Category Archives: environment

Proposed Kent solar farm is green lunacy

Solar farms should be placed in desert regions that have low value for growing food, and relatively low value to nature. There are plans to install a massive solar farm in nice green Kent, where it is occasionally a little bit sunny. That strikes me as lunacy, and even some green groups agree and are campaigning against it.

http://www.kentonline.co.uk/faversham/news/proposal-for-solar-farm-site-increases-to-1-000-acres-184240/

The project is apparently being led by Hive Energy and Wirsol. I have been in contact with Tesla, who say “Tesla is not in conversations with any parties with regards to this project”.

Land is limited and we must use it sensibly

Nature often takes a battering when money is available, but a rich country should protect nature and ensure that some appropriate spaces are set aside. It is right to resist attempts to reassign such land to other purposes, especially when there area obvious alternatives. In this case, the land in question is mainly natural habitat, but other green areas are used for food production.

World population is growing, with another 3 billion mouths to feed mid-century. Agricultural technology will improve output per hectare and food trends may reduce the amount of meat consumption, but we should be able to feed everyone just fine even with 10 or 11 Billion people, but it will require good land stewardship. Prime agricultural land should be used mainly to grow crops. Some will be needed for buildings and roads of course, and we will want to have extensive nature reserves too. When we can produce more food than people need, we can return land to nature, but we should certainly not waste it by using it for solar farms when there are far better places to put them.

Using agricultural land for solar farms increases food costs by reducing food supply, hurting the world’s poorest people. This is also true of using land to grow biofuels, essentially an extraordinarily inefficient form of indirect solar power.

Secondly, the main current argument for solar power is to save CO2 emissions. If you read my blogs regularly, you’ll know I think that claims of human-related CO2-induced global warming catastrophe are greatly exaggerated, but there is some effect so we should not be complacent, and we do still need to be careful with emission levels. I’ve always been in favor of moving to solar and fusion as very long-term solutions. Fusion won’t be a big player until the 2040s. One day, solar will be cheaper than using shale gas, the most environmentally friendly fossil fuel solution with only half the CO2 output for a unit of energy compared to oil and coal, but that day is still far in the future. The more energy a panel can make, the more CO2 it saves. We only have one atmosphere, and a ton saved anywhere is a ton saved globally. It makes sense to put them in places where there is a lot of sun. Often that means deserts, which obviously have very little value for growing crops and support relatively low levels of life for the same reason. Putting a panel in a desert produces far more energy for far less environmental cost. A solar panel in the Sahara would make 5 times more energy than one in Kent, without reducing world food output at all. 

Sahara solar

Furthermore, many desert areas are home to poor people, who might welcome extra income from housing and maintaining panels for a cut of the revenue they make. Dust and sand would make maintenance a regular issue, but providing decent income for regular work for people with few other options makes good economic sense. Doing so would also help subsidize other infrastructure badly needed that might also improve local quality of life in those areas.

Finally, by providing extra income to deprived areas of the world, geo-political tensions may reduce somewhat.

All in, it makes far more sense socially, economically, politically, and environmentally to provide solar power from desert areas than from prime agricultural land or natural habitat.

 

 

Advertisements

Will urbanization continue or will we soon reach peak city?

For a long time, people have been moving from countryside into cities. The conventional futurist assumption is that this trend will continue, with many mega-cities, some with mega-buildings. I’ve consulted occasionally on future buildings and future cities from a technological angle, but I’ve never really challenged the assumption that urbanization will continue. It’s always good  to challenge our assumptions occasionally, as things can change quite rapidly.

There are forces in both directions. Let’s list those that support urbanisation first.

People are gregarious. They enjoy being with other people. They enjoy eating out and having coffees with friends. They like to go shopping. They enjoy cinemas and theatre and art galleries and museums. They still have workplaces. Many people want to live close to these facilities, where public transport is available or driving times are relatively short. There are exceptions of course, but these still generally apply.

Even though many people can and do work from home sometimes, most of them still go to work, where they actually meet colleagues, and this provides much-valued social contact, and in spite of recent social trends, still provides opportunities to meet new friends and partners. Similarly, they can and do talk to friends via social media or video calls, but still enjoy getting together for real.

Increasing population produces extra pressure on the environment, and governments often try to minimize it by restricting building on green field land. Developers are strongly encouraged to build on brown field sites as far as possible.

Now the case against.

Truly Immersive Interaction

Talking on the phone, even to a tiny video image, is less emotionally rich than being there with someone. It’s fine for chats in between physical meetings of course, but the need for richer interaction still requires ‘being there’. Augmented reality will soon bring headsets that provide high quality 3D life-sized images of the person, and some virtual reality kit will even allow analogs of physical interaction via smart gloves or body suits, making social comms a bit better. Further down the road, active skin will enable direct interaction with the peripheral nervous system to produce exactly the same nerve signals as an actual hug or handshake or kiss, while active contact lenses will provide the same resolution as your retina wherever you gaze. The long term is therefore communication which has the other person effectively right there with you, fully 3D, fully rendered to the capability of your eyes, so you won’t be able to tell they aren’t. If you shake hands or hug or kiss, you’ll feel it just the same as if they were there too. You will still know they are not actually there, so it will never be quite as emotionally rich as if they were, but it can get pretty close. Close enough perhaps that it won’t really matter to most people most of the time that it’s virtual.

In the same long term, many AIs will have highly convincing personalities, some will even have genuine emotions and be fully conscious. I blogged recently on how that might happen if you don’t believe it’s possible:

https://timeguide.wordpress.com/2018/06/04/biomimetic-insights-for-machine-consciousness/

None of the technology required for this is far away, and I believe a large IT company could produce conscious machines with almost human-level AI within a couple of years of starting the project. It won’t happen until they do, but when one starts trying seriously to do it, it really won’t be long. That means that as well as getting rich emotional interaction from other humans via networks, we’ll also get lots from AI, either in our homes, or on the cloud, and some will be in robots in our homes too.

