Category Archives: communications

Future Augmented Reality

AR has been hot on the list of future IT tech for 25 years. It has been used for various things since smartphones and tablets appeared but really hit the big time with the recent Pokemon craze.

To get an idea of the full potential of augmented reality, recognize that the web and all its impacts on modern life came from the convergence of two medium sized industries – telecoms and computing. Augmented reality will involve the convergence of everything in the real world with everything in the virtual world, including games, media, the web, art, data, visualization, architecture, fashion and even imagination. That convergence will be enabled by ubiquitous mobile broadband, cloud, blockchain payments, IoT, positioning and sensor tech, image recognition, fast graphics chips, display and visor technology and voice and gesture recognition plus many other technologies.

Just as you can put a Pokemon on a lawn, so you could watch aliens flying around in spaceships or cartoon characters or your favorite celebs walking along the street among the other pedestrians. You could just as easily overlay alternative faces onto the strangers passing by.

People will often want to display an avatar to people looking at them, and that could be different for every viewer. That desire competes with the desire of the viewer to decide how to see other people, so there will be some battles over who controls what is seen. Feminists will certainly want to protect women from the obvious objectification that would follow if a woman can’t control how she is seen. In some cases, such objectification and abuse could even reach into hate crime territory, with racist, sexist or homophobic virtual overlays. All this demands control, but it is far from obvious where that control would come from.

As for buildings, they too can have a virtual appearance. Virtual architecture will show off architect visualization skills, but will also be hijacked by the marketing departments of the building residents. In fact, many stakeholders will want to control what you see when you look at a building. The architects, occupants, city authorities, government, mapping agencies, advertisers, software producers and games designers will all try to push appearances at the viewer, but the viewer might want instead to choose to impose one from their own offerings, created in real time by AI or from large existing libraries of online imagery, games or media. No two people walking together on a street would see the same thing.

Interior decor is even more attractive as an AR application. Someone living in a horrible tiny flat could enhance it using AR to give the feeling of far more space and far prettier decor and even local environment. Virtual windows onto Caribbean beaches may be more attractive than looking at mouldy walls and the office block wall that are physically there. Reality is often expensive but images can be free.

Even fashion offers a platform for AR enhancement. An outfit might look great on a celebrity but real life shapes might not measure up. Makeovers take time and money too. In augmented reality, every garment can look as it should, and that makeup can too. The hardest choice will be to choose a large number of virtual outfits and makeups to go with the smaller range of actual physical appearances available from that wardrobe.

Gaming is in pole position, because 3D world design, imagination, visualization and real time rendering technology are all games technology, so perhaps the biggest surprise in the Pokemon success is that it was the first to really grab attention. People could by now be virtually shooting aliens or zombies hoarding up escalators as they wait for their partners. They are a little late, but such widespread use of personal or social gaming on city streets and in malls will come soon.

AR Visors are on their way too, and though the first offerings will be too expensive to achieve widespread adoption, cheaper ones will quickly follow. The internet of things and sensor technology will create abundant ground-up data to make a strong platform. As visors fall in price, so too will the size and power requirements of the processing needed, though much can be cloud-based.

It is a fairly safe bet that marketers will try very hard to force images at us and if they can’t do that via blatant in-your-face advertising, then product placement will become a very fine art. We should expect strong alliances between the big marketing and advertising companies and top games creators.

As AI simultaneously develops, people will be able to generate a lot of their own overlays, explaining to AI what they’d like and having it produced for them in real time. That would undermine marketing use of AR so again there will be some battles for control. Just as we have already seen owners of landmarks try to trademark the image of their buildings to prevent people including them in photographs, so similar battles will fill the courts over AR. What is to stop someone superimposing the image of a nicer building on their own? Should they need to pay a license to do so? What about overlaying celebrity faces on strangers? What about adding multimedia overlays from the web to make dull and ordinary products do exciting things when you use them? A cocktail served in a bar could have a miniature Sydney fireworks display going on over it. That might make it more exciting, but should the media creator be paid and how should that be policed? We’ll need some sort of AR YouTube at the very least with added geolocation.

