Category Archives: communications

Driverless pod transport system

I badly documented my latest idea of an ultra-cheap transport system in I think I need another blog to separate out the idea from the background. Look at my previous blog for the appropriate pictures.

We’re seeing a lot of enthusiasm now for electric cars and in parallel, for self-driving cars. I support both of those, and I like the new Next system that is extremely close to my own ideas from 1987 when I first looked at cars from a performance engineer’s viewpoint and realized that self driving cars could drive millimeters apart, reducing drag and greatly reducing congestion. I estimated back then that they could improve road capacity by a factor of 5. Many others have since simulated such systems and the same factor of 5 has popped up a few times now.

Self-driving pods and electrically assisted bike lane

Self-driving pods and electrically assisted bike lane


Next have visualized the same idea nicely, but the world is more receptive now. for their nice video, although I’d envisage rather more pods in most areas, almost filling the entire road area.

I’ve lectured in vain many times to persuade authorities to divert investment away from 20th century rail system to roads using self driving cars. The UK’s HS2 system is no more than lipstick on a 20th century pig. Pig it remains, obsolete ages ago, though our idiotic government remains determined to build it anyway, wasting £70Bn even by charitable estimates. Systems similar to Next’s could replace HS2 and reduce journey times for everyone, not just those whose starting point and destination are very close to the terminals. I wish them well. But I think there is an even better solution, that is feasible in a similar time-frame, and I have no doubt they could pick it up and run with it. Or Tesla or Google or Apple or Toyota or any other car company.

My realization is that we don’t need self driving cars either. Take exactly the Next system, with its nicely trapezoidal pods that nest together. They will need a smooth road surface if they are to ride in contact or millimeters apart, or they will constantly bump into each other and create irritating vibration. Make them ride a centimeter or two apart and it will solve that.

Then start looking at each part of the system.

They each have a computer on board to drive the pod. You don’t need that, because everyone has a smart phone now which already has formidable computing power and is connected to the cloud, which has vast amounts more. Together, the entire system can be easily managed without any computers on board at all.

Similarly, much of the internal decor in cars is there to make it look pretty, offer interfaces, information or displays for passenger entertainment. All of that could easily be done by any half-decent augmented reality visor.

Then look at the power supply and engines. We should at the very least expect electric motors to replace fossil fuel engines. Most self-driving cars have expensive batteries, using scarce resources, and lithium batteries may catch fire or explode. So some systems in R&D now use the idea of super-capacitors instead. Furthermore, these could be recharged periodically as they drive over special mats on the road surface, so they could be smaller, lighter and cheaper. Even that is now being trialed. So these systems would already be better in almost every way to today’s transport.

However, we don’t even need the electric motors and super-capacitors. Instead we could update the ancient but well-proven idea of the linear induction motor and make factory-produced mats containing circuits that can be instructed to make steerable magnetic wells that pull the cars along, as well as navigate them correctly at every junction. Again, the management can all be done by the cloud plus smartphones, and the circuits can reconfigure on command as each pod passes over them. So they won’t need batteries, or super-capacitor banks, or engines or motors. They would just be pulled along by magnetic fields, with no moving parts (apart from the pods as a whole of course) to go wrong, and almost nothing needing expensive maintenance. Apart from wheels, suspension and brakes.

So the driverless pod would not need a built-in computer, it would not need an engine or motor, and not need a battery or super-capacitor. Already it would be vastly cheaper.

The last remaining moving parts can also be dispensed with. If the pod rides above a mat that can generate the magnetic fields to drag it along, why not let other magnetic fields suspend it above the ground? That would mean it doesn’t need suspension, or wheels. Conventional brakes could be dispensed with using a combination of magnetic fields for normal braking,  combined with a fallback of gravity and brake strips for emergency braking. Reducing the levitation field would create friction with the road surface and stop the vehicle very quickly, far more quickly than a conventional car can stop, only really limited by comfort limitations.

So my proposal is a system that would look and behave very similar to what Next have designed, but would not need engines, batteries, on-board computers or even wheels. My pods would be no more than simple boxes with comfy seats (or empty for freight transport) and a couple of strips on the bottom and might cost no more than $200 each. The road would have a factory-made mat laid on top for the magnetic well trains and levitation. Adapting a road to the system would be an overnight laying out of the mat and plugging it in to the electricity supply. In cold seasons, that electricity supply could also power on-board heating (but that would incur extra expense of course)


transport system

It won’t be long before such a system could be built. I can’t see any fundamental barriers to a prototype appearing next year if some entrepreneur were to try. It could make self driving car systems, even Next’s current proposals, redundant before they are implemented. If we were to change the direction of current plans to utilize the latest technology, rather than using ideas from 30 years ago, we could have a cheaper, better, more environmentally friendly system even faster. We could probably build such as system in every major city for what we are going to waste on HS2. Surely that is worth a try.


