Category Archives: transport

HS2 is world class stupidity

£106Bn is the new estimated cost of HS2, with a new delivery date of 2040

https://www.theguardian.com/uk-news/2020/jan/20/hs2-costs-government-review-west-midlands-manchester-leeds

We hear figures in the billions all the time, and I guess politicians especially lose their sense of what they really mean. A few billion here, another few billion there, so £106Bn just sounds like a decent sized public infrastructure project, equivalent to a few power stations, what’s the big deal? Let’s do some simple sums to find out and get some perspective.

The money has to come from tax and regardless of the diverse routes it takes, people ultimately pay all that tax. There are 66.5 million people in the UK, so that’s only £1600 each. Most of those people will never or hardly ever use HS2.

However, according to the Office of National Statistics, HMRC, only 31.2 million of those people pay income tax, so they contribute an average £3400 each. But actually the top 50% of those, 15.6 million people, pay 90% of the tax, so that means HS2 will effectively cost them £95.4Bn, a whopping £6115 each. I could go more sums but you get the point.

It’s a fair bet that the half of UK taxpayers paying over £6000 each for HS2 could write a long list of things they’d rather have than the option to buy an expensive rail ticket that might save some people, but probably not them, 20 minutes on a journey to London, but for most people might actually take them longer if they have first to get a slow train to one of the privileged HS2 stations.

6000 quid, each, 12k for a professional couple. For a slightly faster train? Remember, the original spec was for very fast trains, but they had to wind the speed down because it was discovered that trains might sometimes derail due to lethal combinations of aerodynamics and subsidence, so the realistic spec is about 150mph, compared to 125mph for a normal intercity.

This is the economics of the madhouse.

Trains are 19th and 20th century technology. 21st century technology allows driverless pod systems that would be far cheaper, far more versatile, far more socially inclusive, and far faster end to end. Pods could carry people or freight. Pod systems could start off mixing with conventional trains by grouping to make virtual trains. As antique old stock is gradually upgraded, along with stations, we would end up with a totally pod-based transport system. Pods could just as easily run on roads as on rails. The rails could be ripped up and recycled, railways tarmacked over, and public transport could seamlessly run on roads or the old railways. With potential occupancy of up to 95%, compared to the 0.4% typical of conventional rail, the old railways could carry 237 times more traffic! That wouldn’t eliminate congestion – there would still be some choke points – but it would make one hell of a dent in it. It would be faster because someone could have a pod pick them up at their home or office, maybe swap onto a shared one at a local node, and then go all the way to their destination at a good speed, with hardly any delays en-route, now waiting for the next scheduled train or having to make pointless journeys to get to a mainline station. They could simply go straight to where they want, and save much more time than HS2 would ever have saved.

Pod systems could serve the whole country, not just the lucky few living near the right stations. Fixing ‘the North-South divide’ still favours pod systems, not HS2. Everyone benefits from pods, hardly anyone benefits from HS2. Everyone saves money with pods, everyone is worse off with HS2. Why is the idea still flying?

The problem we have is that too few of our politicians or senior civil servants have any real understanding of technology and its potential. They are blinded by seeing figures in billions sever day, so have lost their understanding of just how much £100Bn is. They are terrified of pressure groups and always eager to be seen to be doing something, however stupid that something might be if they examined it.

HS2 is a stupid idea, world-class stupidity. It is 20th century technology, an old idea long past its use-by date. It locks in all the huge disadvantages and costs of old-style rail for several more decades We should leapfrog over it and go instead for a 21st century solution – cheap driverless pods. We’d save a fortune and have a far superior result.

 

 

The future of the car industry

I’ve blogged and lectured many times now on the future of cars, public transport, trains, and I’ve retained my view that private cars and public transport (taxis, buses and trains, apart from very high density systems like London’s Underground) will eventually be replaced by fleets of driverless pods or self-driving cars (most probably the pods in city areas and some self-driving cars for non-urban areas). It can’t happen overnight of course, and there are various routes to getting there, but now that we know Tesla is setting up a big factory in Germany, the fog has lifted a little on the near and mid-term future.

Tesla will make electric cars. They have always been the future, but efforts and laws to reduce CO2 emissions are significantly expediting the trend. For the purposes of analyzing the future of the industry, there are really three distinct parts to consider. Electric vehicles can be considered to be a chassis, that can be adapted and re-used across a wide range of vehicles, a cabin, with its more individual appeals and decor, physical comforts and luxuries, and all the electronics, intelligence, sensors, displays, comms, entertainment.

With expertise in all camps, Tesla can flourish, but its much greater global expertise in the battery industry puts it in pole position to make a few standard electric chassis models that can be marketed to other manufacturers. The existence of those standard chassis allows new small manufacturers to spring up to offer a wide range of vehicles customized for every niche. These manufacturers don’t need the range of expertise of the conventional car industry, with many decades of expertise making relatively dumb vehicles with combustion engines. They will only have to learn the skills of making the comfortable cabins to sit on those chassis. (Don’t you hate that word too, with no proper plural!)