The whole arts and media industry will see city streets as galleries and stages on which to show off and sell their creations.

Public services will make more mundane use of AR. Simple everyday context-dependent signage is one application, but overlays would be valuable in emergencies too. If police or fire services could superimpose warning on everyone’s visors nearby, that may help save lives in emergencies. Health services will use AR to assist ordinary people to care for a patient until an ambulance arrives

Shopping provide more uses and more battles. AR will show you what a competing shop has on offer right beside the one in front of you. That will make it easy to digitally trespass on a competitor’s shop floor. People can already do that on their smartphone, but AR will put the full image large as life right in front of your eyes to make it very easy to compare two things. Shops won’t want to block comms completely because that would prevent people wanting to enter their shop at all, so they will either have to compete harder or find more elaborate ways of preventing people making direct visual comparisons in-store. Perhaps digital trespassing might become a legal issue.

There will inevitably be a lot of social media use of AR too. If people get together to demonstrate, it will be easier to coordinate them. If police insist they disperse, they could still congregate virtually. Dispersed flash mobs could be coordinated as much as ones in the same location. That makes AR a useful tool for grass-roots democracy, especially demonstrations and direct action, but it also provides a platform for negative uses such as terrorism. Social entrepreneurs will produce vast numbers of custom overlays for millions of different purposes and contexts. Today we have tens of millions of websites and apps. Tomorrow we will have even more AR overlays.

These are just a few of the near term uses of augmented reality and a few hints as issues arising. It will change every aspect of our lives in due course, just as the web has, but more so.

 

Cellular blockchain, cellular bitcoin

Bitcoin has been around a while and the blockchain foundations on which it is built are extending organically into other areas.

Blockchain is a strongly encrypted distributed database, a ledger that records every transaction. That’s all fine, it works OK, and it doesn’t need fixed.

However, for some applications or new cryptocurrencies, there may be some benefit in making a cellular blockchain to limit database size, protect against network outage, and harden defenses against any local decryption. These may become important as cyber-terrorism increases and as quantum computing develops. They would also be more suited to micro-transactions and micro-currencies.

If you’ve made it this far, you almost certainly don’t need any further explanation.

New book: Society Tomorrow

It’s been a while since my last blog. That’s because I’ve been writing another book, my 8th so far. Not the one I was doing on future fashion, which went on the back burner for a while, I’ve only written a third of that one, unless I put it out as a very short book.

This one follows on from You Tomorrow and is called Society Tomorrow, 20% shorter at 90,000 words. It is ready to publish now, so I’m just waiting for feedback from a few people before hitting the button.

Frontcover

Here’s the introduction:

The one thing that we all share is that we will get older over the next few decades. Rapid change affects everyone, but older people don’t always feel the same effects as younger people, and even if we keep up easily today, some of us may find it harder tomorrow. Society will change, in its demographic and ethnic makeup, its values, its structure. We will live very differently. New stresses will come from both changing society and changing technology, but there is no real cause for pessimism. Many things will get better for older people too. We are certainly not heading towards utopia, but the overall quality of life for our ageing population will be significantly better in the future than it is today. In fact, most of the problems ahead are related to quality of life issues in society as a whole, and simply reflect the fact that if you don’t have to worry as much about poor health or poverty, something else will still occupy your mind.

This book follows on from 2013’s You Tomorrow, which is a guide to future life as an individual. It also slightly overlaps my 2013 book Total Sustainability which looks in part at future economic and social issues as part of achieving sustainability too. Rather than replicating topics, this book updates or omits them if they have already been addressed in those two companion books. As a general theme, it looks at wider society and the bigger picture, drawing out implications for both individuals and for society as a whole to deal with. There are plenty to pick from.

If there is one theme that plays through the whole book, it is a strong warning of the problem of increasing polarisation between people of left and right political persuasion. The political centre is being eroded quickly at the moment throughout the West, but alarmingly this does not seem so much to be a passing phase as a longer term trend. With all the potential benefits from future technology, we risk undermining the very fabric of our society. I remain optimistic because it can only be a matter of time before sense prevails and the trend reverses. One day the relative harmony of living peacefully side by side with those with whom we disagree will be restored, by future leaders of higher quality than those we have today.

