Tag Archives: technology

How nigh is the end?

Top 10 Extinction Risks

I first wrote this blog in 2015 but I’m updating a lot of old material for my new book on sustainability. Potential extinction justifies a chapter in that I think. In 2015, the world seemed a lot safer than it does right now, so I increased several of the risk estimates accordingly. This article wasn’t meant to be doom-mongering – that’s just the actual consequence of adding up my best current estimates, and as I say at the end, you’re welcome to do the very simple sums with your own figures..

“We’re doomed!” is a frequently recited observation. It is great fun predicting the end of the world and almost as much fun reading about it or watching documentaries telling us we’re doomed. So… just how doomed are we? Initial estimate: Maybe a bit doomed. Read on.

In 2015 I watched a ‘Top 10 list of threats to our existence’ on TV and it was very similar to most you’ve probably read even recently, with the same errors and omissions – nuclear war, global virus pandemic, terminator scenarios, solar storms, comet or asteroid strikes, alien invasions, zombie viruses, that sort of thing. I’d agree that nuclear war is still the biggest threat, so number 1, and a global pandemic of a highly infectious and lethal virus should still be number 2 – my personal opinion on COVID was that it was almost certainly made in a lab, quite probably with the intention of developing a potential bioweapon, and it probably escaped by accident and poor safety protocols before it was anywhere near ready for that purpose, so if anything, we actually got off light. It could have been far worse, and the next one very probably will – many bad actors – terrorist groups, rogue governments and the occasional mad scientist, will have been impressed by the proof of principle of a cheap and easy means of destroying economies via poor government reactions and will have been very busy since trying to engineer their own viruses, with the assistance of AI of course. There is no shortage of potential viruses to start with. These risks should still be in 1st and 2nd place.

1: Nuclear War

2: Viruses

The TV list included a couple that shouldn’t be in there.

One inclusion was a mega-eruption of Yellowstone or another super-volcano. A full-sized Yellowstone mega-eruption would probably kill millions of people and destroy much of civilization across a large chunk of North America, but some of us don’t actually live in North America and quite a few might survive pretty well, so although it would be quite annoying for Americans, it is hardly a TEOTWAWKI threat (the end of the world as we know it). It would have big effects elsewhere, just not extinction-level ones. For most of the world it would only cause short-term disruptions, such as economic turbulence, at worst it would start a few wars here and there as regions compete for control in a new world order.

Number 3 on their list was climate change, which is an annoyingly wrong, albeit very popularly held inclusion. The only climate change mechanism proposed for catastrophe is global warming, and the reason it’s called climate change now is because global warming stopped in 1998 and still hadn’t resumed until almost 18 years later, so that term became too embarrassing for doom mongers to use. Since then, warming has resumed, but has still fallen very far short of the enormous catastrophes predicted 15- 20 years ago. London is not under water, there is still Arctic ice populated by a very healthy number of polar bears, the glaciers are melting but have not all vanished, Greenland and the Antarctic still have most of the ice they had then, and sea level has only increased very slightly faster than it has for the last few hundred years, not by the several metres predicted on our front pages. CO2 is a warming agent and emissions should be treated with caution, but the net warming contribution of all the various feedbacks adds up to far less than screamed and the climate models have mostly proven far too pessimistic. If anything, warming expected in the next few decades is likely to be partly offset by the effects of low solar activity and by the time it resumes, we will have migrated most of our energy production to non-carbon sources, so there really isn’t much of a long term problem to worry about – I have never lost a wink of sleep worrying about extinction caused by climate change. With likely warming by 2100 pretty manageable, and around half a metre sea level rise, I certainly don’t think climate change deserves to be on any top 20 list of threats to our existence in the next century and certainly not on my top 10.

The top 10 list missed two out by including climate change and Yellowstone, and my first replacement candidate for consideration might be the grey goo scenario – or variants of it. The grey goo scenario is that self-replicating nanobots manage to convert everything including us into a grey goo.  Take away the silly images of tiny little metal robots cutting things up atom by atom and the laughable presentation of this vanishes. Replace those little bots with bacteria that include electronics, and are linked across their own cloud to their own hive AI that redesigns their DNA to allow them to survive in any niche they find by treating the things there as food. When existing bacteria find a niche they can’t exploit, the next generation adapts to it. That self-evolving smart bacteria scenario is rather more feasible, and still results in bacteria that can conquer any ecosystem they find. We would find ourselves unable to fight back and could be wiped out. This isn’t very likely, but it is feasible, could happen by accident or design on our way to transhumanism, and might deserve a place in the top ten threats. This is an amusing one to include, because I also suggest this kind of synthetic organism, and some close relatives, as an excellent mechanism for fixing our environment by breaking down pollution of various kinds. It could be the environment’s saviour, but also its destroyer if not used correctly.

However, grey goo is only one of the NBIC convergence risks we have already imagined (NBIC= Nano-Bio-Info-Cogno). NBIC is a rich seam for doom-seekers. In there, you’ll find smart yogurt, smart bacteria, smart viruses, beacons, smart clouds, active skin, direct brain links, zombie viruses, even switching people off. Zombie viruses featured in the top ten TV show too, but they don’t really deserve their own category any more than many other NBIC derivatives. Anyway, that’s just a quick list of deliberate end-of-world solutions – there will be many more I forgot to include and many I haven’t even thought of yet. Then you have to multiply the list by 3. Any of these could also happen by accident, and any could also happen via unintended consequences of lack of understanding, which is rather different from an accident but just as serious. So basically, deliberate action, accidents and stupidity are three primary routes to the end of the world via technology. So instead of just the grey goo scenario, a far bigger collective threat is NBIC generally and I’d add NBIC collectively into my top ten list, quite high up, maybe 3rd after nuclear war and global virus. AI still deserves to be a separate category of its own, and I’d put it next at 4th. In fact, the biggest risk of AI being discussed at the moment is its use by maniacs to design viruses etc, essentially my No. 3 entry.

3: NBIC Weapons

So, AI at No. 4. Many AI ‘experts’ would call that doom-mongering, but it simply isn’t. Apart from being a primary mechanism in risk 3, there are several other ways in which AI could accidentally, incidentally or deliberately destroy humanity, and frankly, to say otherwise is to be either disingenuous or not actually very expert. AI doesn’t stop at digital neural nets or LLMs. Some of my other current projects are designing AIs that could be extremely powerful, cheap and fast-evolving, very superhuman, and conscious, with emotions. All that is achievable within a decade. If I can design such things, so can many others, and some of them will not be nice people.

4: AI

One I am very tempted to include is drones. Little tiny ones, not the Predators, and not even the ones everyone seems worried about at the moment that can carry 2kg of explosives or Anthrax into the midst of football crowds. Current wars are demonstrating how effective smallish drones can be, but they could get a lot smaller and be even more useful. Tiny drones are far harder to shoot down, but soon we will have a lot of them around. Size-wise, think of midges or fruit flies. They could be self-organizing into swarms, managed by rogue regimes, terrorist groups, or set to auto, terminator style. They could recharge quickly by solar during short breaks, and restock their payloads from secret supplies that distribute with the swarm. They could be distributed globally using the winds and oceans, so don’t need a plane or missile delivery system that is easily intercepted. Tiny drones can’t carry much, but with nerve gas or viruses, they don’t have to. Defending against such a threat is easy if there is just one, you can swat it. If there is a small cloud of them, you could use a flamethrower. If the sky is full of them and much of the trees and the ground infested, it would be extremely hard to wipe them out. So if they are well designed to cause an extinction level threat, as MAD 2.0 perhaps, then this would be way up in the top ten too, 5th.

5: Micro-Drones

Another class of technology suitable for abuse is space tech. I once wrote about a solar wind deflector using high atmosphere reflection, and calculated it could melt a city in a few minutes. Under malicious automated control, that is capable of wiping us all out, but it doesn’t justify inclusion in the top ten. One that might is the deliberate deflection of a large asteroid to impact on us. If it makes it in at all, it would be at tenth place. It just isn’t very likely someone would do that. However, there are many other ways of using the enormous size of space to make electromagnetic kinetic weapons. I designed quite a few variants and compared their potential power if designed as a weapon to our current generation of nuclear weapons. Considering timescales, it seems fair to say that by 2050-2060, the most powerful weapons will be kinetic, not nuclear. Asteroid diversion still presents the most powerful weapon, but an inverse rail gun, possibly designed under the guise of an anti-asteroid weapon would still be capable of being 1 GigaTon TNT equivalent. (The space anchor weapon is just in the table for fun and comparison, and thankfully is only a fictional device from my sci-fi book Space Anchor).

6: Electromagnetic Kinetic Space Weapons

Solar storms could wipe out our modern way of life by killing our IT. That itself would kill many people, via riots and fights for the last cans of beans and bottles of water. The most serious solar storms could be even worse. I’ll keep them in my list, at 7th place

7 Solar Storms

Global civil war could become an extinction level event, given human nature. We don’t have to go nuclear to kill a lot of people, and once society degrades to a certain level, well we’ve all watched post-apocalypse movies or played the games. The few left would still fight with each other. I wrote about the Great Western War and how it might result and every year that passes, it seems more plausible. Political polarisation is getting worse, not better. Such a thing could easily spread globally. I’ll give this 8th place.

8 Global Civil War

A large asteroid strike could happen too, or a comet. Ones capable of extinction level events shouldn’t hit for a while, because we think we know all the ones that could do that. Also, entry 6 is an anti-asteroid weapon turned against Earthly targets, and suggests we may well be able to defend against most asteroids. So this goes well down the list at 9th.

Alien invasion is entirely possible and could happen at any time. We’ve been sending out radio signals for quite a while so someone out there might have decided to come see whether our place is nicer than theirs and take over. It hasn’t happened yet so it probably won’t, but then it doesn’t have to be very probable to be in the top ten. 10th will do.

High energy physics research has also been suggested as capable of wiping out our entire planet via exotic particle creation, but the smart people at CERN say it isn’t very likely. Actually, I wasn’t all that convinced or reassured and we’ve only just started messing with real physics so there is plenty of time left to increase the odds of problems. I’ll place it at number 11 in case you don’t like one of the others.

My top ten list for things likely to cause human extinction, or pretty darn close:

  1. Nuclear war
  2. Highly infectious and lethal virus pandemic
  3. NBIC – deliberate, accidental or lack of foresight (includes smart bacteria, zombie viruses, mind control etc)
  4. Artificial Intelligence, including but not limited to the Terminator scenario
  5. Autonomous Micro-Drones
  6. Electromagnetic kinetic space weapons
  7. Solar storm
  8. Global civil war
  9. Comet or asteroid strike
  10. Alien Invasion
  11. Physics research

I’m not finished yet though. The title was ‘how nigh is the end?’, not just what might cause it. It’s hard to assign probabilities to each one but I’ll make my best guess. Bear in mind that a few on the list don’t really become full-sized risks for a year or two yet, so interpret it from a 2030 viewpoint.

