Category Archives: science

Paris – Climate Change v Islamism. Which problem is biggest?

Imagine you are sitting peacefully at home watching a movie with your family. A few terrorists with guns burst in. They start shooting. What is your reaction?

Option A) you tell your family not to do anything but to continue watching TV, because reacting would be giving in to the terrorists – they want you to be angry and try to attack them, but you are the better person, you have the moral superiority and won’t stoop to their level. Anyway, attacking them might anger them more and they might be even more violent. You tell your family they should all stick together and show the terrorists they can’t win and can’t change your way of life by just carrying on as before. You watch as one by one, each of your kids is murdered, determined to occupy the moral high ground until they shoot you too.

Option B) you understand that what the terrorists want is for you and your family to be dead. So you grab whatever you can that might act as some sort of weapon and rush at the terrorists, trying to the end to disarm them and protect your family.  If you survive, you then do all you can to prevent other terrorists from coming into your home. Then you do all you can to identify where they are coming from and root them out.

The above choice is a little simplistic but it highlights the key points of the two streams of current opinion on the ‘right’ response.

Option B recognizes that you have to remain alive to defend your principles. Once you’ve dealt with the threat, then you are free to build as many ivory towers and moral pedestals as you want. Option A simply lets the terrorists win.

There is no third option for discussing it peacefully over a nice cup of tea, no option for peace and love and mutual respect for all. ISIS are not interested in peace and love. They are barbarians with the utmost contempt for civilization who want to destroy everything that doesn’t fit into their perverted interpretation of an Islamic world. However, ISIS is just one Islamist terror group of course and if we are successful in conquering them, and then Al Qaeda and Boko Haram, and so on, other Islamist groups will emerge. Islamism is the problem, ISIS is just the worst current group. We need to deal with it.

I’ll draw out some key points from my previous blogs. If you want more detail on the future of ISIS look at

The situation in Europe shows a few similarities with the IRA conflict, with the advantage today that we are still in the early stages of Islamist violence. In both cases, the terrorists themselves are mostly no-hoper young men with egos out of alignment with their personal reality. Yes there are a few women too. They desperately want to be respected, but with no education and no skills, a huge chip on their shoulder and a bad attitude, ordinary life offers them few opportunities. With both ISIS and the IRA, the terrorists are drawn from a community that considers itself disadvantaged. Add a hefty amount of indoctrination about how terribly unfair the world is, the promise of being a hero, going down in history as a martyr and the promise of 72 virgins to play with in the afterlife, and the offer to pick up a gun or a knife apparently seems attractive to some. The IRA recruited enough fighters even without the promise of the virgins.

The IRA had only about 300 front-line terrorists at any time, but they came from the nationalist community of which an estimated 30% of people declared some sympathy for them. Compare that with a BBC survey earlier this year that found that in the aftermath of the Charlie Hebdo attacks, only 68% of Muslims agreed with the statement “Acts of violence against those who publish images of the Prophet Mohammed can never be justified”. 68% and 70% are pretty close, so I’ll charitably accept that the 68% were being honest and not simply trying to disassociate themselves from the Paris massacre. The overwhelming majority of British Muslims rejecting violence – two thirds in the BBC survey, is entirely consistent with other surveys on Muslim attitudes around the world, and probably a reasonable figure for Muslims across Europe. Is the glass half full or half empty? Your call.

The good news is the low numbers that become actual front-line terrorists. Only 0.122% of the nationalist community in Northern Ireland at any particular time were front-line IRA terrorists. Now that ISIS are asking potential recruits not to go to Syria but to stay where they are and do their thing there, we should consider how many there might be. If we are lucky and the same 0.122% applies to our three million UK Muslims, then about 3600 are potential Islamist terrorists. That’s about 12 times bigger than the IRA problem if ISIS or other Islamist groups get their acts together. With 20 million Muslims in Europe, that would make for potentially 24,000 Islamist terrorists, or 81 IRAs to put it another way. Most can travel freely between countries.

What of immigration then? People genuinely fleeing violence presumably have lower support for it, but they are only a part of the current influx. Many are economic migrants and they probably conform more closely to the norm. We also know that some terrorists are hiding among other migrants, and indeed at least two of those were involved in the latest Paris massacre. Most of the migrants are young men, so that would tend to skew the problem upwards too. With forces acting in both directions, it’s probably not unreasonable as a first guess to assume the same overall support levels. According to the BBC, 750,000 have entered Europe this year, so that means another 900 potential terrorists were likely in their midst. Europe is currently importing 3 IRAs every year.

Meanwhile, it is rather ironic that many of the current migrants are coming because Angela Merkel felt guilty about the Holocaust. Many Jews are now leaving Europe because they no longer feel safe because of the rapidly rising numbers of attacks by the Islamists she has encouraged to come.

So, the first Paris issue is Islamism, already at 81 potential IRAs and growing at 3 IRAs per year, plus a renewed exodus of Jews due to widespread increasing antisemitism.

So, to the other Paris issue, climate change. I am not the only one annoyed by the hijacking of the environment by leftist pressure groups, because the poor quality of analysis and policies resulting from that pressure ultimately harms both the environment and the poor.

The world has warmed since the last ice age. Life has adjusted throughout to that continuing climate change. Over the last century, sea level has steadily increased, and is still increasing at the same rate now. The North Pole ice has shrunk, to 8.5% to 11% below normal at the moment depending whose figures you look at, but it certainly isn’t disappearing any time soon. However, Antarctic sea ice  has grown to 17% to 25% above normal again depending whose figures you look at, so there is more ice than normal overall. Temperature has also increased over the last century, with a few spurts and a few slowdowns. The last spurt was late 70s to late 90s, with a slowdown since. CO2 levels have rocketed up relentlessly, but satellite-measured temperature hasn’t moved at all since 1998. Only when figures are tampered with is any statistically significant rise visible.

Predictions by climate models have almost all been far higher than the empirical data. In any other branch of science, that would mean throwing theories away and formulating better ones. In climate science, numerous adjustments by alleged ‘climate scientists’ show terrible changes ahead; past figures have invariably been adjusted downwards and recent ones upwards to make the rises seem larger. Climate scientists have severely damaged the reputation of science in every field. The public now distrusts all scientists less and disregard for scientific advice in lifestyle, nutrition, exercise and medication will inevitably lead to an increase in deaths.

Everyone agrees that CO2 is a greenhouse gas and increases will have a forcing effect on temperature, but there is strong disagreement about the magnitude of that effect, the mechanisms and magnitudes of the feedback processes throughout the environmental system, and both the mechanisms and magnitudes of a wide range of natural effects. It is increasingly obvious that climate scientists only cover a subset of the processes affecting climate, but they seem contemptuous of science in other disciplines such as astrophysics that cover important factors such as solar cycles. There is a strong correlation between climate and solar cycles historically but the mechanisms are complex and not yet fully understood. It is also increasingly obvious that many climate scientists are less concerned about the scientific integrity of their ‘research’ than maintaining a closed shop, excluding those who disagree with them, getting the next grant or pushing a political agenda.