This adds up to a strong reduction in the need to live in a city for social reasons.

Going to cinemas, theatre, shopping etc will also all benefit from this truly immersive interaction. As well as that, activities that already take place in the home, such as gaming will also advance greatly into more emotionally and sensory intensive experiences, along with much enhanced virtual tourism and virtual world tourism, virtual clubbing & pubbing, which barely even exist yet but could become major activities in the future.

Socially inclusive self-driving cars

Some people have very little social interaction because they can’t drive and don’t live close to public transport stops. In some rural areas, buses may only pass a stop once a week. Our primitive 20th century public transport systems thus unforgivably exclude a great many people from social inclusion, even though the technology needed to solve that has existed for many years.  Leftist value systems that much prefer people who live in towns or close to frequent public transport over everyone else must take a lot of the blame for the current epidemic of loneliness. It is unreasonable to expect those value systems to be replaced by more humane and equitable ones any time soon, but thankfully self-driving cars will bypass politicians and bureaucrats and provide transport for everyone. The ‘little old lady’ who can’t walk half a mile to wait 20 minutes in freezing rain for an uncomfortable bus can instead just ask her AI to order a car and it will pick her up at her front door and take her to exactly where she wants to go, then do the same for her return home whenever she wants. Once private sector firms like Uber provide cheap self-driving cars, they will be quickly followed by other companies, and later by public transport providers. Redundant buses may finally become extinct, replaced by better socially inclusive transport, large fleets of self-driving or driverless vehicles. People will be able to live anywhere and still be involved in society. As attendance at social events improves, so they will become feasible even in small communities, so there will be less need to go into a town to find one. Even political involvement might increase. Loneliness will decline as social involvement increases, and we’ll see many other social problems decline too.

Distribution drones

We hear a lot about upcoming redundancy caused by AI, but far less about the upside. AI might mean someone is no longer needed in an office, but it also makes it easier to set up a company and run it, taking what used to be just a hobby and making it into a small business. Much of the everyday admin and logistics can be automated Many who would never describe themselves as entrepreneurs might soon be making things and selling them from home and this AI-enabled home commerce will bring in the craft society. One of the big problems is getting a product to the customer. Postal services and couriers are usually expensive and very likely to lose or damage items. Protecting objects from such damage may require much time and expense packing it. Even if objects are delivered, there may be potential fraud with no-payers. Instead of this antiquated inefficient and expensive system, drone delivery could collect an object and take it to a local customer with minimal hassle and expense. Block-chain enables smart contracts that can be created and managed by AI and can directly link delivery to payment, with fully verified interaction video if necessary. If one happens, the other happens. A customer might return a damaged object, but at least can’t keep it and deny receipt. Longer distance delivery can still use cheap drone pickup to take packages to local logistics centers in smart crates with fully block-chained g-force and location detectors that can prove exactly who damaged it and where. Drones could be of any size, and of course self-driving cars or pods can easily fill the role too if smaller autonomous drones are inappropriate.

Better 3D printing technology will help to accelerate the craft economy, making it easier to do crafts by upskilling people and filling in some of their skill gaps. Someone with visual creativity but low manual skill might benefit greatly from AI model creation and 3D printer manufacture, followed by further AI assistance in marketing, selling and distribution. 3D printing might also reduce the need to go to town to buy some things.

Less shopping in high street

This is already obvious. Online shopping will continue to become a more personalized and satisfying experience, smarter, with faster delivery and easier returns, while high street decline accelerates. Every new wave of technology makes online better, and high street stores seem unable or unwilling to compete, in spite of my wonderful ‘6s guide’:

https://timeguide.wordpress.com/2013/01/16/the-future-of-high-street-survival-the-6s-guide/

Those that are more agile still suffer decline of shopper numbers as the big stores fail to attract them so even smart stores will find it harder to survive.

Improving agriculture

Farming technology has doubled the amount of food production per hectare in the last few decades. That may happen again by mid-century. Meanwhile, the trend is towards higher vegetable and lower meat consumption. Even with an increased population, less land will be needed to grow our food. As well as reducing the need to protect green belts, that will also allow some of our countryside to be put under better environmental stewardship programs, returning much of it to managed nature. What countryside we have will be healthier and prettier, and people will be drawn to it more.

Improving social engineering

Some objections to green-field building can be reduced by making better use of available land. Large numbers of new homes are needed and they will certainly need some green field to be used, but given the factors already listed above, a larger number of smaller communities might be better approach. Amazingly, in spite of decades of dating technology proving that people can be matched up easily using AI, there is still no obvious use of similar technology to establish new communities by blending together people who are likely to form effective communities. Surely it must be feasible to advertise a new community building program that wants certain kinds of people in it – even an Australian style points system might work sometimes. Unless sociologists have done nothing for the past decades, they must surely know what types of people work well together by now? If the right people live close to each other, social involvement will be high, loneliness low, health improved, care costs minimized, the need for longer distance travel reduced and environmental impact minimized. How hard can it be?

Improving building technology such as 3D printing and robotics will allow more rapid construction, so that when people are ready and willing to move, property suited to them can be available soon.

Lifestyle changes also mean that homes don’t need to be as big. A phone today does what used to need half a living room of technology and space. With wall-hung displays and augmented reality, decor can be partly virtual, and even a 450 sq ft apartment is fine as a starter place, half as big as was needed a few decades ago, and that could be 3D printed and kitted out in a few days.

Even demographic changes favor smaller communities. As wealth increases, people have smaller families, i.e fewer kids. That means fewer years doing the school run, so less travel, less need to be in a town. Smaller schools in smaller communities can still access specialist lessons via the net.

Increasing wealth also encourages and enables people to a higher quality of life. People who used to live in a crowded city street might prefer a more peaceful and spacious existence in a more rural setting and will increasingly be able to afford to move. Short term millennial frustrations with property prices won’t last, as typical 2.5% annual growth more than doubles wealth by 2050 (though automation and its assorted consequences will impact on the distribution of that wealth).

