Tag Archives: technology

Population Growth is a Good Thing

Many people are worried about world human population, that we are overpopulating the planet and will reap environmental catastrophe. Some suggest draconian measures to limit or even reduce it. I’m not panicking about population at all. I’m not even particularly concerned. I don’t think it is necessarily a bad thing to have a high population. And I think it will be entirely sustainable to have a much higher population.

Nobody sane think the Earth’s human population will carry on increasing exponentially forever. Obviously it will level off and it is already starting to do so. I would personally put the maximum carrying capacity of the Earth at around 100 billion people, but population will almost certainly level off between 9 and 10 billion, let’s say 9.5Bn. Further in the future, other planets will one day house some more people, but they will have their own economics.

We aren’t running out of physical resources, just moving them around. Apart from a few spacecraft that have moved some stuff off planet, some excess radioactive decay induced in power stations and weapons, and helium and hydrogen escaping from the atmosphere, all of which is offset by meteorites and dust landing from space, all we have done is convert stuff to other forms. Almost all materials are more plentiful now than they were 40 years ago when the loudest of doom-mongers warned of the world running out imminently. They were simply wrong.

If we do start to run short, we can mine key elements from rubbish tips and use energy to convert back to any form we need, we can engineer substitutes or we can gather them from space. Another way of looking at this issue is that we live on top of 6000km of resources and only have homes a few metres deep. When we fill them we have to dispose of one thing to make room for a new one, and recycling technology is getting better all the time. Meanwhile, material technology development means we need less material to make something, and can do so with a wider range of input elements.

We are slowly depleting some organic resources, such as fossil fuels, but there are several hundred years supply left, and we will not need any more than a tiny fraction of that before we move to other energy sources. We’re also depleting some fish stocks around the world, so fishing needs some work in designing and implementing better practices, but that is not unachievable by any means and some progress is already happening. Forestry is being depleted in some areas and expanding in others. Some areas of forest are being wiped out because environmentalists and other doomsayers have forced policies through that encourage people to burn them down to make the land available for biofuel plantations and carbon offset schemes.

We certainly are not short of space. I live in Southern England, which sometimes feels full when I get stuck in traffic jams or queues for public services, but these are a matter of design, not fundamental limits. Physically, I don’t feel it is terribly overpopulated here yet, even with the second highest population density on Earth, at 470 people per square kilometre. India only has 345, even with its massive population. China has even less at only 140, while Indonesia has 117, Brazil just 22, and Russia a mere 7.4 people per square kilometre. Yet these are the world’s biggest populations today. So there is room for expansion perhaps. If all the inhabitable land in the world were to be occupied at average English density of today, the world can actually hold 75-80 Billion people. There would still be loads of open countryside, still only 1 or 2% covered in concrete and tarmac.

But self-driving vehicles can increase road capacity by a factor of 5, regional rail capacity by a factor of 200. Replacement of most public sector workers by machines, or better still, good system design, would eradicate most queues and improve most services. England isn’t even full yet. So that 75-80Bn could become 100Bn before it feels crowded.

So let’s stop first of all from imagining that we are running out of space any time soon. We just aren’t!

Energy isn’t a problem in the long term either. Shale gas is already reducing costs in the USA at the same time as reducing carbon dioxide emissions. In Europe, doom-mongers and environmentalist have been more successful in influencing policy, so CO2 emissions are increasing while energy costs create fuel poverty and threaten many key areas of the economy. Nuclear energy currently depends on uranium but thorium based power is under development and is very likely to succeed in due course, adding several hundred years of supply. Solar, fusion, geothermal and shale gas will add to this to provide abundant power for even a much great population, within a few decades, well ahead of the population curve. The only energy shortages we will see will be doomsayer-induced.

Future generations will face debts handed on to them without their consent to pay for this doom-induced folly, but will also inherit a physical and cultural infrastructure with built in positive feedback that ensure rapid technological development.

Among its many benefits, future technology will greatly reduce the amount of material needed to accomplish a task. It will also expand the global economy to provide enough wealth to buy a decent standard of living for everyone. It will also clean up the environment while producing far more food from less land area, allowing some land to be returned to nature. Food production per hectare has doubled in the last 30 years. The technology promises further gains into the foreseeable future.

The world of the future will be a greener and more pleasant land, with nature in a better state than today, with a larger world population that is richer and better fed, almost certainly no more than 10 billion. Providing that is, that we can stop doom-mongers forcing their policies through – the only thing that would really wreck the environment. A doom-monger-free human population is not a plague but a benefit to the Earth and nature. The doom-mongers and their policies are the greatest proven threat. Environmentalists should focus on making sure we are inspired by nature and care for it, and then get out of the way and let technologists get on with making sure it can flourish in the future.

