Category Archives: transport

Driverless pod transport system

I badly documented my latest idea of an ultra-cheap transport system in I think I need another blog to separate out the idea from the background. Look at my previous blog for the appropriate pictures.

We’re seeing a lot of enthusiasm now for electric cars and in parallel, for self-driving cars. I support both of those, and I like the new Next system that is extremely close to my own ideas from 1987 when I first looked at cars from a performance engineer’s viewpoint and realized that self driving cars could drive millimeters apart, reducing drag and greatly reducing congestion. I estimated back then that they could improve road capacity by a factor of 5. Many others have since simulated such systems and the same factor of 5 has popped up a few times now.

Self-driving pods and electrically assisted bike lane

Self-driving pods and electrically assisted bike lane


Next have visualized the same idea nicely, but the world is more receptive now. for their nice video, although I’d envisage rather more pods in most areas, almost filling the entire road area.

I’ve lectured in vain many times to persuade authorities to divert investment away from 20th century rail system to roads using self driving cars. The UK’s HS2 system is no more than lipstick on a 20th century pig. Pig it remains, obsolete ages ago, though our idiotic government remains determined to build it anyway, wasting £70Bn even by charitable estimates. Systems similar to Next’s could replace HS2 and reduce journey times for everyone, not just those whose starting point and destination are very close to the terminals. I wish them well. But I think there is an even better solution, that is feasible in a similar time-frame, and I have no doubt they could pick it up and run with it. Or Tesla or Google or Apple or Toyota or any other car company.

My realization is that we don’t need self driving cars either. Take exactly the Next system, with its nicely trapezoidal pods that nest together. They will need a smooth road surface if they are to ride in contact or millimeters apart, or they will constantly bump into each other and create irritating vibration. Make them ride a centimeter or two apart and it will solve that.

Then start looking at each part of the system.

They each have a computer on board to drive the pod. You don’t need that, because everyone has a smart phone now which already has formidable computing power and is connected to the cloud, which has vast amounts more. Together, the entire system can be easily managed without any computers on board at all.

Similarly, much of the internal decor in cars is there to make it look pretty, offer interfaces, information or displays for passenger entertainment. All of that could easily be done by any half-decent augmented reality visor.

Then look at the power supply and engines. We should at the very least expect electric motors to replace fossil fuel engines. Most self-driving cars have expensive batteries, using scarce resources, and lithium batteries may catch fire or explode. So some systems in R&D now use the idea of super-capacitors instead. Furthermore, these could be recharged periodically as they drive over special mats on the road surface, so they could be smaller, lighter and cheaper. Even that is now being trialed. So these systems would already be better in almost every way to today’s transport.

However, we don’t even need the electric motors and super-capacitors. Instead we could update the ancient but well-proven idea of the linear induction motor and make factory-produced mats containing circuits that can be instructed to make steerable magnetic wells that pull the cars along, as well as navigate them correctly at every junction. Again, the management can all be done by the cloud plus smartphones, and the circuits can reconfigure on command as each pod passes over them. So they won’t need batteries, or super-capacitor banks, or engines or motors. They would just be pulled along by magnetic fields, with no moving parts (apart from the pods as a whole of course) to go wrong, and almost nothing needing expensive maintenance. Apart from wheels, suspension and brakes.

So the driverless pod would not need a built-in computer, it would not need an engine or motor, and not need a battery or super-capacitor. Already it would be vastly cheaper.

The last remaining moving parts can also be dispensed with. If the pod rides above a mat that can generate the magnetic fields to drag it along, why not let other magnetic fields suspend it above the ground? That would mean it doesn’t need suspension, or wheels. Conventional brakes could be dispensed with using a combination of magnetic fields for normal braking,  combined with a fallback of gravity and brake strips for emergency braking. Reducing the levitation field would create friction with the road surface and stop the vehicle very quickly, far more quickly than a conventional car can stop, only really limited by comfort limitations.

So my proposal is a system that would look and behave very similar to what Next have designed, but would not need engines, batteries, on-board computers or even wheels. My pods would be no more than simple boxes with comfy seats (or empty for freight transport) and a couple of strips on the bottom and might cost no more than $200 each. The road would have a factory-made mat laid on top for the magnetic well trains and levitation. Adapting a road to the system would be an overnight laying out of the mat and plugging it in to the electricity supply. In cold seasons, that electricity supply could also power on-board heating (but that would incur extra expense of course)


transport system

It won’t be long before such a system could be built. I can’t see any fundamental barriers to a prototype appearing next year if some entrepreneur were to try. It could make self driving car systems, even Next’s current proposals, redundant before they are implemented. If we were to change the direction of current plans to utilize the latest technology, rather than using ideas from 30 years ago, we could have a cheaper, better, more environmentally friendly system even faster. We could probably build such as system in every major city for what we are going to waste on HS2. Surely that is worth a try.