The future for IT technicians

This blog accompanies the British Computer Society’s launch of RITTech, a new standard for IT technicians. For more info look at: and

It is a great time to be in IT. Companies are fragmenting and reconstructing and new business models are emerging every year. Everything is becoming smart, bringing IT to pole position in the sector race. Everyone has multiple mobile devices – smart phones, tablets, readers and laptops, even smart watches and wristbands. The opportunities to add electronic control are abundant, but they all need to be developed, software written and circuits fabricated and tested. Engineers have never had more core technologies to play with to create new products and services, and they rely on technicians to make it happen.

One of the most important things for anyone in a globalised world, where potential customers or employers will often never have met you or even seen you, is to be certificated. Having a respected industry body confirm that you have reached a given level of ability makes decisions  safer. Knowing that a person has the skills required to do the job takes away the biggest risk in employing them for a project. Global companies such as Microsoft offer such certification, but so can professional bodies such as the British Computer Society. The important factor is that the body is known, respected and their certification trusted.

Trust is absolutely key in a networked world. Anyone can pretend to be anyone, and can act across borders via the net from anywhere. Dangers lurk everywhere. People need to know they can trust appliances they use, the websites they visit. They need to be confident that their details will not end up in the hands of criminals, especially anything related to their finances. They also need to be confident that code won’t crash their machines or leave them open to hackers. Few people have the ability to look after all the IT themselves, so they rely on others to make it safe for them. They trust a corporate brand, so they trust their website, so that means that company has to be able to trust those who write it and maintain it to be able to do their work competently and reliably.

That is all getting more and more difficult in a miniaturizing world. The internet of things is already bringing us into the early stages of digital jewellery. From there, it is only a small step further before IT devices will often be dust sized, well below a millimetre, and then they could easily fit through the holes in an office machine, or sit on keys on a keyboard. Add that to security holes in a smart light bulb that nobody thought of as a security risk, but which opens a back door into a home LAN, and it becomes obvious just how tricky it will be to make things secure.

Security will remain a background problem no matter what is being built, but that doesn’t take away the excitement of making something new. Every wave of new core technology opens up new doors to new gadgets or network capability. Artificial intelligence also adds capability in parallel. A huge gap has opened over recent years between what has become possible and what has been done. There just aren’t enough engineers and technicians to do everything. That means it has never been easier to invent things, to find something exciting that nobody has done yet. That next big thing could be invented by you.

You might think it won’t be because your boss has you working on another project, but new tech opens up potential in every area. There is probably something right next to your project waiting to be discovered or developed. Showing creativity or innovative capability will fast track you to your next promotion and when your colleagues learn you have done something special, you will feel the warm glow of recognition too. Few things feel better than peer recognition. Nobody is too junior to come up with a new idea, or a new way of looking at something, or spotting a feature that would increase customer satisfaction without increasing cost. Some of my best ideas have happened in areas I have just started work in. If you’re new, you might not have all the finely honed skills of someone who’s been working in it for years, but you also don’t have their prejudices, you don’t know why you can’t do something, so you just do it anyway. The barriers they thought they knew about may have been rendered irrelevant by technology progress but their prejudice hasn’t kept up with change. You might be surprised how often that is the case.

In short, as a technician going for certification, you are laying down a solid foundation for secure and fruitful employment in exciting fields. That same desire to take control, push yourself to your limits and make life work for you will also make you exactly the sort of person that is likely to do something  special. A technician is an important person already, making dreams happen, but ahead lies a career full of opportunity for further development, excitement and fulfilment.

An ultra-cheap future transport system.

transport system

Some of my followers might remember this idea I invented way back in 2005, and have blogged a few times since, such as in


The idea is simple enough: use a linear induction motor built into a rubber mat laid out on a bike lane to drag a metal plate attached to the bike front forks. The bike moves faster with less effort (though you can still put in as much effort as you want), and you get to the office less sweaty. Since your bike goes fast, the cars won’t need to endanger you by overtaking in unsuitable locations. The mat is laid out overnight and plugged into a nearby lamp post for electric supply. This was much more nicely illustrated by a proper illustrator in a report I just did with Hewden, the equipment hire firm:


I’ve since thought about using the same idea for the larger transport pods, which we imagined as self-driving vehicles in the report and picture.  There is no reason at all why a scaled-up version couldn’t be added to them too (just imagine them with a plate underneath to drag them along), then you don’t need the engine and once you go down that path of thinking, lots of other things start falling out. Read on.

Important note: no endorsement of any of this content by Hewden or any other company is implied. If you don’t like any of what follows, blame me and Futurizon Limited.