The car industry is therefore finding that much of the value of its historic core skills is quickly evaporating while having to compete on fairly equal terms in a new market using new technology with new manufacturers.

An electric chassis can include the motors to drive each wheel, and could also be easily adapted if and when new energy delivery systems using inductive pickups from the road surface move into the market (already successfully demonstrated in buses), and if and when lithium batteries are substituted by super-capacitors. So companies like Tesla can carry on making their own high-spec electric cars/vans/lorries but also flourish in a parallel market selling chassis with built-in drives to other companies who just need to put a decent cabin on top. It’s good strategy to see competitors as a potential market. Co-opetition works too.

This could be devastating to most of the big car manufacturers. Where will their market differential lie? Basic everyday markets could use the standardized chassis. How could they differentiate a high performance car when Tesla already offer ones that go 0-60 in under 3 seconds? The various electronics and AI systems will not compete only with Tesla but with all the big IT companies who also see roles in these markets: Apple, Sony, Google already but likely Samsung, LG, Microsoft and Amazon following soon.

It is possible that some existing car manufacturers will adapt just fine. They’ve known for many years that this future was coming and those with good strategies will cope. It is very likely though that some won’t cope and that very many jobs will be lost from the existing vehicle manufacturing industry, already bleeding jobs thanks to automation. It’s certainly not an industry I’d want to invest in for a decade or so until the weaker players have been removed from the field.

The main uncertainty that remains is whether the new industry goes the self-driving vehicle route, with lots of expensive sensors and IT in every vehicle, or the dumb pod/smart infrastructure route, with cheap cabins and simple chassis powered and navigated by the infrastructure. The latter could be much cheaper in urban areas, while the former would be better outside towns. My guess is that in the far future, we’ll have both, with self-driving vehicles outside urban areas, and pod systems inside urban areas (self-driving vehicles can easily be made downwards compatible so that they can behave like pods when in town).

The future of land value

St BeesI don’t do investment advice much, and I am NOT an investment adviser of any kind, just a futurist doing some simple reasoning.

World population is around 7.7Bn.

It will increase, level off, then decline, then grow again.

Any projections you see are just educated guesswork. 9.8Bn figure is the UN global population estimate for 2050, and I won’t argue with that, it seems as good a guess as any. Everyone then expects it to level off and decline, as people have fewer kids. I’m not so sure. Read my blog five years ago that suggested it might grow again in the late century, perhaps reaching as high as 15Bn:

https://timeguide.wordpress.com/2014/02/05/will-population-grow-again-after-2050-to-15bn/

I only say might, because there are pressures in both directions and it is too hard to be sure in a far future society which ones will be stronger and by how much. I’m just challenging the standard view that it will decline into the far future, and if I had to place a bet, it would be on resumed growth.

Population is one large influence on demand for land and ‘real estate’.

Another is population distribution. Today, all around the world, people are moving from the countryside to cities. I argue that urbanization will soon peak, and then start to reverse:

https://timeguide.wordpress.com/2018/06/13/will-urbanization-continue-or-will-we-soon-reach-peak-city/

De-urbanization will largely be enabled by high technology and its impacts on work and social life. It will be caused by increasing wealth, coupled to the normal desire to live happier lives. Wealth is increasing quickly, varying place to place and year to year. It is reasonable, given positive feedback effects from AI and automation, to assume average real growth of 2%, including occasional recessions and booms. By 2100, that means global wealth will be 5 times today’s. Leaving aside the lack of understanding of exponential growth by teachers indoctrinating schoolkids to think of themselves as economic victims, taken advantage of by greedy Boomers, that means today’s and tomorrow’s kids will have one hell of a lot more money available to spend on property.

So, there will be more people, with more money, more able to live anywhere. Real estate prices will increase, but not uniformly.

Very many of them will choose to leave cities and with lots of money in the bank, will want somewhere really nice. A lovely beachfront property perhaps, or on a mountainside with a gorgeous view. Or even on a hill overlooking the city, or deep in a forest with a waterfall in the garden. Some might buy boring homes in boring estates surrounded by fields but it won’t be first choice very often. The high prices will go to large and pretty homes in pretty locations, as they do today, but with much higher differential, because supply and demand dictates that. We won’t build more mountains or valleys or coastline. Supply stays limited while demand and bank balances rockets, so prices will rocket too.

Other property won’t necessarily become cheaper, it just won’t become as expensive as fast. Many people will still like cities and choose to live there, do business there, socialize there. They also will be richer, and there may be a lot more of them if population does indeed grow again, but increasing congestion would just cause more de-urbanization. Prices may still rise, but the real money will be moving elsewhere.

Farmland will mostly stay as farmland. Farms are generally functional rather than pretty. Agricultural productivity will be double or triple what it is today, maybe even more. Some food will be made in factories or vertical farms, using tissue culturing or hydroponics, or using feed-stocks based on algae grown at sea, or insects, or fungi. The figures therefore suggest that demand for land to grow stuff will be lower than today, in spite of a larger population. Some will be converted to city, some to pretty villages, some given back to nature, to further increase the attractiveness of those ultra-expensive homes in the nice areas in the distance. Whichever way, that doesn’t suggest very rapid growth of value for most agricultural land, the obvious exception being where it happens to be in or next to a pretty area, in which case it will rocket in value.