Otherwise, whereas people used to tolerate each other’s differences, I fear that this increasing intolerance of those who don’t share the same values could lead to conflict if we don’t address it adequately. That intolerance currently manifests itself in increasing authoritarianism, surveillance, and an insidious creep towards George Orwell’s Nineteen Eighty-Four. The worst offenders seem to be our young people, with students seemingly proud of trying to ostracise anyone who dares agree with what they think is correct. Being students, their views hold many self-contradictions and clear lack of thought, but they appear to be building walls to keep any attempt at different thought away.

Altogether, this increasing divide, built largely from sanctimony, is a very dangerous trend, and will take time to reverse even when it is addressed. At the moment, it is still worsening rapidly.

So we face significant dangers, mostly self-inflicted, but we also have hope. The future offers wonderful potential for health, happiness, peace, prosperity. As I address the significant problems lying ahead, I never lose my optimism that they are soluble, but if we are to solve problems, we must first recognize them for what they are and muster the willingness to deal with them. On the current balance of forces, even if we avoid outright civil war, the future looks very much like a gilded cage. We must not ignore the threats. We must acknowledge them, and deal with them.

Then we can all reap the rich rewards the future has to offer.

It will be out soon.

The future of mind control headbands

Have you ever wanted to control millions of other people as your own personal slaves or army? How about somehow persuading lots of people to wear mind control headbands, that you control? Once they are wearing them, you can use them as your slaves, army or whatever. And you could put them into offline mode in between so they don’t cause trouble.

Amazingly, this might be feasible. It just requires a little marketing to fool them into accepting a device with extra capabilities that serve the seller rather than the buyer. Lots of big companies do that bit all the time. They get you to pay handsomely for something such as a smartphone and then they use it to monitor your preferences and behavior and then sell the data to advertisers to earn even more. So we just need a similar means of getting you to buy and wear a nice headband that can then be used to control your mind, using a confusingly worded clause hidden on page 325 of the small print.

I did some googling about TMS- trans-cranial magnetic stimulation, which can produce some interesting effects in the brain by using magnetic coils to generate strong magnetic fields to create electrical currents in specific parts of your brain without needing to insert probes. Claimed effects vary from reducing inhibitions, pain control, activating muscles, assisting learning, but that is just today, it will be far easier to get the right field shapes and strengths in the future, so the range of effects will increase dramatically. While doing so, I also discovered numerous pages about producing religious experiences via magnetic fields too. I also recalled an earlier blog I wrote a couple of year ago about switching people off, which relied on applying high frequency stimulation to the claustrum region. https://timeguide.wordpress.com/2014/07/05/switching-people-off/

The source I cited for that is still online:  http://www.newscientist.com/article/mg22329762.700-consciousness-onoff-switch-discovered-deep-in-brain.html.

So… suppose you make a nice headband that helps people get in touch with their spiritual side. The time is certainly right. Millennials apparently believe in the afterlife far more than older generations, but they don’t believe in gods. They are begging for nice vague spiritual experiences that fit nicely into their safe spaces mentality, that are disconnected from anything specific that might offend someone or appropriate someone’s culture, that bring universal peace and love feelings without the difficult bits of having to actually believe in something or follow some sort of behavioral code. This headband will help them feel at one with the universe, and with other people, to be effortlessly part of a universal human collective, to share the feeling of belonging and truth. You know as well as I do that anyone could get millions of millennials or lefties to wear such a thing. The headband needs some magnetic coils and field shaping/steering technology. Today TMS uses old tech such as metal wires, tomorrow they will use graphene to get far more current and much better fields, and they will use nice IoT biotech feedback loops to monitor thoughts emotions and feelings to create just the right sorts of sensations. A 2030 headband will be able to create high strength fields in almost any part of the brain, creating the means for stimulation, emotional generation, accentuation or attenuation, muscle control, memory recall and a wide variety of other capabilities. So zillions of people will want one and happily wear it.  All the joys of spirituality without the terrorism or awkward dogma. It will probably work well with a range of legal or semi-legal smart drugs to make experiences even more rich. There might be a range of apps that work with them too, and you might have a sideline in a company supplying some of them.

