the parachutes from lighter-than-air materials, such as graphene foam, which is capable of making solid forms less dense than helium. The chutes would float up and be pulled into their launch positions. A second option is to use helium balloons to carry them up, again pulling them into launch positions. A third is to use a small rocket or even two to deploy them. Far future variants will probably opt for lighter-than-air parachutes, since they can float up by themselves, carry additional tethers and equipment, and can remain at high altitude to allow easy reuse, floating back up after launch.

There are many potential uses and variants of the system, all using the same principle of temporary high-atmosphere anchors, aerodynamically restricted to useful positions during launch. Not all are discussed here. Although any hypersonic launch system has potential military uses, civil uses to reduce or eliminate fuel requirements for space launch for human or non-human payloads are by far the most exciting potential as the Sling will greatly reduce the currently prohibitive costs of getting people and material into orbit. Without knowing future prices for graphene, it is impossible to precisely estimate costs, but engineering intuition alone suggests that such a simple and re-usable system with such little material requirement ought to be feasible at two or three orders of magnitude less than current prices, and if so, could greatly accelerate mid-century space industry development.

Formal articles in technical journals may follow in due course that discuss some aspects of the sling and catapult systems, but this article serves as a simple publication and disclosure of the overall system concepts into the public domain. Largely reliant on futuristic materials, the systems cannot reasonably be commercialised within patent timeframes, so hopefully the ideas that are freely given here can be developed further by others for the benefit of all.

This is not intended to be a rigorous analysis or technical specification, but hopefully conveys enough information to stimulate other engineers and companies to start their own developments based on some of the ideas disclosed.

Introductory Background

A large number of non-fuel space launch systems have been proposed, from Jules Verne’s 1865 Moon gun through to modern railguns, space hooks and space elevators. Rail guns convey moderately high speeds in the atmosphere where drag and heating are significant limitations, but their main limitation is requiring very high accelerations but still achieving too low muzzle velocity for even sub-orbital trips. Space-based tether systems such as space hooks or space elevators may one day be feasible, but not soon. Current space launches all require rockets, which are still fairly dangerous, and are highly expensive. They also dump large quantities of water vapour into the high atmosphere where, being fairly persistent, it contributes significantly to the greenhouse effect, especially as it drifts towards the poles. Moving towards using less or no fuel would be a useful step in many regards.

The Pythagoras Sling

In summary, having considered many potential space launch mechanisms based on high altitude platforms or parachutes, by far the best system is the Pythagoras Sling. This uses two high-altitude parachutes attached to rings, offering enough drag to act effectively as temporary slow-moving anchors while a tether is pulled through them quickly to accelerate a projectile upwards and then into a curve towards final high horizontal speed.

 

We called this approach the Pythagoras Sling due to its simplicity and triangular geometry. It comprises some ground equipment, two large parachutes and a length of string. The parachutes would ideally be made using lighter-than-air materials such as graphene foam, a foam of tiny graphene spheres containing vacuum, that is less dense than helium. They could therefore float up to the required altitude, and could be manoeuvred into place immediately prior to launch. During the launch process they would move so it would take a few hours to float back to their launch positions. They could remain at high altitude for long periods, perhaps permanently. In that case, as well as carrying the tether for the launch, additional tethers would be needed to anchor and manoeuvre the parachutes and to feed launch tether through in preparation for a new launch. It is easy to design the system so that these additional maintenance tethers are kept well out of the way of the launch path.

The parachutes could be as large as desired if such lightweight materials are used, but if alternative mechanisms such as rockets or balloons are used to carry them into place, they would probably be around 50m diameter, similar to the Mars landing ones.

Each parachute would carry a ring through which the launch tether is threaded, and the rings would need to be very strong, low friction, heat-resistant and good at dispersing heat. Graphene seems an ideal choice but better materials may emerge in coming years.

The first parachute would float up to a point 60-80km above the launch site and would act as the ‘sky anchor’ for the first phase of launch where the payload gathers vertical speed. The 2nd parachute would be floated up and then dragged (using the maintenance tether) as far away and as high as feasible, but typically to the same height and 150km away horizontally, to act as the fulcrum for the arc part of the flight where the speed is both increased and converted to horizontal speed needed for orbit.

Simulation will be required to determine optimal specifications for both human and non-human payloads.

