Category Archives: IT

Fluorescent microsphere mist displays

A few 3D mist displays have been demonstrated over the last decade. I’ve seen a couple at trade shows and have been impressed. To date, they use mists or curtains of tiny water droplets to make a 3D space onto which to project an image, so you get a walk-through 3D life-sized display. Like this:

http://wonderfulengineering.com/leia-display-system-uses-a-screen-made-of-water-mist-to-display-3d-projections/

or check out: http://ixfocus.com/top-10-best-3d-water-projections-ever/

Two years ago, I suggested using a forehead-mounted mist projector:

https://timeguide.wordpress.com/2014/11/03/forehead-3d-mist-projector/

so you could have a 3D image made right in front of you anywhere.

This week, a holographic display has been doing the rounds on Twitter, called Gatebox:

https://www.geek.com/tech/gatebox-wants-to-be-your-personal-holographic-companion-1682967/

It looks OK but mist displays might be better solution for everyday use because they can be made a lot bigger more cheaply. However, nobody really wants water mist causing electrical problems in their PCs or making their notebook paper soggy. You can use smoke as a mist substitute but then you have a cloud of smoke around you. So…

Suppose instead of using water droplets and walking around veiled in fog or smoke or accompanied by electrical crackling and dead PCs, that the mist was not made of water droplets but tiny dry and obviously non-toxic particles such as fluorescent micro-spheres that are invisible to the naked eye and transparent to visible light so you can’t see the mist at all, and it won’t make stuff damp. Instead of projecting visible light, the particles are made of fluorescent material, so that they are illuminated by a UV projector and fluoresce with the right colour to make the visible display. There are plenty of fluorescent materials that could be made into tiny particles, even nano-particles, and made into an invisible mist that produces a bright and high-resolution display. Even if non-toxic is too big an ask, or the fluorescent material is too expensive to waste, a large box that keeps them contained and recycles them for the next display could still be bigger, better, brighter and cheaper than a large holographic display.

Remember, you saw it here first. My 101st invention of 2016.

Chat-bots will help reduce loneliness, a bit

Amazon is really pushing its Echo and Dot devices at the moment and some other companies also use Alexa in their own devices. They are starting to gain avatar front ends too. Microsoft has their Cortana transforming into Zo, Apple has Siri’s future under wraps for now. Maybe we’ll see Siri in a Sari soon, who knows. Thanks to rapidly developing AI, chatbots and other bots have also made big strides in recent years, so it’s obvious that the two can easily be combined. The new voice control interfaces could become chatbots to offer a degree of companionship. Obviously that isn’t as good as chatting to real people, but many, very many people don’t have that choice. Loneliness is one of the biggest problems of our time. Sometimes people talk to themselves or to their pet cat, and chatting to a bot would at least get a real response some of the time. It goes further than simple interaction though.

I’m not trying to understate the magnitude of the loneliness problem, and it can’t solve it completely of course, but I think it will be a benefit to at least some lonely people in a few ways. Simply having someone to chat to will already be of some help. People will form emotional relationships with bots that they talk to a lot, especially once they have a visual front end such as an avatar. It will help some to develop and practice social skills if that is their problem, and for many others who feel left out of local activity, it might offer them real-time advice on what is on locally in the next few days that might appeal to them, based on their conversations. Talking through problems with a bot can also help almost as much as doing so with a human. In ancient times when I was a programmer, I’d often solve a bug by trying to explain how my program worked, and in doing so i would see the bug myself. Explaining it to a teddy bear would have been just as effective, the chat was just a vehicle for checking through the logic from a new angle. The same might apply to interactive conversation with a bot. Sometimes lonely people can talk too much about problems when they finally meet people, and that can act as a deterrent to future encounters, so that barrier would also be reduced. All in all, having a bot might make lonely people more able to get and sustain good quality social interactions with real people, and make friends.

Another benefit that has nothing to do with loneliness is that giving a computer voice instructions forces people to think clearly and phrase their requests correctly, just like writing a short computer program. In a society where so many people don’t seem to think very clearly or even if they can, often can’t express what they want clearly, this will give some much needed training.