And thanks to clause P325e paragraph 2, the headband will also be able to switch people off. And while they are switched off, unconscious, it will be able to use them as robots, walking them around and making them do stuff. When they wake up, they won’t remember anything about it so they won’t mind. If they have done nothing wrong, they have nothing to fear, and they are nor responsible for what someone else does using their body.

You could rent out some of your unconscious people as living statues or art-works or mannequins or ornaments. You could make shows with them, synchronised dances. Or demonstrations or marches, or maybe you could invade somewhere. Or get them all to turn up and vote for you at the election.  Or any of 1000 mass mind control dystopian acts. Or just get them to bow down and worship you. After all, you’re worth it, right? Or maybe you could get them doing nice things, your choice.

 

Inspired by the Doomsday Clock, the 1984 clock is at July 1st 1983

The Doomsday clock was recently re-assessed and stays at 23.57. See http://thebulletin.org/timeline

I have occasionally written or ranted about 1984. The last weeks have taken us a little closer to Orwell’s dystopian future. So, even though we are long past 1984, the basket of concepts it introduces is well established in common culture.

The doomsday committee set far too pessimistic a time. Nuclear war and a few other risks are significant threats, and extinction level events are possible, but they are far from likely. My own estimate puts the combined risk from all threats growing to around 2% by about 2050. That is quite pessimistic enough I think, but surely that would give us reason to act, but doesn’t justify the level of urgency that extinction is happening any minute now. 11pm would have been quite enough to be a wake-up call but not enough to look like doom-mongering.

So I won’t make the same mistake with my 1984 clock. Before we start working out the time, we need to identify those ideas from 1984 that will be used. My choice would be:

Hijacking or perversion of language to limit debate and constrain it to those views considered acceptable

Use of language while reporting news of events or facts that omits, conceals, hides, distorts or otherwise impedes clear vision of inconvenient aspects of the truth while emphasizing those events, views or aspects that align with acceptable views

Hijacking or control of the media to emphasize acceptable views and block unacceptable ones

Making laws or selecting judiciary according to their individual views to achieve a bias

Blocking of views considered unacceptable or inconvenient by legal or procedural means

Imposing maximum surveillance, via state, social or private enterprises

Encouraging people to police their contacts to expose those holding or expressing inconvenient or unacceptable views

Shaming of those who express unacceptable views as widely as possible

Imposing extreme sanctions such as loss of job or liberty on those expressing unacceptable views

That’s enough to be going on with. Already, you should recognize many instances of each of these flags being raised in recent times. If you don’t follow the news, then I can assist you by highlighting a few instances, some as recent as this week. Please note that in this blog, I am not siding for or against any issue in the following text, I am just considering whether there is evidence of 1984. I make my views on the various issue very clear when I write blogs about those issues.

The Guardian has just decided to bar comments on any articles about race, Muslims, migrants or immigration. It is easy to see why they have done so even if I disagree with such a policy, but nonetheless it is a foundation stone in their 1984 wall.

Again on the migrant theme, which is a very rich seam for 1984 evidence, Denmark, Germany and Sweden have all attempted to censor  news of the involvement of migrants or Muslims in many recent attacks. Further back in time, the UK has had problems with police allowing child abuse to continue rather than address it because of the racial/religious origins of the culprits.

Choice of language by the media has deliberately conflated ‘migrants’ with ‘refugees’, conflated desperation  to escape violent oppression with searching for a wealthier life, and excessively biased coverage towards those events that solicit sympathy with migrants.

Moving to racism, Oriel College has just had an extremely embarrassing climb-down from considering removal of a statue of Cecil Rhodes, because he is considered racist by today’s standards by some students. Attempting to censor history is 1984-ish but so is the fact that involvement of the campaign instigators in their own anti-white racism such as links to the Black Supremacy movement has been largely concealed.