I think we may be about to see the biggest disruption of any industry. The transport industry is ripe for three waves of disruption. It knows all about the first two but seems to have totally missed the third, and yet it could be just a few years away. Every part of the industry will be strongly affected and some of it will be wiped out – whether it’s vehicle manufacture, servicing, fuel, spare parts, tires, brakes, or driving, it will change beyond recognition.

In the first wave, the internal combustion engine is starting slowly to give way to hybrids and all-electric vehicles, with talk of fuel cells, hydrogen, super-capacitors and so on. This wave is very well known and already well absorbed into every industry strategy. This week I helped promote the ‘go ultra low’ campaign. I am all in favor of using electricity instead of burning fuels wherever economically feasible, especially in city areas, even if the electricity comes from fossil fuel power stations. People should breathe clean air, not air full of exhaust gases and particulates.

The second and related wave is the push towards self-driving vehicles. Again, everyone that needs to probably already knows all they need to about it. They certainly have no excuse if it affects them and it still manages to catch them by surprise. Cars driven by AI coupled to sensors monitoring everything around the car can react in microseconds and talk to each other, so they can drive very close front and back and side by side so roads can hold 5-15 times more cars, all driving at a good speed. They can interleave automatically at junctions without even needing to slow down significantly instead of being stuck behind someone who is waiting for an invitation in triplicate to arrive signed by the Queen before they proceed. Self driving cars would not eliminate congestion, but they would very greatly reduce it, almost eliminate accidents, save pollution and resources and be far more socially inclusive than buses or trains. They have great potential to improve our lives in many ways, but obviously would make a lot of drivers redundant. They would also shift power from conventional car manufacturers to IT companies who are best placed to develop the intelligence and control systems. No surprises there at all, we read this stuff every day now.

However, we don’t even need self-driving cars. They are barely out of the lab, lawyers are still arguing over how insurance and liability for accidents should work, and already their end is in sight. Self-driving cars could be the next Betamax.

The third wave is driverless vehicles that don’t even need an engine, or batteries, or even supercapacitors, or the huge expenses for all the sensor equipment and onboard computers and all the other electronics. They don’t need much in the way of electronics or electrics at all. We might have the first buses in history that are simpler than a bus shelter.

This 3rd wave won’t even be electric vehicles!

Forgive my use of powerpoint graphics, but with generic vehicles, boxes make a good start point anyway, vehicle designers can design them any which way they like:


This wave will reduce the vehicle to little more than a moving box. It might have comfy seats and air conditioning added, but apart from that, it doesn’t need much else. Really it doesn’t. They could have wheels, and that would reduce electricity requirements somewhat, but then wheels would cost more and bring other issues, so they will be optional and we all know future cars are meant to hover anyway. If they do have wheels, they would still use the plates near the road surface just as the non-wheel versions. There is no need for brakes on the wheels if there is a long braking pad on the road surface for emergencies. One of my first ever engineering jobs was designing an electromagnetic braking system that pulled a brake pad onto another using magnetic field. If it worked in 1982, it will work in 2020.

The most basic version of such a vehicle would be literally an empty box with three pads on the base. It would be used for carrying goods. Two of the pads would levitate the vehicle, propel it, steer it and stop it. The third pad would be a high friction pad that would stop the vehicle very rapidly if necessary. That’s it. This kind of vehicle would only cost whatever it costs to make a thin plastic or carbon fiber box and stick two thin strips of metal on the base and a strip of brake pad. $200 is a reasonable estimate. For people transport, cost depends on the level of comfort needed. It won’t crash, so a minimum requirement is a plastic seat and a safety belt to stop you falling off, shaped to sit on the pads underneath and nest easily into the one in front for storage. Again, that could easily be mass-produced for $200.


Higher comfort versions could be made of course, where the passengers are fully enclosed, sound insulated and air conditioned, sitting on nice comfy leather seats on nice soft suspension. Even then, they still don’t need any engine or battery, or any electrics other than lighting, sound cancellation and air conditioning system. But there is nothing to stop car manufacturers continuing to make high luxury cabins if they want, there just might not be much of a market for them.

Lots of the electronics in modern cars is not really needed. We already have enough computing capability in our mobiles to do all our entertainment, navigation, location, comms between vehicles, all the IoT management. Your phone knows where it is, can get you all the media and comms you can eat, and can do the noise cancellation too. Decor is irrelevant once we have augmented reality – you can sit in a blank box and make it look as if you are in any place or any vehicle you want.