Empirical data suggests that the forcing factor of CO2 itself is not as high as assumed in most models, and the very many feedbacks are far more complex than assumed in most models.

CO2 is removed from the environment by natural processes of adaptation faster than modeled – e.g. plants and algae grow faster, and other natural processes such as solar or ocean cycles have far greater effects than assumed in the models. Recent research suggests that it has a ‘half-life’ in the atmosphere only of around 40 years, not the 1000 years claimed by ‘climate scientists’. That means that the problem will go away far faster when we fix it than has been stated.

CO2 is certainly a greenhouse gas, and we should not be complacent about generating it, but on current science (before tampering) it seems there is absolutely no cause for urgent action. It is right to look to future energy sources and move away from fossil fuels, which also cause other large environmental problems, not least of which the particulates that kill millions of people every year. Meanwhile, we should expedite movement from coal and oil to low carbon fossil fuels such as shale gas.

As is often observed, sunny regions such as the Sahara could easily produce enough solar energy for all of Europe, but there is no great hurry so we can wait for the technology to become sufficiently cheap and for the political stability in appropriate areas to be addressed so that large solar farms can be safely developed and supply maintained. Meanwhile, southern Europe is reasonably sunny, politically stable and needs cash. Other regions also have sunny deserts to support them. We will also have abundant fusion energy in the 2nd half of the century. So we have no long term energy problem. Solar/fusion energy will eventually be cheap and abundant, and at an equivalent of less than $30 per barrel of oil, we won’t bother using fossil fuels because they will be too expensive compared to alternatives. The problems we do have in energy supply are short term and mostly caused by idiotic green policies that worsen supply, costs and environmental impact. It is hard to think of a ‘green’ policy that actually works.

The CO2 problem will go away in the long term due to nothing but simple economics and market effects. In the short term, we don’t see a measurable problem due to a happy coincidence of solar cycles and ocean cycles counteracting the presumed warming forcing of the CO2. There is absolutely no need to rush into massively problematic taxes and subsidies for immature technology. The social problems caused by short term panic are far worse than the problem they are meant to fix. Increased food prices have been caused by regulation to enforce use of biofuels. Ludicrously stupid carbon offset programs have led to chopping down of rain forests, draining of peat bogs and forced relocation of local peoples, and after all tat have actually increased CO2 emissions. Lately, carbon taxes in the UK, far higher than elsewhere, have led to collapse of the aluminium and steel industries, while the products have still been produced elsewhere at higher CO2 cost. Those made redundant are made even poorer because they have to pay higher prices for energy thanks to enormous subsidies to rich people who own wind or solar farms. Finally, closing down fossil fuel plants before we have proper substitutes in place and then asking wind farm owners to accept even bigger subsidies to put in diesel generators for use on calm  and dull days is the politics of the asylum. Green policies perform best at transferring money from poor to rich, with environmental damage seemingly a small price to pay for a feel-good factor..

Call me a skeptic or a denier or whatever you want if you like. I am technically ‘luke warm’. There is a problem with CO2, but not a big one, and it will go away all by itself. There is no need for political interference and that which we have seen so far has made far worse problems for both people and the environment than climate change would ever have done. Our politicians would do a far better job if they did nothing at all.

So, Paris then. On one hand we have a minor problem from CO2 emissions that will go away fastest with the fewest problems if our politicians do nothing at all. On the other hand, their previous mistakes have already allowed the Islamist terrorist equivalent of 81 IRAs to enter Europe and the current migrant flux is increasing that by 3 IRAs per year. That does need to be addressed, quickly and effectively.

Perhaps they should all stay in Paris but change the subject.


How to make a Star Wars light saber

A couple of years ago I explained how to make a free-floating combat drone: , like the ones in Halo or Mass Effect. They could realistically be made in the next couple of decades and are very likely to feature heavily in far future warfare, or indeed terrorism. I was chatting to a journalist this morning about light sabers, another sci-fi classic. They could also be made in the next few decades, using derivatives of the same principles. A prototype is feasible this side of 2050.

I’ll ignore the sci-fi wikis that explain how they are meant to work, which mostly approximate to fancy words for using magic or The Force and various fictional crystals. On the other hand, we still want something that will look and sound and behave like the light saber.

The handle bit is pretty obvious. It has to look good and contain a power source and either a powerful laser or plasma generator. The traditional problem with using a laser-based saber is that the saber is only meant to be a metre long but laser beams don’t generally stop until they hit something. Plasma on the other hand is difficult to contain and needs a lot of energy even when it isn’t being used to strike your opponent. A laser can be switched on and off and is therefore better. But we can have some nice glowy plasma too, just for fun.

The idea is pretty simple then. The blade would be made of graphene flakes coated with carbon nanotube electron pipes, suspended using the same technique I outlined in the blog above. These could easily be made to form a long cylinder and when you want the traditional Star Wars look, they would move about a bit, giving the nice shimmery blurry edge we all like so that the tube looks just right with blurry glowy edges. Anyway, with the electron pipe surface facing inwards, these flakes would generate the internal plasma and its nice glow. They would self-organize their cylinder continuously to follow the path of the saber. Easy-peasy. If they strike something, they would just re-organize themselves into the cylinder again once they are free.

For later models, a Katana shaped blade will obviously be preferred. As we know, all ultimate weapons end up looking like a Katana, so we might as well go straight to it, and have the traditional cylindrical light saber blade as an optional cosmetic envelope for show fights. The Katana is a universal physics result in all possible universes.

The hum could be generated by a speaker in the handle if you have absolutely no sense of style, but for everyone else, you could simply activate pulsed magnetic fields between the flakes so that they resonate at the required band to give your particular tone. Graphene flakes can be magnetized so again this is perfectly consistent with physics. You could download and customize hums from the cloud.

Now the fun bit. When the blade gets close to an object, such as your opponent’s arm, or your loaf of bread in need of being sliced, the capacitance of the outer flakes would change, and anyway, they could easily transmit infrared light in every direction and pick up reflections. It doesn’t really matter which method you pick to detect the right moment to activate the laser, the point is that this bit would be easy engineering and with lots of techniques to pick from, there could be a range of light sabers on offer. Importantly, at least a few techniques could work that don’t violate any physics. Next, some of those self-organizing graphene flakes would have reflective surface backings (metals bond well with graphene so this is also a doddle allowed by physics), and would therefore form a nice reflecting surface to deflect the laser beam at the object about to be struck. If a few flakes are vaporized, others would be right behind them to reflect the beam.