An ultra-cheap future transport system.

transport system

Some of my followers might remember this idea I invented way back in 2005, and have blogged a few times since, such as in


The idea is simple enough: use a linear induction motor built into a rubber mat laid out on a bike lane to drag a metal plate attached to the bike front forks. The bike moves faster with less effort (though you can still put in as much effort as you want), and you get to the office less sweaty. Since your bike goes fast, the cars won’t need to endanger you by overtaking in unsuitable locations. The mat is laid out overnight and plugged into a nearby lamp post for electric supply. This was much more nicely illustrated by a proper illustrator in a report I just did with Hewden, the equipment hire firm:


I’ve since thought about using the same idea for the larger transport pods, which we imagined as self-driving vehicles in the report and picture.  There is no reason at all why a scaled-up version couldn’t be added to them too (just imagine them with a plate underneath to drag them along), then you don’t need the engine and once you go down that path of thinking, lots of other things start falling out. Read on.

Important note: no endorsement of any of this content by Hewden or any other company is implied. If you don’t like any of what follows, blame me and Futurizon Limited.

I think we may be about to see the biggest disruption of any industry. The transport industry is ripe for three waves of disruption. It knows all about the first two but seems to have totally missed the third, and yet it could be just a few years away. Every part of the industry will be strongly affected and some of it will be wiped out – whether it’s vehicle manufacture, servicing, fuel, spare parts, tires, brakes, or driving, it will change beyond recognition.

In the first wave, the internal combustion engine is starting slowly to give way to hybrids and all-electric vehicles, with talk of fuel cells, hydrogen, super-capacitors and so on. This wave is very well known and already well absorbed into every industry strategy. This week I helped promote the ‘go ultra low’ campaign. I am all in favor of using electricity instead of burning fuels wherever economically feasible, especially in city areas, even if the electricity comes from fossil fuel power stations. People should breathe clean air, not air full of exhaust gases and particulates.

The second and related wave is the push towards self-driving vehicles. Again, everyone that needs to probably already knows all they need to about it. They certainly have no excuse if it affects them and it still manages to catch them by surprise. Cars driven by AI coupled to sensors monitoring everything around the car can react in microseconds and talk to each other, so they can drive very close front and back and side by side so roads can hold 5-15 times more cars, all driving at a good speed. They can interleave automatically at junctions without even needing to slow down significantly instead of being stuck behind someone who is waiting for an invitation in triplicate to arrive signed by the Queen before they proceed. Self driving cars would not eliminate congestion, but they would very greatly reduce it, almost eliminate accidents, save pollution and resources and be far more socially inclusive than buses or trains. They have great potential to improve our lives in many ways, but obviously would make a lot of drivers redundant. They would also shift power from conventional car manufacturers to IT companies who are best placed to develop the intelligence and control systems. No surprises there at all, we read this stuff every day now.

However, we don’t even need self-driving cars. They are barely out of the lab, lawyers are still arguing over how insurance and liability for accidents should work, and already their end is in sight. Self-driving cars could be the next Betamax.

The third wave is driverless vehicles that don’t even need an engine, or batteries, or even supercapacitors, or the huge expenses for all the sensor equipment and onboard computers and all the other electronics. They don’t need much in the way of electronics or electrics at all. We might have the first buses in history that are simpler than a bus shelter.

This 3rd wave won’t even be electric vehicles!

Forgive my use of powerpoint graphics, but with generic vehicles, boxes make a good start point anyway, vehicle designers can design them any which way they like:


This wave will reduce the vehicle to little more than a moving box. It might have comfy seats and air conditioning added, but apart from that, it doesn’t need much else. Really it doesn’t. They could have wheels, and that would reduce electricity requirements somewhat, but then wheels would cost more and bring other issues, so they will be optional and we all know future cars are meant to hover anyway. If they do have wheels, they would still use the plates near the road surface just as the non-wheel versions. There is no need for brakes on the wheels if there is a long braking pad on the road surface for emergencies. One of my first ever engineering jobs was designing an electromagnetic braking system that pulled a brake pad onto another using magnetic field. If it worked in 1982, it will work in 2020.

The most basic version of such a vehicle would be literally an empty box with three pads on the base. It would be used for carrying goods. Two of the pads would levitate the vehicle, propel it, steer it and stop it. The third pad would be a high friction pad that would stop the vehicle very rapidly if necessary. That’s it. This kind of vehicle would only cost whatever it costs to make a thin plastic or carbon fiber box and stick two thin strips of metal on the base and a strip of brake pad. $200 is a reasonable estimate. For people transport, cost depends on the level of comfort needed. It won’t crash, so a minimum requirement is a plastic seat and a safety belt to stop you falling off, shaped to sit on the pads underneath and nest easily into the one in front for storage. Again, that could easily be mass-produced for $200.