Propulsion doesn’t have to come from an engine, not even an electric motor. Decades ago the first linear induction transport system was built and now there are lots of trains using that mechanism, some travelling at very high speed. However, technology has moved on. We don’t need a huge rail for our boxes to sit on. It’s easy to suspend the box on strong magnetic fields and those fields can be produced and shaped easily, especially using graphene or superconductive materials, but perfectly adequately using conventional materials and strong permanent magnets. Position the plates on the base of the box in nicely shaped magnetic wells and they will stay there. The magnetic wells can be shaped as the vehicle goes along to direct it any way it needs to go. The passenger’s mobile knows where the passenger wants to go and can talk direct to the cloud based management system, which can control invisible ‘points’ in an invisible re-configurable ‘railway’ beneath the vehicle. If there is no passenger and only freight on board, the management system still knows what to do with each box and can navigate it correctly. So it is a travelling magnetic well drive. Steering the wells steers the cars or pods. It doesn’t have to use classic linear induction motors, it just needs to be able to move magnetic wells. Linear induction motors are one way of doing that, but anything that can shape a magnetic well for the pods to sit in, and make them travel along, will do. There are lots of ways to skin a cat, so they say.

A factory-produced mat can be laid out on a stretch of road overnight, plugged in to an electricity supply, and these vehicles could be carried on it the next day. Vehicles that need to slow down could have their kinetic energy recovered and transferred to others that need to accelerate. Total energy costs would be low.

All the benefits of self-driving cars would still hold. The vehicles can still be millimeters apart in each direction so could still reap all the congestion benefits, along with virtually zero drag. Not needing any engine, motor or battery or capacitor bank on board would greatly reduce the amount of resources needed to make a vehicle and the energy needed to propel it. Recognizing that almost all the electronics needed sits happily inside a mobile saves a lot more resources.

Grabbing a vehicle would be done by direct discussion between the mobile and city transport system. Any empty vehicle would simply pull over, you get in and get off at your destination. Cost could be low enough to absorb into normal city running costs. If vehicles are designed to nest into each other like supermarket trolleys, and if they really only cost about the same, they would require minimal storage space, liberating car parks and taxi ranks for other uses.

So our vehicles really could be just simple boxes with minimal additions for basic comfort or high luxury. On nice days, they could be open, on rainy days, you pull the hood over. In colder climes, there might be sides and doors.

Here’s a quick summary of the key points:


Internet-of-things is enabling the systems needed to track obstacles such as pedestrians, linking to ubiquitous sensors and cameras, so all the safety side is entirely feasible too without having to put it in the vehicle. Our mobiles and digital jewellery will work with lots of different kinds of security systems to ensure that pods don’t go anywhere without knowing who is or what is on board, preventing terrorists from filling them up with explosives and sending them to a target. Delivery pods would only open when properly authorised. Suspicious passengers or vehicles could be locked and routed automatically to safe inspection points.

I’m not going to build this, but someone will. If it’s you, buy me a beer when you get rich and make a donation to a homeless people’s charity. No new physics is required. As graphene becomes commercially available cheaply, as it will, it will become very cheap to put all the circuitry into cheap mats that can be laid out to do the work. Thieves won’t steal mats that only have carbon in them, whereas if they use lots of copper wiring, they might try. But understand that there is absolutely nothing to prevent someone starting development tomorrow and implementing this within a few years. This should be easier to build than self driving cars.

Reconfigurable circuits have been with us decades too, so rearranging the circuits to route each pod the right way at each junction is no problem. Electronic control systems too. A few bits of software need to be written, but then a simple box achieves exactly the same functionality as a self-driving car 100 times the cost.

So basically, conventional vehicles can be replaced by simpler and cheaper boxes. No engine, no fuel, no wheels, no suspension, no mechanical parts other than optional doors and sliding roofs, just comfy seats and life support systems. Almost all the frills via augmented reality and whatever else your future smartphones do. All the system management and control and data collection ditto.

In new cities, roads could be built with such a system in mind, with less street furniture and clutter. They would have clean air. Cheap and fast transport would encourage people to travel more, socialize more, live more, be happier. Cultural life would improve. Retrofitting it to existing cities would be easy too, just laying out factory-produced mats and plugging them into electric supply. With such ultra low costs, it would be the obvious choice for developing countries, helping to reduce CO2 production and demands on resources.

Lots of industries would be affected. We won’t need as much lithium of course, since these vehicles need no batteries. We won’t need as much steel, or aluminium, and we can recycle plastic to make the bodies and seats.

All the benefits of a self-driving car system at a tiny fraction of the price. What’s not to like?

Why Uber will soon be history due to a category error

I have nothing against Uber, I’ve never used them, or Hailo, but they are just as dispensable as their drivers. My next blog will be about my vision for an all-electric zero-emission driverless transport system and it has no use for Uber.

However, before I write that, I have a small issue to clear up. A couple of weeks ago I tweeted that the London cabbies who were protesting against Uber are very proud of spending years to learn the best way to get from A to B, yet a satnav device can calculate the best route in a few seconds (and though my tweet didn’t even go that far, any half-decent satnav will also take full account of the real-time traffic and congestion situation). A straightforward fact you might think, but a great many taxi drivers took offence at it, and not just in London. One taxi firm near Boston, even made a crude and ineffective attempt at a cyber-attack. Don’t give up the day job guys!