Let’s compare the outcomes of following the advice of the doom-mongers with the outcome of following a sensible economic development path using high technology.

If everyone wants to live to western standards, the demands on the environment will grow as the poor become richer and able to afford more. If we try to carry on with existing technology, or worse, with yesterday’s, we will not find that easy. Those who consider technology and economic growth to be enemies of the environment, and who therefore would lock us into today’s or yesterday’s technology, would condemn billions of people to poverty and misery and force those extra people to destroy the environment to try to survive. The result would be miserable future for humanity and a wrecked environment. Ironically, these people have the audacity to call themselves environmentalists, but they are actually enemies of both the environment and of humanity.

If we ignore such green lunacy – and we should – and allow progress to continue, we will see steady global economic growth that will result in a far higher average income per capita in 2050 with 9.5Bn people than we have today with only 7.7Bn. The technology meanwhile will develop so much that the same standard of living can be achieved with far less environmental impact. For example, bridges hundreds of years ago used far more material than today’s, because they were built with primitive science and technology and poor understanding of science. Technology is better now, materials are stronger and more consistent, we know their properties accurately as well as all the forces acting on the bridge, so we need less material to build a bridge strong enough for the purpose, which is better for the environment. With nanotechnology and improved materials, we will need even less material to build future bridges. The environmental footprint of each person will certainly be far lower in 2050 if we accept new technology than it will be if we restrict growth and technology development. It will almost certainly be less even than today’s, even though our future lifestyles would be far better. Trying to go back to yesterday’s technologies without greatly reducing population and lifestyle would impose such high environmental impact that the environment would be devastated. We don’t need to, and we shouldn’t.

Take TVs as another example. TVs used to be hugely heavy and bulky monsters that took up half the living room, used lots of electricity, but offered relatively small displays with a choice from just a few channels. Today, thin LCD or LED displays use far less material, consume far less power, take up far less space and offer far bigger and better displays offering access to thousands of channels via satellites and web links. So as far as TV-based entertainment goes, we have a far higher standard of living with far lower environmental impact. The same is true for phones, computers, networks, cars, fridges, washing machines, and most other tools. Better materials and technologies enable lower resource use.

New science and technology has enabled new kinds of materials that can substitute for scarce physical resources. Copper was once in danger of running out imminently. Now you can build a national fibre telecommunication network with a few bucketfuls of sand and some plastic. We have plastic pipes and water tanks too, so we don’t really need copper for plumbing either. Aluminium makes reasonable cables, and future materials such as graphene will make even better cables, still with no copper use. There are few things that can’t be done with alternative materials, especially as quantum materials can be designed to echo the behaviour of many chemicals. So it is highly unlikely that we will ever run out of any element. We will simply find alternative solutions as shortages demand.

Oil will be much the same story. To believe the doom-mongers, our use of oil will continue to grow exponentially until one day there is none left and then we will all be in big trouble, or dead, breathing in 20% CO2 by then of course. Again, this is simply a nonsensical scenario. By 2030, oil will be considered a messy and expensive way of getting energy, and most will be left in the ground. The 6Gjoules of energy a barrel of oil contains could be made for $30 using solar panels in the deserts, and electricity is clean. Even if solar doesn’t progress that far, shale gas only produces half as much CO2 as oil for the same energy output (another potential environmental improvement held back by green zealots here in the UK and indeed the rest of Europe).

This cheap solar electricity mostly won’t come from UK rooftops as currently incentivised by green-pressured government, but somewhere it is actually sunny, deserts for example, where land is cheap, because it isn’t much use for anything else. The energy will get to us via superconducting or graphene cables. Sure, the technology doesn’t yet exist, but it will. Oil will only cost $30 a barrel because no-one will want to pay more than that for what will be seen as an inferior means of energy production. Shale gas might still be used because it produces relatively little CO2 and will be very cheap, but even that will start declining as the costs of solar and nuclear variants fall.

In the longer term, in our 2050 world of 9.5Bn people, fusion power will be up and running, alongside efficient solar (perhaps some wind) and other forms of energy production, proving an energy glut that will help with water supply and food production as well as our other energy needs. In fact, thanks to the development of graphene desalination technology, clean water will be abundantly available at low cost (not much more than typical tap-water costs today) everywhere.

Our technologies will be so advanced by then that we will be able to control climate better too. We will have environmental models based on science, not models based on the CO2-causes-everything-bad religion, so we will know what we’re doing rather than acting on guesswork and old-wives’ tales. We will have excellent understanding of genetics and biotech and be able to make superior crops and animals, so will be able to make enough food to feed everyone, ensuring not only quantity but nutritional quality too. While today’s crops deliver about 2% of the solar energy landing on their fields to us as food, we will be able to make foods in factories more efficiently, and will have crops that are also more efficient. It is true that we may see occasional short-term food shortages, but in the long term, there is absolutely no need to worry about feeding everyone. And no need to worry about the impact on the environment either, because we will be able to make more food with far less space. No-one needs to be hungry, even if we have 9.5Bn of us, and with steady economic growth, everyone will be able to afford food too.