So just as the blade strikes the surface of the target, the powerful laser switches on and the beam is bounced off the reflecting flakes onto the target, vaporizing it and cauterizing the ends of the severed blood vessels to avoid unnecessary mess that might cause a risk of slipping. The shape of the beam depends on the locations and angles of the reflecting surface flakes, and they could be in pretty much any shape to create any shape of beam needed, which could be anything from a sharp knife to a single point, severing an arm or drilling a nice neat hole through the heart. Obviously, style dictates that the point of the saber is used for a narrow beam and the edge is used as a knife, also useful for cutting bread or making toast (the latter uses transverse laser deflection at lower aggregate power density to char rather than vaporize the bread particles, and toast is an option selectable by a dial on the handle).

What about fights? When two of these blades hit each other there would be a variety of possible effects. Again, it would come down to personal style. There is no need to have any feel at all, the beams could simple go through each other, but where’s the fun in that? Far better that the flakes also carry high electric currents so they could create a nice flurry of sparks and the magnetic interactions between the sabers could also be very powerful. Again, self organisation would allow circuits to form to carry the currents at the right locations to deflect or disrupt the opponent’s saber. A galactic treaty would be needed to ensure that everyone fights by the rules and doesn’t cheat by having an ethereal saber that just goes right through the other one without any nice show. War without glory is nothing, and there can be no glory without a strong emotional investment and physical struggle mediated by magnetic interactions in the sabers.

This saber would have a very nice glow in any color you like, but not have a solid blade, so would look and feel very like the Star Wars saber (when you just want to touch it, the lasers would not activate to slice your fingers off, provided you have read the safety instructions and have the safety lock engaged). The blade could also grow elegantly from the hilt when it is activated, over a second or so, it would not just suddenly appear at full length. We need an on/off button for that bit, but that could simply be emotion or thought recognition so it turns on when you concentrate on The Force, or just feel it.

The power supply could be a battery or graphene capacitor bank of a couple of containers of nice chemicals if you want to build it before we can harness The Force and magic crystals.

A light saber that looks, feels and behaves just like the ones on Star Wars is therefore entirely feasible, consistent with physics, and could be built before 2050. It might use different techniques than I have described, but if no better techniques are invented, we could still do it the way I describe above. One way or another, we will have light sabers.


How to make a Spiderman-style graphene silk thrower for emergency services

I quite like Spiderman movies, and having the ability to fire a web at a distant object or villain has its appeal. Since he fires web from his forearm, it must be lightweight to withstand the recoil, and to fire enough to hold his weight while he swings, it would need to have extremely strong fibers. It is therefore pretty obvious that the material of choice when we build such a thing will be graphene, which is even stronger than spider silk (though I suppose a chemical ejection device making spider silk might work too). A thin graphene thread is sufficient to hold him as he swings so it could fit inside a manageable capsule.

So how to eject it?

One way I suggested for making graphene threads is to 3D print the graphene, using print nozzles made of carbon nanotubes and using a very high-speed modulation to spread the atoms at precise spacing so they emerge in the right physical patterns and attach appropriate positive or negative charge to each atom as they emerge from the nozzles so that they are thrown together to make them bond into graphene. This illustration tries to show the idea looking at the nozzles end on, but shows only a part of the array:printing graphene filamentsIt doesn’t show properly that the nozzles are at angles to each other and the atoms are ejected in precise phased patterns, but they need to be, since the atoms are too far apart to form graphene otherwise so they need to eject at the right speed in the right directions with the right charges at the right times and if all that is done correctly then a graphene filament would result. The nozzle arrangements, geometry and carbon atom sizes dictate that only narrow filaments of graphene can be produced by each nozzle, but as the threads from many nozzles are intertwined as they emerge from the spinneret, so a graphene thread would be produced made from many filaments. Nevertheless, it is possible to arrange carbon nanotubes in such a way and at the right angle, so provided we can get the high-speed modulation and spacing right, it ought to be feasible. Not easy, but possible. Then again, Spiderman isn’t real yet either.

The ejection device would therefore be a specially fabricated 3D print head maybe a square centimeter in area, backed by a capsule containing finely powdered graphite that could be vaporized to make the carbon atom stream through the nozzles. Some nice lasers might be good there, and some cool looking electronic add-ons to do the phasing and charging. You could make this into one heck of a cool gun.

How thick a thread do we need?

Assuming a 70kg (154lb) man and 2g acceleration during the swing, we need at least 150kg breaking strain to have a small safety margin, bearing in mind that if it breaks, you can fire a new thread. Steel can achieve that with 1.5mm thick wire, but graphene’s tensile strength is 300 times better than steel so 0.06mm is thick enough. 60 microns, or to put it another way, roughly 140 denier, although that is a very quick guess. That means roughly the same sort of graphene thread thickness is needed to support our Spiderman as the nylon used to make your backpack. It also means you could eject well over 10km of thread from a 200g capsule, plenty. Happy to revise my numbers if you have better ones. Google can be a pain!

How fast could the thread be ejected?

Let’s face it. If it can only manage 5cm/s, it is as much use as a chocolate flamethrower. Each bond in graphene is 1.4 angstroms long, so a graphene hexagon is about 0.2nm wide. We would want our graphene filament to eject at around 100m/s, about the speed of a crossbow bolt. 100m/s = 5 x 10^11 carbon atoms ejected per second from each nozzle, in staggered phasing. So, half a terahertz. Easy! That’s well within everyday electronics domains. Phew! If we can do better, we can shoot even faster.

We could therefore soon have a graphene filament ejection device that behaves much like Spiderman’s silk throwers. It needs some better engineers than me to build it, but there are plenty of them around.

Having such a device would be fun for sports, allowing climbers to climb vertical rock faces and overhangs quickly, or to make daring leaps and hope the device works to save them from certain death. It would also have military and police uses. It might even have uses in road accident prevention, yanking pedestrians away from danger or tethering cars instantly to slow them extra quickly. In fact, all the emergency services would have uses for such devices and it could reduce accidents and deaths. I feel confident that Spiderman would think of many more exciting uses too.

Producing graphene silk at 100m/s might also be pretty useful in just about every other manufacturing industry. With ultra-fine yarns with high strength produced at those speeds, it could revolutionize the fashion industry too.

The future of washing machines

Ultrasonic washing ball

Ultrasonic washing ball

For millennia, people washed clothes by stirring, hitting, squeezing and generally agitating them in rivers or buckets of water. The basic mechanism is to loosen dirt particles and use the water to wash them away or dissolve them.

Mostly, washing machines just automate the same process, agitating clothes in water, sometimes with detergent, to remove dirt from the fabric. Most use detergent to help free the dirt particles but more recently, some use ultrasound to create micro-cavitation bubbles and when they collapse, the shock waves help release the particles. That means the machines can clean at lower temperatures with little or no detergent.

It occurred to me that we don’t really need the machine to tumble the clothes. A ball about the size of a grapefruit could contain batteries and a set of ultrasonic transducers and could be simply chucked in a bucket with the clothes. It could create the bubbles and clean the clothes. Some basic engineering has to be done to make it work but it is entirely feasible.