A future transport system using driverless cars doesn’t need drivers of course but that doesn’t mean that all of them will be out of a job. Carrying luggage, helping people with mobility problems and providing company and conversation on the way is a very valuable service too, as are provision of local tourist advice, general information, strongly held opinions on every possible topic and other personality-based charms. We won’t NEED taxi drivers, but I for one would really miss them.

Uber thinks they are well on top of the driverless car trend:

Perhaps it is just as well they want to go driverless because I’m told many of their drivers are starting to get angry with Uber too. Uber is wrong if they think driverless cars will make them the future. Possibly they will benefit for a short while during technology transition, but the simple fact is that future transport systems don’t need Uber or Hailo any more than they need taxi drivers. Since Uber pays very little tax on their large revenues, they are also putting themselves on the wrong side of public opinion, and that is not a very clever thing to do at all: Their worst error though is that their vision of future transport technology is focused on the current state of the art, not the future. If you are planning a future strategy, you absolutely should not base it on today’s technology.

They say they will buy all of Tesla’s output of self-driving cars: Well, I hope they can make them pay fast, because they will be obsolete very soon indeed. Uber won’t survive long, not if they make this kind of error. Technology will soon make Uber irrelevant too, and unless they improve their corporate values, not many will bother to turn up at their funeral unless it is to gloat.

Google will presumably also want their self-driving cars out there too. The rest of the car industry also won’t go down without a fight, so there will be a many a battle to establish market share in self-driving cars. Apple will want all their self-driving cars out there too. Until 5 minutes ago, I thought there was just the tiniest possibility that Apple were going to be a bit smarter. Maybe Apple had noticed the same thing I had. But no, a quick Google search confirms that Apple have made the same mistake too, and just bought in the wrong guy: These companies have other businesses so won’t really care much if one project goes down. Google, Apple, Samsung, LG et al will be far more likely to flourish in the real future than Uber or Hailo.

The error is very serious. You’ve made it, I’ve made it. The entire auto industry has made it. It’s a category error.

We’ve all been conflating ‘driverless’ and ‘self-driving’. They are not the same.

The future doesn’t need self-driving cars, it needs driverless cars. They both save lives, save the environment, save resources, save congestion, save time, and save cost. One saves a little, the other saves a LOT.

The entire car industry, as well as Uber, Google, Tesla, and even Apple have all bet on the wrong one, but some have better chance of surviving the consequences their errors than others. I’ll outline the basic principles of the technology waves that can wipe out self-driving cars in my next blog, and actually since the technology is easier in many ways than getting self-driving working, it could even bypass them. We may never see an age of self-driving cars. We can get a far better system, far faster and far cheaper.

It is time to consider any investments you have in the transport industry. Severe turbulence ahead!

Video intercom, another ancient idea come true

Another ancient prediction come true. This one from June 1993, an idea I had and developed with my colleague Chris Winter. Simple idea, just link a video camera on the front door to the network so you can screen people remotely for entry.

Here’s the latest incarnation in today’s paper. Surprising that it has taken so long really. I was concerned in 1993 that it may have been too obvious:

Here’s my original description:

Videophone Intercom, 10 Jun 1993
Ian Pearson, Chris Winter

To summarise, the videophone intercom is a device located at a household front door. A caller would push the button, whereupon an autodialler would call up the resident at his remote location (e.g. at work). The resident would then be able to identify the caller, check ID, and then arrange access if appropriate.
The cost of video cameras on chips has fallen dramatically – in bulk, they can shortly be obtained for as little as £10. Many users will soon have videophones on their desks or at home. Autodiallers and intercom systems can also be made very cheaply. The whole system cost could therefore be quite low. Such devices would offer a much higher level of security than simple audio systems. The number to be dialled could be changed remotely.
Useful additions might be to add a video terminal or phone inside the house, perhaps even just on the inside of the door to give enhanced security before opening the door to a stranger. There need be no way of telling from the door whether the resident is using his home display or a remote videophone.
There are equivalent other industrial uses, such as remotely manning a salesroom or stores.
video intercom

The future of holes

H already in my alphabetic series! I was going to write about happiness, or have/have nots, or hunger, or harassment, or hiding, or health. Far too many options for H. Holes is a topic I have never written about, not even a bit, whereas the others would just be updates on previous thoughts. So here goes, the future of holes.

Holes come in various shapes and sizes. At one extreme, we have great big holes from deep mining, drilling, fracking, and natural holes such as meteor craters, rifts and volcanoes. Some look nice and make good documentaries, but I have nothing to say about them.

At the other we have long thin holes in optical fibers that increase bandwidth or holes through carbon nanotubes to make them into electron pipes. And short fat ones that make nice passages through semi-permeable smart membranes.