This is no fanciful techno-utopia. It is entirely deliverable and even expectable. All around the world today, people’s ethical awareness is increasing and we are finally starting to address problems of food and emergency aid distribution, even in failing regimes. The next few decades will not eradicate poverty completely, but it will make starvation much less of a problem, along with clean water availability.

How can we be sure it will be developed? Well, there will be more people for one thing. That means more brains. Those people will be richer, they will be better educated, and many will be scientists and engineers. Many will have been born in countries that value engineers and scientists greatly, and will have a lot of backing, so will get results. Some will be in IT, and will develop computer intelligence to add to the human effort, and provide better, cheaper and faster tools for scientists and engineers in every field to use. So, total intellectual resources will be far greater than they are today.

Therefore we can be certain that technological progress will continue to accelerate. As it does, the environment will become cleaner and healthier, because we will be able to make it so. We will restore nature. Rivers today in the UK are cleaner than 100 years ago. The air is cleaner too. We look after nature better, because that’s what people do when they are affluent and well educated. In 50 years we will see that attitude even more widespread. The rainforests will be flourishing, some species will be being resurrected from extinction via DNA banks. People will be well fed. Water supply will be adequate.

But all this can only happen if we stop following the advice of doom-mongers and technophobes who want to take us backwards.

That really is the key: more people mean more brain power, more solutions, and better technology. For the last million years, that has meant steady improvement of our lot. In the un-technological world of the cavemen hunter-gatherers, the world was capable of supporting around 60 million people. If we try to restrict technology development now, it will be a death sentence. People and the environment would both suffer. No-one wins if we stop progress. That is the fallacy of environmental dogma that is shouted loudly by the doom mongers.

Some extremists in the green movement would have us go back to yesterday, rejecting technology, living on nature and punishing everyone who disagrees with them. They can indulge such silliness when they are only a few and the rest of us support them, but everyone simply can’t live like that. Without technology, the world can only support 60 million, not 7 billion or 9.5 billion or 75 billion. There simply aren’t enough nice fields and forest for us all to live that way.

It is a simple choice. We could have 60 million thoroughly miserable post-environmentalists living in a post eco-catastrophe world where nature has been devastated by the results of daft policies invented by self-proclaimed environmentalists, trying to make a feeble recovery. Or we can ignore their nonsense, get on with our ongoing development, and live in a richer, nicer world where 9.5Bn people (or even far more if we want) can be happy, well fed, well educated, with a good standard of living, and living side by side with a flourishing environment, where our main impacts on the environment are positive.

Technology won’t solve every problem, and will even create some, but without a shadow of a doubt, technology is by far nature’s best friend. Not the lunatic fringe of ‘environmentalists’, many of whom are actually among the environment’s worst enemies – at best, well-meaning fools.

There is one final point that is usually overlooked in this debate. Every new person that is born is another life, living, breathing, loving, hopefully having fun, enjoying life and being happy. Life is a good thing, to be celebrated, not extinguished or prevented from coming into existence just because someone else has no imagination. Thanks to the positive feedbacks in the development loops, 50% more people means probably 100% more total joy and happiness. Population growth is good, we just have to be more creative, but that’s what we do all the time. Now let’s get on with making it work.

Good times lie ahead. We do need to fix some things though. I mentioned that physical resources won’t diminish significantly in quantity in terms of the elements they hold at least, though those we use for energy (oil, coal and gas) give up their energy when we use them and that is gone.

However, the ecosystem is a different matter. Even with advanced genetic technology we can expect in the far future, it will be difficult to resurrect organisms that have become extinct. It is far better to make sure they don’t. Even though an organism may be brought back, we’d also have to bring back the environment it needs with all the intricately woven inter-species dependencies.

Losing a single organism species might be relatively recoverable, but losing a rain forest will be very hard to fix. Forests are very complex systems. In fact designing and making a synthetic and simpler rainforest is probably easier than trying to regenerate a lost natural one. We really don’t want to have to do that. It would be far better to make sure we preserve the existing forests and other complex ecosystems. Poor countries may reasonably ask for some payment to preserve their forests rather than chopping them down to sell wood. We should certainly make sure to remove current perverse ‘environmental’ incentives to chop them down to make room for palm oil plantations to satisfy the demands of poorly thought out environmental policies in rich countries.