Another version exists where the second parachute is deployed from a base with winding equipment 150km distant from the initial rocket launch. Although requiring two bases, this variant holds merit. However, using a single ground base for both chute deployments offers many advantages at the cost of using slightly longer and heavier tether. It also avoids the issue that before launch, the tether would be on the ground or sea surface over a long distance unless additional system details are added to support it prior to launch such as smaller balloons. For a permanent launch site, where the parachutes remain at high altitude along with the tethers, this is no longer an issue so the choice may be made on a variety of other factors. The launch principle remains exactly the same.

Launch Process

On launch, with the parachutes, rings and tethers all in place, the tether is pulled by either a jet engine powered drum or an electromagnetic drive, and the projectile accelerates upwards. When it approaches the first parachute, the tether is disengaged from that ring, to avoid collision and to allow the second parachute to act as a fulcrum. The projectile is then forced to follow an arc, while the tether is still pulled, so that acceleration continues during this period. When it reaches the final release position, the tether is disengaged, and the projectile is then travelling at orbital or suborbital velocity, at around 200km altitude. The following diagram summarises the process.

Two-base variant

This variant with two bases and using rocket deployment of the parachutes still qualifies as a Pythagoras Sling because they are essentially the same idea with just minor configurational differences. Each layout has different merits and simulation will undoubtedly show significant differences for different kinds of missions that will make the choice obvious.

Calculations based on graphene materials and their theoretical specifications suggest that this could be quite feasible as a means to achieve sub-orbital launches for humans and up to orbital launches for smaller satellites that can cope with 15g acceleration. Other payloads would still need rockets to achieve orbit, but greatly reduced in size and cost.

Exchanges of calculations between the authors, based on the best materials available today suggest that this idea already holds merit for use for microsatellites, even if it falls well below graphene system capabilities. However, graphene technology is developing quickly, and other novel materials are also being created with impressive physical qualities, so it might not be many years before the Sling is capable of launching a wide range of payload sizes and weights.

In closing

The Pythagoras Sling arose after several engineering explorations of high-altitude platform launch systems. As is often the case in engineering, the best solution is also by far the simplest. It is the first space launch system that treats parachutes effectively as temporary aerial anchors, and it uses just a string pulled through two rings held by those temporary anchors, attached to the payload. That string could be pulled by a turbine or an electromagnetic linear motor drive, so could be entirely electric. The system would be extremely safe, with no risk of fuel explosions, and extremely cheap compared to current systems. It would also avoid dumping large quantities of greenhouse gases into the high atmosphere. The system cannot be built yet, and its full potential won’t be realised until graphene or similarly high specification strings or tapes are economically available. However, it should be well noted that other accepted future systems such as the Space Elevator will also need such materials, but in vastly larger quantity. The Pythagoras Sling will certainly be achievable many years before a space elevator and once it is, could well become the safest and cheapest way to put a wide range of payloads into orbit.

Cable-based space launch system

A rail gun is a simple electromagnetic motor that very rapidly accelerates a metal slug by using it as part of an electrical circuit. A strong magnetic field arises as the current passes through the slug, propelling it forwards.

EM launch system

An ‘inverse rail gun’ uses the same principle, but rather than a short slug, the force acts on a small section of a long cable, which continues to pass through the system. As that section passes through, another takes its place, passing on the force and acceleration to the remainder of the cable. That also means that each small section only has a short and tolerable time of extreme heating resulting from high current.

This can be used either to accelerate a cable, optionally with a payload on the end, or via Newtonian reaction, to drag a motor along a cable, the motor acting as a sled, accelerating all along the cable. If the cable is very long, high speeds could result in the vacuum of space. Since the motor is little more than a pair of conductive plates, it can easily be built into a simple spacecraft.

A suitable spacecraft could thus use a long length of this cable to accelerate to high speed for a long distance trip. Graphene being an excellent conductor as well as super-strong, it should be able to carry the high electric currents needed in the motor, and solar panels/capacitors along the way could provide it.

With such a simple structure, made from advanced materials, and with only linear electromagnetic forces involved, extreme speeds could be achieved.

A system could be made for trips to Mars for example. 10,000 tons of sufficiently strong graphene cable to accelerate a 2 ton craft at 5g could stretch 6.7M km through space, and at 5g acceleration (just about tolerable for trained astronauts), would get them to 800km/s at launch, in 4.6 hours. That’s fast enough to get to Mars in 5-12 days, depending where it is, plus a day each end to accelerate and decelerate, 7-14 days total.