One of the problems is that ultrasound doesn’t penetrate very far. To solve that, two mechanisms can be used in parallel. One is to let the ball roam around the clothes, and that could be done by changing its density by means of a swim bladder and using gravity to move it up and down, or maybe by adding a few simple paddles or cilia so it can move like a bacterium or by changing its shape so that as it moves up and down, it also moves sideways. The second mechanism is to use phased array ultrasonic transducers so that the beams can be steered and interfere constructively, thereby focusing energy and micro-cavitation generation around the bucket in a chosen pattern.

Making such a ball could be much cheaper than a full sized washing machine, making it ideal for developing countries. Transducers are cheap, and the software to drive them and steer the beams is easy enough and replicable free of charge once developed.

It would contain a rechargeable battery that could use a simple solar panel charging unit (which obviously could be used to generate power for other purposes too).

Such a device could bring cheap washing machine capability to millions of people who can’t afford a full sized washing machine or who are not connected to electricity supplies. It would save time, water and a great deal of drudgery at low expense.



Why Uber will soon be history due to a category error

I have nothing against Uber, I’ve never used them, or Hailo, but they are just as dispensable as their drivers. My next blog will be about my vision for an all-electric zero-emission driverless transport system and it has no use for Uber.

However, before I write that, I have a small issue to clear up. A couple of weeks ago I tweeted that the London cabbies who were protesting against Uber are very proud of spending years to learn the best way to get from A to B, yet a satnav device can calculate the best route in a few seconds (and though my tweet didn’t even go that far, any half-decent satnav will also take full account of the real-time traffic and congestion situation). A straightforward fact you might think, but a great many taxi drivers took offence at it, and not just in London. One taxi firm near Boston, even made a crude and ineffective attempt at a cyber-attack. Don’t give up the day job guys!

A future transport system using driverless cars doesn’t need drivers of course but that doesn’t mean that all of them will be out of a job. Carrying luggage, helping people with mobility problems and providing company and conversation on the way is a very valuable service too, as are provision of local tourist advice, general information, strongly held opinions on every possible topic and other personality-based charms. We won’t NEED taxi drivers, but I for one would really miss them.

Uber thinks they are well on top of the driverless car trend:

Perhaps it is just as well they want to go driverless because I’m told many of their drivers are starting to get angry with Uber too. Uber is wrong if they think driverless cars will make them the future. Possibly they will benefit for a short while during technology transition, but the simple fact is that future transport systems don’t need Uber or Hailo any more than they need taxi drivers. Since Uber pays very little tax on their large revenues, they are also putting themselves on the wrong side of public opinion, and that is not a very clever thing to do at all: Their worst error though is that their vision of future transport technology is focused on the current state of the art, not the future. If you are planning a future strategy, you absolutely should not base it on today’s technology.

They say they will buy all of Tesla’s output of self-driving cars: Well, I hope they can make them pay fast, because they will be obsolete very soon indeed. Uber won’t survive long, not if they make this kind of error. Technology will soon make Uber irrelevant too, and unless they improve their corporate values, not many will bother to turn up at their funeral unless it is to gloat.

Google will presumably also want their self-driving cars out there too. The rest of the car industry also won’t go down without a fight, so there will be a many a battle to establish market share in self-driving cars. Apple will want all their self-driving cars out there too. Until 5 minutes ago, I thought there was just the tiniest possibility that Apple were going to be a bit smarter. Maybe Apple had noticed the same thing I had. But no, a quick Google search confirms that Apple have made the same mistake too, and just bought in the wrong guy: These companies have other businesses so won’t really care much if one project goes down. Google, Apple, Samsung, LG et al will be far more likely to flourish in the real future than Uber or Hailo.

The error is very serious. You’ve made it, I’ve made it. The entire auto industry has made it. It’s a category error.

We’ve all been conflating ‘driverless’ and ‘self-driving’. They are not the same.

The future doesn’t need self-driving cars, it needs driverless cars. They both save lives, save the environment, save resources, save congestion, save time, and save cost. One saves a little, the other saves a LOT.

The entire car industry, as well as Uber, Google, Tesla, and even Apple have all bet on the wrong one, but some have better chance of surviving the consequences their errors than others. I’ll outline the basic principles of the technology waves that can wipe out self-driving cars in my next blog, and actually since the technology is easier in many ways than getting self-driving working, it could even bypass them. We may never see an age of self-driving cars. We can get a far better system, far faster and far cheaper.

It is time to consider any investments you have in the transport industry. Severe turbulence ahead!

How nigh is the end?

“We’re doomed!” is a frequently recited observation. It is great fun predicting the end of the world and almost as much fun reading about it or watching documentaries telling us we’re doomed. So… just how doomed are we? Initial estimate: Maybe a bit doomed. Read on.

My 2012 blog addressed some of the possibilities for extinction-level events possibly affecting us. I recently watched a Top 10 list of threats to our existence on TV and it was similar to most you’d read, with the same errors and omissions – nuclear war, global virus pandemic, terminator scenarios, solar storms, comet or asteroid strikes, alien invasions, zombie viruses, that sort of thing. I’d agree that nuclear war is still the biggest threat, so number 1, and a global pandemic of a highly infectious and lethal virus should still be number 2. I don’t even need to explain either of those, we all know why they are in 1st and 2nd place.

The TV list included a couple that shouldn’t be in there.

One inclusion was an mega-eruption of Yellowstone or another super-volcano. A full-sized Yellowstone mega-eruption would probably kill millions of people and destroy much of civilization across a large chunk of North America, but some of us don’t actually live in North America and quite a few might well survive pretty well, so although it would be quite annoying for Americans, it is hardly a TEOTWAWKI threat. It would have big effects elsewhere, just not extinction-level ones. For most of the world it would only cause short-term disruptions, such as economic turbulence, at worst it would start a few wars here and there as regions compete for control in the new world order.

Number 3 on their list was climate change, which is an annoyingly wrong, albeit a popularly held inclusion. The only climate change mechanism proposed for catastrophe is global warming, and the reason it’s called climate change now is because global warming stopped in 1998 and still hasn’t resumed 17 years and 9 months later, so that term has become too embarrassing for doom mongers to use. CO2 is a warming agent and emissions should be treated with reasonable caution, but the net warming contribution of all the various feedbacks adds up to far less than originally predicted and the climate models have almost all proven far too pessimistic. Any warming expected this century is very likely to be offset by reduction in solar activity and if and when it resumes towards the end of the century, we will long since have migrated to non-carbon energy sources, so there really isn’t a longer term problem to worry about. With warming by 2100 pretty insignificant, and less than half a metre sea level rise, I certainly don’t think climate change deserves to be on any list of threats of any consequence in the next century.