Chatbots could also offer challenges to people’s thinking, even to help counter extremism. If people make comments that go against acceptable social attitudes or against known facts, a bot could present the alternative viewpoint, probably more patiently than another human who finds such viewpoints frustrating. I’d hate to see this as a means to police political correctness, though it might well be used in such a way by some providers, but it could improve people’s lack of understanding of even the most basic science, technology, culture or even politics, so has educational value. Even if it doesn’t convert people, it might at least help them to understand their own views more clearly and be better practiced at communicating their arguments.

Chat bots could make a significant contribution to society. They are just machines, but those machines are tools for other people and society as a whole to help more effectively.

 

AI presents a new route to attack corporate value

As AI increases in corporate, social, economic and political importance, it is becoming a big target for activists and I think there are too many vulnerabilities. I think we should be seeing a lot more articles than we are about what developers are doing to guard against deliberate misdirection or corruption, and already far too much enthusiasm for make AI open source and thereby giving mischief-makers the means to identify weaknesses.

I’ve written hundreds of times about AI and believe it will be a benefit to humanity if we develop it carefully. Current AI systems are not vulnerable to the terminator scenario, so we don’t have to worry about that happening yet. AI can’t yet go rogue and decide to wipe out humans by itself, though future AI could so we’ll soon need to take care with every step.

AI can be used in multiple ways by humans to attack systems.

First and most obvious, it can be used to enhance malware such as trojans or viruses, or to optimize denial of service attacks. AI enhanced security systems already battle against adaptive malware and AI can probe systems in complex ways to find vulnerabilities that would take longer to discover via manual inspection. As well as AI attacking operating systems, it can also attack AI by providing inputs that bias its learning and decision-making, giving AI ‘fake news’ to use current terminology. We don’t know the full extent of secret military AI.

Computer malware will grow in scope to address AI systems to undermine corporate value or political campaigns.

A new route to attacking corporate AI, and hence the value in that company that relates in some way to it is already starting to appear though. As companies such as Google try out AI-driven cars or others try out pavement/sidewalk delivery drones, so mischievous people are already developing devious ways to misdirect or confuse them. Kids will soon have such activity as hobbies. Deliberate deception of AI is much easier when people know how they work, and although it’s nice for AI companies to put their AI stuff out there into the open source markets for others to use to build theirs, that does rather steer future systems towards a mono-culture of vulnerability types. A trick that works against one future AI in one industry might well be adaptable to another use in another industry with a little devious imagination. Let’s take an example.

If someone builds a robot to deliberately step in front of a self-driving car every time it starts moving again, that might bring traffic to a halt, but police could quickly confiscate the robot, and they are expensive, a strong deterrent even if the pranksters are hiding and can’t be found. Cardboard cutouts might be cheaper though, even ones with hinged arms to look a little more lifelike. A social media orchestrated campaign against a company using such cars might involve thousands of people across a country or city deliberately waiting until the worst time to step out into a road when one of their vehicles comes along, thereby creating a sort of denial of service attack with that company seen as the cause of massive inconvenience for everyone. Corporate value would obviously suffer, and it might not always be very easy to circumvent such campaigns.

Similarly, the wheeled delivery drones we’ve been told to expect delivering packages any time soon will also have cameras to allow them to avoid bumping into objects or little old ladies or other people, or cats or dogs or cardboard cutouts or carefully crafted miniature tank traps or diversions or small roadblocks that people and pets can easily step over but drones can’t, that the local kids have built from a few twigs or cardboard from a design that has become viral that day. A few campaigns like that with the cold pizzas or missing packages that result could severely damage corporate value.

AI behind websites might also be similarly defeated. An early experiment in making a Twitter chat-bot that learns how to tweet by itself was quickly encouraged by mischief-makers to start tweeting offensively. If people have some idea how an AI is making its decisions, they will attempt to corrupt or distort it to their own ends. If it is heavily reliant on open source AI, then many of its decision processes will be known well enough for activists to develop appropriate corruption tactics. It’s not to early to predict that the proposed AI-based attempts by Facebook and Twitter to identify and defeat ‘fake news’ will fall right into the hands of people already working out how to use them to smear opposition campaigns with such labels.