10,000 tons is a lot of graphene by today’s standards, but we routinely use 10,000 tons of steel in shipbuilding, and future technology may well be capable of producing bulk carbon materials at acceptable cost (and there would be a healthy budget for a reusable Mars launch system). It’s less than a space elevator.

6.7M km is a huge distance, but space is pretty empty, and even with gravitation forces distorting the cable, the launch phase can be designed to straighten it. A shorter length of cable on the opposite side of an anchor (attached to a Moon tower, or a large mass at a Lagrange point) would be used to accelerate the spacecraft towards the launch end of the cable, at relatively low speed, say 100km/s, a 20 hour journey, and the deceleration phase of that trip applies significant force to the cable, helping to straighten and tension it for the launch immediately following. The craft would then accelerate along the cable, travel to Mars at high speed, and there would need to be an intercept system there to slow it. That could be a mirror of the launch system, or use alternative intercept equipment such as a folded graphene catcher (another blog).

Power requirements would peak at the very last moments, at a very high 80GW. Then again, this is not something we could build next year, so it should be considered in the context of a mature and still fast-developing space industry, and 800km/s is pretty fast, 0.27% of light speed, and that would make it perfect for asteroid defense systems too, so it has other ways to help cost in. Slower systems would have lower power requirements or longer cable could be used.

Some tricky maths is involved at every stage of the logistics, but no more than any other complex space trip. Overall, this would be a system that would be very long but relatively low in mass and well within scales of other human engineering.

So, I think it would be hard, but not too hard, and a system that could get people to Mars in literally a week or two would presumably be much favored over one that takes several months, albeit it comes with some serious physical stress at each end. So of course it needs work and I’ve only hinted superficially at solutions to some of the issues, but I think it offers potential.

On the down-side, the spaceship would have kinetic energy of 640TJ, comparable to a small nuke, and that was mainly limited by the 5g acceleration astronauts can cope with. Scaling up acceleration to 1000s of gs military levels could make weapons comparable to our largest nukes.

Population Growth is a Good Thing

Many people are worried about world human population, that we are overpopulating the planet and will reap environmental catastrophe. Some suggest draconian measures to limit or even reduce it. I’m not panicking about population at all. I’m not even particularly concerned. I don’t think it is necessarily a bad thing to have a high population. And I think it will be entirely sustainable to have a much higher population.

Nobody sane think the Earth’s human population will carry on increasing exponentially forever. Obviously it will level off and it is already starting to do so. I would personally put the maximum carrying capacity of the Earth at around 100 billion people, but population will almost certainly level off between 9 and 10 billion, let’s say 9.5Bn. Further in the future, other planets will one day house some more people, but they will have their own economics.

We aren’t running out of physical resources, just moving them around. Apart from a few spacecraft that have moved some stuff off planet, some excess radioactive decay induced in power stations and weapons, and helium and hydrogen escaping from the atmosphere, all of which is offset by meteorites and dust landing from space, all we have done is convert stuff to other forms. Almost all materials are more plentiful now than they were 40 years ago when the loudest of doom-mongers warned of the world running out imminently. They were simply wrong.

If we do start to run short, we can mine key elements from rubbish tips and use energy to convert back to any form we need, we can engineer substitutes or we can gather them from space. Another way of looking at this issue is that we live on top of 6000km of resources and only have homes a few metres deep. When we fill them we have to dispose of one thing to make room for a new one, and recycling technology is getting better all the time. Meanwhile, material technology development means we need less material to make something, and can do so with a wider range of input elements.

We are slowly depleting some organic resources, such as fossil fuels, but there are several hundred years supply left, and we will not need any more than a tiny fraction of that before we move to other energy sources. We’re also depleting some fish stocks around the world, so fishing needs some work in designing and implementing better practices, but that is not unachievable by any means and some progress is already happening. Forestry is being depleted in some areas and expanding in others. Some areas of forest are being wiped out because environmentalists and other doomsayers have forced policies through that encourage people to burn them down to make the land available for biofuel plantations and carbon offset schemes.