Off-grid technology

Whereas one of the main reasons to live in urban areas was easy access to telecomms, energy and water supply and sewerage infrastructure, all of these can now be achieved off-grid. Mobile networks provide even broadband access to networks. Solar or wind provide easy energy supply. Water can be harvested out of the air even in arid areas (http://www.dailymail.co.uk/sciencetech/article-5840997/The-solar-powered-humidity-harvester-suck-drinkable-water-AIR.html) and human and pet waste can be used as biomass for energy supply too, leaving fertilizer as residue.

There are also huge reasons that people won’t want to live in cities, and they will also cause deurbansisation.

The biggest by far in the problem of epidemics. As antibiotic resistance increases, disease will be a bigger problem. We may find good antibiotics alternatives but we may not. If not, then we may see some large cities where disease runs rampant and kills hundreds of thousands of people, perhaps even millions. Many scientists have listed pandemics among their top ten threats facing humanity. Obviously, being in a large city will incur a higher risk of becoming a victim, so once one or two incidents have occurred, many people will look for options to leave cities everywhere. Linked to this is bioterrorism, where the disease is deliberate, perhaps created in a garden shed by someone who learned the craft in one of today’s bio-hacking clubs. Disease might be aimed at a particular race, gender or lifestyle group or it may simply be designed to be as contagious and lethal as possible to everyone.

I’m still not saying we won’t have lots of people living in cities. I am saying that more people will feel less need to live in cities and will instead be able to find a small community where they can be happier in the countryside. Consequently, many will move out of cities, back to more rural living in smaller, friendlier communities that improving technology makes even more effective.

Urbanization will slow down, and may well go into reverse. We may reach peak city soon.

 

 

Self-driving bicycles

I just saw a video of a Google self-driving bike on Linked-In. It is a 2017 April Fool prank, but that just means it is fake in this instance, it doesn’t mean it couldn’t be done in real life. It is fun to watch anyway.

https://www.psfk.com/2017/04/google-prank-pushes-for-self-driving-bicycles-in-amsterdam.html

In 2005 I invented a solution for pulling bikes along on linear induction motor bile lanes, pulling a metal plate attached (via a hinged rod to prevent accidents) to the front forks.

The original idea was simply that the bike would be pulled along, but it would still need a rider to balance it. However, with a fairly small modification, it could self balance. All it needs is to use plates on both sides, so that the magnetic force can be varied to pull one side more than the other. If the force is instantly variable, that could be used in a simple control system both to keep the bike vertical when going straight and to steer it round bends as required, as illustrated on the right of the diagram. Therefore the bike could be self-driving.

Self-driving bikes would be good for lazy riders who don’t even want the effort of steering, but their auto-routing capability would also help any rider who simply wants navigation service, and presumably some riders with disabilities that make balancing difficult, and of course the propulsion is potentially welcome for any cyclist who doesn’t want to arrive sweaty or who is tiring of a long hill. Best of all, the bikes could find their own way to a bike park when not needed, balancing the numbers of available bikes according to local demand at any time.

 

Advanced land, sea, air and space transport technologies

I’ll be speaking at the Advanced Engineering conference in Helsinki at the end of May. My topic will be potential solutions for future transport, covering land, sea, air and space. These are all areas where I’ve invented new approaches. In my 1987 BT life as a performance engineer, I studied the potential to increase road capacity by a factor of 5 by using driverless pod technology, mimicking the packet switching approach we were moving towards in telecomms. This is very different from the self-driving systems currently in fashion, because dumb pods would be routed by smart infrastructure rather than having their own AI/sensor systems, so the pods could be extremely cheap and packed very closely together to get a huge performance benefit, using up to 85% of the available space. We’re now seeing a few prototypes of such dumb pod systems being trialled.

It was also obvious even in the 1980s that the same approach could be used on rail, increasing capacity from today’s typical 0.4% occupancy to 80%+, an improvement factor of 200, and that the same pods could be used on rail and road, and that on rail, pods could be clumped together to make virtual trains so that they could mix with existing conventional trains during a long transition period to a more efficient system. In the early 2000s, we realised that pods could be powered by induction coils in the road surface and more recently, with the discovery of graphene, such graphene induction devices could be very advantageous over copper or aluminium ones due to deterrence of metal theft, and also that linear induction could be used to actually propel the pods and in due course even to levitate them, so that future pods wouldn’t even need engines or wheels, let alone AI and sensor systems on board.

We thus end up with the prospect of a far-future ground transport system that is 5-15 times road capacity and up to 200 times rail capacity and virtually free of accidents and congestion.

Advanced under-sea transport could adopt supercavitation technology that is already in use and likely to develop quickly in coming decades. Some sources suggest that it may even be possible to travel underwater more easily then through air. Again, if graphene is available in large quantity at reasonable cost, it would be possible to do away with the need for powerful engines on board, this time by tethering pods together with graphene string.

Above certain speeds, a blunt surface in front of each pod would create a bubble enclosing the entire pod, greatly reducing drag. Unlike Hyperloop style high-speed rail, tubes would not be required for these pods, but together, a continuous stream of many pods tethered together right across an ocean would make a high-capacity under-sea transport system. This would be also be more environmentally friendly, using only electricity at the ends.

Another property of graphene is that it can be used to make carbon foam that is lighter than helium. Such material could float high in the stratosphere well above air lanes. With the upper surface used for solar power collection, and the bottom surface used as a linear induction mat, it will be possible to make inter-continental air lines that can propel sleds hypersonically, connected by tethers to planes far below.

High altitude solar array to power IT and propel planes

As well as providing pollution-free hypersonic travel, these air lines could also double as low satellite platforms for comms and surveillance.

As well as land, sea and air travel, we are now seeing rapid development of the space industry, but currently, getting into orbit uses very expensive rockets that dump huge quantities of water vapour into the high atmosphere. A 2017 invention called the Pythagoras Sling solves the problems of expense and pollution. Two parachutes are deployed (by small rockets or balloons) into the very high atmosphere, attached to hoops through which a graphene tether is threaded, one end connected to a ground-based winch and the other to the payload. The large parachutes have high enough drag to act as temporary anchors while the tether is pulled, propelling the payload up to orbital speed via an arc that renders the final speed horizontal as obviously needed to achieve orbit.