It will be a sort of arms race of course, but I don’t think we’re seeing enough about this in the media. There is a great deal of hype about the various AI capabilities, a lot of doom-mongering about job cuts (and a lot of reasonable warnings about job cuts too) but very little about the fight back against AI systems by attacking them on their own ground using their own weaknesses.

That looks to me awfully like there isn’t enough awareness of how easily they can be defeated by deliberate mischief or activism, and I expect to see some red faces and corporate account damage as a result.

PS

This article appeared yesterday that also talks about the bias I mentioned: https://techcrunch.com/2016/12/10/5-unexpected-sources-of-bias-in-artificial-intelligence/

Since I wrote this blog, I was asked via Linked-In to clarify why I said that Open Source AI systems would have more security risk. Here is my response:

I wasn’t intending to heap fuel on a dying debate (though since current debate looks the same as in early 1990s it is dying slowly). I like and use open source too. I should have explained my reasoning better to facilitate open source checking: In regular (algorithmic) code, programming error rate should be similar so increasing the number of people checking should cancel out the risk from more contributors so there should be no a priori difference between open and closed. However:

In deep learning, obscurity reappears via neural net weightings being less intuitive to humans. That provides a tempting hiding place.

AI foundations are vulnerable to group-think, where team members share similar world models. These prejudices will affect the nature of OS and CS code and result in AI with inherent and subtle judgment biases which will be less easy to spot than bugs and be more visible to people with alternative world models. Those people are more likely to exist in an OS pool than a CS pool and more likely to be opponents so not share their results.

Deep learning may show the equivalent of political (or masculine and feminine). As well as encouraging group-think, that also distorts the distribution of biases and therefore the cancelling out of errors can no longer be assumed.

Human factors in defeating security often work better than exploiting software bugs. Some of the deep learning AI is designed to mimic humans as well as possible in thinking and in interfacing. I suspect that might also make them more vulnerable to meta-human-factor attacks. Again, exposure to different and diverse cultures will show a non-uniform distribution of error/bias spotting/disclosure/exploitation.

Deep learning will become harder for humans to understand as it develops and becomes more machine dependent. That will amplify the above weaknesses. Think of optical illusions that greatly distort human perception and think of similar in advanced AI deep learning. Errors or biases that are discovered will become more valuable to an opponent since they are less likely to be spotted by others, increasing their black market exploitation risk.

I have not been a programmer for over 20 years and am no security expert so my reasoning may be defective, but at least now you know what my reasoning was and can therefore spot errors in it.

Colour changing cars, everyday objects and makeup

http://www.theverge.com/2016/11/24/13740946/dutch-scientists-use-color-changing-graphene-bubbles-to-create-mechanical-pixels shows how graphene can be used to make displays with each pixel changing colour according to mechanical deformation.

Meanwhile, Lexus have just created a car with a shell covered in LEDs so it can act as a massive display.

http://www.theverge.com/2016/12/5/13846396/lexus-led-lit-is-colors-dua-lipa-vevo

In 2014 I wrote about using polymer LED displays for future Minis so it’s nice to see another prediction come true.

Looking at the mechanical pixels though, it is clear that mechanical pixels could respond directly to sound, or to turbulence of passing air, plus other vibration that arises from motion on a road surface, or the engine. Car panel colours could change all the time powered by ambient energy. Coatings on any solid objects could follow, so people might have plenty of shimmering colours in their everyday environment. Could. Not sure I want it, but they could.

With sound as a control system, sound wave generators at the edges or underneath such surfaces could produce a wide variety of pleasing patterns. We could soon have furniture that does a good impression of being a cuttlefish.

I often get asked about smart makeup, on which I’ve often spoken since the late 90s. Thin film makeup displays could use this same tech. So er, we could have people with makeup pretending to be cuttlefish too. I think I’ll quit while I’m ahead.

Sky-lines – The Solar Powered Future of Air Travel

High altitude solar array to power IT and propel planes

High altitude solar array to power IT and propel planes

A zero carbon air travel solution. Well, most of the bits would be made of carbon materials, but it wouldn’t emit any CO2.

