Category Archives: buildings

Instant buildings: Kinetic architecture

Revisiting an idea I raised in a blog in July last year. Even I think it was badly written so it’s worth a second shot.

Construction techniques are diverse and will get diverser. Just as we’re getting used to seeing robotic bricklaying and 3D printed walls, another technique is coming over the horizon that will build so fast I call it kinetic architecture. The structure will be built so quickly it can build a bridge from one side just by building upwards at an angle, and the structure will span the gap and meet the ground at the other side before gravity has a chance to collapse it.

The key to such architecture is electromagnetic propulsion, the same as on the Japanese bullet trains or the Hyperloop, using magnetic forces caused by electric currents to propel the next piece along the existing structure to the front end where it acts as part of the path for the next. Adding pieces quickly enough leads to structures that can follow elegant paths, as if the structure is a permanent trace of the path an object would have followed if it were catapulted into the air and falling due to gravity. It could be used for buildings, bridges, or simply art.

It will become possible thanks to new materials such as graphene and other carbon composites using nanotubes. Graphene combines extreme strength, hence lightness for a particular strength requirement, with extreme conductivity, allowing it to carry very high electric currents, and therefore able to generate high magnetic forces. It is a perfect material for kinetic architecture. Pieces would have graphene electromagnet circuitry printed on their surface. Suitable circuit design would mean that every extra piece falling into place becomes an extension to the magnetic railway transporting the next piece. Just as railroads may be laid out just in front of the train using pieces carried by the train, so pieces shot into the air provide a self-building path for other pieces to follow. A building skeleton could be erected in seconds. I mentioned in my original blog (about carbethium) that this could be used to create the sort of light bridges we see in Halo. A kinetic architecture skeleton would be shot across the divide and the filler pieces in between quickly transported into place along the skeleton and assembled.

See The electronic circuitry potential for graphene also allows for generating plasma or simply powering LEDs to give a nice glow just like the light bridges too.

Apart from clever circuit design, kinetic architecture also requires pieces that can interlock. The kinetic energy of the new piece arriving at the front edge would ideally be sufficient to rotate it into place, interlocking with previous front edge. 3d interlocking is tricky but additional circuitry can provide additional magnetic forces to rotate and translate pieces if kinetic energy alone isn’t enough. The key is that once interlocked, the top surface has to form a smooth continuous line with the previous one, so that pieces can move along smoothly. Hooks can catch an upcoming piece to make it rotate, with the hooks merging nicely with part of the new piece as it falls into place, making those hooks part of a now smooth surface and a new hook at the new front end. You’ll have to imagine it yourself, I can’t draw it. Obviously, pieces would need precision engineering because they’d need to fit precisely to give the required strength and fit.

Ideally, with sufficiently well-designed pieces, it should be possible to dismantle the structure by reversing the build process, unlocking each end piece in turn and transporting it back to base along the structure until no structure remains.

I can imagine such techniques being used at first for artistic creations, sculptures using beautiful parabolic arcs. But they could also be used for rapid assembly for emergency buildings, instant evacuation routes for tall buildings, or to make temporary bridges after an earthquake destroyed a permanent one. When a replacement has been made, the temporary one could be rolled back up and used elsewhere. Maybe it could become routine for making temporary structures that are needed quickly such as for pop concerts and festivals. One day it could become an everyday building technique. 


Mega-buildings could become cultural bubbles

My regular readers, both of them in fact, will know I am often concerned about the dangerous growth of social media bubbles. By mid-century, thanks to upcoming materials, some cities will have a few buildings over 1km tall, possibly 10km (and a spaceport or two up to 30km high). These would be major buildings, and could create a similar problem.

A 1km building could have 200 floors, and with 100m square floors, 200 hectares of space.  Assuming half is residential space and the other half is shops, offices or services, that equates to 20,000 luxury apartments (90 sq m each) or 40,000 basic flats. That means each such building could be equivalent to a small town, with maybe 50,000 inhabitants. A 10km high mega-building, with a larger 250m side, would have 60 times more space, housing up to 300,000 people and all they need day-to-day, essentially a city.