Higher comfort versions could be made of course, where the passengers are fully enclosed, sound insulated and air conditioned, sitting on nice comfy leather seats on nice soft suspension. Even then, they still don’t need any engine or battery, or any electrics other than lighting, sound cancellation and air conditioning system. But there is nothing to stop car manufacturers continuing to make high luxury cabins if they want, there just might not be much of a market for them.

Lots of the electronics in modern cars is not really needed. We already have enough computing capability in our mobiles to do all our entertainment, navigation, location, comms between vehicles, all the IoT management. Your phone knows where it is, can get you all the media and comms you can eat, and can do the noise cancellation too. Decor is irrelevant once we have augmented reality – you can sit in a blank box and make it look as if you are in any place or any vehicle you want.

Propulsion doesn’t have to come from an engine, not even an electric motor. Decades ago the first linear induction transport system was built and now there are lots of trains using that mechanism, some travelling at very high speed. However, technology has moved on. We don’t need a huge rail for our boxes to sit on. It’s easy to suspend the box on strong magnetic fields and those fields can be produced and shaped easily, especially using graphene or superconductive materials, but perfectly adequately using conventional materials and strong permanent magnets. Position the plates on the base of the box in nicely shaped magnetic wells and they will stay there. The magnetic wells can be shaped as the vehicle goes along to direct it any way it needs to go. The passenger’s mobile knows where the passenger wants to go and can talk direct to the cloud based management system, which can control invisible ‘points’ in an invisible re-configurable ‘railway’ beneath the vehicle. If there is no passenger and only freight on board, the management system still knows what to do with each box and can navigate it correctly. So it is a travelling magnetic well drive. Steering the wells steers the cars or pods. It doesn’t have to use classic linear induction motors, it just needs to be able to move magnetic wells. Linear induction motors are one way of doing that, but anything that can shape a magnetic well for the pods to sit in, and make them travel along, will do. There are lots of ways to skin a cat, so they say.

A factory-produced mat can be laid out on a stretch of road overnight, plugged in to an electricity supply, and these vehicles could be carried on it the next day. Vehicles that need to slow down could have their kinetic energy recovered and transferred to others that need to accelerate. Total energy costs would be low.

All the benefits of self-driving cars would still hold. The vehicles can still be millimeters apart in each direction so could still reap all the congestion benefits, along with virtually zero drag. Not needing any engine, motor or battery or capacitor bank on board would greatly reduce the amount of resources needed to make a vehicle and the energy needed to propel it. Recognizing that almost all the electronics needed sits happily inside a mobile saves a lot more resources.

Grabbing a vehicle would be done by direct discussion between the mobile and city transport system. Any empty vehicle would simply pull over, you get in and get off at your destination. Cost could be low enough to absorb into normal city running costs. If vehicles are designed to nest into each other like supermarket trolleys, and if they really only cost about the same, they would require minimal storage space, liberating car parks and taxi ranks for other uses.

So our vehicles really could be just simple boxes with minimal additions for basic comfort or high luxury. On nice days, they could be open, on rainy days, you pull the hood over. In colder climes, there might be sides and doors.

Here’s a quick summary of the key points:


Internet-of-things is enabling the systems needed to track obstacles such as pedestrians, linking to ubiquitous sensors and cameras, so all the safety side is entirely feasible too without having to put it in the vehicle. Our mobiles and digital jewellery will work with lots of different kinds of security systems to ensure that pods don’t go anywhere without knowing who is or what is on board, preventing terrorists from filling them up with explosives and sending them to a target. Delivery pods would only open when properly authorised. Suspicious passengers or vehicles could be locked and routed automatically to safe inspection points.

I’m not going to build this, but someone will. If it’s you, buy me a beer when you get rich and make a donation to a homeless people’s charity. No new physics is required. As graphene becomes commercially available cheaply, as it will, it will become very cheap to put all the circuitry into cheap mats that can be laid out to do the work. Thieves won’t steal mats that only have carbon in them, whereas if they use lots of copper wiring, they might try. But understand that there is absolutely nothing to prevent someone starting development tomorrow and implementing this within a few years. This should be easier to build than self driving cars.

Reconfigurable circuits have been with us decades too, so rearranging the circuits to route each pod the right way at each junction is no problem. Electronic control systems too. A few bits of software need to be written, but then a simple box achieves exactly the same functionality as a self-driving car 100 times the cost.