The pic says it all. A linear solar farm suspended in the high atmosphere to provide an IT platform for sensors, comms and other functions often accomplished by low orbit satellite. It would float up there thanks to being fixed to a graphene foam base layer that can be made lighter than helium (my previous invention, see https://timeguide.wordpress.com/2013/01/05/could-graphene-foam-be-a-future-helium-substitute/ which has since been prototyped and proven to be extremely resilient to high pressures too). Ideally, it would go all the way around the world, in various inclinations at different altitudes to provide routes to many places. Carbon materials are also incredibly strong so the line can be made as strong as can reasonably be required.

The flotation layer also supports a hypersonic linear induction motor that could provide direct propulsion to a hypersonic glider or to electric fans on a powered plane. Obviously this could also provide a means of making extremely low earth orbit satellites that continuously circumnavigate the ring.

I know you’re asking already how the planes get up there. There are a few solutions. Tethers could come all the way to ground level to airports, and electric engines would be used to get to height where the plane would pick up a sled-link.

Alternatively, stronger links to the ground would allow planes to be pulled up by sleds, though this would likely be less feasible.

Power levels? Well, the engines on a Boeing 777 generate about 8.25MW. A high altitude solar cell, above clouds could generate 300W per square metre. So a 777 equivalent plane needs 55km of panels if the line is just one metre wide. That means planes need to be at least that distance apart, but since that equates to around a minute, that is no barrier at all.

If you still doubt this, the Hyperloop was just a crazy idea a century ago too.

25th anniversary of stick interface for 3D world play,

I don’t have the exact date when I thought this up so it might be a week or two out, but late 1991 certainly, so I thought I’d celebrate its 25th anniversary by blogging the idea again.

The idea was a simple stick with simple reflectors on it that could easily be tracked using an infrared beam and detector(s). Most tools and especially tools for making crafts or drawing can be approximated by a stick, and we all have a lifetime of experience in manipulating sticks, so they would be the perfect interface, and cost almost nothing to make. Here’s a pretty picture:

Stick 2.0

Stick 2.0

You can easily imagine how you could use such a stick to carve out a wall or a roof or a piece of furniture in your 3D world, or to play any kind of sports. Nintendo built a complex wand device to do this expensively, but really a simple stick can do most of that too.

Future Augmented Reality

AR has been hot on the list of future IT tech for 25 years. It has been used for various things since smartphones and tablets appeared but really hit the big time with the recent Pokemon craze.

To get an idea of the full potential of augmented reality, recognize that the web and all its impacts on modern life came from the convergence of two medium sized industries – telecoms and computing. Augmented reality will involve the convergence of everything in the real world with everything in the virtual world, including games, media, the web, art, data, visualization, architecture, fashion and even imagination. That convergence will be enabled by ubiquitous mobile broadband, cloud, blockchain payments, IoT, positioning and sensor tech, image recognition, fast graphics chips, display and visor technology and voice and gesture recognition plus many other technologies.

Just as you can put a Pokemon on a lawn, so you could watch aliens flying around in spaceships or cartoon characters or your favorite celebs walking along the street among the other pedestrians. You could just as easily overlay alternative faces onto the strangers passing by.

People will often want to display an avatar to people looking at them, and that could be different for every viewer. That desire competes with the desire of the viewer to decide how to see other people, so there will be some battles over who controls what is seen. Feminists will certainly want to protect women from the obvious objectification that would follow if a woman can’t control how she is seen. In some cases, such objectification and abuse could even reach into hate crime territory, with racist, sexist or homophobic virtual overlays. All this demands control, but it is far from obvious where that control would come from.

As for buildings, they too can have a virtual appearance. Virtual architecture will show off architect visualization skills, but will also be hijacked by the marketing departments of the building residents. In fact, many stakeholders will want to control what you see when you look at a building. The architects, occupants, city authorities, government, mapping agencies, advertisers, software producers and games designers will all try to push appearances at the viewer, but the viewer might want instead to choose to impose one from their own offerings, created in real time by AI or from large existing libraries of online imagery, games or media. No two people walking together on a street would see the same thing.