Attempted hijacking of language by the black community is evident in the recent enforcement of the phrase ‘people of color’, and illogical and highly manufactured simultaneous offence at use of the term ‘colored’. The rules only apply to white commentators, so it could be considered a black supremacy power struggle rather than an attempt to deal with any actual anti-black racism. Meanwhile, here in the UK, ‘black’ and ‘people of color’ seem both to be in equally common use so far.

David Cameron and some ministers have this week accused Oxford University of racism because it accepts too few black students. A range of potential causes were officially suggested but none include any criticism of the black community such as cultural issues that devalue educational achievement. In the same sentence, Cameron implied that it necessarily racist that a higher proportion of blacks are in prison. There was no mention that this could be caused by different crime incidence, as is quickly learned by inspection of official government statistics. This 1984-style distortion of the truth by marketing spin is one of Cameron’s most dominant characteristics.

Those statistics are inconvenient and ignoring them is 1984-ish already, but further 1984 evidence is that some statistics that show certain communities in a bad light are no longer collected.

Europe is another are where 1984-style operations are in vogue. Wild exaggeration of the benefits of staying in and extreme warnings of the dangers of leaving dominate most government output and media coverage. Even the initial decision to word the referendum question with a yes and no answer to capitalise on the well-known preference for voting yes is an abuse of language, but that at least was spotted early and the referendum question has been reworded with less bias, though ‘remain’ can still be considered a more positive word than ‘leave’ and remain still takes the first place on the voting slip, so it is still biased in favor of staying in the EU.

Gender is another area where language hijacking is becoming a key weapon. Attempts to force use of the terms ‘cis’ and ‘trans’ accompany attempts to pretend that the transgender community is far larger than reality. Creation of the term ‘transphobic’ clearly attempts to build on the huge success of the gay equality movement’s use of the term homophobic. This provides an easy weapon to use against anyone who doesn’t fully back all of the transgender community’s demands. Very 1984. As recently pointed out by Melanie Phillips, UK government response to such demands has been very politically correct, and will needlessly magnify the numbers experiencing gender dysphoria, but being accompanied by a thorough lack of understanding of the trans community, will very likely make things worse for many genuine transgender people.

As for surveillance, shaming, career destruction etc., we all see how well Twitter fills that role all by itself. Other media and the law add to that, but social media backlash is already a massive force even without official additions.

Climate change has even become a brick in the 1984 wall. Many media outlets censor views from scientists that don’t agree that doom caused by human emissions of CO2 is imminent. The language used, with words such as ‘denier’ are similarly evidence of 1984 influence.

Enough examples. If you look for them, you’ll soon spot them every day.

What time to set out clock then? I think we already see a large momentum towards 1984, with the rate of incidents of new policies pushing that direction increasing rapidly. A lot of pieces are already in place, though some need shaped or cemented. We are not there yet though, and we still have some freedom of expression, still escape being locked up for saying the wrong thing unless it is extreme. We don’t quite have the thought police, or even ID cards yet. I think we are close, but not so close we can’t recover. Let’s start with a comfortable enough margin so that movement in either direction can be taken account of in future assessments. We are getting close though, so I don’t want too big a margin. 6 month might be a nice compromise, then we can watch as it gets every closer without the next piece of evidence taking us all the way.

The 1984 clock is at July 1st 1983.

 

The future for IT technicians

This blog accompanies the British Computer Society’s launch of RITTech, a new standard for IT technicians. For more info look at:

http://www.bcs.org/content/conWebDoc/55343 and

http://www.bcs.org/category/18031

It is a great time to be in IT. Companies are fragmenting and reconstructing and new business models are emerging every year. Everything is becoming smart, bringing IT to pole position in the sector race. Everyone has multiple mobile devices – smart phones, tablets, readers and laptops, even smart watches and wristbands. The opportunities to add electronic control are abundant, but they all need to be developed, software written and circuits fabricated and tested. Engineers have never had more core technologies to play with to create new products and services, and they rely on technicians to make it happen.