Electron pipes are an idea I invented in 1992 to increase internet capacity by several orders of magnitude. I’ve written about them in this blog before:

Short fat holes are interesting. If you make a fabric using special polymers that can stretch when a voltage is applied across it, then round holes in it would become oval holes as long as you only stretch it in one direction.  Particles that may fit through round holes might be too thick to pass through them when they are elongated. If you can do that with a membrane on the skin surface, then you have an electronically controllable means of allowing the right mount of medication to be applied. A dispenser could hold medication and use the membrane to allow the right doses at the right time to be applied.

Long thin holes are interesting too. Hollow fiber polyester has served well as duvet and pillow filling for many years. Suppose more natural material fibers could be engineered to have holes, and those holes could be filled with chemicals that are highly distasteful to moths. As a moth larva starts to eat the fabric, it would very quickly be repelled, protecting the fabric from harm.

Conventional wisdom says when you are in a hole, stop digging. End.

The future of feminism and fashion

Perhaps it’s a bit presumptive of me to talk about what feminists want or don’t want, but I will make the simplifying assumption that they vary somewhat and don’t all want the same things. When it comes to makeup, many feminists want to look how they want to look for their own pleasure, not specifically to appeal to men, or they may want to attract some people and not others, or they may not want to bother with makeup at all, but still be able to look nice for the right people.

Augmented reality will allow those options. AR creates an extra layer of appearance that allows a woman to present herself any way she wants via an avatar, and also to vary presented appearance according to who is looking at her. So she may choose to be attractive to people she finds attractive, and plain to people she’d rather not get attention from. This is independent of any makeup she might be wearing, so she may choose not to wear any at all and rely entirely on the augmented reality layer to replace makeup, saving a lot of time, effort and expense. She could even use skin care products such as face masks that are purely functional, nourishing or protecting her face, but which don’t look very nice. Friends, colleagues and particular subsections of total strangers would still see her as she wants to be seen and she might not care about how she appears to others.

It may therefore be possible that feminism could use makeup as a future activist platform. It would allow women to seize back control over their appearance in a far more precise way, making it abundantly clear that their appearance belongs to them and is under their control and that they control who they look nice for. They would not have to give up looking good for themselves or their friends, but would be able to exclude any groups currently out of favour.

However, it doesn’t have to be just virtual appearance that they can control electronically. It is also possible to have actual physical makeup that changes according to time, location, emotional state or circumstances. Active makeup does just that, but I’ve written too often about that. Let’s look instead at other options:

Fashion has created many different clothing accessories over the years. It has taken far longer than it should, but we are now finally seeing flexible polymer displays being forged into wrist watch straps and health monitoring bands as well as bendy and curvy phones. As 1920s era fashion makes a small comeback, it can’t be long before headbands and hair-bands come back and they would be a perfect display platform too. Hair accessories can be pretty much any shape and size, and be a single display zone or multiple ones. Some could even use holographic displays, so that the accessory seems to change its form, or have optional remote components seemingly hanging free in the nearby air. Any of these could be electronically controllable or set to adjust automatically according to location and the people present.

Displays would also make good forehead jewellery, such as electronic eyebrows, holographic jewels, smart bindis, forehead tattoos and so on. They could change colour or pattern according to emotions for example. As long as displays are small, skin flexing doesn’t present too big an engineering barrier.

In fact, small display particles such as electronic glitter could group together to appear as a single display, even though each is attached to a different piece of skin. Thus, flexing of the skin is still possible with a collection of rigid small displays, which could be millimetre sized electronic glitter. Electronic glitter could contain small capacitors that store energy harvested from temperature difference between the skin and the environment, periodically allowing a colour change.

However, it won’t be just the forehead that is available once displays become totally flexible. That will make the whole visible face an electronic display platform instead of just a place for dumb makeup. Smart freckles and moles could make a fashion reappearance. Lips and cheeks could change colour according to mood and pre-decided protocols, rather than just at the whim of nature.

Other parts of the body would likely house displays too. Fingernails and toenails could be an early candidate since they are relatively rigid. The wrist and forearm are also often exposed. Much of the rest of the body is concealed by clothing most of the time, but seasonal displays are likely when it is more often bare. Beach displays could interact with swimwear, or even substitute for it.

In fact, enabling a multitude of tiny displays on the face and around the body will undoubtedly create a new fashion design language. Some dialects could be secret, only understood by certain groups, a tribal language. Fashion has always had an extensive symbology and adding electronic components to the various items will extend its potential range. It is impossible to predict what different things will mean to mainstream and sub-cultures, as meanings evolve chaotically from random beginnings. But there will certainly be many people and groups willing to capitalise on the opportunities presented. Feminism could use such devices and languages to good effect.