The same goes for ocean ecosystems. We are badly mismanaging many fisheries today, and that needs to be fixed, but there are already some signs of progress. EU regulations that used to cause huge quantities of fish to be caught and thrown back dead into the sea are becoming history. Again, these are a hangover from previous environmental policy designed to preserve fish stocks, but again this was poorly thought out and has had the opposite result to that intended.

Other policies in the EU and in other parts of the world are also causing problems by unbalancing populations and harming or distorting food chains. The bans on seal hunting are good – we love seals, but the explosion in seal populations caused by throwing dead fish back has increased the demand of the seal population to over 100,000 tons of fish a year, when it is already severely stressed by over-fishing. The dead fish have also helped cause an explosion in lobster populations and in some sea birds. We may appreciate the good side, but we mustn’t forget to look for harmful effects that may also be caused. It is obvious that we could do far better job, and we must.

A well-managed ocean with properly designed farms should be able to provide all the fish and other seafood we need, but we are well away from it yet and we do need to fix it. With ongoing scientific study, understanding of relationships between species and especially in food chains is improving, and regulations are slowly becoming more sensible, so there is hope. Many people are switching their diets to fish with sustainable populations. But these will need managed well too. Farming is suitable for many species and crashes in some fish populations have added up to a loud wake-up call to fix regulations around the world. We may use genetic modification to increase growth and reproduction rates, or otherwise optimise sustainability and ocean capacity. I don’t think there is any room for complacency, but I am confident that we can and will develop good husbandry practices and that our oceans and fish stocks will recover and become sustainable.

Certainly, we have a greater emotional attachment to the organic world than to mere minerals, and we are part of nature too, but we can and will be sustainable in both camps, even with a greatly increased population.

New book: Fashion Tomorrow

I finally finished the book I started 2 years ago on future fashion, or rather future technologies relevant to the fashion industry.

It is a very short book, more of a quick guide at 40k words, less than half as long as my other books and covers women’s fashion mostly, though some applies to men too. I would never have finished writing a full-sized book on this topic and I’d rather put out something now, short and packed full of ideas that are (mostly) still novel than delay until they are commonplace. It is aimed at students and people working in fashion design, who have loads of artistic and design talent, but want to know what technology opportunities are coming that they could soon exploit, but anyone interested in fashion who isn’t technophobic should find it interesting. Some sections discussing intimate apparel contain adult comments so the book is unsuitable for minors.

It started as a blog, then I realised I had quite a bit more stuff I could link together, so I made a start, then go sidetracked, for 20 months! I threw away 75% of the original contents list and tidied it up to release a short guide instead. I wanted to put it out for free but 99p or 99c seems to be the lowest price you can start at, but I doubt that would put anyone off except the least interested readers. As with my other books, I’ll occasionally make it free.

Huge areas I left out include swathes of topics on social, political, environmental and psychological fashions, impacts of AI and robots, manufacturing, marketing, distribution and sales. These are all big topics, but I just didn’t have time to write them all up so I just stuck to the core areas with passing mentions of the others. In any case, much has been written on these areas by others, and my book focuses on things that are unique, embryonic or not well covered elsewhere. It fills a large hole in fashion industry thinking.

 

The future of washing machines

Ultrasonic washing ball

Ultrasonic washing ball

For millennia, people washed clothes by stirring, hitting, squeezing and generally agitating them in rivers or buckets of water. The basic mechanism is to loosen dirt particles and use the water to wash them away or dissolve them.

Mostly, washing machines just automate the same process, agitating clothes in water, sometimes with detergent, to remove dirt from the fabric. Most use detergent to help free the dirt particles but more recently, some use ultrasound to create micro-cavitation bubbles and when they collapse, the shock waves help release the particles. That means the machines can clean at lower temperatures with little or no detergent.

It occurred to me that we don’t really need the machine to tumble the clothes. A ball about the size of a grapefruit could contain batteries and a set of ultrasonic transducers and could be simply chucked in a bucket with the clothes. It could create the bubbles and clean the clothes. Some basic engineering has to be done to make it work but it is entirely feasible.

One of the problems is that ultrasound doesn’t penetrate very far. To solve that, two mechanisms can be used in parallel. One is to let the ball roam around the clothes, and that could be done by changing its density by means of a swim bladder and using gravity to move it up and down, or maybe by adding a few simple paddles or cilia so it can move like a bacterium or by changing its shape so that as it moves up and down, it also moves sideways. The second mechanism is to use phased array ultrasonic transducers so that the beams can be steered and interfere constructively, thereby focusing energy and micro-cavitation generation around the bucket in a chosen pattern.

Making such a ball could be much cheaper than a full sized washing machine, making it ideal for developing countries. Transducers are cheap, and the software to drive them and steer the beams is easy enough and replicable free of charge once developed.