As I said, all of this is educated guesswork. Don’t bet the farm on it until you’ve done your own analysis. But my guess is, city property will gain modest value, agricultural land will hold its value or even fall slightly, unless it is in a pretty location. Anywhere pretty will skyrocket in price, be it an existing property or a piece of land that can be built on and stay pretty.

As a final observation, you might argue that pretty isn’t everything. Surely some people will value being near to centers of power or major hubs too? Yes they will, but that is already factored into the urbanization era. That value is already banked. Then it follows the rules just like any other urban property.

 

Will urbanization continue or will we soon reach peak city?

For a long time, people have been moving from countryside into cities. The conventional futurist assumption is that this trend will continue, with many mega-cities, some with mega-buildings. I’ve consulted occasionally on future buildings and future cities from a technological angle, but I’ve never really challenged the assumption that urbanization will continue. It’s always good  to challenge our assumptions occasionally, as things can change quite rapidly.

There are forces in both directions. Let’s list those that support urbanisation first.

People are gregarious. They enjoy being with other people. They enjoy eating out and having coffees with friends. They like to go shopping. They enjoy cinemas and theatre and art galleries and museums. They still have workplaces. Many people want to live close to these facilities, where public transport is available or driving times are relatively short. There are exceptions of course, but these still generally apply.

Even though many people can and do work from home sometimes, most of them still go to work, where they actually meet colleagues, and this provides much-valued social contact, and in spite of recent social trends, still provides opportunities to meet new friends and partners. Similarly, they can and do talk to friends via social media or video calls, but still enjoy getting together for real.

Increasing population produces extra pressure on the environment, and governments often try to minimize it by restricting building on green field land. Developers are strongly encouraged to build on brown field sites as far as possible.

Now the case against.

Truly Immersive Interaction

Talking on the phone, even to a tiny video image, is less emotionally rich than being there with someone. It’s fine for chats in between physical meetings of course, but the need for richer interaction still requires ‘being there’. Augmented reality will soon bring headsets that provide high quality 3D life-sized images of the person, and some virtual reality kit will even allow analogs of physical interaction via smart gloves or body suits, making social comms a bit better. Further down the road, active skin will enable direct interaction with the peripheral nervous system to produce exactly the same nerve signals as an actual hug or handshake or kiss, while active contact lenses will provide the same resolution as your retina wherever you gaze. The long term is therefore communication which has the other person effectively right there with you, fully 3D, fully rendered to the capability of your eyes, so you won’t be able to tell they aren’t. If you shake hands or hug or kiss, you’ll feel it just the same as if they were there too. You will still know they are not actually there, so it will never be quite as emotionally rich as if they were, but it can get pretty close. Close enough perhaps that it won’t really matter to most people most of the time that it’s virtual.

In the same long term, many AIs will have highly convincing personalities, some will even have genuine emotions and be fully conscious. I blogged recently on how that might happen if you don’t believe it’s possible:

https://timeguide.wordpress.com/2018/06/04/biomimetic-insights-for-machine-consciousness/

None of the technology required for this is far away, and I believe a large IT company could produce conscious machines with almost human-level AI within a couple of years of starting the project. It won’t happen until they do, but when one starts trying seriously to do it, it really won’t be long. That means that as well as getting rich emotional interaction from other humans via networks, we’ll also get lots from AI, either in our homes, or on the cloud, and some will be in robots in our homes too.

This adds up to a strong reduction in the need to live in a city for social reasons.

Going to cinemas, theatre, shopping etc will also all benefit from this truly immersive interaction. As well as that, activities that already take place in the home, such as gaming will also advance greatly into more emotionally and sensory intensive experiences, along with much enhanced virtual tourism and virtual world tourism, virtual clubbing & pubbing, which barely even exist yet but could become major activities in the future.

Socially inclusive self-driving cars

Some people have very little social interaction because they can’t drive and don’t live close to public transport stops. In some rural areas, buses may only pass a stop once a week. Our primitive 20th century public transport systems thus unforgivably exclude a great many people from social inclusion, even though the technology needed to solve that has existed for many years.  Leftist value systems that much prefer people who live in towns or close to frequent public transport over everyone else must take a lot of the blame for the current epidemic of loneliness. It is unreasonable to expect those value systems to be replaced by more humane and equitable ones any time soon, but thankfully self-driving cars will bypass politicians and bureaucrats and provide transport for everyone. The ‘little old lady’ who can’t walk half a mile to wait 20 minutes in freezing rain for an uncomfortable bus can instead just ask her AI to order a car and it will pick her up at her front door and take her to exactly where she wants to go, then do the same for her return home whenever she wants. Once private sector firms like Uber provide cheap self-driving cars, they will be quickly followed by other companies, and later by public transport providers. Redundant buses may finally become extinct, replaced by better socially inclusive transport, large fleets of self-driving or driverless vehicles. People will be able to live anywhere and still be involved in society. As attendance at social events improves, so they will become feasible even in small communities, so there will be less need to go into a town to find one. Even political involvement might increase. Loneliness will decline as social involvement increases, and we’ll see many other social problems decline too.