Construction could be interesting. My thoughts are that a 10km building could be extruded from the ground using high pressure 3D printing, rather than assembled with cranes. Each floor could be fully fitted out while it is still near ground level, its apartments sold and populated, even as the building grows upward. That keeps construction costs and cash flow manageable.

My concern is that although we will have the technology to build such buildings in the 2040s, I’m not aware of much discussion about how cultures would evolve in such places, at least not outside of sci-fi (like Judge Dredd or Blade Runner). I rather hope we wouldn’t just build them first and try to solve social problems later. We really ought to have some sort of plans to make them work.

In a 100m side building, entire floors or groups of floors would likely be allocated to particular functions – residential, shopping, restaurants, businesses etc. Grouping functions sensibly reduces the total travel needed. In larger buildings, it is easier to have local shops mixed with apartments for everyday essentials, with larger malls elsewhere.

People could live almost entirely in the building, rarely needing to leave, and many might well do just that, essentially becoming institutionalized. I think these buildings will feel very different from small towns. In small towns, people still travel a lot to other places, and a feeling of geographic isolation doesn’t emerge. In a huge tower block of similar population and facilities, I don’t think people would leave as often, and many will stay inside. All they need is close by and might soon feel safe and familiar, while the external world might seem more distant, scarier. Institutionalization might not take long, a month or two of becoming used to the convenience of staying nearby while watching news of horrors going on elsewhere. Once people stop the habit of leaving the building, it could become easier to find reasons not to leave it in future.

Power structures would soon evolve – local politics would happen, criminal gangs would emerge, people would soon learn of good and bad zones. It’s possible that people might become tribal, their building and their tribe competing for external resources and funding with tribes in other mega-buildings, and their might be conflict. Knowing they are physically detached, the same bravery to attack total strangers just because they hold different views might emerge that we see on social media today. There might be cyber-wars, drone wars, IoT wars between buildings.

I’m not claiming to be a social anthropologist. I have no real idea how these buildings will work and perhaps my fears are unjustified. But even I can see some potential problems just based on what we see today, magnified for the same reasons problems get magnified on social media. Feelings of safety and anonymity can lead to some very nasty tribal behaviors. Managing diversity of opinion among people moving in would be a significant challenge, maintaining it might be near impossible. With the sort of rapid polarization we’ve already seen today thanks to social media bubbles, physically contained communities would surely see those same forces magnified everyday.

Building a 10km mega-building will become feasible in the 2040s, and increased urban populations will make them an attractive option for planners. Managing them and making them work socially might be a much bigger challenge.



High-rise external evacuation

A quick googling turned up this great idea, using an escape chute attached to the top of a fire crane. The chute has a fireproof external layer and people slow or speed their descent in it simply by varying their posture. Read the pdf for more details:

But the picture tells all you need to know. You can see it reaches very high, up to 100m with the tallest fire appliance.

It is a great idea, but you can still see how it could be improved, and the manufacturer may well already have better versions on the way.

Firstly, the truck is already leaning, even though it has extendable feet to increase the effective base area. This affects all free-standing fire rescue cranes and ladders (suspension ladders, or ladders able to lean against a wall obviously include other forces). Physics dictates that the center of gravity, with the evacuees included, must remain above the base or it will start to topple. The higher it reaches and the further from the truck, the harder that becomes, and the fewer people can simultaneously use the escape chute. Clearly if it is go even higher, we need to find new ways of keeping the base and center of gravity aligned, or to prevent it toppling by leaning the ladder securely against a sound piece of wall that isn’t above a fire.

One solution is obvious. Usually with a high-rise fire, a number of fire appliances would be there. By linking several appliances to the ladder in a stable pattern, the base area then becomes far larger, the entire area enclosed by the combined appliances. At the very least, they can spread out across a street, and sometimes as in the Grenfell Tower fire, there is a lot of nearby space to spread over. With a number of fire appliances, the crane is also not limited to the carrying capacity of a single appliance.

If theses are specialist hi-rise appliances, one or two would carry telescopic arms to support the rescue equipment, with one or more trucks using tension wires to increase the base area.