It would contain a rechargeable battery that could use a simple solar panel charging unit (which obviously could be used to generate power for other purposes too).

Such a device could bring cheap washing machine capability to millions of people who can’t afford a full sized washing machine or who are not connected to electricity supplies. It would save time, water and a great deal of drudgery at low expense.

 

 

The IT dark age – The relapse

I long ago used a slide in my talks about the IT dark age, showing how we’d come through a period (early 90s)where engineers were in charge and it worked, into an era where accountants had got hold of it and were misusing it (mid 90s), followed by a terrible period where administrators discovered it and used it in the worst ways possible (late 90s, early 00s). After that dark age, we started to emerge into an age of IT enlightenment, where the dumbest of behaviors had hopefully been filtered out and we were starting to use it correctly and reap the benefits.

Well, we’ve gone into relapse. We have entered a period of uncertain duration where the hard-won wisdom we’d accumulated and handed down has been thrown in the bin by a new generation of engineers, accountants and administrators and some extraordinarily stupid decisions and system designs are once again being made. The new design process is apparently quite straightforward: What task are we trying to solve? How can we achieve this in the least effective, least secure, most time-consuming, most annoying, most customer loyalty destructive way possible? Now, how fast can we implement that? Get to it!

If aliens landed and looked at some of the recent ways we have started to use IT, they’d conclude that this was all a green conspiracy, designed to make everyone so anti-technology that we’d be happy to throw hundreds of years of progress away and go back to the 16th century. Given that they have been so successful in destroying so much of the environment under the banner of protecting it, there is sufficient evidence that greens really haven’t a clue what they are doing, but worse still, gullible political and business leaders will cheerfully do the exact opposite of what they want as long as the right doublespeak is used when they’re sold the policy.

The main Green laboratory in the UK is the previously nice seaside town of Brighton. Being an extreme socialist party, that one might think would be a binperson’s best friend, the Greens in charge nevertheless managed to force their binpeople to go on strike, making what ought to be an environmental paradise into a stinking litter-strewn cesspit for several weeks. They’ve also managed to create near-permanent traffic gridlock supposedly to maximise the amount of air pollution and CO2 they can get from the traffic.

More recently, they have decided to change their parking meters for the very latest IT. No longer do you have to reach into your pocket and push a few coins into a machine and carry a paper ticket all the way back to your car windscreen. Such a tedious process consumed up to a minute of your day. It simply had to be replaced with proper modern technology. There are loads of IT solutions to pick from, but the Greens apparently decided to go for the worst possible implementation, resulting in numerous press reports about how awful it is. IT should not be awful, it can and should be done in ways that are better in almost every way than old-fashioned systems. I rarely drive anyway and go to Brighton very rarely, but I am still annoyed at incompetent or deliberate misuse of IT.

If I were to go there by car, I’d also have to go via the Dartford Crossing, where again, inappropriate IT has been used incompetently to replace a tollbooth system that makes no economic sense in the first place. The government would be better off if it simply paid for it directly. Instead, each person using it is likely to be fined if they don’t know how it operates, and even if they do, they have to spend a lot more expensive time and effort to pay than before. Again, it is a severe abuse of IT, conferring a tiny benefit on a tiny group of people at the expense of significant extra load on very many people.

Another financial example is the migration to self-pay terminals in shops. In Stansted Airport’s W H Smith a couple of days ago, I sat watching a long queue of people taking forever to buy newspapers. Instead of a few seconds handing over a coin and walking out, it was taking a minute or more to read menus, choose which buttons to touch, inspecting papers to find barcodes, fumbling for credit cards, checking some more boxes, checking they hadn’t left their boarding pass or paper behind, and finally leaving. An assistant stood there idle, watching people struggle instead of serving them in a few seconds. I wanted a paper but the long queue was sufficient deterrent and they lost the sale. Who wins in such a situation? The staff who lost their jobs certainly didn’t. I as the customer had no paper to read so I didn’t win. I would be astonished with all the lost sales if W H Smith were better off so they didn’t win. The airport will likely make less from their take too. Even the terminal manufacturing industry only swaps one type of POS terminal for another with marginally different costs. I’m not knocking W H Smith, they are just another of loads of companies doing this now. But it isn’t progress, it is going backwards.

When I arrived at my hotel, another electronic terminal was replacing a check-in assistant with a check-in terminal usage assistant. He was very friendly and helpful, but check-in wasn’t any easier or faster for me, and the terminal design still needed him to be there too because like so many others, it was designed by people who have zero understanding of how other people actually do things.  Just like those ticket machines in rail stations that we all detest.