Clothing and accessories such as jewellery are also obvious potential display platforms. A good clue for the preferred location is the preferred location today for similar usage. For example, many people wear logos, messages and pictures on their T-shirts, whereas other items of clothing remain mostly free of them. The T-shirt is therefore by far the most likely electronic display area. Belts, boots, shoes and bag-straps offer a likely platform too, not because they are used so much today, but because they again present an easy and relatively rigid physical platform.

Timescales for this run from historical appearance of LED jewellery at Christmas (which I am very glad to say I also predicted well in advance) right through to holographic plates that appear to hover around the person as they walk around. I’ve explained in previous blogs how actual floating and mobile plates could be made using plasma and electro-magnetics. But the timescale of relevance in the next few years is that of the cheaper and flexible polymer display. As costs fall and size increases, in parallel with an ever improving wireless and cloud infrastructure, the potential revenue from a large new sector combining the fashion and display industries will make this not so much likely as  inevitable.

The future of digital

Many things are cyclical. Some things are a one way street. Digitization covers some things that shouldn’t be reversed, and some that should and will. I started work early enough to experience using an analog computer. Analog computers use analogs of things to help simulating them. So for example, you can simulate heat flow through a wall by using a battery to provide a voltage as an analog of the temperature difference and a resistor  to be an analog of the wall’s insulation. If you want a better result, you could simulate the heat capacity of the wall using a capacitor. A well-designed analog will produce a useful result. The best thing about analogs is that in some cases they are infinitely fast. Imagine writing a computer simulation of the convection currents in a glass of water. You could build a supercomputer to simulate every atom’s behavior digitally. Your program could include local sources of heat, take account of viscosity, chemical reactions among the impurities and everything else you can think of etc. You might decide to account for the movement of the earth and the Coriolis forces it would generate on the water as the current make the water move. If you want ridiculously precise results you could simulate the effects of every planet in the solar system on atomic movements. You could account for magnetic forces, electrostatic ones and so on. By now, your biggest supercomputer would be able to simulate the glass of water for a few microseconds before it is replaced by an upgrade. You can do it, but it isn’t ideal. The analog alternative is to pour a glass of water and watch it. Every atom, every subatomic particle in that glass, will instantaneously and continually account for every physical interaction with every passing photon, and every other particle in the universe, taking full account of space-time geography and the distances of each particle. It would work pretty well, it would be a good analog, even though it’s probably a glass of different water from a different tap. It will give you a continuous model at almost zero cost that works perfectly and greatly outperforms the digital one. Analog wins.

If you want to add 2+2, an analog computer will give you a result of roughly 4. The next time, it will still be roughly 4 but will be slightly different. A  digital one will always give an answer of precisely 4, unless you’ve messed up badly somewhere. Digital wins.

It is obvious that digital has some advantages and analog does too. Analog is less reproducible, liable to drift, is not always transparent and has many other faults that eventually led to it being replaced for most purpose by digital computing. The truth remains that a glass of water has more processing power than all the digital computers every built put together, if you want to simulate water behavior.

Digital and analog processing are both used in nature. In vision, the retina sends an essentially digital stream of data to the brain. In IT, pretty much all communications is done digitally, as is storage of data. It is far easier to repair the degradation that occurs over time or transmission that way. If a signal level has shrunk slightly, it will still be clear whether it is a 1 or a 0 so it can be corrected, reset to the right level and re-transmitted or stored. For an analog signal, degradation just accumulates until the signal disappears. Digital wins in most of IT.

But back to analog. Much of the processing in many electronic circuits and systems is done in the analog domain before digital takes over for transmission or computation. Even computer motherboards, graphics cards, fans and power supplies have resistors, capacitors and even a transformer can be thought of as an analog device. So analog processing and devices are with us still, just hiding behind the scenes.

I think analog computing will make a comeback, albeit in certain niches. Imagine a typical number-crunching problem for supercomputers, such as simulating heat and force transfer. Imagine making an actual analog of it using some futuristic putty and exposing that putty to actual forces and heat. If there are nano-sensors embedded throughout, you could measure the transfer of forces and heat directly and  not have to calculate it. Again the speed advantage of analog would return. Now suppose a hybrid machine with some such analogs and some digital programming too. Those bit best left to digital could be done digitally and others where real analogs could be made could shortcut the number-crunching requirements tremendously. The overall speed might be dramatically improved without sacrificing integrity. Furthermore, the old problems of drift faced by analog systems could be reduced or almost eliminated by frequent cross referencing and calibration as the system goes on.

Finally, AI may well have a powerful place in consciousness and AI realization. Many people believe AI would be best done using adaptive analog neurons. Until today I was one of them. However, I am starting to doubt that, and this looking again at analog has made me realize a bit more about consciousness techniques, so I will divert from this piece forthwith to write more on conscious computing.

The future of air

Time for a second alphabetic ‘The future of’ set. Air is a good starter.