Distribution drones

We hear a lot about upcoming redundancy caused by AI, but far less about the upside. AI might mean someone is no longer needed in an office, but it also makes it easier to set up a company and run it, taking what used to be just a hobby and making it into a small business. Much of the everyday admin and logistics can be automated Many who would never describe themselves as entrepreneurs might soon be making things and selling them from home and this AI-enabled home commerce will bring in the craft society. One of the big problems is getting a product to the customer. Postal services and couriers are usually expensive and very likely to lose or damage items. Protecting objects from such damage may require much time and expense packing it. Even if objects are delivered, there may be potential fraud with no-payers. Instead of this antiquated inefficient and expensive system, drone delivery could collect an object and take it to a local customer with minimal hassle and expense. Block-chain enables smart contracts that can be created and managed by AI and can directly link delivery to payment, with fully verified interaction video if necessary. If one happens, the other happens. A customer might return a damaged object, but at least can’t keep it and deny receipt. Longer distance delivery can still use cheap drone pickup to take packages to local logistics centers in smart crates with fully block-chained g-force and location detectors that can prove exactly who damaged it and where. Drones could be of any size, and of course self-driving cars or pods can easily fill the role too if smaller autonomous drones are inappropriate.

Better 3D printing technology will help to accelerate the craft economy, making it easier to do crafts by upskilling people and filling in some of their skill gaps. Someone with visual creativity but low manual skill might benefit greatly from AI model creation and 3D printer manufacture, followed by further AI assistance in marketing, selling and distribution. 3D printing might also reduce the need to go to town to buy some things.

Less shopping in high street

This is already obvious. Online shopping will continue to become a more personalized and satisfying experience, smarter, with faster delivery and easier returns, while high street decline accelerates. Every new wave of technology makes online better, and high street stores seem unable or unwilling to compete, in spite of my wonderful ‘6s guide’:

https://timeguide.wordpress.com/2013/01/16/the-future-of-high-street-survival-the-6s-guide/

Those that are more agile still suffer decline of shopper numbers as the big stores fail to attract them so even smart stores will find it harder to survive.

Improving agriculture

Farming technology has doubled the amount of food production per hectare in the last few decades. That may happen again by mid-century. Meanwhile, the trend is towards higher vegetable and lower meat consumption. Even with an increased population, less land will be needed to grow our food. As well as reducing the need to protect green belts, that will also allow some of our countryside to be put under better environmental stewardship programs, returning much of it to managed nature. What countryside we have will be healthier and prettier, and people will be drawn to it more.

Improving social engineering

Some objections to green-field building can be reduced by making better use of available land. Large numbers of new homes are needed and they will certainly need some green field to be used, but given the factors already listed above, a larger number of smaller communities might be better approach. Amazingly, in spite of decades of dating technology proving that people can be matched up easily using AI, there is still no obvious use of similar technology to establish new communities by blending together people who are likely to form effective communities. Surely it must be feasible to advertise a new community building program that wants certain kinds of people in it – even an Australian style points system might work sometimes. Unless sociologists have done nothing for the past decades, they must surely know what types of people work well together by now? If the right people live close to each other, social involvement will be high, loneliness low, health improved, care costs minimized, the need for longer distance travel reduced and environmental impact minimized. How hard can it be?

Improving building technology such as 3D printing and robotics will allow more rapid construction, so that when people are ready and willing to move, property suited to them can be available soon.

Lifestyle changes also mean that homes don’t need to be as big. A phone today does what used to need half a living room of technology and space. With wall-hung displays and augmented reality, decor can be partly virtual, and even a 450 sq ft apartment is fine as a starter place, half as big as was needed a few decades ago, and that could be 3D printed and kitted out in a few days.

Even demographic changes favor smaller communities. As wealth increases, people have smaller families, i.e fewer kids. That means fewer years doing the school run, so less travel, less need to be in a town. Smaller schools in smaller communities can still access specialist lessons via the net.

Increasing wealth also encourages and enables people to a higher quality of life. People who used to live in a crowded city street might prefer a more peaceful and spacious existence in a more rural setting and will increasingly be able to afford to move. Short term millennial frustrations with property prices won’t last, as typical 2.5% annual growth more than doubles wealth by 2050 (though automation and its assorted consequences will impact on the distribution of that wealth).

Off-grid technology

Whereas one of the main reasons to live in urban areas was easy access to telecomms, energy and water supply and sewerage infrastructure, all of these can now be achieved off-grid. Mobile networks provide even broadband access to networks. Solar or wind provide easy energy supply. Water can be harvested out of the air even in arid areas (http://www.dailymail.co.uk/sciencetech/article-5840997/The-solar-powered-humidity-harvester-suck-drinkable-water-AIR.html) and human and pet waste can be used as biomass for energy supply too, leaving fertilizer as residue.