When I got to my room, the thermostat used a tiny LCD panel, with tiny meaningless symbols, with no backlight, in a dimly lit room, with black text on a dark green background. So even after searching for my reading glasses, since I hadn’t brought a torch with me, I couldn’t see a thing on it so I couldn’t use the air conditioning. An on/off switch and a simple wheel with temperature marked on it used to work perfectly fine. If it ain’t broke, don’t do your very best to totally wreck it.

These are just a few everyday examples, alongside other everyday IT abuses such as minute fonts and frequent use of meaningless icons instead of straightforward text. IT is wonderful. We can make devices with absolutely superb capability for very little cost. We can make lives happier, better, easier, healthier, more prosperous, even more environmentally friendly.

Why then are so many people so intent on using advanced IT to drag us back into another dark age?

 

 

Technology Convergence – What’s your Plan? Guest post by Rohit Talwar

Rohit is CEO of Fastfuture and a long-standing friend as well as an excellent futurist. He and I used to do a joint newsletter, and we have started again. Rohit sends it out to his mailing list as a proper newletter and because I don’t use mailing lists, I guest post it here. I’ll post my bit immediately after this one. I’m especially impressed since his bit ticks almost as many filing category boxes as it uses words.

Here is Rohit’s piece:

Technology Convergence – What’s your Plan?

I have just returned from South Korea where I was delivering a keynote speech to a cross-industry forum on how to prepare for and benefit from the opportunities arising from industry convergence. South Korea has made a major strategic commitment starting with government and running through the economy to be a leader in exploiting the potential opportunities arising from the convergence of industries made possible by advances in a range of disciplines. These include information and communications technology, biological and genetic sciences, energy and environmental sciences, cognitive science, materials science and nanotechnology.  From environmental monitoring, smart cars, and intelligent grids through to adaptive bioengineered materials and clothing-embedded wearable sensor device that monitor our health on a continuous basis – the potential is vast.

What struck me about the situation in Korea was how the opportunity is being viewed as a central component of the long-term future of Korea’s economy and how this is manifested in practice. Alongside a national plan, a government sponsored association has been established to drive and facilitate cross-industry collaboration to achieve convergence. In addition to various government-led support initiatives, a range of conferences are being created to help every major sector of the economy understand, explore, act on and realise the potential arising out of convergence.

I am fortunate to get the opportunity to visit 20-25 countries a year across all six continents and get to study and see a lot of what is happening to create tomorrow’s economy. Whilst my perspective is by no means complete, I am not aware of any country where such a systematic and rigorous approach is being taken to driving industry convergence. Those who study Korea know that this approach is nothing new for them – long term research and strategic planning are acknowledged to have played a major role in the evolution of its knowledge economy and rise of Korea and its technology brands on the global stage. Coming from the UK, where it seems that long term thinking and national policy are now long lost relatives, I wonder why it is that so few countries are willing to or capable of taking such a strategic approach.

Rohit on the Road

In the next few months Rohit will delivering speeches in Oslo, Paris, Vilnius, Warsaw, Frankfurt, Helsinki, Denver, Las Vegas, Oman, Leeds and London. Topics to be covered include human enhancement, the future of professional services, the future of HR, transformational forces in business, global drivers of change, how smart businesses create the future, the future technology timeline, the future of travel and tourism, the future of airlines and airports and the future of education. If you would like to arrange a meeting with Rohit in one of these cities or are interested in arranging a presentation or workshop for your organisation, please contact rohit@fastfuture.com

Towards the singularity

This entry now forms a chapter in my book Total Sustainability, available from Amazon in paper or ebook form.

Things that don’t work but could

Continue reading

The future of the Olympics, in 2076

Now that it is all over, it is time to think about the future. The last time the Olympics was held in London was 1948, 64 years ago. Going 64 years in the future, what will it be like then?

Watching the Olympics on 3D web TV is about as advanced as it gets today. By the 2024 Olympics, it will be fairly common to use active contact lenses with lasers writing images straight onto your retinas. It will be fully immersive, and almost feel like you’re there. In fact, many of the people in the crowd at the games will also use them, to zoom in or watch replays and extra content. The 2028 Olympics will have the first viewers using primitive-but-fun active skin technology to connect their nervous systems so that they can even feel some of the sensations involved. In gyms up and down the land, runners will be able to pretend they are in the race, running on their treadmills virtually against actual Olympians. They’ll receive their final placing against the others doing the same. This will improve and by 2040 even domestic active skin sensation recording and replay will feel very convincing. By 2076, we’ll have full links between IT and our brains, living the events as if we were athletes ourselves, Total Recall style.

Interfacing to the nervous system will help potential Olympic athletes improve their performance quickly, injecting sensations into the body to make perfect movements just feel better, so their body learns the optimal movement quickly. This will show the first improvements in results in 2032, with heptathletes and decathletes performing almost perfectly in every one of their events.

