Tag Archives: extinction threats

How nigh is the end?

“We’re doomed!” is a frequently recited observation. It is great fun predicting the end of the world and almost as much fun reading about it or watching documentaries telling us we’re doomed. So… just how doomed are we? Initial estimate: Maybe a bit doomed. Read on.

My 2012 blog https://timeguide.wordpress.com/2012/07/03/nuclear-weapons/ addressed some of the possibilities for extinction-level events possibly affecting us. I recently watched a Top 10 list of threats to our existence on TV and it was similar to most you’d read, with the same errors and omissions – nuclear war, global virus pandemic, terminator scenarios, solar storms, comet or asteroid strikes, alien invasions, zombie viruses, that sort of thing. I’d agree that nuclear war is still the biggest threat, so number 1, and a global pandemic of a highly infectious and lethal virus should still be number 2. I don’t even need to explain either of those, we all know why they are in 1st and 2nd place.

The TV list included a couple that shouldn’t be in there.

One inclusion was an mega-eruption of Yellowstone or another super-volcano. A full-sized Yellowstone mega-eruption would probably kill millions of people and destroy much of civilization across a large chunk of North America, but some of us don’t actually live in North America and quite a few might well survive pretty well, so although it would be quite annoying for Americans, it is hardly a TEOTWAWKI threat. It would have big effects elsewhere, just not extinction-level ones. For most of the world it would only cause short-term disruptions, such as economic turbulence, at worst it would start a few wars here and there as regions compete for control in the new world order.

Number 3 on their list was climate change, which is an annoyingly wrong, albeit a popularly held inclusion. The only climate change mechanism proposed for catastrophe is global warming, and the reason it’s called climate change now is because global warming stopped in 1998 and still hasn’t resumed 17 years and 9 months later, so that term has become too embarrassing for doom mongers to use. CO2 is a warming agent and emissions should be treated with reasonable caution, but the net warming contribution of all the various feedbacks adds up to far less than originally predicted and the climate models have almost all proven far too pessimistic. Any warming expected this century is very likely to be offset by reduction in solar activity and if and when it resumes towards the end of the century, we will long since have migrated to non-carbon energy sources, so there really isn’t a longer term problem to worry about. With warming by 2100 pretty insignificant, and less than half a metre sea level rise, I certainly don’t think climate change deserves to be on any list of threats of any consequence in the next century.

The top 10 list missed two out by including climate change and Yellowstone, and my first replacement candidate for consideration might be the grey goo scenario. The grey goo scenario is that self-replicating nanobots manage to convert everything including us into a grey goo.  Take away the silly images of tiny little metal robots cutting things up atom by atom and the laughable presentation of this vanishes. Replace those little bots with bacteria that include electronics, and are linked across their own cloud to their own hive AI that redesigns their DNA to allow them to survive in any niche they find by treating the things there as food. When existing bacteria find a niche they can’t exploit, the next generation adapts to it. That self-evolving smart bacteria scenario is rather more feasible, and still results in bacteria that can conquer any ecosystem they find. We would find ourselves unable to fight back and could be wiped out. This isn’t very likely, but it is feasible, could happen by accident or design on our way to transhumanism, and might deserve a place in the top ten threats.

However, grey goo is only one of the NBIC convergence risks we have already imagined (NBIC= Nano-Bio-Info-Cogno). NBIC is a rich seam for doom-seekers. In there you’ll find smart yogurt, smart bacteria, smart viruses, beacons, smart clouds, active skin, direct brain links, zombie viruses, even switching people off. Zombie viruses featured in the top ten TV show too, but they don’t really deserve their own category and more than many other NBIC derivatives. Anyway, that’s just a quick list of deliberate end of world solutions – there will be many more I forgot to include and many I haven’t even thought of yet. Then you have to multiply the list by 3. Any of these could also happen by accident, and any could also happen via unintended consequences of lack of understanding, which is rather different from an accident but just as serious. So basically, deliberate action, accidents and stupidity are three primary routes to the end of the world via technology. So instead of just the grey goo scenario, a far bigger collective threat is NBIC generally and I’d add NBIC collectively into my top ten list, quite high up, maybe 3rd after nuclear war and global virus. AI still deserves to be a separate category of its own, and I’d put it next at 4th.