So, with my estimated probabilities of occurrence per year:

  1. Nuclear war:  2% (Russia is already threatening their use, Iran very likely to have them soon)
  2. Highly infectious and lethal virus pandemic: 1.75% (All the nutters know how effective COVID was)
  3. NBIC – deliberate, accidental or lack of foresight (includes smart bacteria, zombie viruses, EDNA, TNCOs, ATSOs etc): 1.5% (albeit this risk is really 2030+)
  4. Artificial Intelligence, including but not limited to the Terminator scenario: 1.25%
  5. Autonomous Micro-Drones: 1%
  6. Electromagnetic kinetic weapons, 0.75%
  7. Solar storm: 0.1%
  8. Global civil war: 0.1%
  9. Comet or asteroid strike 0.05%
  10. Alien Invasion: 0.04%
  11. Physics research: 0.025%

Let’s add them up. The cumulative probability of the top ten is 8.565%. That’s a hard number to do sums with so let’s add a totally arbitrary 1.435% to cover the dozens of risks that didn’t make it into my top ten (including climate change, often listed as number 1 by doomsayers), rounding the total up to a nice neat 10% per year chance of ‘human extinction, or pretty darn close’. Yikes! Even if we halve them, that’s still 5%. Per year. That only gives us 10-20 years if we don’t change the odds.

If you can think of good reasons why my figures are far too pessimistic, by all means make your own guesses, but make them honestly, with a fair and reasonable assessment of how the world looks socially, religiously, militarily, politically, environmentally, the quality of our leaders, human nature etc, and then add them up. You might still be surprised how little time we can expect to have left. I’ll revise my original outlook upwards from ‘a bit doomed’. We’re quite doomed.

Early Detection and Targeted Treatment of Ovarian Cancer with Piezoelectric Cilia-Propelled Micro-Robots

Ovarian cancer, notorious for its subtle symptoms and the challenge it presents for early detection, remains one of the most lethal gynecological malignancies. Traditional diagnostic methods often detect the disease at advanced stages, when treatment options are limited and less effective. However, the advent of piezoelectric cilia-propelled micro-robots introduces a revolutionary approach to detecting and treating ovarian cancer at its onset, potentially transforming patient outcomes through early intervention.

Navigation and Propulsion

The micro-robots are designed to navigate the intricate pathways of the female reproductive system, leveraging their innovative propulsion system. Piezoelectric cilia cover the surface of the device, enabling fluid and precise movement through bodily fluids and narrow passages. These cilia extend, retract, and bend in coordinated wave-like motions, mimicking the mechanisms of organic creatures, to propel the device forward.

The cilia are powered by an inductive mechanism, which harnesses energy from external fields, such as ultrasound or electromagnetic radiation. A coil running the full length of the micro-robot maximizes the aerial size, enhancing energy harvesting efficiency. The intensity of an external signal beam modulates the cilia’s movements, allowing for precise steering and navigation towards the target location.

Early Detection

Once introduced into the uterus through a minimally invasive procedure, the micro-robot navigates along the fallopian tubes to reach the ovaries. Its on-board diagnostic tools, such as micro-ultrasound or optical coherence tomography, enable high-resolution imaging and video capture of ovarian tissue. These advanced imaging capabilities facilitate the identification of early-stage tumors or abnormal tissue changes that may be missed by conventional techniques.

Furthermore, the micro-robot can collect tissue samples for biopsy using its integrated micro-tools, minimizing patient discomfort and risk associated with traditional procedures. These samples can be analyzed in real-time or delivered for laboratory examination, enabling rapid diagnosis and immediate clinical decision-making.

Targeted Treatment

Upon detecting malignant cells or tumors, the micro-robot can initiate an immediate therapeutic response. Its payload capabilities allow for the delivery of targeted chemotherapeutic agents, such as cisplatin or paclitaxel, directly to the tumor site. This localized drug delivery system minimizes systemic side effects typically associated with chemotherapy, improving the patient’s quality of life during treatment.

Moreover, the micro-robot can administer novel therapies tailored to the genetic makeup of the tumor. For instance, it can deliver RNA interference (RNAi) molecules or CRISPR-Cas9 components to silence or edit specific genes involved in tumor growth and progression, enhancing the efficacy of anticancer therapies and paving the way for personalized medicine.

Post-Treatment Monitoring and Follow-up

Beyond its diagnostic and therapeutic roles, the micro-robot can also be employed for post-treatment monitoring and follow-up checks. Its on-board sensors and imaging capabilities enable the detection of potential recurrences or metastases, allowing for timely intervention and adjustments to the treatment regimen.

Furthermore, the micro-robot can be equipped with additional diagnostic tools, such as biosensors for detecting specific biomarkers or monitoring treatment response in real-time. This multifunctional approach ensures comprehensive care and improved patient outcomes.

Safety and Regulatory Considerations

The design of the piezoelectric cilia-propelled micro-robots prioritizes safety and biocompatibility, minimizing the risk of adverse reactions or tissue damage. The gentle, biomimetic movement of the cilia and the use of biocompatible materials ensure that the device is suitable for sensitive applications within the human body.

However, rigorous clinical trials and regulatory approval processes will be required to bring this technology to clinical use. Collaboration between engineers, medical professionals, biologists, and materials scientists will be essential to address any potential challenges and ensure the safe and effective implementation of this innovative technology.

Future Prospects

The piezoelectric cilia-propelled micro-robots represent a significant leap forward in the battle against ovarian cancer and potentially other malignancies. By combining early detection capabilities with the potential for immediate and targeted treatment, these devices offer a comprehensive approach to managing a disease that has long challenged medical professionals. As this technology advances, it holds the promise of not only improving survival rates for ovarian cancer patients but also serving as a model for addressing other cancers and diseases with similar diagnostic and therapeutic challenges.

The journey towards realizing the full potential of these micro-robots is just beginning, and it offers a hopeful horizon for those affected by ovarian cancer and beyond. With continued research, development, and multidisciplinary collaboration, this innovative technology has the potential to revolutionize the field of minimally invasive medicine and improve patient outcomes on a global scale.

Compact and Retrievable Design

To facilitate seamless navigation through intricate anatomical structures, including the narrow fallopian tubes of the female reproductive system, the micro-robots are designed with diameters ranging from 0.1 mm to 1 mm. This compact size allows for minimally invasive insertion and movement without causing tissue damage or discomfort.

While maintaining a slender profile, the micro-robots can have lengths between 5 mm and 30 mm, depending on the specific diagnostic or therapeutic payload they carry. The elongated shape serves multiple purposes:

  1. Enhanced Energy Harvesting: The increased length allows for a larger coil to be integrated along the body of the micro-robot, maximizing the surface area for inductive energy harvesting from external fields. This results in more efficient power generation for the piezoelectric cilia propulsion system.
  2. Increased Payload Capacity: The additional volume provided by a longer design enables the micro-robots to accommodate larger payloads, such as advanced imaging modules, biopsy tools, or higher doses of therapeutic agents. This versatility allows for more comprehensive diagnostic and treatment capabilities within a single device.
  3. Improved Navigation: The elongated shape, coupled with the precise control over the piezoelectric cilia, enables efficient propulsion and steering through complex pathways, allowing the micro-robots to navigate intricate anatomical structures with greater ease.

Retrievability is a crucial consideration, ensuring that the micro-robots can be safely removed from the body after completing their tasks. Several mechanisms are being explored to facilitate retrieval, such as:

  1. Tethered Design: The micro-robots can be attached to a thin, biocompatible tether or guidewire, allowing for controlled retrieval by gently pulling the tether after the procedure is complete.
  2. Magnetic Guidance: Incorporating small magnetic components within the micro-robots enables their retrieval through the application of external magnetic fields, guiding them back towards the point of entry.
  3. Biodegradable Materials: In certain applications, the micro-robots can be constructed using biodegradable materials that safely dissolve or are absorbed by the body over time, eliminating the need for physical retrieval.

Regardless of the retrieval method employed, rigorous testing and safety protocols will be implemented to ensure the micro-robots can be reliably removed from the body without any adverse effects.

By carefully balancing the dimensional constraints with the benefits of increased length, this micro-robotic platform maximizes its energy harvesting capabilities, payload capacity, and navigational agility, further enhancing its potential for minimally invasive medical applications across various anatomical regions.

Versatile Micro-Robotic Platform for Minimally Invasive Diagnosis and Treatment

While the initial focus has been on ovarian cancer detection and treatment, the piezoelectric cilia-propelled micro-robotic platform holds immense potential for a wide range of medical applications throughout the human body. Its compact, worm-like design allows for navigation through narrow passages, enabling access to deep-seated organs and tissues, such as the lungs, kidneys, bladder, and even the intricate network of arteries.

Autonomous Navigation and Obstacle Avoidance

Beyond external signal beam control, these micro-robots are designed with intelligent autonomous capabilities. Sensors at the leading tip continuously scan the surrounding environment, enabling real-time obstacle detection and avoidance. If an obstruction is encountered, the on-board control system can selectively activate or deactivate specific cilia to steer the device around the obstacle without the need for constant external input or video feedback, streamlining the navigation process.

Integration with Artificial Intelligence and Tele-Operation

While autonomous navigation is a key feature, these micro-robots can also be seamlessly integrated with advanced artificial intelligence systems and tele-operation capabilities. Sensory data, including high-resolution imaging and diagnostic readouts, can be relayed in real-time to external AI platforms for analysis and decision support. This symbiotic relationship between the micro-robot and AI allows for rapid data processing, pattern recognition, and predictive modeling, enhancing diagnostic accuracy and treatment planning.

Additionally, experienced human operators can remotely control and guide the micro-robots through complex anatomical structures, leveraging their expertise in conjunction with the device’s capabilities. This hybrid approach combines the best of autonomous systems, artificial intelligence, and human intelligence for optimal performance and adaptability.

Modular Design and Customization

The micro-robotic platform is designed with a modular architecture, allowing for customization and integration of various diagnostic, therapeutic, and sensing payloads. Depending on the target application, the micro-robots can be outfitted with specialized tools, such as micro-ultrasound probes, optical coherence tomography modules, biopsy tools, drug delivery mechanisms, or biosensors for real-time monitoring of biomarkers or treatment responses.

This versatility enables the development of tailored solutions for different medical conditions, ranging from cancer detection and treatment to cardiovascular interventions, minimally invasive surgery, or even targeted drug delivery for neurological disorders.

Biocompatibility and Safety Considerations

Regardless of the application, the design of these micro-robots prioritizes biocompatibility and safety. The gentle, biomimetic movement of the piezoelectric cilia minimizes the risk of tissue damage, while the use of carefully selected materials ensures compatibility with the human body. Rigorous testing and adherence to regulatory standards will be crucial in ensuring the safe and responsible deployment of this technology.

Multidisciplinary Collaboration and Future Prospects

The development and implementation of this micro-robotic platform necessitate a collaborative effort spanning multiple disciplines, including engineering, medicine, biology, materials science, and artificial intelligence. By fostering cross-disciplinary partnerships and leveraging diverse expertise, researchers can overcome challenges, explore new possibilities, and drive the technology towards its full potential.

As this innovative platform continues to evolve, it holds the promise of revolutionizing minimally invasive medicine, enabling early and accurate diagnosis, targeted treatment delivery, and real-time monitoring across a wide spectrum of medical conditions. With its versatility, adaptability, and potential for integration with emerging technologies, the piezoelectric cilia-propelled micro-robotic platform represents a significant stride towards improving patient outcomes and advancing the frontiers of healthcare.