One of the most important things for anyone in a globalised world, where potential customers or employers will often never have met you or even seen you, is to be certificated. Having a respected industry body confirm that you have reached a given level of ability makes decisions  safer. Knowing that a person has the skills required to do the job takes away the biggest risk in employing them for a project. Global companies such as Microsoft offer such certification, but so can professional bodies such as the British Computer Society. The important factor is that the body is known, respected and their certification trusted.

Trust is absolutely key in a networked world. Anyone can pretend to be anyone, and can act across borders via the net from anywhere. Dangers lurk everywhere. People need to know they can trust appliances they use, the websites they visit. They need to be confident that their details will not end up in the hands of criminals, especially anything related to their finances. They also need to be confident that code won’t crash their machines or leave them open to hackers. Few people have the ability to look after all the IT themselves, so they rely on others to make it safe for them. They trust a corporate brand, so they trust their website, so that means that company has to be able to trust those who write it and maintain it to be able to do their work competently and reliably.

That is all getting more and more difficult in a miniaturizing world. The internet of things is already bringing us into the early stages of digital jewellery. From there, it is only a small step further before IT devices will often be dust sized, well below a millimetre, and then they could easily fit through the holes in an office machine, or sit on keys on a keyboard. Add that to security holes in a smart light bulb that nobody thought of as a security risk, but which opens a back door into a home LAN, and it becomes obvious just how tricky it will be to make things secure.

Security will remain a background problem no matter what is being built, but that doesn’t take away the excitement of making something new. Every wave of new core technology opens up new doors to new gadgets or network capability. Artificial intelligence also adds capability in parallel. A huge gap has opened over recent years between what has become possible and what has been done. There just aren’t enough engineers and technicians to do everything. That means it has never been easier to invent things, to find something exciting that nobody has done yet. That next big thing could be invented by you.

You might think it won’t be because your boss has you working on another project, but new tech opens up potential in every area. There is probably something right next to your project waiting to be discovered or developed. Showing creativity or innovative capability will fast track you to your next promotion and when your colleagues learn you have done something special, you will feel the warm glow of recognition too. Few things feel better than peer recognition. Nobody is too junior to come up with a new idea, or a new way of looking at something, or spotting a feature that would increase customer satisfaction without increasing cost. Some of my best ideas have happened in areas I have just started work in. If you’re new, you might not have all the finely honed skills of someone who’s been working in it for years, but you also don’t have their prejudices, you don’t know why you can’t do something, so you just do it anyway. The barriers they thought they knew about may have been rendered irrelevant by technology progress but their prejudice hasn’t kept up with change. You might be surprised how often that is the case.

In short, as a technician going for certification, you are laying down a solid foundation for secure and fruitful employment in exciting fields. That same desire to take control, push yourself to your limits and make life work for you will also make you exactly the sort of person that is likely to do something  special. A technician is an important person already, making dreams happen, but ahead lies a career full of opportunity for further development, excitement and fulfilment.

Video intercom, another ancient idea come true

Another ancient prediction come true. This one from June 1993, an idea I had and developed with my colleague Chris Winter. Simple idea, just link a video camera on the front door to the network so you can screen people remotely for entry.

Here’s the latest incarnation in today’s paper. Surprising that it has taken so long really. I was concerned in 1993 that it may have been too obvious:

http://www.dailymail.co.uk/sciencetech/article-3253768/Peeple-Caller-ID-door-camera-film-peephole.html

Here’s my original description:

Videophone Intercom, 10 Jun 1993
Ian Pearson, Chris Winter

To summarise, the videophone intercom is a device located at a household front door. A caller would push the button, whereupon an autodialler would call up the resident at his remote location (e.g. at work). The resident would then be able to identify the caller, check ID, and then arrange access if appropriate.
The cost of video cameras on chips has fallen dramatically – in bulk, they can shortly be obtained for as little as £10. Many users will soon have videophones on their desks or at home. Autodiallers and intercom systems can also be made very cheaply. The whole system cost could therefore be quite low. Such devices would offer a much higher level of security than simple audio systems. The number to be dialled could be changed remotely.
Useful additions might be to add a video terminal or phone inside the house, perhaps even just on the inside of the door to give enhanced security before opening the door to a stranger. There need be no way of telling from the door whether the resident is using his home display or a remote videophone.
There are equivalent other industrial uses, such as remotely manning a salesroom or stores.
video intercom