We certainly are not short of space. I live in Southern England, which sometimes feels full when I get stuck in traffic jams or queues for public services, but these are a matter of design, not fundamental limits. Physically, I don’t feel it is terribly overpopulated here yet, even with the second highest population density on Earth, at 470 people per square kilometre. India only has 345, even with its massive population. China has even less at only 140, while Indonesia has 117, Brazil just 22, and Russia a mere 7.4 people per square kilometre. Yet these are the world’s biggest populations today. So there is room for expansion perhaps. If all the inhabitable land in the world were to be occupied at average English density of today, the world can actually hold 75-80 Billion people. There would still be loads of open countryside, still only 1 or 2% covered in concrete and tarmac.

But self-driving vehicles can increase road capacity by a factor of 5, regional rail capacity by a factor of 200. Replacement of most public sector workers by machines, or better still, good system design, would eradicate most queues and improve most services. England isn’t even full yet. So that 75-80Bn could become 100Bn before it feels crowded.

So let’s stop first of all from imagining that we are running out of space any time soon. We just aren’t!

Energy isn’t a problem in the long term either. Shale gas is already reducing costs in the USA at the same time as reducing carbon dioxide emissions. In Europe, doom-mongers and environmentalist have been more successful in influencing policy, so CO2 emissions are increasing while energy costs create fuel poverty and threaten many key areas of the economy. Nuclear energy currently depends on uranium but thorium based power is under development and is very likely to succeed in due course, adding several hundred years of supply. Solar, fusion, geothermal and shale gas will add to this to provide abundant power for even a much great population, within a few decades, well ahead of the population curve. The only energy shortages we will see will be doomsayer-induced.

Future generations will face debts handed on to them without their consent to pay for this doom-induced folly, but will also inherit a physical and cultural infrastructure with built in positive feedback that ensure rapid technological development.

Among its many benefits, future technology will greatly reduce the amount of material needed to accomplish a task. It will also expand the global economy to provide enough wealth to buy a decent standard of living for everyone. It will also clean up the environment while producing far more food from less land area, allowing some land to be returned to nature. Food production per hectare has doubled in the last 30 years. The technology promises further gains into the foreseeable future.

The world of the future will be a greener and more pleasant land, with nature in a better state than today, with a larger world population that is richer and better fed, almost certainly no more than 10 billion. Providing that is, that we can stop doom-mongers forcing their policies through – the only thing that would really wreck the environment. A doom-monger-free human population is not a plague but a benefit to the Earth and nature. The doom-mongers and their policies are the greatest proven threat. Environmentalists should focus on making sure we are inspired by nature and care for it, and then get out of the way and let technologists get on with making sure it can flourish in the future.

Let’s compare the outcomes of following the advice of the doom-mongers with the outcome of following a sensible economic development path using high technology.

If everyone wants to live to western standards, the demands on the environment will grow as the poor become richer and able to afford more. If we try to carry on with existing technology, or worse, with yesterday’s, we will not find that easy. Those who consider technology and economic growth to be enemies of the environment, and who therefore would lock us into today’s or yesterday’s technology, would condemn billions of people to poverty and misery and force those extra people to destroy the environment to try to survive. The result would be miserable future for humanity and a wrecked environment. Ironically, these people have the audacity to call themselves environmentalists, but they are actually enemies of both the environment and of humanity.

If we ignore such green lunacy – and we should – and allow progress to continue, we will see steady global economic growth that will result in a far higher average income per capita in 2050 with 9.5Bn people than we have today with only 7.7Bn. The technology meanwhile will develop so much that the same standard of living can be achieved with far less environmental impact. For example, bridges hundreds of years ago used far more material than today’s, because they were built with primitive science and technology and poor understanding of science. Technology is better now, materials are stronger and more consistent, we know their properties accurately as well as all the forces acting on the bridge, so we need less material to build a bridge strong enough for the purpose, which is better for the environment. With nanotechnology and improved materials, we will need even less material to build future bridges. The environmental footprint of each person will certainly be far lower in 2050 if we accept new technology than it will be if we restrict growth and technology development. It will almost certainly be less even than today’s, even though our future lifestyles would be far better. Trying to go back to yesterday’s technologies without greatly reducing population and lifestyle would impose such high environmental impact that the environment would be devastated. We don’t need to, and we shouldn’t.

Take TVs as another example. TVs used to be hugely heavy and bulky monsters that took up half the living room, used lots of electricity, but offered relatively small displays with a choice from just a few channels. Today, thin LCD or LED displays use far less material, consume far less power, take up far less space and offer far bigger and better displays offering access to thousands of channels via satellites and web links. So as far as TV-based entertainment goes, we have a far higher standard of living with far lower environmental impact. The same is true for phones, computers, networks, cars, fridges, washing machines, and most other tools. Better materials and technologies enable lower resource use.