So basically, conventional vehicles can be replaced by simpler and cheaper boxes. No engine, no fuel, no wheels, no suspension, no mechanical parts other than optional doors and sliding roofs, just comfy seats and life support systems. Almost all the frills via augmented reality and whatever else your future smartphones do. All the system management and control and data collection ditto.

In new cities, roads could be built with such a system in mind, with less street furniture and clutter. They would have clean air. Cheap and fast transport would encourage people to travel more, socialize more, live more, be happier. Cultural life would improve. Retrofitting it to existing cities would be easy too, just laying out factory-produced mats and plugging them into electric supply. With such ultra low costs, it would be the obvious choice for developing countries, helping to reduce CO2 production and demands on resources.

Lots of industries would be affected. We won’t need as much lithium of course, since these vehicles need no batteries. We won’t need as much steel, or aluminium, and we can recycle plastic to make the bodies and seats.

All the benefits of a self-driving car system at a tiny fraction of the price. What’s not to like?

Why Uber will soon be history due to a category error

I have nothing against Uber, I’ve never used them, or Hailo, but they are just as dispensable as their drivers. My next blog will be about my vision for an all-electric zero-emission driverless transport system and it has no use for Uber.

However, before I write that, I have a small issue to clear up. A couple of weeks ago I tweeted that the London cabbies who were protesting against Uber are very proud of spending years to learn the best way to get from A to B, yet a satnav device can calculate the best route in a few seconds (and though my tweet didn’t even go that far, any half-decent satnav will also take full account of the real-time traffic and congestion situation). A straightforward fact you might think, but a great many taxi drivers took offence at it, and not just in London. One taxi firm near Boston, even made a crude and ineffective attempt at a cyber-attack. Don’t give up the day job guys!

A future transport system using driverless cars doesn’t need drivers of course but that doesn’t mean that all of them will be out of a job. Carrying luggage, helping people with mobility problems and providing company and conversation on the way is a very valuable service too, as are provision of local tourist advice, general information, strongly held opinions on every possible topic and other personality-based charms. We won’t NEED taxi drivers, but I for one would really miss them.

Uber thinks they are well on top of the driverless car trend:

Perhaps it is just as well they want to go driverless because I’m told many of their drivers are starting to get angry with Uber too. Uber is wrong if they think driverless cars will make them the future. Possibly they will benefit for a short while during technology transition, but the simple fact is that future transport systems don’t need Uber or Hailo any more than they need taxi drivers. Since Uber pays very little tax on their large revenues, they are also putting themselves on the wrong side of public opinion, and that is not a very clever thing to do at all: Their worst error though is that their vision of future transport technology is focused on the current state of the art, not the future. If you are planning a future strategy, you absolutely should not base it on today’s technology.

They say they will buy all of Tesla’s output of self-driving cars: Well, I hope they can make them pay fast, because they will be obsolete very soon indeed. Uber won’t survive long, not if they make this kind of error. Technology will soon make Uber irrelevant too, and unless they improve their corporate values, not many will bother to turn up at their funeral unless it is to gloat.

Google will presumably also want their self-driving cars out there too. The rest of the car industry also won’t go down without a fight, so there will be a many a battle to establish market share in self-driving cars. Apple will want all their self-driving cars out there too. Until 5 minutes ago, I thought there was just the tiniest possibility that Apple were going to be a bit smarter. Maybe Apple had noticed the same thing I had. But no, a quick Google search confirms that Apple have made the same mistake too, and just bought in the wrong guy: These companies have other businesses so won’t really care much if one project goes down. Google, Apple, Samsung, LG et al will be far more likely to flourish in the real future than Uber or Hailo.

The error is very serious. You’ve made it, I’ve made it. The entire auto industry has made it. It’s a category error.

We’ve all been conflating ‘driverless’ and ‘self-driving’. They are not the same.

The future doesn’t need self-driving cars, it needs driverless cars. They both save lives, save the environment, save resources, save congestion, save time, and save cost. One saves a little, the other saves a LOT.

The entire car industry, as well as Uber, Google, Tesla, and even Apple have all bet on the wrong one, but some have better chance of surviving the consequences their errors than others. I’ll outline the basic principles of the technology waves that can wipe out self-driving cars in my next blog, and actually since the technology is easier in many ways than getting self-driving working, it could even bypass them. We may never see an age of self-driving cars. We can get a far better system, far faster and far cheaper.

It is time to consider any investments you have in the transport industry. Severe turbulence ahead!

Powering electric vehicles in the city

Simple stuff today just to stop my brain seizing up, nothing terribly new.

Grid lock is usually a term often used to describe interlocking traffic jams. But think about a canal lock, used to separate different levels of canal. A grid lock could be used to manage the different levels of stored and kinetic energy within a transport grid, keeping it local as far as possible to avoid transmission losses, and transferring it between different parts of the grid when necessary.