With re-usable parts, relatively rapid redeployment and only electricity as power supply, the sling could reduce costs by a factor of 50-100 over current state of the art, greatly accelerating space development without the high altitude water vapour risking climate change effects.

The winch design for the Pythagoras Sling uses an ‘inverse rail gun’ electromagnetic puller to avoid massive centrifugal forces of a rotating drum. The inverse rail gun can be scaled up indefinitely, so also offers good potential for interplanetary travel. With Mars travel on the horizon, prospects of months journey times are not appealing, but a system using well-spaced motors pulling a graphene tether millions of km long is viable. A 40,000 ton graphene tether could be laid out in space in a line 6.7M km long, and using solar power, could propel a 2 Ton capsule at 5g up to an exit speed of 800km/s, reaching Mars in as little 5-12 days.

At the far end, a folded graphene net could intercept and slow the capsule at 5g  into a chosen orbit around Mars. While not prohibitively expensive, this system would be completely reusable and since it needs no fuel, would be a very clean and safe way of getting crew and materials to a Mars colony.

 

2018 outlook: fragile

Futurists often consider wild cards – events that could happen, and would undoubtedly have high impacts if they do, but have either low certainty or low predictability of timing.  2018 comes with a larger basket of wildcards than we have seen for a long time. As well as wildcards, we are also seeing the intersection of several ongoing trends that are simultaneous reaching peaks, resulting in socio-political 100-year-waves. If I had to summarise 2018 in a single word, I’d pick ‘fragile’, ‘volatile’ and ‘combustible’ as my shortlist.

Some of these are very much in all our minds, such as possible nuclear war with North Korea, imminent collapse of bitcoin, another banking collapse, a building threat of cyberwar, cyberterrorism or bioterrorism, rogue AI or emergence issues, high instability in the Middle East, rising inter-generational conflict, resurgence of communism and decline of capitalism among the young, increasing conflicts within LGBTQ and feminist communities, collapse of the EU under combined pressures from many angles: economic stresses, unpredictable Brexit outcomes, increasing racial tensions resulting from immigration, severe polarization of left and right with the rise of extreme parties at both ends. All of these trends have strong tribal characteristics, and social media is the perfect platform for tribalism to grow and flourish.

Adding fuel to the building but still unlit bonfire are increasing tensions between the West and Russia, China and the Middle East. Background natural wildcards of major epidemics, asteroid strikes, solar storms, megavolcanoes, megatsumanis and ‘the big one’ earthquakes are still there waiting in the wings.

If all this wasn’t enough, society has never been less able to deal with problems. Our ‘snowflake’ generation can barely cope with a pea under the mattress without falling apart or throwing tantrums, so how we will cope as a society if anything serious happens such as a war or natural catastrophe is anyone’s guess. 1984-style social interaction doesn’t help.

If that still isn’t enough, we’re apparently running a little short on Ghandis, Mandelas, Lincolns and Churchills right now too. Juncker, Trump, Merkel and May are at the far end of the same scale on ability to inspire and bring everyone together.

Depressing stuff, but there are plenty of good things coming too. Augmented reality, more and better AI, voice interaction, space development, cryptocurrency development, better IoT, fantastic new materials, self-driving cars and ultra-high speed transport, robotics progress, physical and mental health breakthroughs, environmental stewardship improvements, and climate change moving to the back burner thanks to coming solar minimum.

If we are very lucky, none of the bad things will happen this year and will wait a while longer, but many of the good things will come along on time or early. If.

Yep, fragile it is.

 

We need to stop xenoestrogen pollution

Endocrine disruptors in the environment are becoming more abundant due to a wide variety of human-related activities over the last few decades. They affect mechanisms by which the body’s endocrine system generates and responds to hormones, by attaching to receptors in similar ways to natural hormones. Minuscule quantities of hormones can have very substantial effects on the body so even very diluted pollutants may have significant effects. A sub-class called xenoestrogens specifically attach to estrogen receptors in the body and by doing so, can generate similar effects to estrogen in both women and men, affecting not just women’s breasts and wombs but also bone growth, blood clotting, immune systems and neurological systems in both men and women. Since the body can’t easily detach them from their receptors, they can sometimes exert a longer-lived effect than estrogen, remaining in the body for long periods and in women may lead to estrogen dominance. They are also alleged to contribute to prostate and testicular cancer, obesity, infertility and diabetes. Most notably, mimicking sex hormones, they also affect puberty and sex and gender-specific development.

Xenoestrogens can arise from breakdown or release of many products in the petrochemical and plastics industries. They may be emitted from furniture, carpets, paints or plastic packaging, especially if that packaging is heated, e.g. in preparing ready-meals. Others come from women taking contraceptive pills if drinking water treatment is not effective enough. Phthalates are a major group of synthetic xenoestrogens – endocrine-disrupting estrogen-mimicking chemicals, along with BPA and PCBs. Phthalates are present in cleaning products, shampoos, cosmetics, fragrances and other personal care products as well as soft, squeezable plastics often used in packaging but some studies have also found them in foodstuffs such as dairy products and imported spices. There have been efforts to outlaw some, but others persist because of lack of easy alternatives and lack of regulation, so most people are exposed to them, in doses linked to their lifestyles. Google ‘phthalates’ or ‘xenoestrogen’ and you’ll find lots of references to alleged negative effects on intelligence, fertility, autism, asthma, diabetes, cardiovascular disease, neurological development and birth defects. It’s the gender and IQ effects I’ll look at in this blog, but obviously the other effects are also important.