Versatile Micro-Robotic Platform: Enabling Minimally Invasive Diagnostics and Therapeutics Across Multiple Anatomical Regions

The piezoelectric cilia-propelled micro-robotic platform presents a versatile and adaptable solution for minimally invasive medical interventions across various anatomical regions. While the initial focus has been on the early detection and targeted treatment of ovarian cancer, the modular design and customizable payloads of these micro-robots enable tailoring their dimensions, capabilities, and functionalities to suit diverse medical applications.

Scalability and Adaptability

The micro-robots can be scaled in size, ranging from diameters as small as 0.1 mm to larger dimensions, depending on the target anatomical region and the required diagnostic or therapeutic payloads. This scalability allows for seamless navigation through intricate structures, such as the fallopian tubes, as well as larger pathways, like the gastrointestinal tract or cardiovascular system.

The modular architecture of the micro-robotic platform facilitates the integration of various payloads, including advanced imaging modalities, biopsy tools, drug delivery mechanisms, and biosensors. This adaptability enables the development of tailored solutions for different medical conditions, ensuring optimal diagnostic and therapeutic capabilities for each application.

Potential Applications

  1. Urinary Tract: The micro-robots can be introduced through the urethra, allowing access to the bladder and potentially the kidneys. While the renal tubules may be too fine for direct navigation, the micro-robots could explore the renal pelvis and proximal regions of the ureters, enabling diagnostic imaging, biopsy collection, or targeted drug delivery for conditions like kidney stones, tumors, or infections.
  2. Gastrointestinal Tract: By leveraging the scalability of the platform, larger micro-robots could be designed for navigation through the esophagus, stomach, and intestines. These devices could be equipped with advanced imaging capabilities, tissue sampling tools, or targeted therapies for conditions such as colorectal cancer, inflammatory bowel diseases, or gastrointestinal bleeding.
  3. Cardiovascular System: Integrating specialized imaging modalities and therapeutic payloads, the micro-robots could potentially navigate through the cardiovascular system, assisting in the diagnosis and treatment of conditions like atherosclerosis, arterial blockages, or even targeted drug delivery to specific regions of the heart.
  4. Respiratory System: While the current size constraints may limit direct navigation into the smaller bronchioles, larger micro-robots could potentially explore the upper respiratory tract, enabling diagnostic imaging, biopsy collection, or targeted therapies for conditions like throat cancer, respiratory infections, or obstructive pulmonary diseases.

Future Advancements and Miniaturization

Continuous advancements in micro-fabrication techniques and materials science could enable further miniaturization of these micro-robots, opening up new possibilities for accessing even smaller anatomical structures or enabling swarm robotics approaches with multiple coordinated micro-robots. Additionally, the integration with emerging technologies, such as nano-sensors, lab-on-a-chip devices, or molecular imaging probes, could further enhance the diagnostic and therapeutic capabilities of the platform.

User Interface and Control Systems

To facilitate seamless operation and precise navigation, advanced user interfaces and control systems will be developed for human operators. These could include intuitive control modalities, augmented reality visualization, or haptic feedback mechanisms to enhance the operator’s situational awareness and precision during remote navigation. Furthermore, the integration with artificial intelligence and machine learning algorithms could enable semi-autonomous or fully autonomous operation, further enhancing the efficiency and accuracy of the micro-robotic platform.

As this versatile micro-robotic platform continues to evolve, it holds the potential to revolutionize minimally invasive diagnostics and therapeutics across a wide range of medical conditions and anatomical regions, paving the way for improved patient outcomes and advancing the frontiers of personalized healthcare.

The SpermyBot Concept – A Biomimetic Robotic Solution for Precision Vaginal and Uterine Medicine

Summary: Reimagining Uterine Cancer Detection: The Promise of Micro-Robotics

Uterine cancer remains a threat to women’s health worldwide. But emerging micro-robotic technologies could enable a paradigm shift, allowing for minimally invasive, early diagnosis and better patient outcomes through precisely guided, in-situ interventions.

In the quest to bridge the gap between current medical technology and the futuristic vision of Tethered Non-Cellular Organisms (TNCOs), a groundbreaking concept emerges: the SpermyBot. This biodegradable micro-robot, inspired by the natural design of a sperm, encapsulates the potential to revolutionize the way we approach diagnostics and treatment within the female reproductive system, specifically targeting the vaginal and uterine environments. Combining autonomous navigation, advanced diagnostics, and precise therapeutic delivery mechanisms, the SpermyBot represents a significant leap forward in precision medicine.

A Concept of Intelligent Precision

The core concept involves introducing a compact micro-robot into the uterine cavity. Navigating painlessly to scan the entire interior surface, its onboard sensors and tools would collect cell samples and generate high-resolution imagery to screen for malignant growths or lesions.

While diminutive in size – about a grain of rice – the robot’s potential impact is significant. It promises minimally invasive profiling of uterine health by bringing advanced lab-on-a-chip technologies directly to the source with guided autonomy.

Modular Design Adds Versatility

A modular approach allows interchangeable payloads tailored to specific diagnostic or treatment procedures. Imaging pods geared for early cancer detection could snap onto the chassis. Alternate pods might deliver targeted therapies or treat other gynecological conditions.

Self-Powered for Extended Missions

Onboard batteries allow untethered operation. But self-charging through subtle vibrations from uterine contractions or ultrasonic beams could enable indefinite sensor-guided missions, avoiding complex extractions. The robot remains active until its task is complete.

Navigating the Path Ahead

Regulatory, power and navigation challenges remain. But micro-robotics are rapidly advancing and could make this transformational concept a reality within a decade. The result promises substantial benefits for women’s healthcare worldwide.

Though still an emerging prospect, such intelligent in-situ technologies represent the vanguard of diagnostic and therapeutic innovation to better detect, understand and care for conditions impacting uterine health.

Detailed Description

Designing a rice-grain-sized robot with a flagellum for propulsion, inspired by the motility of sperm, is a fascinating concept that could offer a highly efficient and biologically inspired means of navigating the female reproductive system for purposes such as uterine cancer detection. This approach combines the fields of biomimetics, micro-robotics, and medical diagnostics to create a novel diagnostic tool. Here’s how such a system might be conceptualized and the benefits it could provide:

Design Concept

  • Biomimetic Propulsion: The robot would utilize a synthetic flagellum, mimicking the way sperm swim through fluid. This tail-like structure could be engineered to generate propulsion through whip-like movements, allowing the robot to move forward or change direction within the uterus and potentially the fallopian tubes.
  • Material and Structure: Crafting the flagellum from flexible, biocompatible materials that can withstand the acidic pH and the environment of the female reproductive tract is crucial. Advanced polymers or composite materials that combine strength, flexibility, and biocompatibility would be ideal.
  • Control Mechanism: Movement could be controlled externally via magnetic fields or internally through micro-motors responding to wireless commands. Precise control over the flagellum’s motion would allow for adjustable speed and direction, enabling the robot to navigate to specific locations within the uterus for targeted diagnostics.
  • Diagnostic Tools: The main body of the robot, akin to the “head” of a sperm, could house miniaturized diagnostic tools, including microfluidic channels for sample collection, microscopic imaging systems, and sensors for detecting chemical markers of cancer.

Potential Benefits

  • Enhanced Mobility and Access: The flagellum-driven propulsion system could allow the robot to navigate more effectively against fluid flows within the reproductive tract, reaching areas that might be difficult to access with other types of propulsion.
  • Reduced Risk and Discomfort: This biomimetic approach could minimize discomfort and the risk of tissue damage, as the soft, flexible structure of the flagellum is less likely to cause trauma than more rigid propulsion mechanisms.
  • Increased Efficiency: The energy efficiency of flagellar propulsion, mimicking one of nature’s most optimized movements, could allow for longer operational times within the body, maximizing the robot’s diagnostic capabilities.

Development Challenges

  • Power Supply: Ensuring a sufficient and safe power supply for the flagellum’s movement, especially if micro-motors are used, is a key challenge. Solutions might include wireless energy transfer or ultra-miniaturized batteries.
  • Material Durability: The materials used for the flagellum must be durable enough to sustain repeated motions without degrading, yet flexible enough to mimic the natural movement of a sperm tail.
  • Precise Control: Developing a control system that can accurately guide the robot within the complex environment of the reproductive system requires sophisticated engineering and potentially real-time feedback mechanisms.
  • Safety and Efficacy Testing: Rigorous testing is needed to ensure that the robot can safely operate within the body without causing immune reactions or other adverse effects, and that it effectively collects and transmits diagnostic information.

Notes

A grain-of-rice-sized robot propelled by a flagellum represents offers potential for highly effective, minimally invasive diagnostics within the female reproductive system. While the concept faces significant technical and biological challenges, the potential benefits in terms of patient comfort, diagnostic accuracy, and access to hard-to-reach areas of the reproductive system make it a compelling area for further research and development.

Design and Functionality

Biocompatibility and Biodegradability: SpermyBot is constructed from cutting-edge materials that ensure full biodegradability and biocompatibility, disintegrating into harmless byproducts after its mission is complete. This addresses concerns about foreign material remnants within the body, ensuring patient safety.

Autonomous Navigation: Mimicking the natural propulsion mechanism of a sperm, the SpermyBot utilizes a bio-inspired flagellum for movement. This design is optimized for the fluidic environment of the female reproductive tract, enabling the robot to navigate autonomously towards target areas within the uterus, guided by chemical gradients, pH changes, or temperature differentials.

Integrated Sensing and Analysis: Equipped with miniaturized sensors, the SpermyBot can detect specific markers indicative of disease, such as proteins or genetic material associated with uterine cancer. Real-time data processing capabilities allow for immediate analysis and decision-making.

Precise Therapeutic Delivery: Perhaps its most revolutionary feature is the SpermyBot’s ability to deliver targeted therapy at the cellular level. Once a diseased cell is identified, and external AI systems confirm the diagnosis, the robot can inject materials designed to trigger apoptosis (cell death) in just the diseased cells, sparing healthy surrounding tissue.

Communication and Control: Low-power wireless technologies enable real-time data transmission to an external receiver, allowing healthcare professionals to monitor the SpermyBot’s diagnostics and therapeutic delivery. This external communication link also provides the command for initiating the self-destruction sequence once the robot’s mission is accomplished.

Programmed Self-Destruction: A critical innovation is the SpermyBot’s programmed self-destruction mechanism, activated upon task completion or via an external command, ensuring the robot harmlessly dissolves.

Implementation Challenges and Solutions

  • Material Science Breakthroughs: The development of SpermyBot requires advances in materials that combine structural integrity with functional capability for sensors, propulsion, and communication, all while ensuring biodegradability.
  • Navigational Precision: Achieving accurate autonomous navigation within the reproductive tract necessitates a sophisticated integration of bio-inspired design and advanced sensing technologies.
  • Effective and Safe Therapeutic Delivery: Ensuring the precise delivery of therapeutic agents to diseased cells without affecting healthy ones is paramount. This will involve innovations in microfluidics and nanotechnology.
  • Ethical and Regulatory Considerations: The introduction of such advanced robotic solutions in medicine will require careful ethical consideration and adherence to stringent regulatory standards to ensure patient safety and privacy.

Material selection for the SpermyBot’s various components is crucial for ensuring functionality, biocompatibility, and biodegradability. Here’s a detailed look at potential material options that could be employed in the design of this innovative device, focusing on the propulsion mechanism, sensor integration, therapeutic delivery system, and the communication module.