New science and technology has enabled new kinds of materials that can substitute for scarce physical resources. Copper was once in danger of running out imminently. Now you can build a national fibre telecommunication network with a few bucketfuls of sand and some plastic. We have plastic pipes and water tanks too, so we don’t really need copper for plumbing either. Aluminium makes reasonable cables, and future materials such as graphene will make even better cables, still with no copper use. There are few things that can’t be done with alternative materials, especially as quantum materials can be designed to echo the behaviour of many chemicals. So it is highly unlikely that we will ever run out of any element. We will simply find alternative solutions as shortages demand.

Oil will be much the same story. To believe the doom-mongers, our use of oil will continue to grow exponentially until one day there is none left and then we will all be in big trouble, or dead, breathing in 20% CO2 by then of course. Again, this is simply a nonsensical scenario. By 2030, oil will be considered a messy and expensive way of getting energy, and most will be left in the ground. The 6Gjoules of energy a barrel of oil contains could be made for $30 using solar panels in the deserts, and electricity is clean. Even if solar doesn’t progress that far, shale gas only produces half as much CO2 as oil for the same energy output (another potential environmental improvement held back by green zealots here in the UK and indeed the rest of Europe).

This cheap solar electricity mostly won’t come from UK rooftops as currently incentivised by green-pressured government, but somewhere it is actually sunny, deserts for example, where land is cheap, because it isn’t much use for anything else. The energy will get to us via superconducting or graphene cables. Sure, the technology doesn’t yet exist, but it will. Oil will only cost $30 a barrel because no-one will want to pay more than that for what will be seen as an inferior means of energy production. Shale gas might still be used because it produces relatively little CO2 and will be very cheap, but even that will start declining as the costs of solar and nuclear variants fall.

In the longer term, in our 2050 world of 9.5Bn people, fusion power will be up and running, alongside efficient solar (perhaps some wind) and other forms of energy production, proving an energy glut that will help with water supply and food production as well as our other energy needs. In fact, thanks to the development of graphene desalination technology, clean water will be abundantly available at low cost (not much more than typical tap-water costs today) everywhere.

Our technologies will be so advanced by then that we will be able to control climate better too. We will have environmental models based on science, not models based on the CO2-causes-everything-bad religion, so we will know what we’re doing rather than acting on guesswork and old-wives’ tales. We will have excellent understanding of genetics and biotech and be able to make superior crops and animals, so will be able to make enough food to feed everyone, ensuring not only quantity but nutritional quality too. While today’s crops deliver about 2% of the solar energy landing on their fields to us as food, we will be able to make foods in factories more efficiently, and will have crops that are also more efficient. It is true that we may see occasional short-term food shortages, but in the long term, there is absolutely no need to worry about feeding everyone. And no need to worry about the impact on the environment either, because we will be able to make more food with far less space. No-one needs to be hungry, even if we have 9.5Bn of us, and with steady economic growth, everyone will be able to afford food too.

This is no fanciful techno-utopia. It is entirely deliverable and even expectable. All around the world today, people’s ethical awareness is increasing and we are finally starting to address problems of food and emergency aid distribution, even in failing regimes. The next few decades will not eradicate poverty completely, but it will make starvation much less of a problem, along with clean water availability.

How can we be sure it will be developed? Well, there will be more people for one thing. That means more brains. Those people will be richer, they will be better educated, and many will be scientists and engineers. Many will have been born in countries that value engineers and scientists greatly, and will have a lot of backing, so will get results. Some will be in IT, and will develop computer intelligence to add to the human effort, and provide better, cheaper and faster tools for scientists and engineers in every field to use. So, total intellectual resources will be far greater than they are today.

Therefore we can be certain that technological progress will continue to accelerate. As it does, the environment will become cleaner and healthier, because we will be able to make it so. We will restore nature. Rivers today in the UK are cleaner than 100 years ago. The air is cleaner too. We look after nature better, because that’s what people do when they are affluent and well educated. In 50 years we will see that attitude even more widespread. The rainforests will be flourishing, some species will be being resurrected from extinction via DNA banks. People will be well fed. Water supply will be adequate.

But all this can only happen if we stop following the advice of doom-mongers and technophobes who want to take us backwards.