We also need to speed up entry to the chute and preferably make it accessible to more windows. The existing system has access via a small hole that might be slow to pass through, and challenging for larger people or those with less mobility. A funneled design would allow people to jump in from several windows or even drop from a floor above. Designing the access to prevent simultaneous arrivals at the chute is easy enough, even if several people jump in together

Also, it would be good if the chute could take evacuees away from the building and flames as fast as possible. Getting them to the ground is a lesser priority. Designing the funnel so it crosses several windows, with a steep slope away from the building (like an airplane escape slide) before it enters the downward chute would do that.

Another enhancement would be that instead of a broad funnel and single chute, a number of chutes could be suspended, with one for each window. Several people would be able to descend down different chutes at the same time. with a much broader base area, toppling risk would still be greatly reduced.

If a few support arms could be extended from the crane towards the building, that would provide extra stability until their strength (or building fabric) is compromised by fire. Further support might sometimes be available from window cleaning platform apparatus that could support the weight of the rescue chutes. If emergency escape chutes are built into the platforms could even make for an instant escape system before fire services arrive.

With these relatively straightforward enhancements, this evacuation system would be even better and would allow many people to escape who otherwise wouldn’t. OK, here’s a badly drawn pic:

Fighting fires on tall buildings

Fires in tall buildings over the years have led to many improvements in designs that prevent them from starting or from taking hold, and then if they do, to slow down their spread. Thankfully they are very rare. Existing technology is also very limiting. Ground-based fire appliances can only rescue people from lower floors and can only spray water onto a few floors above that. Fire extinguishers and internal sprinkler systems can obviously help put fires out or slow them spreading if they are actually present and if a few people are willing to take risks. That there were none in Grenfell Tower is simply beyond comprehension. Negligence, incompetence and complacency don’t begin to cover what needs to be said.

However brave firefighters are, and nobody doubts their bravery, they will need better tools to do the job, they are simply not equipped to fight fires in skyscrapers such as we just had. People should not die if there are potential solutions. Some are feasible now, but I am not aware of their use.

External fires such as the Grenfell Tower fire in London recently can’t be fought fully by either internal sprinklers or ground-based hoses. We need new techniques capable of dealing with such fires. A quick googling on future fire fighting is surprisingly disappointing. Even googling future firefighting doesn’t turn up much. Most is about fancy new imaging kit or protective uniforms with embedded sensors. All great stuff, but it won’t stop another Grenfell. I’m no expert in this field, so maybe I just haven’t used the right search terms, but it shouldn’t be as easy as it is to think up solutions that are not already in use. Maybe there are good reasons why the following are not in conspicuous use yet, but I can’t think of any. None of what follows is rocket science.

Water tanks on roofs could be attached to tubing around the perimeter of the building roof, and remotely operable valves could then be used by ground crews to release water in curtains down a side of the building. Obviously capacity is finite, but after initial quenching, continuous water flow from the roof would help, however little. Large tanks could be installed if none are present to add safety to existing building with poor cladding.

A way of getting firefighting kit high up is to use the platforms provided for window cleaning. They could be lowered to below the fire and fire pumps could be put on them, or at least anchorages for steerable hoses. This does not need firefighters to be on them, they could stay below. Clearly, roof kit might eventually fail and wires might break, but meanwhile they could help alleviate the problem and buy time at the very least. If firefighter lives are not put at risk to do it, there is little penalty.

External sprinkler tubes could also be fitted that could be connected to water supplies just below and external fire. This might buy one of two floors of relative safety above and greatly reduce smoke from outside. They don’t even need to have sophisticated nozzles. All they need to do to be useful is to spray some water on some of the external fire. Even if sub-optimal, they would buy a little time.

Drones offer one potential assistance route. Two types are relevant. One is very well known already and I would expect is already in use: Conventional drones can carry cameras and other sensors to higher floors to monitor what is happening, offer assisted networking for internal firefighters, offer firefighters alternative views of the action, enable local and accurate positioning systems, and provide computer-enhanced imaging to augmented reality helmets.