Propulsion System: Biomimetic Rotary Spermy Propulsion

The propulsion system of the SpermyBot, inspired by the flagellum of a sperm cell, requires materials that offer flexibility, strength, and biodegradability. A potential candidate for this is a composite material made from biodegradable polymers and biomimetic fibers that mimic the structure and function of natural muscle fibers or cilia.

  • Polycaprolactone (PCL): A biodegradable polyester with a low melting point, which could be used to create a flexible yet sturdy structure for the flagellum. Its degradation products are non-toxic, making it safe for use in the body.
  • Poly(lactic-co-glycolic acid) (PLGA): Known for its use in various medical applications, PLGA can degrade into lactic and glycolic acids, naturally occurring substances in the body. It can be engineered to control the rate of degradation, matching the required operational lifespan of the SpermyBot.
  • Biomimetic Fibers: Incorporating synthetic fibers that mimic the elastic properties of elastin (a protein found in the extracellular matrix of tissues) could provide the necessary flexibility and resilience for the propulsion mechanism. These could be integrated into the polymer matrix to enhance the biomimetic properties of the flagellum.

Sensor Integration for Diagnostics

Sensors are critical for the SpermyBot’s ability to detect specific markers associated with diseases. Conductive polymers that are biocompatible and can be interfaced with biological tissues are ideal.

  • Poly(3,4-ethylenedioxythiophene) (PEDOT): Offers excellent electrical conductivity and biocompatibility, making it suitable for biosensors that can detect chemical signals or changes in the environment inside the uterus.
  • Graphene Oxide: Known for its high surface area and conductivity, graphene oxide can be functionalized with biomolecules for the specific detection of cancer markers. Its use in biodegradable formats is being researched, potentially offering a way to integrate highly sensitive sensors that naturally decompose after completing their mission.

Tethering

Incorporating a very fine tether into the design of a flagellum-propelled micro-robot for uterine cancer detection presents a novel approach to enhancing the safety and retrievability of the device. This tether would ensure that the robot can be safely extracted from the body after completing its diagnostic functions, addressing one of the significant challenges of deploying micro-robots for medical applications. Here’s an overview of how this could be implemented:

Tether Design and Functionality

  • Material Selection: The tether should be made from a biocompatible, durable material that is strong enough to pull the robot back without breaking but flexible enough to allow the robot to navigate freely. Materials such as ultra-thin fibers used in microsurgery or advanced polymers developed for biomedical applications could be suitable.
  • Tether Deployment: The tether would be stored compactly within the robot and unspool as the robot moves away from the entry point. The end of the tail, where the tether is attached, would serve as the anchor point, allowing the flagellum to continue its propelling motion without hindrance.
  • Control and Retrieval: The tether not only serves as a physical means of retrieval but could also incorporate functionalities for control. Conductive materials could allow it to double as a communication link for controlling the robot or transmitting data back to the operator in real-time.

Advantages

  • Enhanced Safety: The main advantage of incorporating a tether is the increased safety it provides, ensuring that the robot can be retrieved at any time, reducing the risk of it becoming lost or causing blockages within the body.
  • Control and Power: If designed as a conductive link, the tether could supply power to the robot, eliminating the need for onboard batteries and potentially allowing for more extended operation or more sophisticated diagnostic tools.
  • Precision Navigation: The tether could also enhance the precision of navigation, with the operator able to apply gentle tugs or adjustments to guide the robot to specific locations within the uterus.

Considerations

  • Minimizing Interference: The design must ensure that the tether does not tangibly interfere with the robot’s mobility or the flagellum’s propulsion mechanism. This requires careful consideration of the tether’s thickness, flexibility, and the method of attachment.
  • Tether Management: Managing the unspooled tether during the robot’s navigation to prevent entanglement or interference with the robot’s functions will be crucial. This might involve mechanisms for controlled deployment and retraction of the tether.
  • Biocompatibility and Comfort: Ensuring that the tether material is biocompatible and does not cause discomfort or adverse reactions during the procedure is essential. The tether’s presence in the body must be as non-intrusive as possible.

Therapeutic Delivery System

For delivering targeted therapy, materials that can encapsulate and then release therapeutic agents in response to specific triggers (pH, temperature, or enzymes) are necessary.

  • Hydrogels: Biocompatible hydrogels that respond to environmental stimuli could release therapeutic agents directly at the target site. Chitosan, a naturally occurring biopolymer, can form hydrogels that degrade in the body and release their payload in response to pH changes.
  • Microneedles: Biodegradable microneedles made from PLGA or PCL could be employed to deliver drugs directly into cancerous cells. These microneedles can be designed to dissolve after penetration, releasing their therapeutic load inside the cell.

Integrating a fine tether into a micro-robot designed for uterine cancer detection adds a significant layer of safety and functionality, making the use of such advanced diagnostic tools more feasible and appealing. While this approach introduces additional engineering challenges, particularly in tether management and robot design, the potential benefits in terms of safety, control, and diagnostic capabilities make it a promising avenue for development. As with all medical innovations, thorough testing and validation will be required to ensure that the benefits outweigh any potential risks or complications.

Communication Module

Communicating the findings to an external receiver in real-time requires materials that can support wireless communication without compromising the biodegradability of the system.

  • Biodegradable Conductive Inks: For the communication module, conductive inks based on silver nanoparticles or conductive polymers like PEDOT can be used on biodegradable substrates to create circuits that are capable of transmitting data wirelessly. These circuits would degrade along with the SpermyBot after use.
  • Magnesium Micro-wires: Magnesium is biocompatible and biodegradable, and it can be used to create micro-wires for electronic components that require a higher structural integrity. These wires could degrade safely in the body after fulfilling their purpose.

Balance

The materials chosen for the SpermyBot must strike a balance between functionality and safety, ensuring that the device can navigate the reproductive tract, perform diagnostics, deliver therapy, and communicate its findings without causing harm to the patient. Advances in biodegradable materials and biomimetic design principles are paving the way for such innovative devices, promising a new era of minimally invasive and highly targeted medical treatments.

Biomimetics, Ergonomics and Patient Acceptance

The approach of designing medical technology to be both relatable and less intimidating can play a significant role in its acceptance and adoption. The SpermyBot, with its sperm-inspired design and friendly name, embodies a unique blend of advanced technology and approachable concept. This strategy could help demystify the process of internal diagnostics and treatment, making it seem more natural and less invasive.

The Importance of Approachability in Medical Innovation

  • Reducing Anxiety: Medical procedures, especially those that are invasive, can cause significant anxiety for patients. By introducing a device with a familiar and somewhat playful name and form, it may help to alleviate some of the apprehensions associated with uterine and cervical screenings or treatments.
  • Enhancing Patient Engagement: A device that is perceived as less threatening encourages better engagement from patients. When patients are more comfortable and understanding of the technology used in their care, they are likely to be more cooperative and proactive in their treatment plans.
  • Educational Aspect: The SpermyBot concept provides an excellent opportunity for educational outreach. Explaining its function and design can serve as a tool for healthcare providers to educate patients about reproductive health, the importance of early detection of diseases like uterine cancer, and the advancements in medical technology aimed at improving patient care.
  • Social Acceptance: The challenge of introducing new medical technologies also lies in their social acceptance. A device that is perceived as innovative and non-threatening can foster a positive public perception, which is crucial for widespread adoption and support.

Conclusion

The SpermyBot concept represents an exciting frontier in the field of medical robotics, offering a glimpse into a future where minimally invasive, highly precise diagnostic and therapeutic interventions can be conducted within the human body. By integrating the design principles of TNCOs with the autonomy and specificity of advanced robotics, the SpermyBot has the potential to significantly improve outcomes in reproductive health and cancer treatment. This visionary approach not only promises enhanced efficacy and safety but also underscores the importance of interdisciplinary collaboration in realizing the next generation of medical technology.

Carbon Jellyfish: Space Debris Mitigation Using Folded Graphene

Carbon Jellyfish: Advanced Space Debris Mitigation System Using Folded Graphene

Reprise of my 2017 blog that covered this and numerous other folded carbon applications. Space debris is still worsening so we need solutions.

The Carbon Jellyfish represents a new approach to space debris mitigation, leveraging the unique properties of folded graphene to create a highly adaptive and efficient system. This technology is particularly focused on the deorbiting of space debris using a specialized “stinger” mechanism.

Design and Material Innovation:

  • Structure: Inspired by the flexibility and strength of graphene, the Carbon Jellyfish features a concertina-like structure composed of ultra-thin, foldable graphene sheets. These sheets can rapidly expand or contract from nanometric to several centimeters, providing unparalleled adaptability and resilience in the space environment.
  • Material Properties: The use of graphene, known for its exceptional strength-to-weight ratio, electrical conductivity, and flexibility, makes the Carbon Jellyfish ideal for withstanding the rigors of space and performing complex maneuvers.

Electromagnetic Control and Movement:

  • Mechanism: Electromagnetic circuits integrated into the graphene structure enable individual segments to expand or contract rapidly, allowing the Jellyfish to dynamically adapt its shape and size in response to varying debris sizes and trajectories.
  • Navigation and Maneuverability: Advanced control systems, utilizing electromagnetic forces in interaction with Earth’s magnetic field, provide precise and energy-efficient movements, essential for aligning the Jellyfish with target debris.

The Stinger Mechanism for Debris Interaction:

  • Function and Purpose: The key feature of the Carbon Jellyfish is the “stinger” – an extendable part of the structure engineered to interact with space debris. The stinger’s primary function is to gently alter the trajectory of debris, ideally pushing it into a decaying orbit for safe re-entry into Earth’s atmosphere or moving it to a more stable, less hazardous orbit.
  • Adaptability: The graphene’s ability to rapidly change shape and size allows the stinger to adapt to a wide range of debris scenarios, from small fragments to larger objects.

Power System and Operation:

  • Wireless Power Transmission: Addressing the challenge of powering the Jellyfish in space, the system incorporates an innovative solution – receiving power wirelessly via microwaves from a dedicated solar-powered satellite. This approach ensures a continuous and reliable energy supply for the Jellyfish’s operations.
  • Operational Capabilities: Equipped with this sustainable power source, the Carbon Jellyfish can perform long-duration missions, actively seeking and deorbiting space debris to mitigate the growing challenge in Earth’s orbit.

Conclusion: The Carbon Jellyfish concept, with its innovative use of folded graphene and electromagnetic control, offers a potential solution to the critical issue of space debris. Its development could signify a major advancement in ensuring the safety and sustainability of space operations, showcasing the transformative potential of advanced materials and engineering in space technology.

Offshore Vertical Farms

A Vision of Sustainability

In a world grappling with the challenges of sustainable living and efficient food production, one idea I can offer is the air-floating offshore vertical farm.

The Daisy of the Sea

Imagine a structure, floating not on water but soaring above it, presenting no barrier to shipping and immune from the ferocity of the sea, resembling a daisy in its form and function. At its core is a vertical farm, stretching upwards, a tower of green teeming with life. Its ‘petals’ are not ordinary leaves, but panels of advanced solar technology, harnessing the sun’s energy to breathe life into this floating marvel.