Interior decor is even more attractive as an AR application. Someone living in a horrible tiny flat could enhance it using AR to give the feeling of far more space and far prettier decor and even local environment. Virtual windows onto Caribbean beaches may be more attractive than looking at mouldy walls and the office block wall that are physically there. Reality is often expensive but images can be free.

Even fashion offers a platform for AR enhancement. An outfit might look great on a celebrity but real life shapes might not measure up. Makeovers take time and money too. In augmented reality, every garment can look as it should, and that makeup can too. The hardest choice will be to choose a large number of virtual outfits and makeups to go with the smaller range of actual physical appearances available from that wardrobe.

Gaming is in pole position, because 3D world design, imagination, visualization and real time rendering technology are all games technology, so perhaps the biggest surprise in the Pokemon success is that it was the first to really grab attention. People could by now be virtually shooting aliens or zombies hoarding up escalators as they wait for their partners. They are a little late, but such widespread use of personal or social gaming on city streets and in malls will come soon.

AR Visors are on their way too, and though the first offerings will be too expensive to achieve widespread adoption, cheaper ones will quickly follow. The internet of things and sensor technology will create abundant ground-up data to make a strong platform. As visors fall in price, so too will the size and power requirements of the processing needed, though much can be cloud-based.

It is a fairly safe bet that marketers will try very hard to force images at us and if they can’t do that via blatant in-your-face advertising, then product placement will become a very fine art. We should expect strong alliances between the big marketing and advertising companies and top games creators.

As AI simultaneously develops, people will be able to generate a lot of their own overlays, explaining to AI what they’d like and having it produced for them in real time. That would undermine marketing use of AR so again there will be some battles for control. Just as we have already seen owners of landmarks try to trademark the image of their buildings to prevent people including them in photographs, so similar battles will fill the courts over AR. What is to stop someone superimposing the image of a nicer building on their own? Should they need to pay a license to do so? What about overlaying celebrity faces on strangers? What about adding multimedia overlays from the web to make dull and ordinary products do exciting things when you use them? A cocktail served in a bar could have a miniature Sydney fireworks display going on over it. That might make it more exciting, but should the media creator be paid and how should that be policed? We’ll need some sort of AR YouTube at the very least with added geolocation.

The whole arts and media industry will see city streets as galleries and stages on which to show off and sell their creations.

Public services will make more mundane use of AR. Simple everyday context-dependent signage is one application, but overlays would be valuable in emergencies too. If police or fire services could superimpose warning on everyone’s visors nearby, that may help save lives in emergencies. Health services will use AR to assist ordinary people to care for a patient until an ambulance arrives

Shopping provide more uses and more battles. AR will show you what a competing shop has on offer right beside the one in front of you. That will make it easy to digitally trespass on a competitor’s shop floor. People can already do that on their smartphone, but AR will put the full image large as life right in front of your eyes to make it very easy to compare two things. Shops won’t want to block comms completely because that would prevent people wanting to enter their shop at all, so they will either have to compete harder or find more elaborate ways of preventing people making direct visual comparisons in-store. Perhaps digital trespassing might become a legal issue.

There will inevitably be a lot of social media use of AR too. If people get together to demonstrate, it will be easier to coordinate them. If police insist they disperse, they could still congregate virtually. Dispersed flash mobs could be coordinated as much as ones in the same location. That makes AR a useful tool for grass-roots democracy, especially demonstrations and direct action, but it also provides a platform for negative uses such as terrorism. Social entrepreneurs will produce vast numbers of custom overlays for millions of different purposes and contexts. Today we have tens of millions of websites and apps. Tomorrow we will have even more AR overlays.

These are just a few of the near term uses of augmented reality and a few hints as issues arising. It will change every aspect of our lives in due course, just as the web has, but more so.