Another class of technology suitable for abuse is space tech. I once wrote about a solar wind deflector using high atmosphere reflection, and calculated it could melt a city in a few minutes. Under malicious automated control, that is capable of wiping us all out, but it doesn’t justify inclusion in the top ten. One that might is the deliberate deflection of a large asteroid to impact on us. If it makes it in at all, it would be at tenth place. It just isn’t very likely someone would do that.

One I am very tempted to include is drones. Little tiny ones, not the Predators, and not even the ones everyone seems worried about at the moment that can carry 2kg of explosives or Anthrax into the midst of football crowds. Tiny drones are far harder to shoot down, but soon we will have a lot of them around. Size-wise, think of midges or fruit flies. They could be self-organizing into swarms, managed by rogue regimes, terrorist groups, or set to auto, terminator style. They could recharge quickly by solar during short breaks, and restock their payloads from secret supplies that distribute with the swarm. They could be distributed globally using the winds and oceans, so don’t need a plane or missile delivery system that is easily intercepted. Tiny drones can’t carry much, but with nerve gas or viruses, they don’t have to. Defending against such a threat is easy if there is just one, you can swat it. If there is a small cloud of them, you could use a flamethrower. If the sky is full of them and much of the trees and the ground infested, it would be extremely hard to wipe them out. So if they are well designed to cause an extinction level threat, as MAD 2.0 perhaps, then this would be way up in the top tem too, 5th.

Solar storms could wipe out our modern way of life by killing our IT. That itself would kill many people, via riots and fights for the last cans of beans and bottles of water. The most serious solar storms could be even worse. I’ll keep them in my list, at 6th place

Global civil war could become an extinction level event, given human nature. We don’t have to go nuclear to kill a lot of people, and once society degrades to a certain level, well we’ve all watched post-apocalypse movies or played the games. The few left would still fight with each other. I wrote about the Great Western War and how it might result, see

https://timeguide.wordpress.com/2013/12/19/machiavelli-and-the-coming-great-western-war/

and such a thing could easily spread globally. I’ll give this 7th place.

A large asteroid strike could happen too, or a comet. Ones capable of extinction level events shouldn’t hit for a while, because we think we know all the ones that could do that. So this goes well down the list at 8th.

Alien invasion is entirely possible and could happen at any time. We’ve been sending out radio signals for quite a while so someone out there might have decided to come see whether our place is nicer than theirs and take over. It hasn’t happened yet so it probably won’t, but then it doesn’t have to be very probably to be in the top ten. 9th will do.

High energy physics research has also been suggested as capable of wiping out our entire planet via exotic particle creation, but the smart people at CERN say it isn’t very likely. Actually, I wasn’t all that convinced or reassured and we’ve only just started messing with real physics so there is plenty of time left to increase the odds of problems. I have a spare place at number 10, so there it goes, with a totally guessed probability of physics research causing a problem every 4000 years.

My top ten list for things likely to cause human extinction, or pretty darn close:

  1. Nuclear war
  2. Highly infectious and lethal virus pandemic
  3. NBIC – deliberate, accidental or lack of foresight (includes smart bacteria, zombie viruses, mind control etc)
  4. Artificial Intelligence, including but not limited to the Terminator scenario
  5. Autonomous Micro-Drones
  6. Solar storm
  7. Global civil war
  8. Comet or asteroid strike
  9. Alien Invasion
  10. Physics research

Not finished yet though. My title was how nigh is the end, not just what might cause it. It’s hard to assign probabilities to each one but someone’s got to do it.  So, I’ll make an arbitrarily wet finger guess in a dark room wearing a blindfold with no explanation of my reasoning to reduce arguments, but hey, that’s almost certainly still more accurate than most climate models, and some people actually believe those. I’m feeling particularly cheerful today so I’ll give my most optimistic assessment.