The 2050 Olympics will see the first competitors who are children of genetically enhanced parents, and some genetically enhanced themselves. They won’t need drugs to out-perform even those regular humans who have overdosed on steroids all their careers. Their careers will last longer too, as biological decline will be less of an issue thanks to their genes. In the same timeframe, drugs will advance enormously too, squeezing extra levels of performance, learning speed, sensory awareness and muscle development. With negative side effects under control, some drugs and implants may be accepted in sports. But fierce arguments over fairness will eventually force a split between the various streams.

The 2076 Olympics will be made up of five events. There will be one ‘original Olympics’ for ordinary unmodified humans, tested thoroughly for any genetic or chemical enhancements, forced to use the same equipment to eliminate technological advantage, possibly given handicaps for any innate genetic advantage they have over the competition. There will be another for the disabled, many of whom will resist being made ‘normal’, even if technology permits. There will be another for robots, with advanced AI and a range of ‘body types’, used as a show-off event for technology companies. Another stream will take place one for un-enhanced athletes using advanced drugs, implant technology, superior equipment, and even externally linked  IT to gain technological advantage and make more exciting sport. It will be far from ‘natural’, but viewers won’t care. And finally, another event for biologically and neurally enhanced super-humans, without any other technology advantage. These streams couldn’t compete fairly head on, but will make distinct events with distinct flavours and advantages.

The spirit of The Games will live on even with this split, and still only the very best will be able to compete, but they will be bigger, better and more exciting for everyone.

See also my previous blog on future sports.

https://timeguide.wordpress.com/2012/01/27/future-sports/

Next generation small computers

One of my posts two years ago suggested it would be a great time to bring back the Spectrum computer or something like it:

https://timeguide.wordpress.com/2010/01/15/bring-back-the-spectrum/

The new Raspberry Pi is pretty much exactly what I asked for (though I don’t think it came from my request) . For about £22, you get a computer. You plug in a keyboard and a TV and comms, then start programming. I am amazed it has been so long for someone to do it, but better late then never. Now a new generation of kids can learn how to program by messing about, instead of falling victim to the formal teaching that is provided by schools and university. I have always believed that learning how to hack programs together is the best way to understand what you are doing. You can learn formal methods later if need be. I don’t think hacking is the source of bad habits. Rather, it is more likely to show you the workings of the machine so you can exploit it better. I have seen too many taught programmers make good impressions of being mentally crippled after being forced to think in just one way, any fee-thinking and originality purged.

The Raspberry Pi isn’t the only tiny computer around though. FXI also have one, the size of a USB memory stick, and pretty impressive capability, albeit five times the price. It is easy to imagine how devices like this could really change how we work. I like to travel very light and haven’t carried a laptop for years – even the latest are still heavy and big and just aren’t worth the trouble. I won’t even use an iPAD because it is still obese, power-hungry, and altogether too primitive.Turning up at a conference with a memory stick containing your presentation has been fine as an alternative, but you are reliant on the conference laptop having the right setup. If you could bring a full PC memory stick and run everything from that, that would be better. At home it will be good to put media straight onto your TV without cluttering the room up with big boxes. A Slingbox has done that for years, and smart TVs now do it built-in, so it isn’t new, but this makes it a lot easier and cheaper to provide web and media on more conventional TVs.

On the go, you need some sort of visual display of course but soon we will have visor based head up displays that work with fingertip tracking or virtual  keyboards. Then these compact devices will come into their own. You’ll be fully connected and IT capable, but carrying hardly any weight.

Both of these new devices are small but capable, and most of the size they still have left is really interfacing to other devices. The processing guts is much smaller still. There is room to shrink further, and it is clear from these that the era of digital jewellery is almost with us. Imagine the enormous environmental benefits too, if we hardly need any resources to provide for all our IT needs.

It is the curse of futurology that you are never really happy with the stuff available today because you know what is round the corner. But when I can easily fit all my IT into my pocket as a memory stick and wear a lightweight visor as my interface, I’ll be pretty near content. Can’t be long now

Environmental and engineering convergence

My best friend Dave Faulkner runs an environmental consultancy. I host a couple of his papers on global warming on the Futurizon web site. We have many a beer over debate about environmental issues. Over the years, I have worked a few times with both Friends of the Earth and Greenpeace. I have a lot of respect for Jonathon Porritt and Doug Parr. We share a passion for a healthy environment, though we disagree on some of the ways to achieve it. It’s the same with my friend Dave. I can like and respect a person without agreeing with everything they say. It is nicer still when some common ground appears.