 

Carbethium, a better-than-scifi material

How to build one of these for real:

Light_bridge

Halo light bridge, from halo.wikia.com

Or indeed one of these:

From halo.wikia.com

From halo.wikia.com

I recently tweeted that I had an idea how to make the glowy bridges and shields we’ve seen routinely in sci-fi games from Half Life to Destiny, the bridges that seem to appear in a second or two from nothing across a divide, yet are strong enough to drive tanks over, and able to vanish as quickly and completely when they are switched off. I woke today realizing that with a bit of work, that it could be the basis of a general purpose material to make the tanks too, and buildings and construction platforms, bridges, roads and driverless pod systems, personal shields and city defense domes, force fields, drones, planes and gliders, space elevator bases, clothes, sports tracks, robotics, and of course assorted weapons and weapon systems. The material would only appear as needed and could be fully programmable. It could even be used to render buildings from VR to real life in seconds, enabling at least some holodeck functionality. All of this is feasible by 2050.

Since it would be as ethereal as those Halo structures, I first wanted to call the material ethereum, but that name was already taken (for a 2014 block-chain programming platform, which I note could be used to build the smart ANTS network management system that Chris Winter and I developed in BT in 1993), and this new material would be a programmable construction platform so the names would conflict, and etherium is too close. Ethium might work, but it would be based on graphene and carbon nanotubes, and I am quite into carbon so I chose carbethium.

Ages ago I blogged about plasma as a 21st Century building material. I’m still not certain this is feasible, but it may be, and it doesn’t matter for the purposes of this blog anyway.

https://timeguide.wordpress.com/2013/11/01/will-plasma-be-the-new-glass/

Around then I also blogged how to make free-floating battle drones and more recently how to make a Star Wars light-saber.

https://timeguide.wordpress.com/2013/06/23/free-floating-ai-battle-drone-orbs-or-making-glyph-from-mass-effect/

https://timeguide.wordpress.com/2015/11/25/how-to-make-a-star-wars-light-saber/

Carbethium would use some of the same principles but would add the enormous strength and high conductivity of graphene to provide the physical properties to make a proper construction material. The programmable matter bits and the instant build would use a combination of 3D interlocking plates, linear induction,  and magnetic wells. A plane such as a light bridge or a light shield would extend from a node in caterpillar track form with plates added as needed until the structure is complete. By reversing the build process, it could withdraw into the node. Bridges that only exist when they are needed would be good fun and we could have them by 2050 as well as the light shields and the light swords, and light tanks.

The last bit worries me. The ethics of carbethium are the typical mixture of enormous potential good and huge potential for abuse to bring death and destruction that we’re learning to expect of the future.

If we can make free-floating battle drones, tanks, robots, planes and rail-gun plasma weapons all appear within seconds, if we can build military bases and erect shield domes around them within seconds, then warfare moves into a new realm. Those countries that develop this stuff first will have a huge advantage, with the ability to send autonomous robotic armies to defeat enemies with little or no risk to their own people. If developed by a James Bond super-villain on a hidden island, it would even be the sort of thing that would enable a serious bid to take over the world.

But in the words of Professor Emmett Brown, “well, I figured, what the hell?”. 2050 values are not 2016 values. Our value set is already on a random walk, disconnected from any anchor, its future direction indicated by a combination of current momentum and a chaos engine linking to random utterances of arbitrary celebrities on social media. 2050 morality on many issues will be the inverse of today’s, just as today’s is on many issues the inverse of the 1970s’. Whatever you do or however politically correct you might think you are today, you will be an outcast before you get old: https://timeguide.wordpress.com/2015/05/22/morality-inversion-you-will-be-an-outcast-before-youre-old/

We’re already fucked, carbethium just adds some style.

Graphene combines huge tensile strength with enormous electrical conductivity. A plate can be added to the edge of an existing plate and interlocked, I imagine in a hexagonal or triangular mesh. Plates can be designed in many diverse ways to interlock, so that rotating one engages with the next, and reversing the rotation unlocks them. Plates can be pushed to the forward edge by magnetic wells, using linear induction motors, using the graphene itself as the conductor to generate the magnetic field and the design of the structure of the graphene threads enabling the linear induction fields. That would likely require that the structure forms first out of graphene threads, then the gaps between filled by mesh, and plates added to that to make the structure finally solid. This would happen in thickness as well as width, to make a 3D structure, though a graphene bridge would only need to be dozens of atoms thick.