So, with probabilities of occurrence per year:

  1. Nuclear war:  0.5%
  2. Highly infectious and lethal virus pandemic: 0.4%
  3. NBIC – deliberate, accidental or lack of foresight (includes smart bacteria, zombie viruses, mind control etc): 0.35%
  4. Artificial Intelligence, including but not limited to the Terminator scenario: 0.25%
  5. Autonomous Micro-Drones: 0.2%
  6. Solar storm: 0.1%
  7. Global civil war: 0.1%
  8. Comet or asteroid strike 0.05%
  9. Alien Invasion: 0.04%
  10. Physics research: 0.025%

I hope you agree those are all optimistic. There have been several near misses in my lifetime of number 1, so my 0.5% could have been 2% or 3% given the current state of the world. Also, 0.25% per year means you’d only expect such a thing to happen every 4 centuries so it is a very small chance indeed. However, let’s stick with them and add them up. The cumulative probability of the top ten is 2.015%. Lets add another arbitrary 0.185% for all the risks that didn’t make it into the top ten, rounding the total up to a nice neat 2.2% per year.

Some of the ones above aren’t possible quite yet, but others will vary in probability year to year, but I think that won’t change the guess overall much. If we take a 2.2% probability per year, we have an expectation value of 45.5 years for civilization life expectancy from now. Expectation date for human extinction:

2015.5 + 45.5 years= 2061,

Obviously the probability distribution extends from now to eternity, but don’t get too optimistic, because on these figures there currently is only a 15% chance of surviving past this century.

If you can think of good reasons why my figures are far too pessimistic, by all means make your own guesses, but make them honestly, with a fair and reasonable assessment of how the world looks socially, religiously, politically, the quality of our leaders, human nature etc, and then add them up. You might still be surprised how little time we have left.

I’ll revise my original outlook upwards from ‘a bit doomed’.

We’re reasonably doomed.

Advertisements

WMDs for mad AIs

We think sometimes about mad scientists and what they might do. It’s fun, makes nice films occasionally, and highlights threats years before they become feasible. That then allows scientists and engineers to think through how they might defend against such scenarios, hopefully making sure they don’t happen.

You’ll be aware that a lot more talk of AI is going on again now. It does seem to be picking up progress finally. If it succeeds well enough, a lot more future science and engineering will be done by AI than by people. If genuinely conscious, self-aware AI, with proper emotions etc becomes feasible, as I think it will, then we really ought to think about what happens when it goes wrong. (Sci-fi computer games producers already do think that stuff through sometimes – my personal favorite is Mass Effect). We will one day have some insane AIs. In Mass Effect, the concept of AI being shackled is embedded in the culture, thereby attempting to limit the damage it could presumably do. On the other hand, we have had Asimov’s laws of robotics for decades, but they are sometimes being ignored when it comes to making autonomous defense systems. That doesn’t bode well. So, assuming that Mass Effect’s writers don’t get to be in charge of the world, and instead we have ideological descendants of our current leaders, what sort of things could an advanced AI do in terms of its chosen weaponry?

Advanced AI

An ultra-powerful AI is a potential threat in itself. There is no reason to expect that an advanced AI will be malign, but there is also no reason to assume it won’t be. High level AI could have at least the range of personality that we associate with people, with a potentially greater  range of emotions or motivations, so we’d have the super-helpful smart scientist type AIs but also perhaps the evil super-villain and terrorist ones.

An AI doesn’t have to intend harm to be harmful. If it wants to do something and we are in the way, even if it has no malicious intent, we could still become casualties, like ants on a building site.

I have often blogged about achieving conscious computers using techniques such as gel computing and how we could end up in a terminator scenario, favored by sci-fi. This could be deliberate act of innocent research, military development or terrorism.

Terminator scenarios are diverse but often rely on AI taking control of human weapons systems. I won’t major on that here because that threat has already been analysed in-depth by many people.

Conscious botnets could arrive by accident too – a student prank harnessing millions of bots even with an inefficient algorithm might gain enough power to achieve high level of AI. 

Smart bacteria – Bacterial DNA could be modified so that bacteria can make electronics inside their cell, and power it. Linking to other bacteria, massive AI could be achieved.