Air is mostly a mixture of gases, mainly nitrogen and oxygen, but it also contains a lot of suspended dust, pollen and other particulates, flying creatures such as insects and birds, and of course bacteria and viruses. These days we also have a lot of radio waves, optical signals, and the cyber-content carried on them. Air isn’t as empty as it seems. But it is getting busier all the time.

Internet-of-things, location-based marketing data and other location-based services and exchanges will fill the air digitally with fixed and wandering data. I called that digital air when I wrote a full technical paper on it and I don’t intend to repeat it all now a decade later. Some of the ideas have made it into reality, many are still waiting for marketers and app writers to catch up.

The most significant recent addition is drones. There are already lots of them, in a wide range of sizes from insect size to aeroplane size. Some are toys, some airborne cameras for surveillance, aerial photography, monitoring and surveillance, and increasingly they are appearing for sports photography and tracking or other leisure pursuits. We will see a lot more of them in coming years. Drone-based delivery is being explored too, though I am skeptical of its likely success in domestic built up areas.

Personal swarms of follower drones will become common too. It’s already possible to have a drone follow you and keep you on video, mainly for sports uses, but as drones become smaller, you may one day have a small swarm of tiny drones around you, recording video from many angles, so you will be able to recreate events from any time in an entire 3D area around you, a 3D permasuperselfie. These could also be extremely useful for military and policing purposes, and it will make the decline of privacy terminal. Almost everything going on in public in a built up environment will be recorded, and a great deal of what happens elsewhere too.

We may see lots of virtual objects or creatures once augmented reality develops a bit more. Some computer games will merge with real world environments, so we’ll have aliens, zombies and various mythical creatures from any game populating our streets and skies. People may also use avatars that fly around like fairies or witches or aliens or mythical creatures, so they won’t all be AI entities, some will have direct human control. And then there are buildings that might also have virtual appearances and some of those might include parts of buildings that float around, or even some entire cities possibly like those buildings and city areas in the game Bioshock Infinite.

Further in the future, it is possible that physical structures might sometimes levitate, perhaps using magnets, or lighter than air construction materials such as graphene foam. Plasma may also be used as a building material one day, albeit far in the future.

I’m bored with air now. Time for B.

Increasing internet capacity: electron pipes

The electron pipe is a slightly mis-named high speed comms solution that would make optical fibre look like two bean cans and a bit of loose string. I invented it in 1990, but it still remains in the future since we can’t do it yet, and it might not even be possible, some of the physics is in doubt.  The idea is to use an evacuated tube and send a precision controlled beam of high energy particles down it instead of crude floods of electrons down a wire or photons in fibres. Here’s a pathetic illustration:

Electron pipe


Initially I though of using 1MeV electrons, then considered that larger particles such as neutrons or protons or even ionised atoms might be better, though neutrons would certainly be harder to control. The wavelength of 1MeV electrons would be pretty small, allowing very high frequency signals and data rates, many times what is possible with visible photons down fibres. Whether this could be made to work over long distances is questionable, but over short distances it should be feasible and might be useful for high speed chip interconnects.

The energy of the beam could be made a lot higher, increasing bandwidth, but 1MeV seamed a reasonable start point, offering a million times more bandwidth than fibre.

The Problem

Predictions for memory, longer term storage, cloud service demands and computing speeds are already heading towards fibre limits when millions of users are sharing single fibres. Although the limits won’t be reached soon, it is useful to have a technology in the R&D pipeline that can extend the life of the internet after fibre fills up, to avoid costs rising. If communication is not to become a major bottleneck (even assuming we can achieve these rates by then), new means of transmission need to be found.

The Solution

A way must be found to utilise higher frequency entities than light. The obvious candidates are either gamma rays or ‘elementary’ particles such as electrons, protons and their relatives. Planck’s Law shows that frequency is related to energy. A 1.3µm photon has a frequency of 2.3 x 1014. By contrast  1MeV gives a frequency of 2.4 x 10^20 and a factor of a million increase in bandwidth, assuming it can be used (much higher energies should be feasible if higher bandwidth is needed, 10Gev energies would give 10^24). An ‘electron pipe’ containing a beam of high energy electrons may therefore offer a longer term solution to the bandwidth bottleneck. Electrons are easily accelerated and contained and also reasonably well understood. The electron beam could be prevented form colliding with the pipe walls by strong magnetic fields which may become practical in the field through progress in superconductivity. Such a system may well be feasible. Certainly prospects of data rates of these orders are appealing.

Lots of R&D would be needed to develop such communication systems. At first glance, they would seem to be more suited to high speed core network links, where the presumably high costs could be justified. Obvious problems exist which need to be studied, such as mechanisms for ultra high speed modulation and detection of the signals. If the problems can be solved, the rewards are high. The optical ether idea suffers from bandwidth constraint problems. Adding factors of 10^6 – 10^10 on top of this may make a difference!