The top 10 list missed two out by including climate change and Yellowstone, and my first replacement candidate for consideration might be the grey goo scenario. The grey goo scenario is that self-replicating nanobots manage to convert everything including us into a grey goo.  Take away the silly images of tiny little metal robots cutting things up atom by atom and the laughable presentation of this vanishes. Replace those little bots with bacteria that include electronics, and are linked across their own cloud to their own hive AI that redesigns their DNA to allow them to survive in any niche they find by treating the things there as food. When existing bacteria find a niche they can’t exploit, the next generation adapts to it. That self-evolving smart bacteria scenario is rather more feasible, and still results in bacteria that can conquer any ecosystem they find. We would find ourselves unable to fight back and could be wiped out. This isn’t very likely, but it is feasible, could happen by accident or design on our way to transhumanism, and might deserve a place in the top ten threats.

However, grey goo is only one of the NBIC convergence risks we have already imagined (NBIC= Nano-Bio-Info-Cogno). NBIC is a rich seam for doom-seekers. In there you’ll find smart yogurt, smart bacteria, smart viruses, beacons, smart clouds, active skin, direct brain links, zombie viruses, even switching people off. Zombie viruses featured in the top ten TV show too, but they don’t really deserve their own category and more than many other NBIC derivatives. Anyway, that’s just a quick list of deliberate end of world solutions – there will be many more I forgot to include and many I haven’t even thought of yet. Then you have to multiply the list by 3. Any of these could also happen by accident, and any could also happen via unintended consequences of lack of understanding, which is rather different from an accident but just as serious. So basically, deliberate action, accidents and stupidity are three primary routes to the end of the world via technology. So instead of just the grey goo scenario, a far bigger collective threat is NBIC generally and I’d add NBIC collectively into my top ten list, quite high up, maybe 3rd after nuclear war and global virus. AI still deserves to be a separate category of its own, and I’d put it next at 4th.

Another class of technology suitable for abuse is space tech. I once wrote about a solar wind deflector using high atmosphere reflection, and calculated it could melt a city in a few minutes. Under malicious automated control, that is capable of wiping us all out, but it doesn’t justify inclusion in the top ten. One that might is the deliberate deflection of a large asteroid to impact on us. If it makes it in at all, it would be at tenth place. It just isn’t very likely someone would do that.

One I am very tempted to include is drones. Little tiny ones, not the Predators, and not even the ones everyone seems worried about at the moment that can carry 2kg of explosives or Anthrax into the midst of football crowds. Tiny drones are far harder to shoot down, but soon we will have a lot of them around. Size-wise, think of midges or fruit flies. They could be self-organizing into swarms, managed by rogue regimes, terrorist groups, or set to auto, terminator style. They could recharge quickly by solar during short breaks, and restock their payloads from secret supplies that distribute with the swarm. They could be distributed globally using the winds and oceans, so don’t need a plane or missile delivery system that is easily intercepted. Tiny drones can’t carry much, but with nerve gas or viruses, they don’t have to. Defending against such a threat is easy if there is just one, you can swat it. If there is a small cloud of them, you could use a flamethrower. If the sky is full of them and much of the trees and the ground infested, it would be extremely hard to wipe them out. So if they are well designed to cause an extinction level threat, as MAD 2.0 perhaps, then this would be way up in the top tem too, 5th.

Solar storms could wipe out our modern way of life by killing our IT. That itself would kill many people, via riots and fights for the last cans of beans and bottles of water. The most serious solar storms could be even worse. I’ll keep them in my list, at 6th place

Global civil war could become an extinction level event, given human nature. We don’t have to go nuclear to kill a lot of people, and once society degrades to a certain level, well we’ve all watched post-apocalypse movies or played the games. The few left would still fight with each other. I wrote about the Great Western War and how it might result, see

and such a thing could easily spread globally. I’ll give this 7th place.

A large asteroid strike could happen too, or a comet. Ones capable of extinction level events shouldn’t hit for a while, because we think we know all the ones that could do that. So this goes well down the list at 8th.

Alien invasion is entirely possible and could happen at any time. We’ve been sending out radio signals for quite a while so someone out there might have decided to come see whether our place is nicer than theirs and take over. It hasn’t happened yet so it probably won’t, but then it doesn’t have to be very probably to be in the top ten. 9th will do.

High energy physics research has also been suggested as capable of wiping out our entire planet via exotic particle creation, but the smart people at CERN say it isn’t very likely. Actually, I wasn’t all that convinced or reassured and we’ve only just started messing with real physics so there is plenty of time left to increase the odds of problems. I have a spare place at number 10, so there it goes, with a totally guessed probability of physics research causing a problem every 4000 years.

My top ten list for things likely to cause human extinction, or pretty darn close:

  1. Nuclear war
  2. Highly infectious and lethal virus pandemic
  3. NBIC – deliberate, accidental or lack of foresight (includes smart bacteria, zombie viruses, mind control etc)
  4. Artificial Intelligence, including but not limited to the Terminator scenario
  5. Autonomous Micro-Drones
  6. Solar storm
  7. Global civil war
  8. Comet or asteroid strike
  9. Alien Invasion
  10. Physics research

Not finished yet though. My title was how nigh is the end, not just what might cause it. It’s hard to assign probabilities to each one but someone’s got to do it.  So, I’ll make an arbitrarily wet finger guess in a dark room wearing a blindfold with no explanation of my reasoning to reduce arguments, but hey, that’s almost certainly still more accurate than most climate models, and some people actually believe those. I’m feeling particularly cheerful today so I’ll give my most optimistic assessment.

So, with probabilities of occurrence per year:

  1. Nuclear war:  0.5%
  2. Highly infectious and lethal virus pandemic: 0.4%
  3. NBIC – deliberate, accidental or lack of foresight (includes smart bacteria, zombie viruses, mind control etc): 0.35%
  4. Artificial Intelligence, including but not limited to the Terminator scenario: 0.25%
  5. Autonomous Micro-Drones: 0.2%
  6. Solar storm: 0.1%
  7. Global civil war: 0.1%
  8. Comet or asteroid strike 0.05%
  9. Alien Invasion: 0.04%
  10. Physics research: 0.025%

I hope you agree those are all optimistic. There have been several near misses in my lifetime of number 1, so my 0.5% could have been 2% or 3% given the current state of the world. Also, 0.25% per year means you’d only expect such a thing to happen every 4 centuries so it is a very small chance indeed. However, let’s stick with them and add them up. The cumulative probability of the top ten is 2.015%. Lets add another arbitrary 0.185% for all the risks that didn’t make it into the top ten, rounding the total up to a nice neat 2.2% per year.

Some of the ones above aren’t possible quite yet, but others will vary in probability year to year, but I think that won’t change the guess overall much. If we take a 2.2% probability per year, we have an expectation value of 45.5 years for civilization life expectancy from now. Expectation date for human extinction:

2015.5 + 45.5 years= 2061,

Obviously the probability distribution extends from now to eternity, but don’t get too optimistic, because on these figures there currently is only a 15% chance of surviving past this century.