Only a small bit of my work involves environmental issues so I am far from expert in the environment field, though I do have my own embryonic environmental consultancy now. But I am expert at studying the future overall and pretty good at making predictions – I get it right 6 times more often than I get it wrong – and as I look at the many factors affecting the way the world is going, I feel hesitantly optimistic. There is some potential for a techno-utopia but I know we won’t get that. We will take a sub-optimal path that creates as many new problems as we solve. The world of 2050 and beyond will still be a mixture of good and bad, just with different goods and bads.

The approach to our environment though is one area I think will improve. On one side, we have the likes of Porritt and Parr, leading much of the green community and doing what they can to motivate people with the desire to live in a nicer world in harmony with nature. I can’t fault that, only in some of the policies they recommend to achieve it, which I think come from occasional flaws in their analyses. On another side, engineers are racing to develop better technologies, sometimes deliberately to help the environment, but more often almost coincidentally making better toys that happen to be better for the environment. Engineers are mostly driven by market forces, but they are still human, and many also care passionately for the environment, so will generally seek solutions that do their job but are better for the environment where the choice exists. In fact, it is hard to spot examples of new technology that are worse for the environment than their predecessors. Market forces, mediated through well motivated engineers, can make the world better just as well as any green. Both can help us move to a better world. 

I see a lot of needless worrying by environmentalists though, some of whom (I won’t name names) think of scientists and engineers as the enemy. Needless worry, and sometimes counter-productive. One of the big worries this week is that a lot of resources are scarce that we need to make renewable energy, or to make batteries to store it. But almost at the same time, articles appear on inductive power delivery to cars that circumvents the need for large batteries and hence the need for lithium – I even proposed that solution myself a few years ago, so it is good to see it appearing as a project somewhere. New materials for IT are being developed too, so we won’t rely for much longer on the other things that are scarce. So, no worries, it’s just a short-term problem. For the last few years it has been recommending spending trillions to avoid carbon dioxide production. But even without spending any trillions, future energy technology that is being developed anyway will make fossil fuels redundant, so it will take care of itself. Panic is expensive but unnecessary, the worry needless and counter-productive, serving only to slow down the race to sustainability by diverting funds to the wrong areas.

The environment has some very good friends in engineering now. Biomimetics is the engineering field of copying ideas  or at least inspiration from nature. I’ve occasionally use biokleptics when an idea is blatantly stolen. Nature doesn’t have any lawyers defending her intellectual property rights, but has been using random trial and error for 3 billion years to develop some fantastic engineering solutions and if anything encourages their copying. So, someone looks at spiders and develops a new kind of architecture that produces better structures with less material. Going way back to the 80s, I looked at evolution and made the tiny deductive leap to thinking of evolving software and hardware, then soon after looked at embryo growth and came up with ideas of how to self organise telecomms networks and sensor nets. I love biomimetics.  So do many other engineers, and the whole field is exploding now. It will help to make systems, objects, fabrics, materials, architecture and processes that are more energy or resource efficient, and quite often more beautiful.There are a few purists who insist on copying something exactly as nature does it, but mostly engineers are happy to be inspired and make their own tweaks to adapt it to needs. So, long ago, Icarus started the field by copying nature but a century ago we discovered we could make planes more easily with metal fixed wings.

Synthetic biology essentially completes the relationship by adding human design into biology. This embryonic field will expand vastly, and will be used for a wide range of tasks from resource extraction and processing, to computing. Nanotech and insights from neuroscience will add more to allow rich interaction between organic and inorganic devices, often bridging the gap to allow us to put electronic devices in direct connection with our bodies, or those of other creatures. This field also allows the wonderful possibility of undoing some of the damage done to the environment, and even making nature work better. Gaia 2.0 will be with us this century. Of course, if we don’t develop all this science and technology, we will be stuck with a human world that is immensely resource hungry and getting worse, using far more resources than would otherwise be needed, damaging the environment, with no hope of repairing the damage. There wouldn’t even be a plus side, because people would also live poorer lives and be less fulfilled and less happy.

Having been highly convergent on the goal of making the world a better place, this is where engineers often part company with greens. Most engineers think better engineering is the best route to a sustainable world, most greens (and, it has to be admitted, some engineers) think we should slow it all down. This superficially suggests lower environmental impact, implying that people will consume less if they swap devices less often, or don’t get that next pay rise, but it doesn’t deliver. It is a wrong deduction. In much the same way that poor people are often fatter than rich people, what it does change is the access to a better diet, in this case, of environmentally friendlier technology that really needs extra R&D before it is with us. That funding comes from market demand and the ability to pay, and that needs more people to be richer. For the next several decades, what we need is economic growth, selectively. Again, I start to agree with Porritt here. It isn’t just any growth we need, but growth that is spent wisely, using growth to improve peoples lives, and improving the environment we live in either directly or via R&D and the greener technology it will deliver.