There are also huge reasons that people won’t want to live in cities, and they will also cause deurbansisation.

The biggest by far in the problem of epidemics. As antibiotic resistance increases, disease will be a bigger problem. We may find good antibiotics alternatives but we may not. If not, then we may see some large cities where disease runs rampant and kills hundreds of thousands of people, perhaps even millions. Many scientists have listed pandemics among their top ten threats facing humanity. Obviously, being in a large city will incur a higher risk of becoming a victim, so once one or two incidents have occurred, many people will look for options to leave cities everywhere. Linked to this is bioterrorism, where the disease is deliberate, perhaps created in a garden shed by someone who learned the craft in one of today’s bio-hacking clubs. Disease might be aimed at a particular race, gender or lifestyle group or it may simply be designed to be as contagious and lethal as possible to everyone.

I’m still not saying we won’t have lots of people living in cities. I am saying that more people will feel less need to live in cities and will instead be able to find a small community where they can be happier in the countryside. Consequently, many will move out of cities, back to more rural living in smaller, friendlier communities that improving technology makes even more effective.

Urbanization will slow down, and may well go into reverse. We may reach peak city soon.

 

 

Self-driving bicycles

I just saw a video of a Google self-driving bike on Linked-In. It is a 2017 April Fool prank, but that just means it is fake in this instance, it doesn’t mean it couldn’t be done in real life. It is fun to watch anyway.

https://www.psfk.com/2017/04/google-prank-pushes-for-self-driving-bicycles-in-amsterdam.html

In 2005 I invented a solution for pulling bikes along on linear induction motor bile lanes, pulling a metal plate attached (via a hinged rod to prevent accidents) to the front forks.

The original idea was simply that the bike would be pulled along, but it would still need a rider to balance it. However, with a fairly small modification, it could self balance. All it needs is to use plates on both sides, so that the magnetic force can be varied to pull one side more than the other. If the force is instantly variable, that could be used in a simple control system both to keep the bike vertical when going straight and to steer it round bends as required, as illustrated on the right of the diagram. Therefore the bike could be self-driving.

Self-driving bikes would be good for lazy riders who don’t even want the effort of steering, but their auto-routing capability would also help any rider who simply wants navigation service, and presumably some riders with disabilities that make balancing difficult, and of course the propulsion is potentially welcome for any cyclist who doesn’t want to arrive sweaty or who is tiring of a long hill. Best of all, the bikes could find their own way to a bike park when not needed, balancing the numbers of available bikes according to local demand at any time.

 

Interstellar travel: quantum ratchet drive

Introductory waffle & background state of the art bit

My last blog included a note on my Mars commute system, which can propel spacecraft with people in up to 600km/s. Unfortunately, although 1000 times faster than a bullet, that is still only 0.2% of light speed and it would take about 2000 years to get to our nearest star at that speed, so we need a better solution. Star Trek uses warp drive to go faster than light, and NASA’s Alcubierre drive is the best approximation we have to that so far:

https://en.wikipedia.org/wiki/Alcubierre_drive

but smarter people than me say it probably won’t work, and almost certainly won’t work any time soon:

https://jalopnik.com/the-painful-truth-about-nasas-warp-drive-spaceship-from-1590330763

If it does work, it will need to use negative energy extracted via the Casimir effect, and if that works, so will my own invention, the Space Anchor:

https://timeguide.wordpress.com/2014/06/14/how-the-space-anchor-works/

The Space Anchor would also allow space dogfights like you see in Star Wars. Unless you’re a pedant like me, you probably never think about how space fighters turn in the vacuum of space when you’re watching movies, but wings obviously won’t work well with no atmosphere, and you’d need a lot of fuel to eject out the back at high thrust to turn otherwise, but the space anchor actually locks on to a point in space-time and you can pivot around it to reverse direction without using fuel, thanks to conservation of angular momentum. Otherwise, the anchor drifts with ‘local’ space time expansion and contraction, which essentially creates relativity based ‘currents’ that can pull a spacecraft along at high speed. But enough about Space Anchors. Read my novel Space Anchor to see how much fun they could be.

Space anchors might not work, being only semi-firm sci-fi based at least partly on hypothetical physics. If they don’t work, and warp drive won’t work without using massive amounts of dark energy that I don’t believe exists either, then we’re left with solar sails, laser sails, and assorted ion drives. Solar sails won’t work well too far from a star. Lasers that can power a spacecraft well outside a star system sound expensive and unworkable and the light sails that capture the light mean this could only get to about 10% light speed. Ion drives work OK for modest speeds if you have an on-board power source and some stuff to thrust out the back to get Newtonian reaction. Fancy shaped resonant cavity thrusters try to cheat maths and physics to get a reaction by using special shapes of microwave chambers,

https://en.wikipedia.org/wiki/RF_resonant_cavity_thruster

but I’d personally put these ‘Em-drives’ in the basket with cold fusion and perpetual motion machines. Sure, there have been experiments that supposedly show they work, but so do many experiments for cold fusion and perpetual motion machines, and we know those results are just experimental or interpretational errors. Of the existing techniques that don’t contradict known physics or rely on unverified and debatable hypotheses, the light sails are best and get 10% of light speed at high expense.