So a bridge made of graphene could start with a single thread, which could be shot across a gap at hundreds of meters per second. I explained how to make a Spiderman-style silk thrower to do just that in a previous blog:

https://timeguide.wordpress.com/2015/11/12/how-to-make-a-spiderman-style-graphene-silk-thrower-for-emergency-services/

The mesh and 3D build would all follow from that. In theory that could all happen in seconds, the supply of plates and the available power being the primary limiting factors.

Similarly, a shield or indeed any kind of plate could be made by extending carbon mesh out from the edge or center and infilling. We see that kind of technique used often in sci-fi to generate armor, from lost in Space to Iron Man.

The key components in carbetheum are 3D interlocking plate design and magnetic field design for the linear induction motors. Interlocking via rotation is fairly easy in 2D, any spiral will work, and the 3rd dimension is open to any building block manufacturer. 3D interlocking structures are very diverse and often innovative, and some would be more suited to particular applications than others. As for linear induction motors, a circuit is needed to produce the travelling magnetic well, but that circuit is made of the actual construction material. The front edge link between two wires creates a forward-facing magnetic field to propel the next plates and convey enough intertia to them to enable kinetic interlocks.

So it is feasible, and only needs some engineering. The main barrier is price and material quality. Graphene is still expensive to make, as are carbon nanotubes, so we won’t see bridges made of them just yet. The material quality so far is fine for small scale devices, but not yet for major civil engineering.

However, the field is developing extremely quickly because big companies and investors can clearly see the megabucks at the end of the rainbow. We will have almost certainly have large quantity production of high quality graphene for civil engineering by 2050.

This field will be fun. Anyone who plays computer games is already familiar with the idea. Light bridges and shields, or light swords would appear much as in games, but the material would likely  be graphene and nanotubes (or maybe the newfangled molybdenum equivalents). They would glow during construction with the plasma generated by the intense electric and magnetic fields, and the glow would be needed afterward to make these ultra-thin physical barriers clearly visible,but they might become highly transparent otherwise.

Assembling structures as they are needed and disassembling them just as easily will be very resource-friendly, though it is unlikely that carbon will be in short supply. We can just use some oil or coal to get more if needed, or process some CO2. The walls of a building could be grown from the ground up at hundreds of meters per second in theory, with floors growing almost as fast, though there should be little need to do so in practice, apart from pushing space vehicles up so high that they need little fuel to enter orbit. Nevertheless, growing a  building and then even growing the internal structures and even furniture is feasible, all using glowy carbetheum. Electronic soft fabrics, cushions and hard surfaces and support structures are all possible by combining carbon nanotubes and graphene and using the reconfigurable matter properties carbethium convents. So are visual interfaces, electronic windows, electronic wallpaper, electronic carpet, computers, storage, heating, lighting, energy storage and even solar power panels. So is all the comms and IoT and all the smart embdedded control systems you could ever want. So you’d use a computer with VR interface to design whatever kind of building and interior furniture decor you want, and then when you hit the big red button, it would appear in front of your eyes from the carbethium blocks you had delivered. You could also build robots using the same self-assembly approach.

If these structures can assemble fast enough, and I think they could, then a new form of kinetic architecture would appear. This would use the momentum of the construction material to drive the front edges of the surfaces, kinetic assembly allowing otherwise impossible and elaborate arches to be made.

A city transport infrastructure could be built entirely out of carbethium. The linear induction mats could grow along a road, connecting quickly to make a whole city grid. Circuit design allows the infrastructure to steer driverless pods wherever they need to go, and they could also be assembled as required using carbethium. No parking or storage is needed, as the pod would just melt away onto the surface when it isn’t needed.

I could go to town on military and terrorist applications, but more interesting is the use of the defense domes. When I was a kid, I imagined having a house with a defense dome over it. Lots of sci-fi has them now too. Domes have a strong appeal, even though they could also be used as prisons of course. A supply of carbetheum on the city edges could be used to grow a strong dome in minutes or even seconds, and there is no practical limit to how strong it could be. Even if lasers were used to penetrate it, the holes could fill in in real time, replacing material as fast as it is evaporated away.

Anyway, lots of fun. Today’s civil engineering projects like HS2 look more and more primitive by the day, as we finally start to see the true potential of genuinely 21st century construction materials. 2050 is not too early to expect widespread use of carbetheum. It won’t be called that – whoever commercializes it first will name it, or Google or MIT will claim to have just invented it in a decade or so, so my own name for it will be lost to personal history. But remember, you saw it here first.