Zombies

Adding the ability to enter a human nervous system or disrupt or capture control of a human brain could enable enslavement, giving us zombies. Having been enslaved, zombies could easily be linked across the net. The zombie films we watch tend to miss this feature. Zombies in films and games tend to move in herds, but not generally under control or in a much coordinated way. We should assume that real ones will be full networked, liable to remote control, and able to share sensory systems. They’d be rather smarter and more capable than what we’re generally used to. Shooting them in the head might not work so well as people expect either, as their nervous systems don’t really need a local controller, and could just as easily be controlled by a collective intelligence, though blood loss would eventually cause them to die. To stop a herd of real zombies, you’d basically have to dismember them. More Dead Space than Dawn of the Dead.

Zombie viruses could be made other ways too. It isn’t necessary to use smart bacteria. Genetic modification of viruses, or a suspension of nanoparticles are traditional favorites because they could work. Sadly, we are likely to see zombies result from deliberate human acts, likely this century.

From Zombies, it is a short hop to full evolution of the Borg from Star Trek, along with emergence of characters from computer games to take over the zombified bodies.

Terraforming

Using strong external AI to make collective adaptability so that smart bacteria can colonize many niches, bacterial-based AI or AI using bacteria could engage in terraforming. Attacking many niches that are important to humans or other life would be very destructive. Terraforming a planet you live on is not generally a good idea, but if an organism can inhabit land, sea or air and even space, there is plenty of scope to avoid self destruction. Fighting bacteria engaged on such a pursuit might be hard. Smart bacteria could spread immunity to toxins or biological threats almost instantly through a population.

Correlated traffic

Information waves and other correlated traffic, network resonance attacks are another way of using networks to collapse economies by taking advantage of the physical properties of the links and protocols rather than using more traditional viruses or denial or service attacks. AIs using smart dust or bacteria could launch signals in perfect coordination from any points on any networks simultaneously. This could push any network into resonant overloads that would likely crash them, and certainly act to deprive other traffic of bandwidth.

Decryption

Conscious botnets could be used to make decryption engines to wreck security and finance systems. Imagine how much more so a worldwide collection of trillions of AI-harnessed organisms or devices. Invisibly small smart dust and networked bacteria could also pick up most signals well before they are encrypted anyway, since they could be resident on keyboards or the components and wires within. They could even pick up electrical signals from a person’s scalp and engage in thought recognition, intercepting passwords well before a person’s fingers even move to type them.

Space guns

Solar wind deflector guns are feasible, ionizing some of the ionosphere to make a reflective surface to deflect some of the incoming solar wind to make an even bigger reflector, then again, thus ending up with an ionospheric lens or reflector that can steer perhaps 1% of the solar wind onto a city. That could generate a high enough energy density to ignite and even melt a large area of city within minutes.

This wouldn’t be as easy as using space based solar farms, and using energy direction from them. Space solar is being seriously considered but it presents an extremely attractive target for capture because of its potential as a directed energy weapon. Their intended use is to use microwave beams directed to rectenna arrays on the ground, but it would take good design to prevent a takeover possibility.

Drone armies

Drones are already becoming common at an alarming rate, and the sizes of drones are increasing in range from large insects to medium sized planes. The next generation is likely to include permanently airborne drones and swarms of insect-sized drones. The swarms offer interesting potential for WMDs. They can be dispersed and come together on command, making them hard to attack most of the time.

Individual insect-sized drones could build up an electrical charge by a wide variety of means, and could collectively attack individuals, electrocuting or disabling them, as well as overload or short-circuit electrical appliances.

Larger drones such as the ones I discussed in

http://carbonweapons.com/2013/06/27/free-floating-combat-drones/ would be capable of much greater damage, and collectively, virtually indestructible since each can be broken to pieces by an attack and automatically reassembled without losing capability using self organisation principles. A mixture of large and small drones, possibly also using bacteria and smart dust, could present an extremely formidable coordinated attack.

I also recently blogged about the storm router

http://carbonweapons.com/2014/03/17/stormrouter-making-wmds-from-hurricanes-or-thunderstorms/ that would harness hurricanes, tornados or electrical storms and divert their energy onto chosen targets.

In my Space Anchor novel, my superheroes have to fight against a formidable AI army that appears as just a global collection of tiny clouds. They do some of the things I highlighted above and come close to threatening human existence. It’s a fun story but it is based on potential engineering.

Well, I think that’s enough threats to worry about for today. Maybe given the timing of release, you’re expecting me to hint that this is an April Fool blog. Not this time. All these threats are feasible.