Secondly, high power tethered drones could be powered by connected electrics from the ground, so avoiding the battery and power limitations of conventional drones. They could reach high floors and stay there while supporting hoses from the ground or from lower floors, and might even be able to hold pumps if ground pressure can’t be made high enough. These would offer helicopter-type functionality or lifting capacity without having to go back and forth to refill with water or fuel. Cost would be relatively high, but fire departments would not need many.

Once an external wall is made free of fire, drones and window-cleaning platforms could be used in rescues.

Obviously a lot has been written about futuristic imaging, sensing, navigation and bio-sign monitoring for firefighters, as well as deploying robotic firefighters that can work down from roofs, relatively immune to fire and smoke, so I won’t bother repeating here what is already known well. What is apparently lacking sometimes is low-tech kit and making it actually present.

If these systems are already well known but there are good reasons why they don’t feature, then I have wasted your time.



Vertical solar farms, the next perpetual motion machine

I am a big fan of hydroponics. LED lighting allows growers to deliver a spectrum optimised for plant growth and they can get many times the productivity from a square metre inside under lighting than outside. In the right context, it’s a great idea. Here is a nice image from GE Reports , albeit with pointless scanning.

I don’t think much however of the various ‘futuristic’ artist impressions of external vertical farms with trees likely to fall on pedestrians from 20 floors up. Like this one, described as an ‘environmental alternative’. No it isn’t, its a daft idea that makes a pretty picture, not an alternative.

But as far as silliness is concerned, I suspect I can see one that is coming soon: the vertical solar farm. Here is how it will work, cough. Actually two ways.


A lot of external solar panels on a building will gather solar energy (or solar paint, whatever), and that wonderful renewable energy will then be used to power super-efficient LED lights, illuminating highly efficient solar panels inside. The LED banks and solar panels will be arranged in numerous layers to make lots of nice clean energy. The resultant ‘energy amplifier’ will appear.

A more complex version will use hydroponics instead, converting the externally gather solar energy into plant material to make biofuel to make energy to power the lights during the night.

Some clever-clogs will then work out that the external panels are not needed since the internal panels will make the light to power the LEDs 24/7. People will object, but they’ll just point at the rapidly growing efficiencies of both LEDs and solar panels, especially coupled to other enhancements such as picking the right spectrum for the LEDs. How can it not work?

You know as well as I do, I hope, that this is total nonsense and will remain so. However, you also know as well as I do that some people are very easily taken in. Personally, I can’t wait to see the first claims from some Green company. I wouldn’t be all that surprised if they manage to get a development grant. It would be hilarious if something like this makes it through a patent office somewhere. Perpetual machines don’t go extinct, they just evolve.

Actually, I’m more upset that it isn’t April 1st.

Future Augmented Reality

AR has been hot on the list of future IT tech for 25 years. It has been used for various things since smartphones and tablets appeared but really hit the big time with the recent Pokemon craze.

To get an idea of the full potential of augmented reality, recognize that the web and all its impacts on modern life came from the convergence of two medium sized industries – telecoms and computing. Augmented reality will involve the convergence of everything in the real world with everything in the virtual world, including games, media, the web, art, data, visualization, architecture, fashion and even imagination. That convergence will be enabled by ubiquitous mobile broadband, cloud, blockchain payments, IoT, positioning and sensor tech, image recognition, fast graphics chips, display and visor technology and voice and gesture recognition plus many other technologies.

Just as you can put a Pokemon on a lawn, so you could watch aliens flying around in spaceships or cartoon characters or your favorite celebs walking along the street among the other pedestrians. You could just as easily overlay alternative faces onto the strangers passing by.

People will often want to display an avatar to people looking at them, and that could be different for every viewer. That desire competes with the desire of the viewer to decide how to see other people, so there will be some battles over who controls what is seen. Feminists will certainly want to protect women from the obvious objectification that would follow if a woman can’t control how she is seen. In some cases, such objectification and abuse could even reach into hate crime territory, with racist, sexist or homophobic virtual overlays. All this demands control, but it is far from obvious where that control would come from.