Formula 1 racing cars have energy recovery systems that convert kinetic energy to stored electrical energy during braking – Kinetic Energy Recovery System (KERS). In principle, energy could be shared between members of a race team by transmitting it from one car to another instead of simply storing it on board. For a city-wide system, that makes even more sense. There will always be some vehicles coasting, some braking, some accelerating and some stopped. Storing the energy on board is fine, but requires large capacitor banks or batteries, and that adds very significant cost. If an electrical grid allowed the energy to be moved around between vehicles, each vehicle would only need much smaller storage so costs would fall.

I am very much in favor of powering electric vehicles by using inductive pads on the road surface to transmit energy via coils on the car underside as the vehicles pass over them.  Again, this means that vehicles can manage with small batteries or capacitor banks. Since these are otherwise a large part of the cost, it makes electric transport much more cost-effective. The coils on the road surface could be quite thin, making them unattractive to metal thieves, and perhaps ultimately could be made of graphene once that is cheap to produce.

Moving energy among the many coils only needs conventional electrical grid technology. Peer to peer electrical generation business models are developing too to sell energy between households without the energy companies taking the lion’s share. Electricity can even be packetised by writing an address and header with details of the sender account and the quantity of energy in the following packet. Since overall energy use will fluctuate somewhat, the infrastructure also needs some storage to hold local energy surpluses and feed them back into accelerating vehicles as required, and if demand is too low, to store energy in local batteries. If even that isn’t sufficient capacity, then the grid might open grid locks to overflow larger surpluses onto other regions of the city or onto the main grid. Usually however, there would be an inflow of energy from the main grid to power all the vehicles, so transmission in the reverse direction would be only occasional.

Such a system keeps most energy local, reducing transmission losses and simplifying signalling, whilst allowing local energy producers to be included and enabling storage for renewable energy. As one traffic stream slows, another can recycle that same energy to accelerate. It reduces the environmental demands of running a transport system, so has both cost and environmental benefits.



The future of levitation

Futurologists are often asked about flying cars, and there already are one or two and one day there might be some, but they’ll probably only become as common as helicopters today. Levitating cars will be more common, and will hover just above the ground, like the landspeeders on Star Wars, or just above a lower layer of cars. I need to be careful here – hovercraft were supposed to be the future but they are hard to steer and to stop quickly and that is probably why they didn’t take over as some people expected. Levitating cars won’t work either if we can’t solve that problem.

Maglev trains have been around for decades. Levitating cars won’t use anti-gravity in my lifetime, so magnetic levitation is the only non-hovercraft means obvious. They don’t actually need metal roads to fly over, although that is one mechanism. It is possible to contain a cushion of plasma and ride on that. OK, it is a bit hovercrafty, since it uses a magnetic skirt to keep the plasma in place, but at least it won’t need big fans and drafts. The same technique could work for a skateboard too.

Once we have magnetic plasma levitation working properly, we can start making all sorts of floating objects. We’ll have lots of drones by then anyway, but drones could levitate using plasma instead of using rotor blades. With plasma levitation, compound objects can be formed using clusters of levitating component parts. This can be quieter and more elegant than messy air jets or rotors.

Magnetic levitation doesn’t have very many big advantages over using wheels, but it still seems futuristic, and sometimes that is reason enough to do it. More than almost anything else, levitating cars and skateboards would bring the unmistakable message that the future has arrived. So we may see the levitating robots and toys and transport that we have come to expect in sci-fi.

To do it, we need strong magnetic fields, but they can be produced by high electrical currents in graphene circuits. Plasma is easy enough to make too. Electron pipes could do that and could be readily applied as a coating to the underside of a car or any hard surface rather like paint. We can’t do that bit yet, but a couple of decades from now it may well be feasible. By then most new cars will be self-driving, and will drive very closely together, so the need to stop quickly or divert from a path can be more easily solved. One by one, the problems with making levitating vehicles will disappear and wheels may become obsolete. We still won’t have very many flying cars, but lots that float above the ground.

All in all, levitation has a future, just as we’ve been taught to expect by sci-fi.


Diesel – 4.4 times more deaths than by road accidents

In Dec 2010, the UK government released a report estimating that air pollution causes a ‘mortality burden’ of 340,000 years of life spread over an affected population of 200,000, equivalent to about 29,000 deaths each year in the UK, or a drop in average life expectancy across the whole population of 6 months. It also costs the NHS £27B per year. See:

There is no more recent report as yet, although the figures in it refer to 2008.