Self-Sustaining and Efficient

At the heart of this structure lies the vertical farm, a testament to modern agricultural techniques. Layers upon layers of crops grow in a controlled internal environment, shielded from pests and harsh weather, more robust ones on the outside. It’s a perfect example of precision agriculture, where every drop of water and ray of light is optimized for maximum yield.

This offshore vertical farm is the epitome of sustainability. Powered by the sun, it could grow a plethora of crops, providing abundant food without the burden of land use. By elevating the farm above the sea, it avoids the pitfalls of traditional agriculture — no land degradation, no deforestation, just pure, efficient farming. We could use our seas to grow food, and give more of the land back to nature.

Vertical farms convert solar energy to power LEDs with the light frequencies needed by plants. With the outside of the farm covered in plants too, the centre makes a visually appealing green centre for our daisy.

Solar Petals

The solar panel petals are not just power sources; they are integral to the farm’s ecosystem. They provide the energy needed to run the farm’s operations, from lighting to irrigation. This synergy of food and energy production creates a cycle of sustainability that is crucial for our planet’s future.

Rainwater can be gathered by the petals and piped inside. If that isn’t enough, electricity from the panels can power desalination.

Floating High for a Reason

Elevating the farm above the sea serves multiple purposes. It ensures that the structure does not interfere with marine life or shipping routes. Being offshore also means it is free from the shadows of tall buildings or mountains, making solar energy collection more efficient.

A Blueprint for the Future

This offshore vertical farm shows how we can produce food and energy in harmony with our environment. It’s a stepping stone to a future where nature and technology exist in balance, providing for humanity’s needs without compromising the health of our planet. I can imagine countries with abundant territorial waters using solar daisies to produce hugely more food than they can today, with less environmental impact.

Curing cancer, heart disease, strokes, Alzheimer’s and many more. A totally new approach using TNCOs


Tethered Non-Cellular Organisms (TNCOs)

I just uploaded a pre-print of my paper about my new idea: Tethered Non-Cellular Organisms (TNCOs). As the title says, they could cure most of the major killer diseases. It is very long so this brief summary might suffice for most. Pre-prints have not been peer reviewed yet, but you can read it at https://www.researchgate.net/publication/377382749_Curing_Cancer_Heart_Disease_Neurodegenerative_Disorders_Strokes_and_More_The_Groundbreaking_Role_of_TNCOs_in_Medical_Treatment

TNCOs would harness advanced biotechnology, synthetic biology, and artificial intelligence (AI), and could go anywhere within the human body (even the brain) and destroy unwanted materials, clear blockages or deliver killer enzymes into cancer cells. Their nature means they can do a great many tasks that are extremely challenging by other means. They would even be able to cure cancers that have metastased. It would take several years of cooperative work by the big medical and pharma companies, plus the AI and biotech ones, but if we managed to get the same industry response speed as during COVID, we could cure most of these diseases by 2030. Together they account for more than half of all deaths so we may see a decade or two of healthy life added to lifespan.

The Essence of TNCOs:

TNCOs are non-cellular in nature, which sets them apart from traditional biological entities. Unlike cellular organisms, the lack of structures like cell walls allows them unparalleled flexibility and adaptability within the human body. This unique design enables TNCOs to navigate and operate in intercellular spaces anywhere in the body or inside blood vessels and other tubes.

Designed to use the body’s inherent energy and resources, TNCOs operate in a symbiotic manner. They are envisioned to perform a spectrum of therapeutic functions, from clearing arterial blockages and dissolving harmful plaques to targeting malignant cells in cancer treatment. Their inherent design allows them to integrate seamlessly into various biological systems without disrupting the body’s natural balance.

Precision Control via Tethering to External AI:

A defining feature of TNCOs is their tethering to sophisticated external AI systems. This tethering is not just a physical connection but a conduit for real-time data exchange, control, and decision-making. The AI essentially is an external brain to these organisms, enabling meticulous control over their actions, movements, and therapeutic functions. This link ensures precision in targeting specific tissues or pathological entities, enhancing the efficacy of medical treatments while minimizing potential side effects.

Neurodegenerative Diseases: A New Hope

Neurodegenerative diseases such as Alzheimer’s and Parkinson’s present some of the most challenging frontiers in medicine. TNCOs offer a novel approach to these conditions. In Alzheimer’s, TNCOs could potentially halt the progression of the disease by methodically removing amyloid plaques and tau tangles, the notorious culprits behind neuronal damage. Their ability to navigate through the brain’s intercellular spaces makes them ideal for targeting these pathological structures.

For Parkinson’s disease, characterized by the accumulation of α-synuclein proteins, TNCOs could deliver specialized enzymes directly to the affected neurons. By dissolving these harmful aggregates, TNCOs could significantly slow the disease’s progression, preserving neurological function.

Heart Diseases and Stroke: Proactive and Reactive Solutions

In cardiovascular health, TNCOs could play a dual role in both prevention and treatment. By clearing cholesterol build-ups in arteries, TNCOs could prevent conditions like atherosclerosis, a major risk factor for heart diseases. Their precision in targeting and dissolving arterial plaques could transform the management of heart health, reducing the need for invasive procedures.

In stroke prevention and treatment, TNCOs could clear cerebral vessels, significantly lower the risk of strokes and Transient Ischemic Attacks (TIAs). In acute stroke situations, their rapid deployment to dissolve clots could be life-saving, minimizing neurological damage and aiding recovery.

Cancer

Cancer treatment is another area where TNCOs could have a profound impact. Their capability to identify and target cancer cells based on unique molecular markers allows for a highly tailored approach to cancer therapy. Whether it’s infiltrating primary tumors or seeking out elusive metastatic cells, TNCOs could deliver cytotoxic agents or other cancer-specific toxins directly to individual cancer cells, then dismantle them, offering a path to full remission of almost all cancer forms.

Broader Implications: Diabetes, Respiratory Diseases, and Autoimmune Disorders

Beyond these, TNCOs have potential applications in managing diabetes, where they could regulate blood glucose levels or enhance insulin sensitivity. In respiratory diseases, TNCOs could deliver targeted treatments to inflamed airways or infected lung tissues, offering new strategies in the management of conditions like COPD and asthma.

Autoimmune disorders also present an opportunity for TNCO intervention. By selectively delivering immunosuppressive agents or modulating immune responses, TNCOs could bring balance to an overactive immune system, offering relief and potential recovery in conditions like lupus or multiple sclerosis.

Conclusion: A Vision of Future Medicine

TNCOs represent a convergence of biology and technology, and a new paradigm in medical treatment. Their application across a diverse array of diseases showcases not just their versatility but also the potential to significantly improve patient outcomes, with more effective, personalized, and less invasive treatments. Their development and implementation may well redefine the future of healthcare, offering hope and improved quality of life to millions worldwide.

Population Growth is a Good Thing

Many people are worried about world human population, that we are overpopulating the planet and will reap environmental catastrophe. Some suggest draconian measures to limit or even reduce it. I’m not panicking about population at all. I’m not even particularly concerned. I don’t think it is necessarily a bad thing to have a high population. And I think it will be entirely sustainable to have a much higher population.

Nobody sane think the Earth’s human population will carry on increasing exponentially forever. Obviously it will level off and it is already starting to do so. I would personally put the maximum carrying capacity of the Earth at around 100 billion people, but population will almost certainly level off between 9 and 10 billion, let’s say 9.5Bn. Further in the future, other planets will one day house some more people, but they will have their own economics.

We aren’t running out of physical resources, just moving them around. Apart from a few spacecraft that have moved some stuff off planet, some excess radioactive decay induced in power stations and weapons, and helium and hydrogen escaping from the atmosphere, all of which is offset by meteorites and dust landing from space, all we have done is convert stuff to other forms. Almost all materials are more plentiful now than they were 40 years ago when the loudest of doom-mongers warned of the world running out imminently. They were simply wrong.

If we do start to run short, we can mine key elements from rubbish tips and use energy to convert back to any form we need, we can engineer substitutes or we can gather them from space. Another way of looking at this issue is that we live on top of 6000km of resources and only have homes a few metres deep. When we fill them we have to dispose of one thing to make room for a new one, and recycling technology is getting better all the time. Meanwhile, material technology development means we need less material to make something, and can do so with a wider range of input elements.

We are slowly depleting some organic resources, such as fossil fuels, but there are several hundred years supply left, and we will not need any more than a tiny fraction of that before we move to other energy sources. We’re also depleting some fish stocks around the world, so fishing needs some work in designing and implementing better practices, but that is not unachievable by any means and some progress is already happening. Forestry is being depleted in some areas and expanding in others. Some areas of forest are being wiped out because environmentalists and other doomsayers have forced policies through that encourage people to burn them down to make the land available for biofuel plantations and carbon offset schemes.

We certainly are not short of space. I live in Southern England, which sometimes feels full when I get stuck in traffic jams or queues for public services, but these are a matter of design, not fundamental limits. Physically, I don’t feel it is terribly overpopulated here yet, even with the second highest population density on Earth, at 470 people per square kilometre. India only has 345, even with its massive population. China has even less at only 140, while Indonesia has 117, Brazil just 22, and Russia a mere 7.4 people per square kilometre. Yet these are the world’s biggest populations today. So there is room for expansion perhaps. If all the inhabitable land in the world were to be occupied at average English density of today, the world can actually hold 75-80 Billion people. There would still be loads of open countryside, still only 1 or 2% covered in concrete and tarmac.

But self-driving vehicles can increase road capacity by a factor of 5, regional rail capacity by a factor of 200. Replacement of most public sector workers by machines, or better still, good system design, would eradicate most queues and improve most services. England isn’t even full yet. So that 75-80Bn could become 100Bn before it feels crowded.

So let’s stop first of all from imagining that we are running out of space any time soon. We just aren’t!

Energy isn’t a problem in the long term either. Shale gas is already reducing costs in the USA at the same time as reducing carbon dioxide emissions. In Europe, doom-mongers and environmentalist have been more successful in influencing policy, so CO2 emissions are increasing while energy costs create fuel poverty and threaten many key areas of the economy. Nuclear energy currently depends on uranium but thorium based power is under development and is very likely to succeed in due course, adding several hundred years of supply. Solar, fusion, geothermal and shale gas will add to this to provide abundant power for even a much great population, within a few decades, well ahead of the population curve. The only energy shortages we will see will be doomsayer-induced.

Future generations will face debts handed on to them without their consent to pay for this doom-induced folly, but will also inherit a physical and cultural infrastructure with built in positive feedback that ensure rapid technological development.

Among its many benefits, future technology will greatly reduce the amount of material needed to accomplish a task. It will also expand the global economy to provide enough wealth to buy a decent standard of living for everyone. It will also clean up the environment while producing far more food from less land area, allowing some land to be returned to nature. Food production per hectare has doubled in the last 30 years. The technology promises further gains into the foreseeable future.

The world of the future will be a greener and more pleasant land, with nature in a better state than today, with a larger world population that is richer and better fed, almost certainly no more than 10 billion. Providing that is, that we can stop doom-mongers forcing their policies through – the only thing that would really wreck the environment. A doom-monger-free human population is not a plague but a benefit to the Earth and nature. The doom-mongers and their policies are the greatest proven threat. Environmentalists should focus on making sure we are inspired by nature and care for it, and then get out of the way and let technologists get on with making sure it can flourish in the future.

Let’s compare the outcomes of following the advice of the doom-mongers with the outcome of following a sensible economic development path using high technology.