As for buildings, they too can have a virtual appearance. Virtual architecture will show off architect visualization skills, but will also be hijacked by the marketing departments of the building residents. In fact, many stakeholders will want to control what you see when you look at a building. The architects, occupants, city authorities, government, mapping agencies, advertisers, software producers and games designers will all try to push appearances at the viewer, but the viewer might want instead to choose to impose one from their own offerings, created in real time by AI or from large existing libraries of online imagery, games or media. No two people walking together on a street would see the same thing.

Interior decor is even more attractive as an AR application. Someone living in a horrible tiny flat could enhance it using AR to give the feeling of far more space and far prettier decor and even local environment. Virtual windows onto Caribbean beaches may be more attractive than looking at mouldy walls and the office block wall that are physically there. Reality is often expensive but images can be free.

Even fashion offers a platform for AR enhancement. An outfit might look great on a celebrity but real life shapes might not measure up. Makeovers take time and money too. In augmented reality, every garment can look as it should, and that makeup can too. The hardest choice will be to choose a large number of virtual outfits and makeups to go with the smaller range of actual physical appearances available from that wardrobe.

Gaming is in pole position, because 3D world design, imagination, visualization and real time rendering technology are all games technology, so perhaps the biggest surprise in the Pokemon success is that it was the first to really grab attention. People could by now be virtually shooting aliens or zombies hoarding up escalators as they wait for their partners. They are a little late, but such widespread use of personal or social gaming on city streets and in malls will come soon.

AR Visors are on their way too, and though the first offerings will be too expensive to achieve widespread adoption, cheaper ones will quickly follow. The internet of things and sensor technology will create abundant ground-up data to make a strong platform. As visors fall in price, so too will the size and power requirements of the processing needed, though much can be cloud-based.

It is a fairly safe bet that marketers will try very hard to force images at us and if they can’t do that via blatant in-your-face advertising, then product placement will become a very fine art. We should expect strong alliances between the big marketing and advertising companies and top games creators.

As AI simultaneously develops, people will be able to generate a lot of their own overlays, explaining to AI what they’d like and having it produced for them in real time. That would undermine marketing use of AR so again there will be some battles for control. Just as we have already seen owners of landmarks try to trademark the image of their buildings to prevent people including them in photographs, so similar battles will fill the courts over AR. What is to stop someone superimposing the image of a nicer building on their own? Should they need to pay a license to do so? What about overlaying celebrity faces on strangers? What about adding multimedia overlays from the web to make dull and ordinary products do exciting things when you use them? A cocktail served in a bar could have a miniature Sydney fireworks display going on over it. That might make it more exciting, but should the media creator be paid and how should that be policed? We’ll need some sort of AR YouTube at the very least with added geolocation.

The whole arts and media industry will see city streets as galleries and stages on which to show off and sell their creations.

Public services will make more mundane use of AR. Simple everyday context-dependent signage is one application, but overlays would be valuable in emergencies too. If police or fire services could superimpose warning on everyone’s visors nearby, that may help save lives in emergencies. Health services will use AR to assist ordinary people to care for a patient until an ambulance arrives

Shopping provide more uses and more battles. AR will show you what a competing shop has on offer right beside the one in front of you. That will make it easy to digitally trespass on a competitor’s shop floor. People can already do that on their smartphone, but AR will put the full image large as life right in front of your eyes to make it very easy to compare two things. Shops won’t want to block comms completely because that would prevent people wanting to enter their shop at all, so they will either have to compete harder or find more elaborate ways of preventing people making direct visual comparisons in-store. Perhaps digital trespassing might become a legal issue.

There will inevitably be a lot of social media use of AR too. If people get together to demonstrate, it will be easier to coordinate them. If police insist they disperse, they could still congregate virtually. Dispersed flash mobs could be coordinated as much as ones in the same location. That makes AR a useful tool for grass-roots democracy, especially demonstrations and direct action, but it also provides a platform for negative uses such as terrorism. Social entrepreneurs will produce vast numbers of custom overlays for millions of different purposes and contexts. Today we have tens of millions of websites and apps. Tomorrow we will have even more AR overlays.