A few proposed thruster-based systems use particles collected from the not-quite-empty space as the fuel source and propellant. Again, if we stretch the Casimir effect theory to near breaking point, it may be possible to use virtual particles popping in and out of existence as propellant by allowing them to appear and thrusting them before they vanish, the quantum thruster drive. My own variant of this solution is to use Casimir combs with oscillating interleaving nano-teeth that separate virtual particles before they can annihilate to prolong that time enough to make it feasible. I frankly have no idea whether this would actually work.

Better still would be if we could use a form of propulsion that doesn’t need to throw matter backwards to get reactionary force forwards. If magical microwave chambers and warp drives are no use, how about this new idea of mine:

The Quantum Ratchet Drive

You can explore other theoretical interstellar drives via Google or Wikipedia, but you won’t find my latest idea there – the Quantum Ratchet Drive. I graduated in Theoretical Physics, but this drive is more in the Hypothetical Physics Department, along with my explanations for inflation, dark matter and novel states of matter. That doesn’t mean it is wrong or won’t work though, just that I can’t prove it will work yet. Anyway, faint heart ne’er won fair maid.

You have seen pics of trains that climb steep slopes using a rack and pinion system, effectively gear wheels on a toothed rail so that they don’t slip (not the ones that use a cable). I originally called my idea the quantum rack and pinion drive because it works in a similar way, but actually, the more I think about it, the more appropriate is the analogy with a ratchet, using a gear tooth as a sort of anchor to pull against to get the next little bit of progress. It relies on the fact that fields are quantized and any system will exist in one state and then move up or down to the next quantum state, it can’t stay in between. At this point I feel I need another 50 IQ points to grasp a very slippery idea, so be patient – this is an idea in early stages of development. I’m basically trying to harness the physics that causes particles to switch quantum states, looking at the process in which quantum states change, nature’s ‘snap to grid’ approach, to make a propulsion system out of it.

If we generate an external field that interacts with the field in a nearby microscopic region of space in front of our craft then as the total field approaches a particular quantum threshold, nature will drag that region to the closest quantum state, hopefully creating a tiny force that drags the system to that state. In essence, the local quantum structure becomes a grid onto which the craft can lock. At very tiny scales obviously, but if you add enough tiny distances you eventually get big ones.

But space doesn’t have a fixed grid does it? If we just generate any old field any which way in front of our craft, no progress will happen because nature will be quite happy to have those states in any location in space so no force of movement will be generated. HOWEVER… suppose space did have such a grid, and we could use interaction of the quantum states in the grid cells and our generated field. Then we could get what we want, a toothed rail with which our gearwheels can engage.

So we just need a system that assigns local quantum states to microscopic space regions and that is our rack, then we apply a field to our pinion that is not quite enough to become that state, but is closer than any other one. At some point, there will be a small thrust towards the next state so that it can reach a local minimum energy level. Those tiny thrusts would add up.

We could use any kind of field that our future tech can generate. Our craft would have two field emitters. One produces a nice tidy waveform that maps quantum states onto the space just in front of our craft. A second emitter produces a second field that creates an interaction so that the system wants to come to rest in a region set slightly ahead of the craft’s current position. It would be like a train laying a toothed track just in front of it as it goes along, always positioning the teeth so that the train will fall into the next location.

We could certainly produce EM fields, making a sort of stepper linear induction motor on a mat created by the ship itself. What about strong or weak nuclear forces? Even if stuck with EM, maybe we use rotating nuclei or rotating atoms or molecules, which would move like a microscopic stepper motors across our pre-quantized space grid. Tiny forces acting on individual protons or electrons adding up to macroscopic forces on our spacecraft. If we’re doing it with individual atoms or nuclear particles, the regions of space we impose the fields on would be just ahead of them, not  out in front of the spacecraft. If we’re using interacting EM fields,  then we’re relying on appropriate phasing and beam intensities to do the job.

As I said, early days. Needs work. Also needs a bigger brain. Intuitively this ought to work. It ought to be capable of up to light speed. The big question is where the energy comes from. It isn’t an impulse drive and doesn’t chuck matter out of a rocket nozzle, but it might collect small particles along the way to convert into energy. Or perhaps nature contributes the energy. If so, then this could get light speed travel without fuel and limited on-board energy supply. Just like gravity pulls a train down a hill, perhaps clever phase design could arrange the grid ahead to be always ‘downhill’ in which case this might turn out to be yet another vacuum energy drive. I honestly don’t know. I’m out of my depth, but intuition suggests this shows promise for someone smarter.