Diabetes: Electronically controlled drug delivery via smart membrane

This is an invention I made in 2001 as part of my active skin suite to help diabetics. I’ve just been told I am another of the zillions of diabetics in the world so was reminded of it.

This wasn’t feasible in 2001 but it will be very soon, and could be an ideal way of monitoring blood glucose and insulin levels, checking with clinic AI for the correct does, and then opening the membrane pores just enough and long enough to allow the right dose of insulin to pass through. Obviously pore and drug particle design have to be coordinated, but this should be totally feasible. Here’s some pics:

Active skin principles

Active skin principles

Drug delivery overview

Drug delivery overview

Drug delivery mechanism

Drug delivery mechanism

New book: Society Tomorrow

It’s been a while since my last blog. That’s because I’ve been writing another book, my 8th so far. Not the one I was doing on future fashion, which went on the back burner for a while, I’ve only written a third of that one, unless I put it out as a very short book.

This one follows on from You Tomorrow and is called Society Tomorrow, 20% shorter at 90,000 words. It is ready to publish now, so I’m just waiting for feedback from a few people before hitting the button.

Frontcover

Here’s the introduction:

The one thing that we all share is that we will get older over the next few decades. Rapid change affects everyone, but older people don’t always feel the same effects as younger people, and even if we keep up easily today, some of us may find it harder tomorrow. Society will change, in its demographic and ethnic makeup, its values, its structure. We will live very differently. New stresses will come from both changing society and changing technology, but there is no real cause for pessimism. Many things will get better for older people too. We are certainly not heading towards utopia, but the overall quality of life for our ageing population will be significantly better in the future than it is today. In fact, most of the problems ahead are related to quality of life issues in society as a whole, and simply reflect the fact that if you don’t have to worry as much about poor health or poverty, something else will still occupy your mind.

This book follows on from 2013’s You Tomorrow, which is a guide to future life as an individual. It also slightly overlaps my 2013 book Total Sustainability which looks in part at future economic and social issues as part of achieving sustainability too. Rather than replicating topics, this book updates or omits them if they have already been addressed in those two companion books. As a general theme, it looks at wider society and the bigger picture, drawing out implications for both individuals and for society as a whole to deal with. There are plenty to pick from.

If there is one theme that plays through the whole book, it is a strong warning of the problem of increasing polarisation between people of left and right political persuasion. The political centre is being eroded quickly at the moment throughout the West, but alarmingly this does not seem so much to be a passing phase as a longer term trend. With all the potential benefits from future technology, we risk undermining the very fabric of our society. I remain optimistic because it can only be a matter of time before sense prevails and the trend reverses. One day the relative harmony of living peacefully side by side with those with whom we disagree will be restored, by future leaders of higher quality than those we have today.

Otherwise, whereas people used to tolerate each other’s differences, I fear that this increasing intolerance of those who don’t share the same values could lead to conflict if we don’t address it adequately. That intolerance currently manifests itself in increasing authoritarianism, surveillance, and an insidious creep towards George Orwell’s Nineteen Eighty-Four. The worst offenders seem to be our young people, with students seemingly proud of trying to ostracise anyone who dares agree with what they think is correct. Being students, their views hold many self-contradictions and clear lack of thought, but they appear to be building walls to keep any attempt at different thought away.

Altogether, this increasing divide, built largely from sanctimony, is a very dangerous trend, and will take time to reverse even when it is addressed. At the moment, it is still worsening rapidly.

So we face significant dangers, mostly self-inflicted, but we also have hope. The future offers wonderful potential for health, happiness, peace, prosperity. As I address the significant problems lying ahead, I never lose my optimism that they are soluble, but if we are to solve problems, we must first recognize them for what they are and muster the willingness to deal with them. On the current balance of forces, even if we avoid outright civil war, the future looks very much like a gilded cage. We must not ignore the threats. We must acknowledge them, and deal with them.

Then we can all reap the rich rewards the future has to offer.

It will be out soon.