That really is the key: more people mean more brain power, more solutions, and better technology. For the last million years, that has meant steady improvement of our lot. In the un-technological world of the cavemen hunter-gatherers, the world was capable of supporting around 60 million people. If we try to restrict technology development now, it will be a death sentence. People and the environment would both suffer. No-one wins if we stop progress. That is the fallacy of environmental dogma that is shouted loudly by the doom mongers.

Some extremists in the green movement would have us go back to yesterday, rejecting technology, living on nature and punishing everyone who disagrees with them. They can indulge such silliness when they are only a few and the rest of us support them, but everyone simply can’t live like that. Without technology, the world can only support 60 million, not 7 billion or 9.5 billion or 75 billion. There simply aren’t enough nice fields and forest for us all to live that way.

It is a simple choice. We could have 60 million thoroughly miserable post-environmentalists living in a post eco-catastrophe world where nature has been devastated by the results of daft policies invented by self-proclaimed environmentalists, trying to make a feeble recovery. Or we can ignore their nonsense, get on with our ongoing development, and live in a richer, nicer world where 9.5Bn people (or even far more if we want) can be happy, well fed, well educated, with a good standard of living, and living side by side with a flourishing environment, where our main impacts on the environment are positive.

Technology won’t solve every problem, and will even create some, but without a shadow of a doubt, technology is by far nature’s best friend. Not the lunatic fringe of ‘environmentalists’, many of whom are actually among the environment’s worst enemies – at best, well-meaning fools.

There is one final point that is usually overlooked in this debate. Every new person that is born is another life, living, breathing, loving, hopefully having fun, enjoying life and being happy. Life is a good thing, to be celebrated, not extinguished or prevented from coming into existence just because someone else has no imagination. Thanks to the positive feedbacks in the development loops, 50% more people means probably 100% more total joy and happiness. Population growth is good, we just have to be more creative, but that’s what we do all the time. Now let’s get on with making it work.

Good times lie ahead. We do need to fix some things though. I mentioned that physical resources won’t diminish significantly in quantity in terms of the elements they hold at least, though those we use for energy (oil, coal and gas) give up their energy when we use them and that is gone.

However, the ecosystem is a different matter. Even with advanced genetic technology we can expect in the far future, it will be difficult to resurrect organisms that have become extinct. It is far better to make sure they don’t. Even though an organism may be brought back, we’d also have to bring back the environment it needs with all the intricately woven inter-species dependencies.

Losing a single organism species might be relatively recoverable, but losing a rain forest will be very hard to fix. Forests are very complex systems. In fact designing and making a synthetic and simpler rainforest is probably easier than trying to regenerate a lost natural one. We really don’t want to have to do that. It would be far better to make sure we preserve the existing forests and other complex ecosystems. Poor countries may reasonably ask for some payment to preserve their forests rather than chopping them down to sell wood. We should certainly make sure to remove current perverse ‘environmental’ incentives to chop them down to make room for palm oil plantations to satisfy the demands of poorly thought out environmental policies in rich countries.

The same goes for ocean ecosystems. We are badly mismanaging many fisheries today, and that needs to be fixed, but there are already some signs of progress. EU regulations that used to cause huge quantities of fish to be caught and thrown back dead into the sea are becoming history. Again, these are a hangover from previous environmental policy designed to preserve fish stocks, but again this was poorly thought out and has had the opposite result to that intended.

Other policies in the EU and in other parts of the world are also causing problems by unbalancing populations and harming or distorting food chains. The bans on seal hunting are good – we love seals, but the explosion in seal populations caused by throwing dead fish back has increased the demand of the seal population to over 100,000 tons of fish a year, when it is already severely stressed by over-fishing. The dead fish have also helped cause an explosion in lobster populations and in some sea birds. We may appreciate the good side, but we mustn’t forget to look for harmful effects that may also be caused. It is obvious that we could do far better job, and we must.

A well-managed ocean with properly designed farms should be able to provide all the fish and other seafood we need, but we are well away from it yet and we do need to fix it. With ongoing scientific study, understanding of relationships between species and especially in food chains is improving, and regulations are slowly becoming more sensible, so there is hope. Many people are switching their diets to fish with sustainable populations. But these will need managed well too. Farming is suitable for many species and crashes in some fish populations have added up to a loud wake-up call to fix regulations around the world. We may use genetic modification to increase growth and reproduction rates, or otherwise optimise sustainability and ocean capacity. I don’t think there is any room for complacency, but I am confident that we can and will develop good husbandry practices and that our oceans and fish stocks will recover and become sustainable.