 

Advanced land, sea, air and space transport technologies

I’ll be speaking at the Advanced Engineering conference in Helsinki at the end of May. My topic will be potential solutions for future transport, covering land, sea, air and space. These are all areas where I’ve invented new approaches. In my 1987 BT life as a performance engineer, I studied the potential to increase road capacity by a factor of 5 by using driverless pod technology, mimicking the packet switching approach we were moving towards in telecomms. This is very different from the self-driving systems currently in fashion, because dumb pods would be routed by smart infrastructure rather than having their own AI/sensor systems, so the pods could be extremely cheap and packed very closely together to get a huge performance benefit, using up to 85% of the available space. We’re now seeing a few prototypes of such dumb pod systems being trialled.

It was also obvious even in the 1980s that the same approach could be used on rail, increasing capacity from today’s typical 0.4% occupancy to 80%+, an improvement factor of 200, and that the same pods could be used on rail and road, and that on rail, pods could be clumped together to make virtual trains so that they could mix with existing conventional trains during a long transition period to a more efficient system. In the early 2000s, we realised that pods could be powered by induction coils in the road surface and more recently, with the discovery of graphene, such graphene induction devices could be very advantageous over copper or aluminium ones due to deterrence of metal theft, and also that linear induction could be used to actually propel the pods and in due course even to levitate them, so that future pods wouldn’t even need engines or wheels, let alone AI and sensor systems on board.

We thus end up with the prospect of a far-future ground transport system that is 5-15 times road capacity and up to 200 times rail capacity and virtually free of accidents and congestion.

Advanced under-sea transport could adopt supercavitation technology that is already in use and likely to develop quickly in coming decades. Some sources suggest that it may even be possible to travel underwater more easily then through air. Again, if graphene is available in large quantity at reasonable cost, it would be possible to do away with the need for powerful engines on board, this time by tethering pods together with graphene string.

Above certain speeds, a blunt surface in front of each pod would create a bubble enclosing the entire pod, greatly reducing drag. Unlike Hyperloop style high-speed rail, tubes would not be required for these pods, but together, a continuous stream of many pods tethered together right across an ocean would make a high-capacity under-sea transport system. This would be also be more environmentally friendly, using only electricity at the ends.

Another property of graphene is that it can be used to make carbon foam that is lighter than helium. Such material could float high in the stratosphere well above air lanes. With the upper surface used for solar power collection, and the bottom surface used as a linear induction mat, it will be possible to make inter-continental air lines that can propel sleds hypersonically, connected by tethers to planes far below.

High altitude solar array to power IT and propel planes

As well as providing pollution-free hypersonic travel, these air lines could also double as low satellite platforms for comms and surveillance.

As well as land, sea and air travel, we are now seeing rapid development of the space industry, but currently, getting into orbit uses very expensive rockets that dump huge quantities of water vapour into the high atmosphere. A 2017 invention called the Pythagoras Sling solves the problems of expense and pollution. Two parachutes are deployed (by small rockets or balloons) into the very high atmosphere, attached to hoops through which a graphene tether is threaded, one end connected to a ground-based winch and the other to the payload. The large parachutes have high enough drag to act as temporary anchors while the tether is pulled, propelling the payload up to orbital speed via an arc that renders the final speed horizontal as obviously needed to achieve orbit.

With re-usable parts, relatively rapid redeployment and only electricity as power supply, the sling could reduce costs by a factor of 50-100 over current state of the art, greatly accelerating space development without the high altitude water vapour risking climate change effects.

The winch design for the Pythagoras Sling uses an ‘inverse rail gun’ electromagnetic puller to avoid massive centrifugal forces of a rotating drum. The inverse rail gun can be scaled up indefinitely, so also offers good potential for interplanetary travel. With Mars travel on the horizon, prospects of months journey times are not appealing, but a system using well-spaced motors pulling a graphene tether millions of km long is viable. A 40,000 ton graphene tether could be laid out in space in a line 6.7M km long, and using solar power, could propel a 2 Ton capsule at 5g up to an exit speed of 800km/s, reaching Mars in as little 5-12 days.

At the far end, a folded graphene net could intercept and slow the capsule at 5g  into a chosen orbit around Mars. While not prohibitively expensive, this system would be completely reusable and since it needs no fuel, would be a very clean and safe way of getting crew and materials to a Mars colony.

 

High speed transatlantic submarine train

In 1863, Jules Verne wrote about the idea of suspended transatlantic tunnels through which trains could be sent using air pressure. Pneumatic tube delivery was a fashionable idea then, and small scale pneumatic delivery systems were commonplace until the late 20th century – I remember a few shops using them to transport change around. In 1935, the film ‘The tunnel’ featured another high speed transatlantic tunnel, as did another film in 1972, ‘Tunnel through the deeps’. Futurists have often discussed high speed mass transit systems, often featuring maglev and vacuums (no, Elon Musk didn’t invent the idea, his Hyperloop is justifiably famous for resurfacing and developing this very old idea and is likely to see its final implementation).