Particulate matter (PM) is the worst offender and diesel engines are one of the main sources of PM, but they also emit some of the other offenders. COMEAP estimates that a quarter of PM-related deaths are caused by diesel engines, 7250 lives per year. Some of the PM comes from private vehicles. To save regeneration costs, some diesel drivers apparently remove the diesel particulate filters from their cars, which is illegal, and doing so would mean failing an MOT. See:

The government encouraged people to go diesel by offering significant tax advantages. Road tax and company car tax are lower for diesels, resulting in more than half of new cars now being diesels. ( Almost all public buses and taxis and still many trains are diesel.

7250 lives per year caused by diesel vehicles is a lot, and let’s remember that was an estimate based on 2008 particulates. There are many more diesels on our roads now than then ( shows the number of diesel cars licensed has increased from 7163 to 10,064), but fuel efficiency has also improved in that period so total fuel use hasn’t increased much, only from 8788 to 9197 thousand tons of diesel. So the result isn’t as bad as it could have been and the proportionately scaled figure for 2012 would be 7587 deaths from diesel emissions. In 2013 there were only 1730 road deaths so 4.4 times as many people were killed by diesel emissions than road accidents.

I thought it would be interesting to compare deaths from just buses to those in road accidents, since buses are thought of by many as some sort of panacea whereas some of us see them as filthy environmental monsters. The proportion of diesel used by buses has fallen from 17% to 13.7% between 2008 and 2012. (I couldn’t find figures for the numbers of taxis, also officially included in public transport, since the fuel usage stats lump all cars together, but then I’ve never understood why taxis should be listed as public transport anyway.)

17% of the 7250 figure for 2008 gives 1232 deaths from public transport diesel emissions compared to 2538 road deaths that year, roughly half as many. However, for 2012, 13.7% of 7587 is 1039 deaths from public transport diesel emissions compared to 1754 people killed in road accidents in 2012.  That ratio has grown from 48.5% to 59% in just 4 years. Buses may use less fuel than cars but they certainly aren’t saints.

So, headline result: 60% as many people are killed by diesel emissions from buses as in road accidents, but altogether, 4.4 times as many people die due to diesel. The government is very noisy when it comes to reducing road deaths, but it should look at the far bigger gains that would be made by reducing diesel use. Perhaps it is time that the deaths arising from diesel emissions should be added to the road deaths figures. At least then there might be some better action against it.

As I wrote in a recent blog


more still could be saved by just slightly improving the NHS. The £27B per year health costs saved by getting rid of diesel might go some way to doing both.

As a final observation, diesel was encouraged so much because it should help to reduce CO2 emissions, seen as a major contributor to global warming. In the last year or two, the sensitivity to CO2 emissions has been observed to be lower than originally thought. However, another major contribution to warming is the black carbon PM, noted especially for its contribution to melting glaciers by making them darker, also arising in large part from diesel. The efforts to reduce one contributor have increased another. Diesel doesn’t even solve the problem it was aimed at, but still causes others.

Drone Delivery: Technical feasibility does not guarantee market success

One of my first ever futurology articles explained why Digital Compact Cassette wouldn’t succeed in the marketplace and I was proved right. It should have been obvious from the outset that it wouldn’t fly well, but it was still designed, manufactured and shipped to a few customers.

Decades on, I had a good laugh yesterday reading about the Amazon drone delivery service. Yes, you can buy drones; yes, they can carry packages, and yes, you can make them gently place a package on someone’s doorstep. No, it won’t work in the marketplace. I was asked by the BBC Radio 4 to explain on air, but the BBC is far more worried about audio quality than content quality and I could only do the interview from home, so they decided not to use me after all (not entirely fair – I didn’t check who they actually used and it might have been someone far better).

Anyway, here’s what I would have said:

The benefits are obvious. Many of the dangers are also obvious, and Amazon isn’t a company I normally associate with stupidity, so they can’t really be planning to go all the way. Therefore, this must be a simple PR stunt, and the media shouldn’t be such easy prey for free advertising.

Very many packages are delivered to homes and offices every day. If even a small percentage were drone-delivered, the skies will be full of drones. Amazon would only control some of them. There would be mid-air collisions between drones, between drones and kites and balloons, with new wind turbines, model aeroplanes and helicopters, even with real emergency helicopters. Drones with spinning blades would be dropping out of the sky frequently, injuring people, damaging houses and gardens, onto roads, causing accidents. People would die.

Drones are not silent. A lot of drones would make a lot of extra ambient noise in an environment where noise pollution is already too high. They are also visible, creating another nuisance visual disturbance.

Kids are mischievous. Some adults are mischievous, some criminal, some nosey, some terrorists. I can’t help wonder what the life expectancy of a drone would be if it is delivering to a housing estate full of kids like the one I was. If I was still a kid, I’d be donning a mask (don’t want Amazon giving my photo to the police) and catching them, making nets to bring them down and stringing wires between buildings on their normal routes, throwing stones at them, shooting them with bows and arrows, Nerf guns, water pistols, flying other toy drones into their paths. I’d be tying all sorts of other things onto them for their ongoing journey. I’d be having a lot of fun on the black market with all the intercepted goods too.