If you can think of good reasons why my figures are far too pessimistic, by all means make your own guesses, but make them honestly, with a fair and reasonable assessment of how the world looks socially, religiously, politically, the quality of our leaders, human nature etc, and then add them up. You might still be surprised how little time we have left.

I’ll revise my original outlook upwards from ‘a bit doomed’.

We’re reasonably doomed.

The future of beetles

Onto B then.

One of the first ‘facts’ I ever learned about nature was that there were a million species of beetle. In the Google age, we know that ‘scientists estimate there are between 4 and 8 million’. Well, still lots then.

Technology lets us control them. Beetles provide a nice platform to glue electronics onto so they tend to fall victim to cybernetics experiments. The important factor is that beetles come with a lot of built-in capability that is difficult or expensive to build using current technology. If they can be guided remotely by over-riding their own impulses or even misleading their sensors, then they can be used to take sensors into places that are otherwise hard to penetrate. This could be for finding trapped people after an earthquake, or getting a dab of nerve gas onto a president. The former certainly tends to be the favored official purpose, but on the other hand, the fashionable word in technology circles this year is ‘nefarious’. I’ve read it more in the last year than the previous 50 years, albeit I hadn’t learned to read for some of those. It’s a good word. Perhaps I just have a mad scientist brain, but almost all of the uses I can think of for remote-controlled beetles are nefarious.

The first properly publicized experiment was 2009, though I suspect there were many unofficial experiments before then:

There are assorted YouTube videos such as

A more recent experiment:

Big beetles make it easier to do experiments since they can carry up to 20% of body weight as payload, and it is obviously easier to find and connect to things on a bigger insect, but obviously once the techniques are well-developed and miniaturization has integrated things down to single chip with low power consumption, we should expect great things.

For example, a cloud of redundant smart dust would make it easier to connect to various parts of a beetle just by getting it to take flight in the cloud. Bits of dust would stick to it and self-organisation principles and local positioning can then be used to arrange and identify it all nicely to enable control. This would allow large numbers of beetles to be processed and hijacked, ideal for mad scientists to be more time efficient. Some dust could be designed to burrow into the beetle to connect to inner parts, or into the brain, which obviously would please the mad scientists even more. Again, local positioning systems would be advantageous.

Then it gets more fun. A beetle has its own sensors, but signals from those could be enhanced or tweaked via cloud-based AI so that it can become a super-beetle. Beetles traditionally don’t have very large brains, so they can be added to remotely too. That doesn’t have to be using AI either. As we can also connect to other animals now, and some of those animals might have very useful instincts or skills, then why not connect a rat brain into the beetle? It would make a good team for exploring. The beetle can do the aerial maneuvers and the rat can control it once it lands, and we all know how good rats are at learning mazes. Our mad scientist friend might then swap over the management system to another creature with a more vindictive streak for the final assault and nerve gas delivery.

So, Coleoptera Nefarius then. That’s the cool new beetle on the block. And its nicer but underemployed twin Coleoptera Benignus I suppose.


Five new states of matter, maybe. lists the currently known states of matter. I had an idea for five new ones, well, 2 anyway with 3 variants. They might not be possible but hey, faint heart ne’er won fair maid, and this is only a blog not a paper from CERN. But coincidentally, it is CERN most likely to be able to make them.

A helium atom normally has 2 electrons, in a single shell. In a particle model, they go round and round. However… the five new states:

A: I suspect this one is may already known but isn’t possible and is therefore just another daft idea. It’s just a planar superatom. Suppose, instead of going round and round the same atom, the nuclei were arranged in groups of three in a nice triangle, and 6 electrons go round and round the triplet. They might not be terribly happy doing that unless at high pressure with some helpful EM fields adjusting the energy levels required, but with a little encouragement, who knows, it might last long enough to be classified as matter.

B: An alternative that might be more stable is a quad of nuclei in a tetrahedron, with 8 electrons. This is obviously a variant of A so probably doesn’t really qualify as a separate one. But let’s call it a 3D superatom for now, unless it already has a proper name.

C: Suppose helium nuclei are neatly arranged in a row at a precise distance apart, and two orthogonal electron beams are fired past them at a certain distance on either side, with the electrons spaced and phased very nicely, so that for a short period at least, each of the nuclei has two electrons and the beam energy and nuclei spacing ensures that they don’t remain captive on one nucleus but are handed on to the next. You can do the difficult sums. To save you a few seconds, since the beams need to be orthogonal, you’ll need multiple beams in the direction orthogonal to the row,

D: Another cheat, a variant of C, C1: or you could make a few rows for a planar version with a grid of beams. Might be tricky to make the beams stay together for any distance so you could only make a small flake of such matter, but I can’t see an obvious reason why it would be impossible. Just tricky.

E: A second variant of C really, C2, with a small 3D speck of such nuclei and a grid of beams. Again, it works in my head.

Well, 5 new states of matter for you to play with. But here’s a free bonus idea:

The states don’t have to actually exist to be useful. Even with just the descriptions above, you could do the maths for these. They might not be physically achievable but that doesn’t stop them existing in a virtual world with a hypothetical future civilization making them. And given that they have that specific mathematics, and ergo a whole range of theoretical chemistry, and therefore hyperelectronics, they could therefore be used as simulated constructs in a Turing machine or actual constructs in quantum computers to achieve particular circuitry with particular virtues. You could certainly emulate it on a Yonck processor (see my blog on that). So you get a whole field of future computing and AI thrown in.

Blogging is all the fun with none of the hard work and admin. Perfect. And just in case someone does build it all, for the record, you saw it here first.

Technology 2040: Technotopia denied by human nature

This is a reblog of the Business Weekly piece I wrote for their 25th anniversary.

It’s essentially a very compact overview of the enormous scope for technology progress, followed by a reality check as we start filtering that potential through very imperfect human nature and systems.

25 years is a long time in technology, a little less than a third of a lifetime. For the first third, you’re stuck having to live with primitive technology. Then in the middle third it gets a lot better. Then for the last third, you’re mainly trying to keep up and understand it, still using the stuff you learned in the middle third.

The technology we are using today is pretty much along the lines of what we expected in 1990, 25 years ago. Only a few details are different. We don’t have 2Gb/s per second to the home yet and AI is certainly taking its time to reach human level intelligence, let alone consciousness, but apart from that, we’re still on course. Technology is extremely predictable. Perhaps the biggest surprise of all is just how few surprises there have been.

The next 25 years might be just as predictable. We already know some of the highlights for the coming years – virtual reality, augmented reality, 3D printing, advanced AI and conscious computers, graphene based materials, widespread Internet of Things, connections to the nervous system and the brain, more use of biometrics, active contact lenses and digital jewellery, use of the skin as an IT platform, smart materials, and that’s just IT – there will be similarly big developments in every other field too. All of these will develop much further than the primitive hints we see today, and will form much of the technology foundation for everyday life in 2040.