‘Gender-bending’ effects have been strongly suspected since 2005, with the first papers on endocrine disrupting chemicals appearing in the early 1990s. Some fish notably change gender when exposed to phthalates while human studies have found significant feminizing effects from prenatal exposure in young boys too (try googling “human phthalates gender” if you want references).  They are also thought likely to be a strong contributor to greatly reducing sperm counts across the male population. This issue is of huge importance because of its effects on people’s lives, but its proper study is often impeded by LGBT activist groups. It is one thing to champion LGBT rights, quite another to defend pollution that may be influencing people’s gender and sexuality. SJWs should not be advocating that human sexuality and in particular the lifelong dependence on medication and surgery required to fill gender-change demands should be arbitrarily imposed on people by chemical industry pollution – such a stance insults the dignity of LGBT people. Any exposure to life-changing chemicals should be deliberate and measured. That also requires that we fully understand the effects of each kind of chemical so they also should not be resisting studies of these effects.

The evidence is there. The numbers of people saying they identify as the opposite gender or are gender fluid has skyrocketed in the years since these chemicals appeared, as has the numbers of men describing themselves as gay or bisexual. That change in self-declared sexuality has been accompanied by visible changes. An AI recently demonstrated better than 90% success at visually identifying gay and bisexual men from photos alone, indicating that it is unlikely to be just a ‘social construct’. Hormone-mimicking chemicals are the most likely candidate for an environmental factor that could account for both increasing male homosexuality and feminizing gender identity.

Gender dysphoria causes real problems for some people – misery, stress, and in those who make a full physical transition, sometimes post-op regrets and sometimes suicide. Many male-to-female transsexuals are unhappy that even after surgery and hormones, they may not look 100% feminine or may require ongoing surgery to maintain a feminine appearance. Change often falls short of their hopes, physically and psychologically. If xenoestrogen pollution is causing severe unhappiness, even if that is only for some of those whose gender has been affected, then we should fix it. Forcing acceptance and equality on others only superficially addresses part of their problems, leaving a great deal of their unhappiness behind.

Not all affected men are sufficiently affected to demand gender change. Some might gladly change if it were possible to change totally and instantly to being a natural woman without the many real-life issues and compromises offered by surgery and hormones, but choose to remain as men and somehow deal with their dysphoria as the lesser of two problems. That impacts on every individual differently. I’ve always kept my own feminine leanings to being cyber-trans (assuming a female identity online or in games) with my only real-world concession being wearing feminine glasses styles. Whether I’m more feminine or less masculine than I might have been doesn’t bother me; I am happy with who I am; but I can identify with transgender forces driving others and sympathize with all the problems that brings them, whatever their choices.

Gender and sexuality are not the only things affected. Xenoestrogens are also implicated in IQ-reducing effects. IQ reduction is worrying for society if it means fewer extremely intelligent people making fewer major breakthroughs, though it is less of a personal issue. Much of the effect is thought to occur while still in the womb, though effects continue through childhood and some even into adulthood. Therefore individuals couldn’t detect an effect of being denied a potentially higher IQ and since there isn’t much of a link between IQ and happiness, you could argue that it doesn’t matter much, but on the other hand, I’d be pretty miffed if I’ve been cheated out of a few IQ points, especially when I struggle so often on the very edge of understanding something. 

Gender and IQ effects on men would have quite different socioeconomic consequences. While feminizing effects might influence spending patterns, or the numbers of men eager to join the military or numbers opposing military activity, IQ effects might mean fewer top male engineers and top male scientists.

It is not only an overall IQ reduction that would be significant. Studies have often claimed that although men and women have the same average IQ, the distribution is different and that more men lie at the extremes, though that is obviously controversial and rapidly becoming a taboo topic. But if men are being psychologically feminized by xenoestrogens, then their IQ distribution might be expected to align more closely with female IQ distributions too, the extremes brought closer to centre.  In that case, male IQ range-compression would further reduce the numbers of top male scientists and engineers on top of any reduction caused by a shift. 

The extremes are very important. As a lifelong engineer, my experience has been that a top engineer might contribute as much as many average ones. If people who might otherwise have been destined to be top scientists and engineers are being prevented from becoming so by the negative effects of pollution, that is not only a personal tragedy (albeit a phantom tragedy, never actually experienced), but also a big loss for society, which develops slower than should have been the case. Even if that society manages to import fine minds from elsewhere, their home country must lose out. This matters less as AI improves, but it still matters.

Looking for further evidence of this effect, one outcome would be that women in affected areas would be expected to account for a higher proportion of top engineers and scientists, and a higher proportion of first class degrees in Math and Physical Sciences, once immigrants are excluded. Tick. (Coming from different places and cultures, first generation immigrants are less likely to have been exposed in the womb to the same pollutants so would not be expected to suffer as much of the same effects. Second generation immigrants would include many born to mothers only recently exposed, so would also be less affected on average. 3rd generation immigrants who have fully integrated would show little difference.)

We’d also expect to see a reducing proportion of tech startups founded by men native to regions affected by xenoestrogens. Tick. In fact, 80% of Silicon Valley startups are by first or second generation immigrants. 

We’d also expect to see relatively fewer patents going to men native to regions affected by xenoestrogens. Erm, no idea.

We’d also expect technology progress to be a little slower and for innovations to arrive later than previously expected based on traditional development rates. Tick. I’m not the only one to think engineers are getting less innovative.

So, there is some evidence for this hypothesis, some hard, some colloquial. Lower inventiveness and scientific breakthrough rate is a problem for both human well-being and the economy. The problems will continue to grow until this pollution is fixed, and will persist until the (two) generations affected have retired. Some further outcomes can easily be predicted:

Unless AI proceeds well enough to make a human IQ drop irrelevant, and it might, then we should expect that having enjoyed centuries of the high inventiveness that made them the rich nations they are today, the West in particular would be set on a path to decline unless it brings in inventive people from elsewhere. To compensate for decreasing inventiveness, even in 3rd generation immigrants (1st and 2nd are largely immune), they would need to attract ongoing immigration to survive in a competitive global environment. So one consequence of this pollution is that it requires increasing immigration to maintain a prosperous economy. As AI increases its effect on making up deficiencies, this effect would drop in importance, but will still have an impact until AI exceeds the applicable intelligence levels of the top male scientists and engineers. By ‘applicable’, I’m recognizing that different aspects of intelligence might be appropriate in inventiveness and insight levels, and a simple IQ measurement might not be sufficient indicator.