The future of holes

H already in my alphabetic series! I was going to write about happiness, or have/have nots, or hunger, or harassment, or hiding, or health. Far too many options for H. Holes is a topic I have never written about, not even a bit, whereas the others would just be updates on previous thoughts. So here goes, the future of holes.

Holes come in various shapes and sizes. At one extreme, we have great big holes from deep mining, drilling, fracking, and natural holes such as meteor craters, rifts and volcanoes. Some look nice and make good documentaries, but I have nothing to say about them.

At the other we have long thin holes in optical fibers that increase bandwidth or holes through carbon nanotubes to make them into electron pipes. And short fat ones that make nice passages through semi-permeable smart membranes.

Electron pipes are an idea I invented in 1992 to increase internet capacity by several orders of magnitude. I’ve written about them in this blog before: https://timeguide.wordpress.com/2015/05/04/increasing-internet-capacity-electron-pipes/

Short fat holes are interesting. If you make a fabric using special polymers that can stretch when a voltage is applied across it, then round holes in it would become oval holes as long as you only stretch it in one direction.  Particles that may fit through round holes might be too thick to pass through them when they are elongated. If you can do that with a membrane on the skin surface, then you have an electronically controllable means of allowing the right mount of medication to be applied. A dispenser could hold medication and use the membrane to allow the right doses at the right time to be applied.

Long thin holes are interesting too. Hollow fiber polyester has served well as duvet and pillow filling for many years. Suppose more natural material fibers could be engineered to have holes, and those holes could be filled with chemicals that are highly distasteful to moths. As a moth larva starts to eat the fabric, it would very quickly be repelled, protecting the fabric from harm.

Conventional wisdom says when you are in a hole, stop digging. End.

The future of feminism and fashion

Perhaps it’s a bit presumptive of me to talk about what feminists want or don’t want, but I will make the simplifying assumption that they vary somewhat and don’t all want the same things. When it comes to makeup, many feminists want to look how they want to look for their own pleasure, not specifically to appeal to men, or they may want to attract some people and not others, or they may not want to bother with makeup at all, but still be able to look nice for the right people.

Augmented reality will allow those options. AR creates an extra layer of appearance that allows a woman to present herself any way she wants via an avatar, and also to vary presented appearance according to who is looking at her. So she may choose to be attractive to people she finds attractive, and plain to people she’d rather not get attention from. This is independent of any makeup she might be wearing, so she may choose not to wear any at all and rely entirely on the augmented reality layer to replace makeup, saving a lot of time, effort and expense. She could even use skin care products such as face masks that are purely functional, nourishing or protecting her face, but which don’t look very nice. Friends, colleagues and particular subsections of total strangers would still see her as she wants to be seen and she might not care about how she appears to others.

It may therefore be possible that feminism could use makeup as a future activist platform. It would allow women to seize back control over their appearance in a far more precise way, making it abundantly clear that their appearance belongs to them and is under their control and that they control who they look nice for. They would not have to give up looking good for themselves or their friends, but would be able to exclude any groups currently out of favour.

However, it doesn’t have to be just virtual appearance that they can control electronically. It is also possible to have actual physical makeup that changes according to time, location, emotional state or circumstances. Active makeup does just that, but I’ve written too often about that. Let’s look instead at other options:

Fashion has created many different clothing accessories over the years. It has taken far longer than it should, but we are now finally seeing flexible polymer displays being forged into wrist watch straps and health monitoring bands as well as bendy and curvy phones. As 1920s era fashion makes a small comeback, it can’t be long before headbands and hair-bands come back and they would be a perfect display platform too. Hair accessories can be pretty much any shape and size, and be a single display zone or multiple ones. Some could even use holographic displays, so that the accessory seems to change its form, or have optional remote components seemingly hanging free in the nearby air. Any of these could be electronically controllable or set to adjust automatically according to location and the people present.