For me the most exciting trend will be the convergence of man and machine, as our nervous system becomes just another IT domain, our brains get enhanced by external IT and better biotech is enabled via nanotechnology, allowing IT to be incorporated into drugs and their delivery systems as well as diagnostic tools. This early stage transhumanism will occur in parallel with enhanced genetic manipulation, development of sophisticated exoskeletons and smart drugs, and highlights another major trend, which is that technology will increasingly feature in ethical debates. That will become a big issue. Sometimes the debates will be about morality, and religious battles will result. Sometimes different parts of the population or different countries will take opposing views and cultural or political battles will result. Trading one group’s interests and rights against another’s will not be easy. Tensions between left and right wing views may well become even higher than they already are today. One man’s security is another man’s oppression.

There will certainly be many fantastic benefits from improving technology. We’ll live longer, healthier lives and the steady economic growth from improving technology will make the vast majority of people financially comfortable (2.5% real growth sustained for 25 years would increase the economy by 85%). But it won’t be paradise. All those conflicts over whether we should or shouldn’t use technology in particular ways will guarantee frequent demonstrations. Misuses of tech by criminals, terrorists or ethically challenged companies will severely erode the effects of benefits. There will still be a mix of good and bad. We’ll have fixed some problems and created some new ones.

The technology change is exciting in many ways, but for me, the greatest significance is that towards the end of the next 25 years, we will reach the end of the industrial revolution and enter a new age. The industrial revolution lasted hundreds of years, during which engineers harnessed scientific breakthroughs and their own ingenuity to advance technology. Once we create AI smarter than humans, the dependence on human science and ingenuity ends. Humans begin to lose both understanding and control. Thereafter, we will only be passengers. At first, we’ll be paying passengers in a taxi, deciding the direction of travel or destination, but it won’t be long before the forces of singularity replace that taxi service with AIs deciding for themselves which routes to offer us and running many more for their own culture, on which we may not be invited. That won’t happen overnight, but it will happen quickly. By 2040, that trend may already be unstoppable.

Meanwhile, technology used by humans will demonstrate the diversity and consequences of human nature, for good and bad. We will have some choice of how to use technology, and a certain amount of individual freedom, but the big decisions will be made by sheer population numbers and statistics. Terrorists, nutters and pressure groups will harness asymmetry and vulnerabilities to cause mayhem. Tribal differences and conflicts between demographic, religious, political and other ideological groups will ensure that advancing technology will be used to increase the power of social conflict. Authorities will want to enforce and maintain control and security, so drones, biometrics, advanced sensor miniaturisation and networking will extend and magnify surveillance and greater restrictions will be imposed, while freedom and privacy will evaporate. State oppression is sadly as likely an outcome of advancing technology as any utopian dream. Increasing automation will force a redesign of capitalism. Transhumanism will begin. People will demand more control over their own and their children’s genetics, extra features for their brains and nervous systems. To prevent rebellion, authorities will have little choice but to permit leisure use of smart drugs, virtual escapism, a re-scoping of consciousness. Human nature itself will be put up for redesign.

We may not like this restricted, filtered, politically managed potential offered by future technology. It offers utopia, but only in a theoretical way. Human nature ensures that utopia will not be the actual result. That in turn means that we will need strong and wise leadership, stronger and wiser than we have seen of late to get the best without also getting the worst.

The next 25 years will be arguably the most important in human history. It will be the time when people will have to decide whether we want to live together in prosperity, nurturing and mutual respect, or to use technology to fight, oppress and exploit one another, with the inevitable restrictions and controls that would cause. Sadly, the fine engineering and scientist minds that have got us this far will gradually be taken out of that decision process.

How to decide green policies

Many people in officialdom seem to love putting ticks in boxes. Apparently once all the boxes are ticked, a task can be put in the ‘mission accomplished’ cupboard and forgotten about. So watching some of the recent political debate in the run-up to our UK election, it occurred to me that there must be groups of people discussing ideas for policies and then having meetings to decide whether they tick the right boxes to be included in a manifesto. I had some amusing time thinking about how a meeting might go for the Green Party. A little preamble first.

I could write about any of the UK parties I guess. Depending on your choice of media nicknames, we have the Nasty Party, the Fruitcake Racist Party, the Pedophile Empathy Party, the Pedophile and Women Molesting Party, the National Suicide Party (though they get their acronym in the wrong order) and a few Invisible Parties. OK, I invented some of those based on recent news stories of assorted facts and allegations and make no assertion of any truth in any of them whatsoever. The Greens are trickier to nickname – ‘The Poverty and Oppression Maximization, Environmental Destruction, Economic Collapse, Anti-science, Anti-fun and General Misery Party’ is a bit of a mouthful. I like having greens around, just so long as they never win control. No matter how stupid a mistake I might ever make, I’ll always know that greens would have made a worse one.

So what would a green policy development meeting might be like? I’ll make the obvious assumption that the policies don’t all come from the Green MP. Like any party, there are local groups of people, presumably mostly green types in the wider sense of the word, who produce ideas to feed up the ladder. Many won’t even belong to any official party, but still think of themselves as green. Some will have an interest mainly in socialism, some more interested in environmentalism, most will be a blend of the two. And to be fair, most of them will be perfectly nice people who want to make the world a better place, just like the rest of us. I’ve met a lot of greens, and we do agree at least on motive even if I think they are wrong on most of their ideas of how to achieve the goals. We all want world peace and justice, a healthy environment and to solve poverty and oppression. The main difference between us is deciding how best to achieve all that.

So I’ll look at green debate generally as a source of the likely discussions, rather than any actual Green Party manifesto, even though that still looks pretty scary. To avoid litigation threats and keep my bank balance intact, I’ll state that this is only a personal imagining of what might go into such green meetings, and you can decide for yourself how much it matches up to the reality. It is possible that the actual Green Party may not actually run this way, and might not support some of the policies I discuss, which are included in this piece based on wider green debate, not the Green Party itself. Legal disclaimers in place, I’ll get on with my imagining:

Perhaps there might be some general discussion over the welcome coffee about how awful it is that some nasty capitalist types make money and there might be economic growth, how terrible it is that scientists keep discovering things and technologists keep developing them, how awful it is that people are allowed to disbelieve in a global warming catastrophe and still be allowed to roam free and how there should be a beautiful world one day where a green elite is in charge, the population has been culled down to a billion or two and everyone left has to do everything they say on pain of imprisonment or death. After coffee, the group migrates to a few nice recycled paper flip-charts to start filling them with brainstormed suggestions. Then they have to tick boxes for each suggestion to filter out the ones not dumb enough to qualify. Then make a nice summary page with the ones that get all the boxes ticked. So what boxes do they need? And I guess I ought to give a few real examples as evidence.