If I were a terrorist, and if drones were becoming common delivery tools, I’d buy some and put Amazon labels on them, or if I’m short of cash, I’d hijack a few, pay kids pocket money to capture them, and after suitable mods, start using them to deliver very nasty packages precisely onto doorsteps or spray lethal concoctions into the air above specific locations.

If I were just criminal, I’d make use of the abundance of drones to make my own less conspicuous, so that I could case homes for burglaries, spy on businesses with cameras and intercept their wireless signals, check that an area is free of police, or get interesting videos for my voyeur websites. Maybe I’d add a blinding laser into them to attack any police coming into the scene of my crime, giving valuable extra time without giving my location away.

There are also social implications: jobs in Amazon, delivery and logistics companies would trade against drone manufacturing and management. Neighbours might fall out if a house frequently gets noisy deliveries from a drone while people are entering and leaving an adjacent door or relaxing in the garden, or their kids are playing innocently in the front garden as a drone lands very close by. Drone delivery would be especially problematic when doorways are close together, as they often are in cities.

Drones are good fun as toys and for hobbies, in low numbers. They are also useful for some utility and emergency service tasks, under supervision. They are really not a good solution for home delivery, even if technically it can be done. Amazon knows that as well as I do, and this whole thing can only be a publicity stunt. And if it is, well, I don’t mind, I had a lot of fun with it anyway.

And another new book: You Tomorrow, 2nd Edition

I wrote You Tomorrow two years ago. It was my first ebook, and pulled together a lot of material I’d written on the general future of life, with some gaps then filled in. I was quite happy with it as a book, but I could see I’d allowed quite a few typos to get into the final work, and a few other errors too.

However, two years is a long time, and I’ve thought about a lot of new areas in that time. So I decided a few months ago to do a second edition. I deleted a bit, rearranged it, and then added quite a lot. I also wrote the partner book, Total Sustainability. It includes a lot of my ideas on future business and capitalism, politics and society that don’t really belong in You Tomorrow.

So, now it’s out on sale on Amazon in paper, at £9.00 and in ebook form at £3.81 (guessing the right price to get a round number after VAT is added is beyond me. Did you know that paper books don’t have VAT added but ebooks do?)

And here’s a pretty picture:


Could wind farms and HS2 destroy the environment?

Remember when chaos theory arrived. We were bombarded with analogies to help us understand it, such as the butterfly effect, whereby a butterfly flapping its wings in a distant rain forest creates micro-turbulence that minutely affects some tiny variable in a very non-linear system, resulting in a hurricane forming somewhere later.

Imagine sticking up a wind turbine, and compare that to a butterfly. It is a fair bit bigger. A big turbine extracts up to 3MW of power from the passing wind, and a large wind farm may have hundreds of them. If weather is so chaotic in its nature that a butterfly can affect it, a massive deployment of numerous large wind farms certainly can.

Aerial wind farms are being explored a lot now too, using kites. I’ve proposed a few novel designs for wind energy extractors myself during idle time. It is very easy. In my sci-fi book Space Anchor I even described a feasible solution for harvesting energy from tornadoes and hurricanes, reducing their damage and getting lots of free energy.

But it isn’t free if the cost is such great interference with wind strength that the paths of the winds are affected, their ability to transfer water vapour from one region to another. We are already having an impact and it will increase as deployment volume grows. We don’t have the means to estimate the effects of siphoning of such energy. As has recently been shown, 99% of climate models have greatly overestimated the warming due to CO2. They simply don’t work. They don’t model the environment accurately, or even quite accurately.

In the arctic, last year the ice declined enormously, this year it grew back. Researchers found that heat added to river systems by mineral and oil exploration could have been important contributor to the excessive melt. It is human-originated but nothing to do with CO2, and it doesn’t appear in any of the climate models. If they’re right, it’s a good example of how we can interfere with local climate unintentionally, and also how we won’t usually get any warning from climate modelling community who seem obsessed with ignoring any variable that doesn’t link to CO2. The climate is certainly changing, just not at all in the ways they keep telling us it will, because the models leave out many of the important factors and the equations are wrong.

So how can we expect to be told the likely effects of wind farms? The simple answer is that we can’t. At best, we can hope to get some estimates of change in a few specific wind zones. Furthermore, due to extreme politicization of the whole field of energy production and climate change, any models that suggest harmful effects are highly likely to be blocked from reporting, or their results tweaked and airbrushed and generally sanitized beyond recognition. The Scottish wind farms have already been shown to increase CO2 emissions due to the effects they have on the peat bogs on which most of them are built but we still see push for more of the same, even knowing that on the only issue they are meant to help with, CO2 emissions, they make things worse.