If everyone wants to live to western standards, the demands on the environment will grow as the poor become richer and able to afford more. If we try to carry on with existing technology, or worse, with yesterday’s, we will not find that easy. Those who consider technology and economic growth to be enemies of the environment, and who therefore would lock us into today’s or yesterday’s technology, would condemn billions of people to poverty and misery and force those extra people to destroy the environment to try to survive. The result would be miserable future for humanity and a wrecked environment. Ironically, these people have the audacity to call themselves environmentalists, but they are actually enemies of both the environment and of humanity.

If we ignore such green lunacy – and we should – and allow progress to continue, we will see steady global economic growth that will result in a far higher average income per capita in 2050 with 9.5Bn people than we have today with only 7.7Bn. The technology meanwhile will develop so much that the same standard of living can be achieved with far less environmental impact. For example, bridges hundreds of years ago used far more material than today’s, because they were built with primitive science and technology and poor understanding of science. Technology is better now, materials are stronger and more consistent, we know their properties accurately as well as all the forces acting on the bridge, so we need less material to build a bridge strong enough for the purpose, which is better for the environment. With nanotechnology and improved materials, we will need even less material to build future bridges. The environmental footprint of each person will certainly be far lower in 2050 if we accept new technology than it will be if we restrict growth and technology development. It will almost certainly be less even than today’s, even though our future lifestyles would be far better. Trying to go back to yesterday’s technologies without greatly reducing population and lifestyle would impose such high environmental impact that the environment would be devastated. We don’t need to, and we shouldn’t.

Take TVs as another example. TVs used to be hugely heavy and bulky monsters that took up half the living room, used lots of electricity, but offered relatively small displays with a choice from just a few channels. Today, thin LCD or LED displays use far less material, consume far less power, take up far less space and offer far bigger and better displays offering access to thousands of channels via satellites and web links. So as far as TV-based entertainment goes, we have a far higher standard of living with far lower environmental impact. The same is true for phones, computers, networks, cars, fridges, washing machines, and most other tools. Better materials and technologies enable lower resource use.

New science and technology has enabled new kinds of materials that can substitute for scarce physical resources. Copper was once in danger of running out imminently. Now you can build a national fibre telecommunication network with a few bucketfuls of sand and some plastic. We have plastic pipes and water tanks too, so we don’t really need copper for plumbing either. Aluminium makes reasonable cables, and future materials such as graphene will make even better cables, still with no copper use. There are few things that can’t be done with alternative materials, especially as quantum materials can be designed to echo the behaviour of many chemicals. So it is highly unlikely that we will ever run out of any element. We will simply find alternative solutions as shortages demand.

Oil will be much the same story. To believe the doom-mongers, our use of oil will continue to grow exponentially until one day there is none left and then we will all be in big trouble, or dead, breathing in 20% CO2 by then of course. Again, this is simply a nonsensical scenario. By 2030, oil will be considered a messy and expensive way of getting energy, and most will be left in the ground. The 6Gjoules of energy a barrel of oil contains could be made for $30 using solar panels in the deserts, and electricity is clean. Even if solar doesn’t progress that far, shale gas only produces half as much CO2 as oil for the same energy output (another potential environmental improvement held back by green zealots here in the UK and indeed the rest of Europe).

This cheap solar electricity mostly won’t come from UK rooftops as currently incentivised by green-pressured government, but somewhere it is actually sunny, deserts for example, where land is cheap, because it isn’t much use for anything else. The energy will get to us via superconducting or graphene cables. Sure, the technology doesn’t yet exist, but it will. Oil will only cost $30 a barrel because no-one will want to pay more than that for what will be seen as an inferior means of energy production. Shale gas might still be used because it produces relatively little CO2 and will be very cheap, but even that will start declining as the costs of solar and nuclear variants fall.

In the longer term, in our 2050 world of 9.5Bn people, fusion power will be up and running, alongside efficient solar (perhaps some wind) and other forms of energy production, proving an energy glut that will help with water supply and food production as well as our other energy needs. In fact, thanks to the development of graphene desalination technology, clean water will be abundantly available at low cost (not much more than typical tap-water costs today) everywhere.

Our technologies will be so advanced by then that we will be able to control climate better too. We will have environmental models based on science, not models based on the CO2-causes-everything-bad religion, so we will know what we’re doing rather than acting on guesswork and old-wives’ tales. We will have excellent understanding of genetics and biotech and be able to make superior crops and animals, so will be able to make enough food to feed everyone, ensuring not only quantity but nutritional quality too. While today’s crops deliver about 2% of the solar energy landing on their fields to us as food, we will be able to make foods in factories more efficiently, and will have crops that are also more efficient. It is true that we may see occasional short-term food shortages, but in the long term, there is absolutely no need to worry about feeding everyone. And no need to worry about the impact on the environment either, because we will be able to make more food with far less space. No-one needs to be hungry, even if we have 9.5Bn of us, and with steady economic growth, everyone will be able to afford food too.

This is no fanciful techno-utopia. It is entirely deliverable and even expectable. All around the world today, people’s ethical awareness is increasing and we are finally starting to address problems of food and emergency aid distribution, even in failing regimes. The next few decades will not eradicate poverty completely, but it will make starvation much less of a problem, along with clean water availability.

How can we be sure it will be developed? Well, there will be more people for one thing. That means more brains. Those people will be richer, they will be better educated, and many will be scientists and engineers. Many will have been born in countries that value engineers and scientists greatly, and will have a lot of backing, so will get results. Some will be in IT, and will develop computer intelligence to add to the human effort, and provide better, cheaper and faster tools for scientists and engineers in every field to use. So, total intellectual resources will be far greater than they are today.

Therefore we can be certain that technological progress will continue to accelerate. As it does, the environment will become cleaner and healthier, because we will be able to make it so. We will restore nature. Rivers today in the UK are cleaner than 100 years ago. The air is cleaner too. We look after nature better, because that’s what people do when they are affluent and well educated. In 50 years we will see that attitude even more widespread. The rainforests will be flourishing, some species will be being resurrected from extinction via DNA banks. People will be well fed. Water supply will be adequate.

But all this can only happen if we stop following the advice of doom-mongers and technophobes who want to take us backwards.

That really is the key: more people mean more brain power, more solutions, and better technology. For the last million years, that has meant steady improvement of our lot. In the un-technological world of the cavemen hunter-gatherers, the world was capable of supporting around 60 million people. If we try to restrict technology development now, it will be a death sentence. People and the environment would both suffer. No-one wins if we stop progress. That is the fallacy of environmental dogma that is shouted loudly by the doom mongers.

Some extremists in the green movement would have us go back to yesterday, rejecting technology, living on nature and punishing everyone who disagrees with them. They can indulge such silliness when they are only a few and the rest of us support them, but everyone simply can’t live like that. Without technology, the world can only support 60 million, not 7 billion or 9.5 billion or 75 billion. There simply aren’t enough nice fields and forest for us all to live that way.

It is a simple choice. We could have 60 million thoroughly miserable post-environmentalists living in a post eco-catastrophe world where nature has been devastated by the results of daft policies invented by self-proclaimed environmentalists, trying to make a feeble recovery. Or we can ignore their nonsense, get on with our ongoing development, and live in a richer, nicer world where 9.5Bn people (or even far more if we want) can be happy, well fed, well educated, with a good standard of living, and living side by side with a flourishing environment, where our main impacts on the environment are positive.

Technology won’t solve every problem, and will even create some, but without a shadow of a doubt, technology is by far nature’s best friend. Not the lunatic fringe of ‘environmentalists’, many of whom are actually among the environment’s worst enemies – at best, well-meaning fools.

There is one final point that is usually overlooked in this debate. Every new person that is born is another life, living, breathing, loving, hopefully having fun, enjoying life and being happy. Life is a good thing, to be celebrated, not extinguished or prevented from coming into existence just because someone else has no imagination. Thanks to the positive feedbacks in the development loops, 50% more people means probably 100% more total joy and happiness. Population growth is good, we just have to be more creative, but that’s what we do all the time. Now let’s get on with making it work.

Good times lie ahead. We do need to fix some things though. I mentioned that physical resources won’t diminish significantly in quantity in terms of the elements they hold at least, though those we use for energy (oil, coal and gas) give up their energy when we use them and that is gone.

However, the ecosystem is a different matter. Even with advanced genetic technology we can expect in the far future, it will be difficult to resurrect organisms that have become extinct. It is far better to make sure they don’t. Even though an organism may be brought back, we’d also have to bring back the environment it needs with all the intricately woven inter-species dependencies.

Losing a single organism species might be relatively recoverable, but losing a rain forest will be very hard to fix. Forests are very complex systems. In fact designing and making a synthetic and simpler rainforest is probably easier than trying to regenerate a lost natural one. We really don’t want to have to do that. It would be far better to make sure we preserve the existing forests and other complex ecosystems. Poor countries may reasonably ask for some payment to preserve their forests rather than chopping them down to sell wood. We should certainly make sure to remove current perverse ‘environmental’ incentives to chop them down to make room for palm oil plantations to satisfy the demands of poorly thought out environmental policies in rich countries.

The same goes for ocean ecosystems. We are badly mismanaging many fisheries today, and that needs to be fixed, but there are already some signs of progress. EU regulations that used to cause huge quantities of fish to be caught and thrown back dead into the sea are becoming history. Again, these are a hangover from previous environmental policy designed to preserve fish stocks, but again this was poorly thought out and has had the opposite result to that intended.

Other policies in the EU and in other parts of the world are also causing problems by unbalancing populations and harming or distorting food chains. The bans on seal hunting are good – we love seals, but the explosion in seal populations caused by throwing dead fish back has increased the demand of the seal population to over 100,000 tons of fish a year, when it is already severely stressed by over-fishing. The dead fish have also helped cause an explosion in lobster populations and in some sea birds. We may appreciate the good side, but we mustn’t forget to look for harmful effects that may also be caused. It is obvious that we could do far better job, and we must.

A well-managed ocean with properly designed farms should be able to provide all the fish and other seafood we need, but we are well away from it yet and we do need to fix it. With ongoing scientific study, understanding of relationships between species and especially in food chains is improving, and regulations are slowly becoming more sensible, so there is hope. Many people are switching their diets to fish with sustainable populations. But these will need managed well too. Farming is suitable for many species and crashes in some fish populations have added up to a loud wake-up call to fix regulations around the world. We may use genetic modification to increase growth and reproduction rates, or otherwise optimise sustainability and ocean capacity. I don’t think there is any room for complacency, but I am confident that we can and will develop good husbandry practices and that our oceans and fish stocks will recover and become sustainable.

Certainly, we have a greater emotional attachment to the organic world than to mere minerals, and we are part of nature too, but we can and will be sustainable in both camps, even with a greatly increased population.

New book: Fashion Tomorrow

I finally finished the book I started 2 years ago on future fashion, or rather future technologies relevant to the fashion industry.

It is a very short book, more of a quick guide at 40k words, less than half as long as my other books and covers women’s fashion mostly, though some applies to men too. I would never have finished writing a full-sized book on this topic and I’d rather put out something now, short and packed full of ideas that are (mostly) still novel than delay until they are commonplace. It is aimed at students and people working in fashion design, who have loads of artistic and design talent, but want to know what technology opportunities are coming that they could soon exploit, but anyone interested in fashion who isn’t technophobic should find it interesting. Some sections discussing intimate apparel contain adult comments so the book is unsuitable for minors.