These are just a few of the near term uses of augmented reality and a few hints as issues arising. It will change every aspect of our lives in due course, just as the web has, but more so.


Carbethium, a better-than-scifi material

How to build one of these for real:


Halo light bridge, from

Or indeed one of these:



I recently tweeted that I had an idea how to make the glowy bridges and shields we’ve seen routinely in sci-fi games from Half Life to Destiny, the bridges that seem to appear in a second or two from nothing across a divide, yet are strong enough to drive tanks over, and able to vanish as quickly and completely when they are switched off. I woke today realizing that with a bit of work, that it could be the basis of a general purpose material to make the tanks too, and buildings and construction platforms, bridges, roads and driverless pod systems, personal shields and city defense domes, force fields, drones, planes and gliders, space elevator bases, clothes, sports tracks, robotics, and of course assorted weapons and weapon systems. The material would only appear as needed and could be fully programmable. It could even be used to render buildings from VR to real life in seconds, enabling at least some holodeck functionality. All of this is feasible by 2050.

Since it would be as ethereal as those Halo structures, I first wanted to call the material ethereum, but that name was already taken (for a 2014 block-chain programming platform, which I note could be used to build the smart ANTS network management system that Chris Winter and I developed in BT in 1993), and this new material would be a programmable construction platform so the names would conflict, and etherium is too close. Ethium might work, but it would be based on graphene and carbon nanotubes, and I am quite into carbon so I chose carbethium.

Ages ago I blogged about plasma as a 21st Century building material. I’m still not certain this is feasible, but it may be, and it doesn’t matter for the purposes of this blog anyway.

Around then I also blogged how to make free-floating battle drones and more recently how to make a Star Wars light-saber.

Carbethium would use some of the same principles but would add the enormous strength and high conductivity of graphene to provide the physical properties to make a proper construction material. The programmable matter bits and the instant build would use a combination of 3D interlocking plates, linear induction,  and magnetic wells. A plane such as a light bridge or a light shield would extend from a node in caterpillar track form with plates added as needed until the structure is complete. By reversing the build process, it could withdraw into the node. Bridges that only exist when they are needed would be good fun and we could have them by 2050 as well as the light shields and the light swords, and light tanks.

The last bit worries me. The ethics of carbethium are the typical mixture of enormous potential good and huge potential for abuse to bring death and destruction that we’re learning to expect of the future.

If we can make free-floating battle drones, tanks, robots, planes and rail-gun plasma weapons all appear within seconds, if we can build military bases and erect shield domes around them within seconds, then warfare moves into a new realm. Those countries that develop this stuff first will have a huge advantage, with the ability to send autonomous robotic armies to defeat enemies with little or no risk to their own people. If developed by a James Bond super-villain on a hidden island, it would even be the sort of thing that would enable a serious bid to take over the world.

But in the words of Professor Emmett Brown, “well, I figured, what the hell?”. 2050 values are not 2016 values. Our value set is already on a random walk, disconnected from any anchor, its future direction indicated by a combination of current momentum and a chaos engine linking to random utterances of arbitrary celebrities on social media. 2050 morality on many issues will be the inverse of today’s, just as today’s is on many issues the inverse of the 1970s’. Whatever you do or however politically correct you might think you are today, you will be an outcast before you get old:

We’re already fucked, carbethium just adds some style.

Graphene combines huge tensile strength with enormous electrical conductivity. A plate can be added to the edge of an existing plate and interlocked, I imagine in a hexagonal or triangular mesh. Plates can be designed in many diverse ways to interlock, so that rotating one engages with the next, and reversing the rotation unlocks them. Plates can be pushed to the forward edge by magnetic wells, using linear induction motors, using the graphene itself as the conductor to generate the magnetic field and the design of the structure of the graphene threads enabling the linear induction fields. That would likely require that the structure forms first out of graphene threads, then the gaps between filled by mesh, and plates added to that to make the structure finally solid. This would happen in thickness as well as width, to make a 3D structure, though a graphene bridge would only need to be dozens of atoms thick.