The UK government seems to enjoy throwing money away just when we need it most. The HS2 rail link will waste between £50Bn and £75Bn depending who you believe. Wind farms are already adding hundreds per year to the energy bills of the poor, pushing them deeper into poverty. The Green Deal fiasco has wasted a tiny amount by comparison, but is another example of extreme government incompetence when it comes to protecting the environment. As part of EU environmental policies, blocking and delaying shale gas development across Europe has led to massive imports of coal from the USA, increasing EU CO2 emissions while USA emissions have tumbled. You just couldn’t do a worse job of protecting the environment.

So far it seems, almost all government attempts to protect the environment have made it worse. Building even more wind farms will likely add to the problems even further.

Looking at HS2, it is very hard indeed not to compare this enormously expensive project to build a fairly high speed conventional railway between two cities to the Hyperloop system in California recently proposed by Elon Musk. That would deliver a 600mph rail system at a tiny fraction of the cost of HS2. Sure, there are some engineering problems with the systems as initially proposed, but nothing that can’t be solved as far as I can see. If we have £50Bn to spend, we could build links between most of our major cities, instead of diverting even more into London. Instead of a few thousand rich people benefiting a little bit, everyone could. We could build a 21st century rail system instead of just building more of a 20th century one. A system like that would have high capacity between all the major places, diverting many cars off the roads, reducing congestion, acting as a core of a proper self-driven pod based system, reaping enormous environmental benefits as well as improvement of lives. HS2 is totally pants by comparison with what we could get with the same outlay, for the economy, the environment and for quality of life. Siphoning off 50 to 75Bn from the economy for HS2 will delay development of far better and more environmentally friendly means of mass transport. Compared to the right solution, HS2 will damage the economy and the environment enormously.

Wind farms and HS2 will become monuments to the magnitude of stupidity of people in power when they are driven to leave a personal legacy at other people’s expense without having the systems engineering skills to understand what they’re doing.



The future is magnetic

‘It works by using magnets’ has been a description of many a perpetual motion machine. Magnets bring out the nutter in people. But they are incredibly useful, and I say that as someone who thinks ‘incredibly’ is used far too often these days.

Magnets are very good fun as toys but you need to be a bit careful with them. I have had a few accidents with them, the most recent playing with magnetic ferro-fluid, which I can vouch makes a real mess of your hands for several days. I also have some levitation toys that are extremely good fun. describes a futuristic high speed rail system. Well, it isn’t all that futuristic, the idea is 100 years old. But it hasn’t been built yet so it is still in the future, and is at least 10 times better than the UK’s pathetic high speed rail proposal which only floats at all if you use extremely misleading figures about costs and benefits. That is worth a small fraction if what is claimed and like all government projects will cost three times as much as claimed.

I am a big believer in magnetic train propulsion, and levitation, not least because they are proven tech. Putting the system in a tube and using rail gun tech will reduce drag enormously and allow far higher speeds. Remember, in free air, drag goes with the square of velocity and power is drag x velocity. In a tube, air can move at the same speed as the train, so drag can be reduced to almost nothing. So with low friction thanks to levitation and low drag thanks to the tube, supersonic speeds are doable. Other groups have suggested vacuum tubes, but that is not as sensible thanks to increased engineering difficulty, with big cost and safety issues.

I proposed a linear induction bike lane several years back which of course is a sort of magnetic propulsion. Nobody has built that yet.  The Car in my recent sci-fi book levitates magnetically on a plasma cushion. That sounds futuristic but it was proven in principle in 1964 and is easily feasible with 2092 technology. The lift to the heroes’ base is magnetic, some of their weapons are magnetic, their pet drone orb thing and their holographic disks all rely on magnetic levitation based on plasma. I even invented magnetic carbon muscles for my heroes’ suits. They would use tiny graphene coils in a folded structure in the material to achieve strong contraction and super strength at low cost. One of the social problems they had to contend with was use of smart electronic drugs in conjunction with deep brain magnetic stimulation.

There is a lot of pseudo science that gives magnets a bad name though. Stuff like magnetic bracelets that some people wear who really ought to know better, that allegedly align the iron in your blood, and somehow it doesn’t immediately go back to random as soon as it has passed by, or magnetic descalers that align the water molecules or something, or the fuel treatment magnets that magically add lots of extra energy to your petrol. These are the stuff of nonsense. So are all things that claim perpetual motion.

But cars, trains and bikes, yep, they can all be made magnetic very usefully indeed. And carbon muscle fabric. And all sort of levitation systems. The future is magnetic, even if a lot of nutters say the same thing.