It started as a blog, then I realised I had quite a bit more stuff I could link together, so I made a start, then go sidetracked, for 20 months! I threw away 75% of the original contents list and tidied it up to release a short guide instead. I wanted to put it out for free but 99p or 99c seems to be the lowest price you can start at, but I doubt that would put anyone off except the least interested readers. As with my other books, I’ll occasionally make it free.

Huge areas I left out include swathes of topics on social, political, environmental and psychological fashions, impacts of AI and robots, manufacturing, marketing, distribution and sales. These are all big topics, but I just didn’t have time to write them all up so I just stuck to the core areas with passing mentions of the others. In any case, much has been written on these areas by others, and my book focuses on things that are unique, embryonic or not well covered elsewhere. It fills a large hole in fashion industry thinking.

 

The future of washing machines

Ultrasonic washing ball

Ultrasonic washing ball

For millennia, people washed clothes by stirring, hitting, squeezing and generally agitating them in rivers or buckets of water. The basic mechanism is to loosen dirt particles and use the water to wash them away or dissolve them.

Mostly, washing machines just automate the same process, agitating clothes in water, sometimes with detergent, to remove dirt from the fabric. Most use detergent to help free the dirt particles but more recently, some use ultrasound to create micro-cavitation bubbles and when they collapse, the shock waves help release the particles. That means the machines can clean at lower temperatures with little or no detergent.

It occurred to me that we don’t really need the machine to tumble the clothes. A ball about the size of a grapefruit could contain batteries and a set of ultrasonic transducers and could be simply chucked in a bucket with the clothes. It could create the bubbles and clean the clothes. Some basic engineering has to be done to make it work but it is entirely feasible.

One of the problems is that ultrasound doesn’t penetrate very far. To solve that, two mechanisms can be used in parallel. One is to let the ball roam around the clothes, and that could be done by changing its density by means of a swim bladder and using gravity to move it up and down, or maybe by adding a few simple paddles or cilia so it can move like a bacterium or by changing its shape so that as it moves up and down, it also moves sideways. The second mechanism is to use phased array ultrasonic transducers so that the beams can be steered and interfere constructively, thereby focusing energy and micro-cavitation generation around the bucket in a chosen pattern.

Making such a ball could be much cheaper than a full sized washing machine, making it ideal for developing countries. Transducers are cheap, and the software to drive them and steer the beams is easy enough and replicable free of charge once developed.

It would contain a rechargeable battery that could use a simple solar panel charging unit (which obviously could be used to generate power for other purposes too).

Such a device could bring cheap washing machine capability to millions of people who can’t afford a full sized washing machine or who are not connected to electricity supplies. It would save time, water and a great deal of drudgery at low expense.

 

 

The IT dark age – The relapse

I long ago used a slide in my talks about the IT dark age, showing how we’d come through a period (early 90s)where engineers were in charge and it worked, into an era where accountants had got hold of it and were misusing it (mid 90s), followed by a terrible period where administrators discovered it and used it in the worst ways possible (late 90s, early 00s). After that dark age, we started to emerge into an age of IT enlightenment, where the dumbest of behaviors had hopefully been filtered out and we were starting to use it correctly and reap the benefits.

Well, we’ve gone into relapse. We have entered a period of uncertain duration where the hard-won wisdom we’d accumulated and handed down has been thrown in the bin by a new generation of engineers, accountants and administrators and some extraordinarily stupid decisions and system designs are once again being made. The new design process is apparently quite straightforward: What task are we trying to solve? How can we achieve this in the least effective, least secure, most time-consuming, most annoying, most customer loyalty destructive way possible? Now, how fast can we implement that? Get to it!

If aliens landed and looked at some of the recent ways we have started to use IT, they’d conclude that this was all a green conspiracy, designed to make everyone so anti-technology that we’d be happy to throw hundreds of years of progress away and go back to the 16th century. Given that they have been so successful in destroying so much of the environment under the banner of protecting it, there is sufficient evidence that greens really haven’t a clue what they are doing, but worse still, gullible political and business leaders will cheerfully do the exact opposite of what they want as long as the right doublespeak is used when they’re sold the policy.

The main Green laboratory in the UK is the previously nice seaside town of Brighton. Being an extreme socialist party, that one might think would be a binperson’s best friend, the Greens in charge nevertheless managed to force their binpeople to go on strike, making what ought to be an environmental paradise into a stinking litter-strewn cesspit for several weeks. They’ve also managed to create near-permanent traffic gridlock supposedly to maximise the amount of air pollution and CO2 they can get from the traffic.

More recently, they have decided to change their parking meters for the very latest IT. No longer do you have to reach into your pocket and push a few coins into a machine and carry a paper ticket all the way back to your car windscreen. Such a tedious process consumed up to a minute of your day. It simply had to be replaced with proper modern technology. There are loads of IT solutions to pick from, but the Greens apparently decided to go for the worst possible implementation, resulting in numerous press reports about how awful it is. IT should not be awful, it can and should be done in ways that are better in almost every way than old-fashioned systems. I rarely drive anyway and go to Brighton very rarely, but I am still annoyed at incompetent or deliberate misuse of IT.

If I were to go there by car, I’d also have to go via the Dartford Crossing, where again, inappropriate IT has been used incompetently to replace a tollbooth system that makes no economic sense in the first place. The government would be better off if it simply paid for it directly. Instead, each person using it is likely to be fined if they don’t know how it operates, and even if they do, they have to spend a lot more expensive time and effort to pay than before. Again, it is a severe abuse of IT, conferring a tiny benefit on a tiny group of people at the expense of significant extra load on very many people.

Another financial example is the migration to self-pay terminals in shops. In Stansted Airport’s W H Smith a couple of days ago, I sat watching a long queue of people taking forever to buy newspapers. Instead of a few seconds handing over a coin and walking out, it was taking a minute or more to read menus, choose which buttons to touch, inspecting papers to find barcodes, fumbling for credit cards, checking some more boxes, checking they hadn’t left their boarding pass or paper behind, and finally leaving. An assistant stood there idle, watching people struggle instead of serving them in a few seconds. I wanted a paper but the long queue was sufficient deterrent and they lost the sale. Who wins in such a situation? The staff who lost their jobs certainly didn’t. I as the customer had no paper to read so I didn’t win. I would be astonished with all the lost sales if W H Smith were better off so they didn’t win. The airport will likely make less from their take too. Even the terminal manufacturing industry only swaps one type of POS terminal for another with marginally different costs. I’m not knocking W H Smith, they are just another of loads of companies doing this now. But it isn’t progress, it is going backwards.

When I arrived at my hotel, another electronic terminal was replacing a check-in assistant with a check-in terminal usage assistant. He was very friendly and helpful, but check-in wasn’t any easier or faster for me, and the terminal design still needed him to be there too because like so many others, it was designed by people who have zero understanding of how other people actually do things.  Just like those ticket machines in rail stations that we all detest.

When I got to my room, the thermostat used a tiny LCD panel, with tiny meaningless symbols, with no backlight, in a dimly lit room, with black text on a dark green background. So even after searching for my reading glasses, since I hadn’t brought a torch with me, I couldn’t see a thing on it so I couldn’t use the air conditioning. An on/off switch and a simple wheel with temperature marked on it used to work perfectly fine. If it ain’t broke, don’t do your very best to totally wreck it.

These are just a few everyday examples, alongside other everyday IT abuses such as minute fonts and frequent use of meaningless icons instead of straightforward text. IT is wonderful. We can make devices with absolutely superb capability for very little cost. We can make lives happier, better, easier, healthier, more prosperous, even more environmentally friendly.

Why then are so many people so intent on using advanced IT to drag us back into another dark age?

 

 

Technology Convergence – What’s your Plan? Guest post by Rohit Talwar

Rohit is CEO of Fastfuture and a long-standing friend as well as an excellent futurist. He and I used to do a joint newsletter, and we have started again. Rohit sends it out to his mailing list as a proper newletter and because I don’t use mailing lists, I guest post it here. I’ll post my bit immediately after this one. I’m especially impressed since his bit ticks almost as many filing category boxes as it uses words.

Here is Rohit’s piece:

Technology Convergence – What’s your Plan?

I have just returned from South Korea where I was delivering a keynote speech to a cross-industry forum on how to prepare for and benefit from the opportunities arising from industry convergence. South Korea has made a major strategic commitment starting with government and running through the economy to be a leader in exploiting the potential opportunities arising from the convergence of industries made possible by advances in a range of disciplines. These include information and communications technology, biological and genetic sciences, energy and environmental sciences, cognitive science, materials science and nanotechnology.  From environmental monitoring, smart cars, and intelligent grids through to adaptive bioengineered materials and clothing-embedded wearable sensor device that monitor our health on a continuous basis – the potential is vast.

What struck me about the situation in Korea was how the opportunity is being viewed as a central component of the long-term future of Korea’s economy and how this is manifested in practice. Alongside a national plan, a government sponsored association has been established to drive and facilitate cross-industry collaboration to achieve convergence. In addition to various government-led support initiatives, a range of conferences are being created to help every major sector of the economy understand, explore, act on and realise the potential arising out of convergence.

I am fortunate to get the opportunity to visit 20-25 countries a year across all six continents and get to study and see a lot of what is happening to create tomorrow’s economy. Whilst my perspective is by no means complete, I am not aware of any country where such a systematic and rigorous approach is being taken to driving industry convergence. Those who study Korea know that this approach is nothing new for them – long term research and strategic planning are acknowledged to have played a major role in the evolution of its knowledge economy and rise of Korea and its technology brands on the global stage. Coming from the UK, where it seems that long term thinking and national policy are now long lost relatives, I wonder why it is that so few countries are willing to or capable of taking such a strategic approach.

Rohit on the Road

In the next few months Rohit will delivering speeches in Oslo, Paris, Vilnius, Warsaw, Frankfurt, Helsinki, Denver, Las Vegas, Oman, Leeds and London. Topics to be covered include human enhancement, the future of professional services, the future of HR, transformational forces in business, global drivers of change, how smart businesses create the future, the future technology timeline, the future of travel and tourism, the future of airlines and airports and the future of education. If you would like to arrange a meeting with Rohit in one of these cities or are interested in arranging a presentation or workshop for your organisation, please contact rohit@fastfuture.com

Towards the singularity

This entry now forms a chapter in my book Total Sustainability, available from Amazon in paper or ebook form.

Things that don’t work but could

Continue reading

The future of the Olympics, in 2076

Now that it is all over, it is time to think about the future. The last time the Olympics was held in London was 1948, 64 years ago. Going 64 years in the future, what will it be like then?

Watching the Olympics on 3D web TV is about as advanced as it gets today. By the 2024 Olympics, it will be fairly common to use active contact lenses with lasers writing images straight onto your retinas. It will be fully immersive, and almost feel like you’re there. In fact, many of the people in the crowd at the games will also use them, to zoom in or watch replays and extra content. The 2028 Olympics will have the first viewers using primitive-but-fun active skin technology to connect their nervous systems so that they can even feel some of the sensations involved. In gyms up and down the land, runners will be able to pretend they are in the race, running on their treadmills virtually against actual Olympians. They’ll receive their final placing against the others doing the same. This will improve and by 2040 even domestic active skin sensation recording and replay will feel very convincing. By 2076, we’ll have full links between IT and our brains, living the events as if we were athletes ourselves, Total Recall style.