So a bridge made of graphene could start with a single thread, which could be shot across a gap at hundreds of meters per second. I explained how to make a Spiderman-style silk thrower to do just that in a previous blog:

The mesh and 3D build would all follow from that. In theory that could all happen in seconds, the supply of plates and the available power being the primary limiting factors.

Similarly, a shield or indeed any kind of plate could be made by extending carbon mesh out from the edge or center and infilling. We see that kind of technique used often in sci-fi to generate armor, from lost in Space to Iron Man.

The key components in carbetheum are 3D interlocking plate design and magnetic field design for the linear induction motors. Interlocking via rotation is fairly easy in 2D, any spiral will work, and the 3rd dimension is open to any building block manufacturer. 3D interlocking structures are very diverse and often innovative, and some would be more suited to particular applications than others. As for linear induction motors, a circuit is needed to produce the travelling magnetic well, but that circuit is made of the actual construction material. The front edge link between two wires creates a forward-facing magnetic field to propel the next plates and convey enough intertia to them to enable kinetic interlocks.

So it is feasible, and only needs some engineering. The main barrier is price and material quality. Graphene is still expensive to make, as are carbon nanotubes, so we won’t see bridges made of them just yet. The material quality so far is fine for small scale devices, but not yet for major civil engineering.

However, the field is developing extremely quickly because big companies and investors can clearly see the megabucks at the end of the rainbow. We will have almost certainly have large quantity production of high quality graphene for civil engineering by 2050.

This field will be fun. Anyone who plays computer games is already familiar with the idea. Light bridges and shields, or light swords would appear much as in games, but the material would likely  be graphene and nanotubes (or maybe the newfangled molybdenum equivalents). They would glow during construction with the plasma generated by the intense electric and magnetic fields, and the glow would be needed afterward to make these ultra-thin physical barriers clearly visible,but they might become highly transparent otherwise.

Assembling structures as they are needed and disassembling them just as easily will be very resource-friendly, though it is unlikely that carbon will be in short supply. We can just use some oil or coal to get more if needed, or process some CO2. The walls of a building could be grown from the ground up at hundreds of meters per second in theory, with floors growing almost as fast, though there should be little need to do so in practice, apart from pushing space vehicles up so high that they need little fuel to enter orbit. Nevertheless, growing a  building and then even growing the internal structures and even furniture is feasible, all using glowy carbetheum. Electronic soft fabrics, cushions and hard surfaces and support structures are all possible by combining carbon nanotubes and graphene and using the reconfigurable matter properties carbethium convents. So are visual interfaces, electronic windows, electronic wallpaper, electronic carpet, computers, storage, heating, lighting, energy storage and even solar power panels. So is all the comms and IoT and all the smart embdedded control systems you could ever want. So you’d use a computer with VR interface to design whatever kind of building and interior furniture decor you want, and then when you hit the big red button, it would appear in front of your eyes from the carbethium blocks you had delivered. You could also build robots using the same self-assembly approach.

If these structures can assemble fast enough, and I think they could, then a new form of kinetic architecture would appear. This would use the momentum of the construction material to drive the front edges of the surfaces, kinetic assembly allowing otherwise impossible and elaborate arches to be made.

A city transport infrastructure could be built entirely out of carbethium. The linear induction mats could grow along a road, connecting quickly to make a whole city grid. Circuit design allows the infrastructure to steer driverless pods wherever they need to go, and they could also be assembled as required using carbethium. No parking or storage is needed, as the pod would just melt away onto the surface when it isn’t needed.

I could go to town on military and terrorist applications, but more interesting is the use of the defense domes. When I was a kid, I imagined having a house with a defense dome over it. Lots of sci-fi has them now too. Domes have a strong appeal, even though they could also be used as prisons of course. A supply of carbetheum on the city edges could be used to grow a strong dome in minutes or even seconds, and there is no practical limit to how strong it could be. Even if lasers were used to penetrate it, the holes could fill in in real time, replacing material as fast as it is evaporated away.