Another interesting aspect of AI/gender interaction is that AI is currently being criticised from some directions for having bias, because it uses massive existing datasets for its training. These datasets contain actual data rather than ideological spin, so ‘insights’ are therefore not always politically correct. Nevertheless, they but could be genuinely affected by actual biases in data collection. While there may well be actual biases in such training datasets, it is not easy to determine what they are without having access to a correct dataset to compare with. That introduces a great deal of subjectivity, because ‘correct’ is a very politically sensitive term. There would be no agreement on what the correct rules would be for dataset collection or processing. Pressure groups will always demand favour for their favorite groups and any results that suggest that any group is better or worse than any other will always meet with objections from activists, who will demand changes in the rules until their own notion of ‘equality’ results. If AI is to be trained to be politically correct rather than to reflect the ‘real world’, that will inevitably reduce any correlation between AI’s world models and actual reality, and reduce its effective general intelligence. I’d be very much against sabotaging AI by brainwashing it to conform to current politically correct fashions, but then I don’t control AI companies. PC distortion of AI may result from any pressure group or prejudice – race, gender, sexuality, age, religion, political leaning and so on. Now that the IT industry seems to have already caved in to PC demands, the future for AI will be inevitably sub-optimal.

A combination of feminization, decreasing heterosexuality and fast-reducing sperm counts would result in reducing reproductive rate among xenoestrogen exposed communities, again with 1st and 2nd generation immigrants immune. That correlates well with observations, albeit there are other possible explanations. With increasing immigration, relatively higher reproductive rates among recent immigrants, and reducing reproduction rates among native (3rd generation or more) populations, high ethnic replacement of native populations will occur. Racial mix will become very different very quickly, with groups resident longest being displaced most. Allowing xenoestrogens to remain is therefore a sort of racial suicide, reverse ethnic cleansing. I make no value judgement here on changing racial mix, I’m just predicting it.

With less testosterone and more men resisting military activities, exposed communities will also become more militarily vulnerable and consequently less influential.

Now increasingly acknowledged, this pollution is starting to be tackled. A few of these chemicals have been banned and more are likely to follow. If successful, effects will start to disappear, and new babies will no longer be affected. But even that will  create another problem, with two generations of people with significantly different characteristics from those before and after them. These two generations will have substantially more transgender people, more feminine men, and fewer macho men than those following. Their descendants may have all the usual inter-generational conflicts but with a few others added.

LGBTQ issues are topical and ubiquitous. Certainly we must aim for a society that treats everyone with equality and dignity as far as possible, but we should also aim for one where people’s very nature isn’t dictated by pollution.

 

The age of dignity

I just watched a short video of robots doing fetch and carry jobs in an Alibaba distribution centre:

http://uk.businessinsider.com/inside-alibaba-smart-warehouse-robots-70-per-cent-work-technology-logistics-2017-9

There are numerous videos of robots in various companies doing tasks that used to be done by people. In most cases those tasks were dull, menial, drudgery tasks that treated people as machines. Machines should rightly do those tasks. In partnership with robots, AI is also replacing some tasks that used to be done by people. Many are worried about increasing redundancy but I’m not; I see a better world. People should instead be up-skilled by proper uses of AI and robotics and enabled to do work that is more rewarding and treats them with dignity. People should do work that uses their human skills in ways that they find rewarding and fulfilling. People should not have to do work they find boring or demeaning just because they have to earn money. They should be able to smile at work and rest at the end of the day knowing that they have helped others or made the world a better place. If we use AI, robots and people in the right ways, we can build that world.

Take a worker in a call centre. Automation has already replaced humans in most simple transactions like paying a bill, checking a balance or registering a new credit card. It is hard to imagine that anyone ever enjoyed doing that as their job. Now, call centre workers mostly help people in ways that allow them to use their personalities and interpersonal skills, being helpful and pleasant instead of just typing data into a keyboard. It is more enjoyable and fulfilling for the caller, and presumably for the worker too, knowing they genuinely helped someone’s day go a little better. I just renewed my car insurance. I phoned up to cancel the existing policy because it had increased in price too much. The guy at the other end of the call was very pleasant and helpful and met me half way on the price difference, so I ended up staying for another year. His company is a little richer, I was a happier customer, and he had a pleasant interaction instead of having to put up with an irate customer and also the job satisfaction from having converted a customer intending to leave into one happy to stay. The AI at his end presumably gave him the information he needed and the limits of discount he was permitted to offer. Success. In billions of routine transactions like that, the world becomes a little happier and just as important, a little more dignified. There is more dignity in helping someone than in pushing a button.

Almost always, when AI enters a situation, it replaces individual tasks that used to take precious time and that were not very interesting to do. Every time you google something, a few microseconds of AI saves you half a day in a library and all those half days add up to a lot of extra time every year for meeting colleagues, human interactions, learning new skills and knowledge or even relaxing. You become more human and less of a machine. Your self-actualisation almost certainly increases in one way or another and you become a slightly better person.

There will soon be many factories and distribution centres that have few or no people at all, and that’s fine. It reduces the costs of making material goods so average standard of living can increase. A black box economy that has automated mines or recycling plants extracting raw materials and uses automated power plants to convert them into high quality but cheap goods adds to the total work available to add value; in other words it increases the size of the economy. Robots can make other robots and together with AI, they could make all we need, do all the fetching and carrying, tidying up, keeping it all working, acting as willing servants in every role we want them in. With greater economic wealth and properly organised taxation, which will require substantial change from today, people could be freed to do whatever fulfills them. Automation increases average standard of living while liberating people to do human interaction jobs, crafts, sports, entertainment, leading, inspiring, teaching, persuading, caring and so on, creating a care economy. 