Certainly, we have a greater emotional attachment to the organic world than to mere minerals, and we are part of nature too, but we can and will be sustainable in both camps, even with a greatly increased population.

The future for women, pdf version

It is several years since my last post on the future as it will affect women so here is my new version as a pdf presentation:

Women and the Future

The future of land value

St BeesI don’t do investment advice much, and I am NOT an investment adviser of any kind, just a futurist doing some simple reasoning.

World population is around 7.7Bn.

It will increase, level off, then decline, then grow again.

Any projections you see are just educated guesswork. 9.8Bn figure is the UN global population estimate for 2050, and I won’t argue with that, it seems as good a guess as any. Everyone then expects it to level off and decline, as people have fewer kids. I’m not so sure. Read my blog five years ago that suggested it might grow again in the late century, perhaps reaching as high as 15Bn:

https://timeguide.wordpress.com/2014/02/05/will-population-grow-again-after-2050-to-15bn/

I only say might, because there are pressures in both directions and it is too hard to be sure in a far future society which ones will be stronger and by how much. I’m just challenging the standard view that it will decline into the far future, and if I had to place a bet, it would be on resumed growth.

Population is one large influence on demand for land and ‘real estate’.

Another is population distribution. Today, all around the world, people are moving from the countryside to cities. I argue that urbanization will soon peak, and then start to reverse:

https://timeguide.wordpress.com/2018/06/13/will-urbanization-continue-or-will-we-soon-reach-peak-city/

De-urbanization will largely be enabled by high technology and its impacts on work and social life. It will be caused by increasing wealth, coupled to the normal desire to live happier lives. Wealth is increasing quickly, varying place to place and year to year. It is reasonable, given positive feedback effects from AI and automation, to assume average real growth of 2%, including occasional recessions and booms. By 2100, that means global wealth will be 5 times today’s. Leaving aside the lack of understanding of exponential growth by teachers indoctrinating schoolkids to think of themselves as economic victims, taken advantage of by greedy Boomers, that means today’s and tomorrow’s kids will have one hell of a lot more money available to spend on property.

So, there will be more people, with more money, more able to live anywhere. Real estate prices will increase, but not uniformly.

Very many of them will choose to leave cities and with lots of money in the bank, will want somewhere really nice. A lovely beachfront property perhaps, or on a mountainside with a gorgeous view. Or even on a hill overlooking the city, or deep in a forest with a waterfall in the garden. Some might buy boring homes in boring estates surrounded by fields but it won’t be first choice very often. The high prices will go to large and pretty homes in pretty locations, as they do today, but with much higher differential, because supply and demand dictates that. We won’t build more mountains or valleys or coastline. Supply stays limited while demand and bank balances rockets, so prices will rocket too.

Other property won’t necessarily become cheaper, it just won’t become as expensive as fast. Many people will still like cities and choose to live there, do business there, socialize there. They also will be richer, and there may be a lot more of them if population does indeed grow again, but increasing congestion would just cause more de-urbanization. Prices may still rise, but the real money will be moving elsewhere.

Farmland will mostly stay as farmland. Farms are generally functional rather than pretty. Agricultural productivity will be double or triple what it is today, maybe even more. Some food will be made in factories or vertical farms, using tissue culturing or hydroponics, or using feed-stocks based on algae grown at sea, or insects, or fungi. The figures therefore suggest that demand for land to grow stuff will be lower than today, in spite of a larger population. Some will be converted to city, some to pretty villages, some given back to nature, to further increase the attractiveness of those ultra-expensive homes in the nice areas in the distance. Whichever way, that doesn’t suggest very rapid growth of value for most agricultural land, the obvious exception being where it happens to be in or next to a pretty area, in which case it will rocket in value.

As I said, all of this is educated guesswork. Don’t bet the farm on it until you’ve done your own analysis. But my guess is, city property will gain modest value, agricultural land will hold its value or even fall slightly, unless it is in a pretty location. Anywhere pretty will skyrocket in price, be it an existing property or a piece of land that can be built on and stay pretty.

As a final observation, you might argue that pretty isn’t everything. Surely some people will value being near to centers of power or major hubs too? Yes they will, but that is already factored into the urbanization era. That value is already banked. Then it follows the rules just like any other urban property.