Anyway, lots of fun. Today’s civil engineering projects like HS2 look more and more primitive by the day, as we finally start to see the true potential of genuinely 21st century construction materials. 2050 is not too early to expect widespread use of carbetheum. It won’t be called that – whoever commercializes it first will name it, or Google or MIT will claim to have just invented it in a decade or so, so my own name for it will be lost to personal history. But remember, you saw it here first.


Future of cleaning: UV hybrid drone/ambient with presence detection

UV cleaning

2045: Constructing the future


Today is the day Marty Mc’Fly time traveled 30 years forwards to in ‘Back to the Future 2’. In recognition of that, equipment rental firm Hewden commissioned me to produce a report on what the world will look like in 2045, 30 years on from now. It considers construction technology as well as general changes in cities and buildings. The report is called 2045: Constructing the future and you can get a full copy from Here are a few of the highlights:

Report Highlights

High use of super-strong carbon-based materials, including ultra-high buildings such as spaceports up to 30km tall. Superlight materials will even enable decorative floating structures.


Greatly increased safety thanks to AI, robotics and total monitoring via drones

Half human, half machine workers will be common as exoskeletons allow workers to wear sophisticated hydraulic equipment.


Upskilled construction workers will enjoy better safety, better job satisfaction and better pay.

Augmented reality will be useful in construction and to allow cheap buildings to have elaborate appearance.

Smart makes buildings cheap – with tiny sensors, augmented reality, energy harvesting coatings, less wiring and no windows, buildings can become very cheap at the same time as becoming better.

The future of cleaning

I’ve been thinking a bit about cleaning for various customers over the last few years. I won’t bother this time with the various self-cleaning fabrics, the fancy new ultrasonic bubble washing machines, or ultraviolet sterilization for hospitals, even though those are all very important areas.  I won’t even focus on using your old sonic toothbrush heads in warm water with a little detergent to clean the trickier areas of your porcelain collectibles, though that does work much better than I thought it would.

I will instead introduce a new idea for the age of internet of things.

When you put your clothes into a future washing machine, it will also debug, back up, update and run all the antivirus and other security routines to sanitize the IoT stuff in them.

You might also have a box with thew same functions that you can put your portable devices or other things that can’t be washed.

The trouble with internet of things, the new name for the extremely old idea of chips in everything, is that you can put chips in everything, and there is always some reason for doing so, even if it’s only for marking it for ownership purposes. Mostly there are numerous other reasons so you might even find many chips or functions running on a single object. You can’t even keep up with all the usernames and passwords and operating system updates for the few devices you already own. Having hundreds or thousands of them will be impossible if there isn’t an easy way of electronically sanitizing them and updating them. Some can be maintained via the cloud, and you’ll have some apps for looking after some subgroups of them. But some of those devices might well be in parts of your home where the signals don’t penetrate easily. Some will only be used rarely. Some will use batteries that run down and get replaced. Others will be out of date for other reasons. Having a single central device that you can use to process them will be useful.

The washing machine will likely be networked anyway for various functions such as maintenance, energy negotiations and program downloads for special garments. It makes sense to add electronic processing for the garments too. They will be in the machine quite a long time so download speed shouldn’t be a problem, and each part of the garment comes close to a transmitter or sensor each time it is spun around.

A simple box is easy to understand and easy to use too. It might need ports to plug into but more likely wireless or optical connections would be used. The box could electromagnetically shield the device from other interference or security infiltration during processing to make sure it comes out clean and safe and malware free as well as fully updated. A common box means only having to program your preferences once too.

There would still be some devices that can’t be processed either in a box or in a washing machine. Examples such as smart paints or smart light bulbs or smart fuses would all be easier to process using networked connections, and they may well be. Some might prefer a slightly more individual approach, so pointing a mobile device at them would single them out from others in the vicinity. This sort of approach would also allow easier interrogation of the current state, diagnostics or inspection.

Whatever way internet of things goes, cleaning will take on a new and important dimension. We already do it as routine PC maintenance but removing malware and updating software will soon become a part of our whole house cleaning routine.