Each person knows what they are good at, what they enjoy. With AI and robot assistance, they can more easily make that their everyday activity. AI could do their company set-up, admin, billing, payments, tax, payroll – all the crap that makes being an entrepreneur a pain in the ass and stops many people pursuing their dreams.  Meanwhile they would do that above a very generous welfare net. Many of us now are talking about the concept of universal basic income, or citizen wage. With ongoing economic growth at the average rate of the last few decades, the global economy will be between twice and three times as big as today in the 2050s. Western countries could pay every single citizen a basic wage equivalent to today’s average wage, and if they work or run a company, they can earn more.

We will have an age where material goods are high quality, work well and are cheap to buy, and recycled in due course to minimise environmental harm. Better materials, improved designs and techniques, higher efficiency and land productivity and better recycling will mean that people can live with higher standards of living in a healthier environment. With a generous universal basic income, they will not have to worry about paying their bills. And doing only work that they want to do that meets their self-actualisation needs, everyone can live a life of happiness and dignity.

Enough of the AI-redundancy alarmism. If we elect good leaders who understand the options ahead, we can build a better world, for everyone. We can make real the age of dignity.

Get all of my current e-books free, today only

This offer is now over. Sorry if you missed it.

As an early Christmas present, I have made all of my books free just for today on Amazon. The links here are for amazon.co.uk, but the book reference is the same on other branches so just edit the .co.uk to .com or whatever.

You Tomorrow and Society Tomorrow were almost entirely made by adding some of my blogs, tidying up and filling a few gaps.

https://www.amazon.co.uk/You-Tomorrow-Ian-Pearson-ebook/dp/B00G8DLB24

https://www.amazon.co.uk/Society-Tomorrow-Growing-Century-Britain-ebook/dp/B01HJY7RHI

Total Sustainability takes a system level view of sustainability and contradicts a lot of environmentalist dogma.

https://www.amazon.co.uk/Total-Sustainability-Ian-Pearson-ebook/dp/B00FWMW194

Space Anchor is my only Sci-fi novel to date, and features the first ever furry space ship in sci-fi, a gender-fluid AI, and its heroes Carbon Girl and Carbon Man have an almost entirely carbon-based itinerary.

https://www.amazon.co.uk/Space-Anchor-Ian-Pearson-ebook/dp/B00E9X02IE

Enjoy reading. Next year I hope to finish my book on future fashion.

 

Sky-lines – The Solar Powered Future of Air Travel

High altitude solar array to power IT and propel planes

High altitude solar array to power IT and propel planes

A zero carbon air travel solution. Well, most of the bits would be made of carbon materials, but it wouldn’t emit any CO2.

The pic says it all. A linear solar farm suspended in the high atmosphere to provide an IT platform for sensors, comms and other functions often accomplished by low orbit satellite. It would float up there thanks to being fixed to a graphene foam base layer that can be made lighter than helium (my previous invention, see https://timeguide.wordpress.com/2013/01/05/could-graphene-foam-be-a-future-helium-substitute/ which has since been prototyped and proven to be extremely resilient to high pressures too). Ideally, it would go all the way around the world, in various inclinations at different altitudes to provide routes to many places. Carbon materials are also incredibly strong so the line can be made as strong as can reasonably be required.

The flotation layer also supports a hypersonic linear induction motor that could provide direct propulsion to a hypersonic glider or to electric fans on a powered plane. Obviously this could also provide a means of making extremely low earth orbit satellites that continuously circumnavigate the ring.

I know you’re asking already how the planes get up there. There are a few solutions. Tethers could come all the way to ground level to airports, and electric engines would be used to get to height where the plane would pick up a sled-link.

Alternatively, stronger links to the ground would allow planes to be pulled up by sleds, though this would likely be less feasible.

Power levels? Well, the engines on a Boeing 777 generate about 8.25MW. A high altitude solar cell, above clouds could generate 300W per square metre. So a 777 equivalent plane needs 55km of panels if the line is just one metre wide. That means planes need to be at least that distance apart, but since that equates to around a minute, that is no barrier at all.

If you still doubt this, the Hyperloop was just a crazy idea a century ago too.

Interesting times

The US Presidential election was a tough choice between an awful candidate and a terrible one, but that is hardly new, is it? There was no good outcome on offer, no Gandhi or Mandela to choose, but you know what, life will go on, it’s not the end of the world.

The nation that elected Reagan and W will survive and prosper, WW3 has been postponed, as has 1984, the environment will benefit, some rogue states are very pissed off, US cultural decay has been slowed and the UK has just jumped past the EU in trade negotiations. A great many downtrodden people suddenly feel they have some hope and a great many sanctimonious egos have been pricked. The MSM and social media hysteria will carry on for months, but actually, it could have been a bit worse. Hillary could have won.

I don’t like Trump, he seems to me to be another egotistical buffoon with a double digit IQ. It’s not great that he will be in charge, but it wouldn’t have been great if Clinton had won either – she was no angel or genius and the best she had to offer was continued stagnation, division, sanctimony and decline. Trump can’t be a dictator though, and there will be plenty of smart people around him who understand the world far better than him and will advise him, while both houses will act as a secure defense against the worst ideas getting through. On the other hand, with a Republican majority in both houses, he will be able to push through those policies that do hold water. So there will be changes, but only changes that appeal to enough elected representatives, so panic isn’t justified, even if shock and terror are understandable in the circumstances.

Let’s take a glass half full view of the new situation, while acknowledging that there are a few bits of cork in the wine too.

Many people that didn’t live on the coast have felt disenfranchised by government in the last terms. In some of the states in between, nearly two thirds of people voted for someone they feel finally gives them hope. hope is a powerful emotion, it can energize and reinvigorate people who have felt left out. Don’t underestimate the potential that brings for economic growth if harnessed well.