Environmental destruction has to be the first one. Greens must really hate the environment, since the majority of green policies damage it, but they manage to get them implemented via cunning marketing to useful idiots to persuade them that the environment will benefit. The idiots implement them thinking the environment will benefit, but it suffers.  Some quick examples:

Wind turbines are a big favorite of greens, but planted on peat bogs in Scotland, the necessary roads cause the bogs to dry out, emitting vast quantities of CO2 and destroying the peat ecosystem. Scottish wind turbines also kill eagles and other birds.

In the Far East, many bogs have been drained to grow palm oil for biofuels, another green favorite that they’ve managed to squeeze into EU law. Again, vast quantities of CO2, and again ecosystem destruction.

Forests around the world have been cut down to make room for palm oil plantations too, displacing local people, destroying an ecosystem to replace it with one to meet green fuel targets.

Still more forests have been cut down to enable new ones to be planted to cash in on  carbon offset schemes to keep corporate greens happy that they can keep flying to all those green conferences without feeling guilt. More people displaced, more destruction.

Staying with biofuels, a lot of organic waste from agriculture is converted to biofuels instead of ploughing it back into the land. Soil structure therefore deteriorates, damaging ecosystem and damaging future land quality. CO2 savings by making the bio-fuel are offset against locking the carbon up in soil organic matter so there isn’t much benefit even there, but the damage holds.

Solar farms are proliferating in the UK, often occupying prime agricultural land that really ought to be growing food for the many people in the world still suffering from malnutrition. The same solar panels could have been sent to otherwise useless desert areas in a sunny country and used to displace far more fossil fuels and save far more CO2 without reducing food production. Instead, people in many African countries have to use wood stoves favored by greens as sustainable, but which produce airborne particles that greatly reduce health. Black carbon resulting from open wood fires also contributes directly to warming.

Many of the above policy effects don’t just tick the environmental destruction box, but also the next ones poverty and oppression maximization. Increasing poverty resulted directly from increasing food prices as food was grown to be converted into bio-fuel. Bio-fuels as first implemented were a mind-numbingly stupid green policy. Very many of the world’s poorest people have been forcefully pushed out of their lands and into even deeper poverty to make space to grow bio-fuel crops. Many have starved or suffered malnutrition. Entire ecosystems have been destroyed, forests replaced, many animals pushed towards extinction by loss of habitat. More recently, even greens have realized the stupidity and these polices are slowly being fixed.

Other green policies see economic development by poor people as a bad thing because it increases their environmental footprint. The poor are therefore kept poor. Again, their poverty means they can’t use modern efficient technology to cook or keep warm, they have to chop trees to get wood to burn, removing trees damages soil integrity, helps flooding, burning them produces harmful particles and black carbon to increase warming. Furthermore, with too little money to buy proper food, some are forced to hunt or buy bushmeat, endangering animal species and helping to spread viruses between closely genetically-related animals and humans.

So a few more boxes appear. All the above polices achieved pretty much the opposite of what they presumably intended, assuming the people involved didn’t actually want to destroy the world. Maybe a counterproductive box needs to be ticked too.

Counterproductive links well to another of the green’s apparent goals, of economic collapse. They want to stop economic growth. They want to reduce obsolescence.  Obsolescence is the force that drives faster and faster progress towards devices that give us a high quality of life with a far lower environmental impact, with less resource use, lower energy use, and less pollution. If you slow obsolescence down because green dogma says it is a bad thing, all those factors worsen. The economy also suffers. The economy suffers again if energy prices are deliberately made very high by adding assorted green levies such as carbon taxes, or renewable energy subsidies.  Renewable energy subsidies encourage more oppression of people who really don’t want wind turbines nearby, causing them stress and health problems, disrupting breeding cycles of small wild animals in the areas, reducing the value of people’s homes, while making the companies that employ hem less able to compete internationally, so increasing bankruptcy, redundancy and making even more poverty. Meanwhile the rich wind farm owners are given lots of money from poor people who are forced to buy their energy and pay higher taxes for the other half of their subsidy. The poor take all the costs, the rich take all the benefits. That could be another box to tick, since it seems pretty universal in green policy So much for  policies that are meant to be socialist! Green manifesto policies would make some of these problems far worse still. Business would be strongly loaded with extra costs and admin, and the profits they can still manage to make would be confiscated to pay for the ridiculous spending plans. With a few Greens in power, damage will be limited and survivable. If they were to win control, our economy would collapse totally in a rapidly accelerating debt spiral.

Greens hate science and technology, another possible box to tick. I once chatted to one of the Green leaders (I do go to environmental events sometimes if I think I can help steer things in a more logical direction), and was told ‘the last thing we need is more science’. But it is science and technology that makes us able to live in extreme comfort today alongside a healthy environment. 100 years ago, pollution was terrible. Rivers caught fire. People died from breathing in a wide variety of pollutants. Today, we have clean water and clean air. Thanks to increasing CO2 levels – and although CO2 certainly does contribute to warming, though not as much as feared by warmist doom-mongers, it also has many positive effects – there is more global greenery today than decades ago. Plants thrive as CO2 levels increase so they are growing faster and healthier. We can grow more food and forests can recover faster from earlier green destruction.

The greens also apparently have a box that ‘prevents anyone having any fun’. Given their way, we’d be allowed no meat, our homes would all have to be dimly lit and freezing cold, we’d have to walk everywhere or wait for buses in the rain. Those buses would still burn diesel fuel, which kills thousands of people every year via inhalation of tiny particulates. When you get anywhere, you’d have to use ancient technologies that have to be fixed instead of replaced. You’d have to do stuff that doesn’t use much energy or involve eating anything nice, going anywhere nice because that would involve travel and travel is bad, except for greens, who can go to as many international conferences as they want.

So if the greens get their way, if people are dumb enough to fall for promises of infinite milk and honey for all, all paid for by taxing 3 bankers, then the world we’d live in would very quickly have a devastated environment, a devastated economy, a massive transfer of wealth from the poor to a few rich people, enormous oppression, increasing poverty, decreasing health, no fun at all. In short, with all the above boxes checked, the final summary box to get the policy into manifesto must be ‘increases general misery‘.

An interesting list of boxes to tick really. It seems that all truly green policies must:

  1. Cause environmental destruction
  2. Increase poverty and oppression
  3. Be counterproductive
  4. Push towards economic collapse
  5. Make the poor suffer all the costs while the rich (and Green elite) reap the benefits
  6. Impede further science and technology development
  7. Prevent anyone having fun
  8. Lead to general misery

This can’t be actually how they run their meetings I suppose: unless they get someone from outside with a working brain to tick the boxes, the participants would need to have some basic understanding of the actual likely consequences of their proposals and to be malign, and there is little evidence to suggest any of them do understand, and they are mostly not malign. Greens are mostly actually quite nice people, even the ones in politics, and I do really think they believe in what they are doing. Their hearts are usually in the right place, it’s just that their brains are missing or malfunctioning. All of the boxes get ticked, it’s just unintentionally.

I rest my case.