Interfacing to the nervous system will help potential Olympic athletes improve their performance quickly, injecting sensations into the body to make perfect movements just feel better, so their body learns the optimal movement quickly. This will show the first improvements in results in 2032, with heptathletes and decathletes performing almost perfectly in every one of their events.

The 2050 Olympics will see the first competitors who are children of genetically enhanced parents, and some genetically enhanced themselves. They won’t need drugs to out-perform even those regular humans who have overdosed on steroids all their careers. Their careers will last longer too, as biological decline will be less of an issue thanks to their genes. In the same timeframe, drugs will advance enormously too, squeezing extra levels of performance, learning speed, sensory awareness and muscle development. With negative side effects under control, some drugs and implants may be accepted in sports. But fierce arguments over fairness will eventually force a split between the various streams.

The 2076 Olympics will be made up of five events. There will be one ‘original Olympics’ for ordinary unmodified humans, tested thoroughly for any genetic or chemical enhancements, forced to use the same equipment to eliminate technological advantage, possibly given handicaps for any innate genetic advantage they have over the competition. There will be another for the disabled, many of whom will resist being made ‘normal’, even if technology permits. There will be another for robots, with advanced AI and a range of ‘body types’, used as a show-off event for technology companies. Another stream will take place one for un-enhanced athletes using advanced drugs, implant technology, superior equipment, and even externally linked  IT to gain technological advantage and make more exciting sport. It will be far from ‘natural’, but viewers won’t care. And finally, another event for biologically and neurally enhanced super-humans, without any other technology advantage. These streams couldn’t compete fairly head on, but will make distinct events with distinct flavours and advantages.

The spirit of The Games will live on even with this split, and still only the very best will be able to compete, but they will be bigger, better and more exciting for everyone.

See also my previous blog on future sports.

https://timeguide.wordpress.com/2012/01/27/future-sports/

Next generation small computers

One of my posts two years ago suggested it would be a great time to bring back the Spectrum computer or something like it:

https://timeguide.wordpress.com/2010/01/15/bring-back-the-spectrum/

The new Raspberry Pi is pretty much exactly what I asked for (though I don’t think it came from my request) . For about £22, you get a computer. You plug in a keyboard and a TV and comms, then start programming. I am amazed it has been so long for someone to do it, but better late then never. Now a new generation of kids can learn how to program by messing about, instead of falling victim to the formal teaching that is provided by schools and university. I have always believed that learning how to hack programs together is the best way to understand what you are doing. You can learn formal methods later if need be. I don’t think hacking is the source of bad habits. Rather, it is more likely to show you the workings of the machine so you can exploit it better. I have seen too many taught programmers make good impressions of being mentally crippled after being forced to think in just one way, any fee-thinking and originality purged.

The Raspberry Pi isn’t the only tiny computer around though. FXI also have one, the size of a USB memory stick, and pretty impressive capability, albeit five times the price. It is easy to imagine how devices like this could really change how we work. I like to travel very light and haven’t carried a laptop for years – even the latest are still heavy and big and just aren’t worth the trouble. I won’t even use an iPAD because it is still obese, power-hungry, and altogether too primitive.Turning up at a conference with a memory stick containing your presentation has been fine as an alternative, but you are reliant on the conference laptop having the right setup. If you could bring a full PC memory stick and run everything from that, that would be better. At home it will be good to put media straight onto your TV without cluttering the room up with big boxes. A Slingbox has done that for years, and smart TVs now do it built-in, so it isn’t new, but this makes it a lot easier and cheaper to provide web and media on more conventional TVs.

On the go, you need some sort of visual display of course but soon we will have visor based head up displays that work with fingertip tracking or virtual  keyboards. Then these compact devices will come into their own. You’ll be fully connected and IT capable, but carrying hardly any weight.

Both of these new devices are small but capable, and most of the size they still have left is really interfacing to other devices. The processing guts is much smaller still. There is room to shrink further, and it is clear from these that the era of digital jewellery is almost with us. Imagine the enormous environmental benefits too, if we hardly need any resources to provide for all our IT needs.

It is the curse of futurology that you are never really happy with the stuff available today because you know what is round the corner. But when I can easily fit all my IT into my pocket as a memory stick and wear a lightweight visor as my interface, I’ll be pretty near content. Can’t be long now

Environmental and engineering convergence

My best friend Dave Faulkner runs an environmental consultancy. I host a couple of his papers on global warming on the Futurizon web site. We have many a beer over debate about environmental issues. Over the years, I have worked a few times with both Friends of the Earth and Greenpeace. I have a lot of respect for Jonathon Porritt and Doug Parr. We share a passion for a healthy environment, though we disagree on some of the ways to achieve it. It’s the same with my friend Dave. I can like and respect a person without agreeing with everything they say. It is nicer still when some common ground appears.

Only a small bit of my work involves environmental issues so I am far from expert in the environment field, though I do have my own embryonic environmental consultancy now. But I am expert at studying the future overall and pretty good at making predictions – I get it right 6 times more often than I get it wrong – and as I look at the many factors affecting the way the world is going, I feel hesitantly optimistic. There is some potential for a techno-utopia but I know we won’t get that. We will take a sub-optimal path that creates as many new problems as we solve. The world of 2050 and beyond will still be a mixture of good and bad, just with different goods and bads.

The approach to our environment though is one area I think will improve. On one side, we have the likes of Porritt and Parr, leading much of the green community and doing what they can to motivate people with the desire to live in a nicer world in harmony with nature. I can’t fault that, only in some of the policies they recommend to achieve it, which I think come from occasional flaws in their analyses. On another side, engineers are racing to develop better technologies, sometimes deliberately to help the environment, but more often almost coincidentally making better toys that happen to be better for the environment. Engineers are mostly driven by market forces, but they are still human, and many also care passionately for the environment, so will generally seek solutions that do their job but are better for the environment where the choice exists. In fact, it is hard to spot examples of new technology that are worse for the environment than their predecessors. Market forces, mediated through well motivated engineers, can make the world better just as well as any green. Both can help us move to a better world. 

I see a lot of needless worrying by environmentalists though, some of whom (I won’t name names) think of scientists and engineers as the enemy. Needless worry, and sometimes counter-productive. One of the big worries this week is that a lot of resources are scarce that we need to make renewable energy, or to make batteries to store it. But almost at the same time, articles appear on inductive power delivery to cars that circumvents the need for large batteries and hence the need for lithium – I even proposed that solution myself a few years ago, so it is good to see it appearing as a project somewhere. New materials for IT are being developed too, so we won’t rely for much longer on the other things that are scarce. So, no worries, it’s just a short-term problem. For the last few years it has been recommending spending trillions to avoid carbon dioxide production. But even without spending any trillions, future energy technology that is being developed anyway will make fossil fuels redundant, so it will take care of itself. Panic is expensive but unnecessary, the worry needless and counter-productive, serving only to slow down the race to sustainability by diverting funds to the wrong areas.

The environment has some very good friends in engineering now. Biomimetics is the engineering field of copying ideas  or at least inspiration from nature. I’ve occasionally use biokleptics when an idea is blatantly stolen. Nature doesn’t have any lawyers defending her intellectual property rights, but has been using random trial and error for 3 billion years to develop some fantastic engineering solutions and if anything encourages their copying. So, someone looks at spiders and develops a new kind of architecture that produces better structures with less material. Going way back to the 80s, I looked at evolution and made the tiny deductive leap to thinking of evolving software and hardware, then soon after looked at embryo growth and came up with ideas of how to self organise telecomms networks and sensor nets. I love biomimetics.  So do many other engineers, and the whole field is exploding now. It will help to make systems, objects, fabrics, materials, architecture and processes that are more energy or resource efficient, and quite often more beautiful.There are a few purists who insist on copying something exactly as nature does it, but mostly engineers are happy to be inspired and make their own tweaks to adapt it to needs. So, long ago, Icarus started the field by copying nature but a century ago we discovered we could make planes more easily with metal fixed wings.

Synthetic biology essentially completes the relationship by adding human design into biology. This embryonic field will expand vastly, and will be used for a wide range of tasks from resource extraction and processing, to computing. Nanotech and insights from neuroscience will add more to allow rich interaction between organic and inorganic devices, often bridging the gap to allow us to put electronic devices in direct connection with our bodies, or those of other creatures. This field also allows the wonderful possibility of undoing some of the damage done to the environment, and even making nature work better. Gaia 2.0 will be with us this century. Of course, if we don’t develop all this science and technology, we will be stuck with a human world that is immensely resource hungry and getting worse, using far more resources than would otherwise be needed, damaging the environment, with no hope of repairing the damage. There wouldn’t even be a plus side, because people would also live poorer lives and be less fulfilled and less happy.

Having been highly convergent on the goal of making the world a better place, this is where engineers often part company with greens. Most engineers think better engineering is the best route to a sustainable world, most greens (and, it has to be admitted, some engineers) think we should slow it all down. This superficially suggests lower environmental impact, implying that people will consume less if they swap devices less often, or don’t get that next pay rise, but it doesn’t deliver. It is a wrong deduction. In much the same way that poor people are often fatter than rich people, what it does change is the access to a better diet, in this case, of environmentally friendlier technology that really needs extra R&D before it is with us. That funding comes from market demand and the ability to pay, and that needs more people to be richer. For the next several decades, what we need is economic growth, selectively. Again, I start to agree with Porritt here. It isn’t just any growth we need, but growth that is spent wisely, using growth to improve peoples lives, and improving the environment we live in either directly or via R&D and the greener technology it will deliver.

Is greed more sustainable than frugality?

Sustainability is much misunderstood. Certainly government and corporate sustainability policies often point completely the wrong way.

To be sustainable, we must ensure that future generations are able to live decent lives. Not much argument about that usually. But conventional wisdom in the field is that this means we should cut back on consumption.  That leap of logic is flawed. Cutting back reduces environmental impact in the short term but that doesn’t necessarily mean it will reduce it in the long term, or overall over any significant length of time. The full lifetime, full system impact is what counts. Achieving a reduction in overall impact well be best served by increasing consumption in the short term, if this leads to development that reduces the later impacts enough to offset short term damage.

An excellent example is in mobile phone design. Vigorous marketing and encouragement to replace mobiles frequently seems to many people to be wasteful and environmentally unsustainable. However, the rapid obsolescence cycle here has given us 150g mobiles that essentially replace 600kg of previously needed IT equipment. If everyone wants a mobile phone, or to access to the functions they provide, then the lowest environmental impact is achieved by using ultra-high tech phones that do far more with far less. Increased consumption has led to lower environmental impact. If instead, we had held back development and demanded that people use their phones till they fail, we would still be using a lot of heavy and resource intensive kit that needs lots more energy, generates far more waste, and would need far more mining, nasty heavy metals and pollution. And it wouldn’t work half as well, so we’d have less happy lives too.

Greed v frugality? Greed is the more sustainable. Because it leads faster to more advanced technology that is invariably better for the environment.

For a fuller analysis of sustainability and technology, download http://futurizon.com/articles/sustainingtheearth.pdf. It is free.