Sure, there are also those who have been terrified by media who have endlessly portrayed Trump as some sort of nouveau Hitler who will try to evict or oppress every black, Latino, Hispanic or Middle Eastern. He is very likely to try to limit future economic migration and to put more checks on who enters from jihadic regions, but it is plain silly to expect he would be able to go further than that even if he wanted to, and actually no evidence that he even wants to. Minorities will become far less scared as they discover that their lives will carry on much as before, and nobody tries to make them leave or lock them up. I doubt that any policies will actually target minorities negatively except to restrict immigration to those who bring more benefits than threats.

Russia is happy that he has won. That is a good thing. The cold war just became less cold, the Satan missiles will be stood down, the chance of a nuclear war just dropped significantly and all our life expectancies just increased. Russians will feel a lot less scared and Putin will be less of a problem. Don’t forget how the situation between Russia and the USA improved during Reagan’s term, one of the thickest people ever to be POTUS, but with the right kind of personality. Obama’s Nobel peace prize will be remembered as one of the biggest misjudgments in history. Hillary’s and Obama’s foreign policies have made the world a great deal more dangerous over the last eight years and Hillary would have made Russia even more edgy, the chance of extinction significant, Iran even more empowered, the refugee crisis even greater, and social stress due to migration amplified. In a choice of two evils, Trump’s version is by far the safer.

1984 has come a great deal closer to reality over the last eight years too. Politically correct sanctimony has taken the place of religion and a Spanish Inquisition has oppressed anyone who doesn’t acknowledge and worship the New Truth. I’ve written plenty on 1984 before and won’t repeat it all here, but consider how the mainstream media has handled this election, amplifying every Trump fault while whitewashing Clinton’s. Unbiased is not a word I could use of today’s MSM. one-sidedness and severe distortion of the truth would be much more appropriate descriptions. Trump made some very sexist remarks, but the media made far more of those than Bill’s actual use of the Oval Office. Hillary didn’t leave Bill over that, so how can she be quite so upset at a sexist remark by someone else? The stench of sanctimony has penetrated every area of the electoral campaign, and indeed every area of values debate in recent years. Is being sexist really as bad as being corrupt or putting personal gain ahead of national interests? Accusations of Clinton corruption and mishandling of highly classified information were invariably approached as if exposing them was a greater crime than the acts themselves. I never saw any proper exploration of these in the MSM away from right-wing outlets such as Breitbart. Social media such as Facebook, Twitter and even Google have also been highly polluted by this sanctimony that distorts greatly the data and views people are exposed to, filtering articles and views that don’t comply with their value sets, creating bubbles of groupthink, amplifying tribal forces and increasing division, forcing thick wedges between left and right. The anger between the left and right tribes has become dangerous over the last terms. Hillary might have said she wants unity and that we’re stronger together, that it is Hillary love versus Trump hate, but the evidence points elsewhere, with those who didn’t agree with her apparently being odious intolerable racists, uneducated moronic bigots. A PC 1984 is already close and would have become rapidly closer in a Hillary term.

The social media backlash is already fierce, the anti-Trump protests will be many and often. Sanctimony is a very powerful emotion and it will not go away any time soon. Every policy decision will be met by self-righteous indignation. The split between the holy, progressive, evolved, civilized left and the deplorable, contemptible, ignorant, uneducated, bigoted, omniphobic, Neanderthal right will grow, but it would have grown too under Hillary. California is sanctimony HQ and has oft mentioned that it would like to consider independence again. That day just came closer. I’ve been of the half-baked view that a dual democracy would actually be a better idea,with people sharing the same geography under different governance, and that would be more likely to disperse inter-tribe conflict, but an independent California might get better support in the real world.

The environment will benefit now too. Hillary would have backed more of the same CO2 panic measures such as carbon offset schemes that damage the environment by draining peat bogs and felling forests to plant palm oil plantations, displacing powerless tribes to make space, converting food crops into biofuel and inflating food prices beyond the ability of the world’s poor to pay, planting wind turbines that kill birds and bats and cause bogs to dry out, actually increasing CO2 output. Very many ‘green’ ideas actually harm the environment and the poor. Very few actually work as intended. Without a doubt, the environment will be better off without the greens in control. Environmental science has been polluted so badly that it has severely damaged the reputation of science as a whole over the last few years. New York is not under water, the polar ice caps have not vanished yet, a billion people have not actually been forced from their homes by the sea. Much of the latest science suggests we may well be seeing a prolonged period of cooling from 2020 due to strong reduction in solar activity combined with long period ocean cycles. Severely damaging the economy, increasing prices and taxes and harming poor people disproportionately to solve a problem that actually isn’t anywhere near as bad as the alarmist have suggested, that has been postponed a few decades and will be made irrelevant after that by new technology emerging over those decades is really not a good idea, especially if those natural cycles make the opposite trend more of an issue during that period. Again, we’d be far better off without any of that anti-CO2 policy.

Iran is upset by the Trump victory. That’s good. Iran was becoming rather too enthusiastic about its newfound power in the region. It would be a far greater threat with the nukes it would make in coming years thanks to Obama and Clinton. Another route to WW3 may well just have started to close. Hamas will feel less enthusiastic too. Different policy in that whole unstable region is needed, ongoing stupidity is not. Preventing an influx of jihadists hiding in migrant flows seems a better strategy than inviting more in by reckless virtue signalling. Those in need can still be helped, refugee camps can still offer protection. American kids have more chance now to sleep safely in their beds rather than become victims of jihad. Cultural conflicts between Islamic migrants that refuse to integrate and Americans with Western values will obviously be lower if there are fewer migrants too.

Finally, the UK will benefit too. Instead of a President determined to make sure the UK ‘goes to the back of the queue’ in trade negotiations, we will have one who is more likely to treat the UK well than the EU. Trump recognizes the bond between the UK and the USA far better than Clinton.

So, it ain’t all bad. Sure, you’ve got a buffoon for President, but you’ve had that before and you survived just fine. We nearly got Boris as our PM, so we almost know how you feel. It could have been worse and really, with all your checks and balances, I don’t think it will be all that bad..

The glass is half full, with a few bits of cork.