Anyway, I have read quite a bit about supercavitation over the last years. First developed in 1960 as a military idea to send torpedoes at high speed, it was successfully implemented in 1972 and has since developed somewhat. Cavitation happens when a surface, such as a propeller blade, moves through water so fast that a cavity is left until the water has a chance to close back in. As it does, the resultant shock wave can damage the propeller surface and cause wear. In supercavitation, the cavity is deliberate, and the system designed so that the cavity encloses the entire projectile. In 2005, the first proposal for people transport emerged, DARPA’s Underwater Express Program, designed to transport small groups of Navy personnel at speeds of up to 100 knots. Around that time, a German supercavitating torpedo was reaching 250mph speeds.

More promising articles suggest that supersonic speeds are achievable under water, with less friction than going via air. Achieving the initial high speed and maintaining currently requires sophisticated propulsion mechanisms, but not for much longer. I believe the propulsion problem can be engineered away by pulling capsules with a strong tether. That would be utterly useless for a torpedo of course, but for a transport system would be absolutely fine.

Transatlantic traffic is quite high, and if a cheaper and more environmentally friendly system than air travel were available, it would undoubtedly increase. My idea is to use a long string of capsules attached to a long graphene cable, pulled in a continuous loop at very high speed. Capsules would be filled at stations, accelerated to speed and attached to the cable for their transaltlantic journey, then detached, decelerated and their passengers or freight unloaded. Graphene cable would be 200 times stronger than steel so making such a cable is feasible.

The big benefit of such a system is that no evacuated tube is needed. The cable and capsules would travel through the water directly. Avoiding the need for an expensive and complex  tube containing a vacuum, electromagnetic propulsion system and power supply would greatly reduce cost. All of the pulling force for a cable based system would be applied at the ends.

Graphene cable doesn’t yet exist, but it will one day. I doubt if current supercavitation research is up to the job either, but that’s quite normal for any novel engineering project. Engineers face new problems and solve them every day. By the time the cable is feasible, we will doubtless be more knowledgeable about supercavitation too. So while it’s a bit early to say it will definitely become reality, it is certainly not too early to start thinking about it. Some future Musk might well be able to pull it off.

2018 outlook: fragile

Futurists often consider wild cards – events that could happen, and would undoubtedly have high impacts if they do, but have either low certainty or low predictability of timing.  2018 comes with a larger basket of wildcards than we have seen for a long time. As well as wildcards, we are also seeing the intersection of several ongoing trends that are simultaneous reaching peaks, resulting in socio-political 100-year-waves. If I had to summarise 2018 in a single word, I’d pick ‘fragile’, ‘volatile’ and ‘combustible’ as my shortlist.

Some of these are very much in all our minds, such as possible nuclear war with North Korea, imminent collapse of bitcoin, another banking collapse, a building threat of cyberwar, cyberterrorism or bioterrorism, rogue AI or emergence issues, high instability in the Middle East, rising inter-generational conflict, resurgence of communism and decline of capitalism among the young, increasing conflicts within LGBTQ and feminist communities, collapse of the EU under combined pressures from many angles: economic stresses, unpredictable Brexit outcomes, increasing racial tensions resulting from immigration, severe polarization of left and right with the rise of extreme parties at both ends. All of these trends have strong tribal characteristics, and social media is the perfect platform for tribalism to grow and flourish.

Adding fuel to the building but still unlit bonfire are increasing tensions between the West and Russia, China and the Middle East. Background natural wildcards of major epidemics, asteroid strikes, solar storms, megavolcanoes, megatsumanis and ‘the big one’ earthquakes are still there waiting in the wings.

If all this wasn’t enough, society has never been less able to deal with problems. Our ‘snowflake’ generation can barely cope with a pea under the mattress without falling apart or throwing tantrums, so how we will cope as a society if anything serious happens such as a war or natural catastrophe is anyone’s guess. 1984-style social interaction doesn’t help.

If that still isn’t enough, we’re apparently running a little short on Ghandis, Mandelas, Lincolns and Churchills right now too. Juncker, Trump, Merkel and May are at the far end of the same scale on ability to inspire and bring everyone together.

Depressing stuff, but there are plenty of good things coming too. Augmented reality, more and better AI, voice interaction, space development, cryptocurrency development, better IoT, fantastic new materials, self-driving cars and ultra-high speed transport, robotics progress, physical and mental health breakthroughs, environmental stewardship improvements, and climate change moving to the back burner thanks to coming solar minimum.

If we are very lucky, none of the bad things will happen this year and will wait a while longer, but many of the good things will come along on time or early. If.

Yep, fragile it is.

 

Hull in 2050

I wrote a piece for KCOM on what we can expect to feature in the city by 2050.

KCOM illustration

Highlights and KCOM commentary at: https://www.kcomhome.com/news/articles/welcome-to-the-hull-of-the-future/

If you want my full article, they have allowed me to share it. Here is a pdf of my original article, but it’s just text – I can’t do nice graphics:

 

Hull 2050

They also have a great project called We Made Ourselves Over, set in 2097. Here’s one of their graphics from that:

Graphic from http://wemadeourselvesover.com/