Displays would also make good forehead jewellery, such as electronic eyebrows, holographic jewels, smart bindis, forehead tattoos and so on. They could change colour or pattern according to emotions for example. As long as displays are small, skin flexing doesn’t present too big an engineering barrier.

In fact, small display particles such as electronic glitter could group together to appear as a single display, even though each is attached to a different piece of skin. Thus, flexing of the skin is still possible with a collection of rigid small displays, which could be millimetre sized electronic glitter. Electronic glitter could contain small capacitors that store energy harvested from temperature difference between the skin and the environment, periodically allowing a colour change.

However, it won’t be just the forehead that is available once displays become totally flexible. That will make the whole visible face an electronic display platform instead of just a place for dumb makeup. Smart freckles and moles could make a fashion reappearance. Lips and cheeks could change colour according to mood and pre-decided protocols, rather than just at the whim of nature.

Other parts of the body would likely house displays too. Fingernails and toenails could be an early candidate since they are relatively rigid. The wrist and forearm are also often exposed. Much of the rest of the body is concealed by clothing most of the time, but seasonal displays are likely when it is more often bare. Beach displays could interact with swimwear, or even substitute for it.

In fact, enabling a multitude of tiny displays on the face and around the body will undoubtedly create a new fashion design language. Some dialects could be secret, only understood by certain groups, a tribal language. Fashion has always had an extensive symbology and adding electronic components to the various items will extend its potential range. It is impossible to predict what different things will mean to mainstream and sub-cultures, as meanings evolve chaotically from random beginnings. But there will certainly be many people and groups willing to capitalise on the opportunities presented. Feminism could use such devices and languages to good effect.

Clothing and accessories such as jewellery are also obvious potential display platforms. A good clue for the preferred location is the preferred location today for similar usage. For example, many people wear logos, messages and pictures on their T-shirts, whereas other items of clothing remain mostly free of them. The T-shirt is therefore by far the most likely electronic display area. Belts, boots, shoes and bag-straps offer a likely platform too, not because they are used so much today, but because they again present an easy and relatively rigid physical platform.

Timescales for this run from historical appearance of LED jewellery at Christmas (which I am very glad to say I also predicted well in advance) right through to holographic plates that appear to hover around the person as they walk around. I’ve explained in previous blogs how actual floating and mobile plates could be made using plasma and electro-magnetics. But the timescale of relevance in the next few years is that of the cheaper and flexible polymer display. As costs fall and size increases, in parallel with an ever improving wireless and cloud infrastructure, the potential revenue from a large new sector combining the fashion and display industries will make this not so much likely as  inevitable.

The future of digital

Many things are cyclical. Some things are a one way street. Digitization covers some things that shouldn’t be reversed, and some that should and will. I started work early enough to experience using an analog computer. Analog computers use analogs of things to help simulating them. So for example, you can simulate heat flow through a wall by using a battery to provide a voltage as an analog of the temperature difference and a resistor  to be an analog of the wall’s insulation. If you want a better result, you could simulate the heat capacity of the wall using a capacitor. A well-designed analog will produce a useful result. The best thing about analogs is that in some cases they are infinitely fast. Imagine writing a computer simulation of the convection currents in a glass of water. You could build a supercomputer to simulate every atom’s behavior digitally. Your program could include local sources of heat, take account of viscosity, chemical reactions among the impurities and everything else you can think of etc. You might decide to account for the movement of the earth and the Coriolis forces it would generate on the water as the current make the water move. If you want ridiculously precise results you could simulate the effects of every planet in the solar system on atomic movements. You could account for magnetic forces, electrostatic ones and so on. By now, your biggest supercomputer would be able to simulate the glass of water for a few microseconds before it is replaced by an upgrade. You can do it, but it isn’t ideal. The analog alternative is to pour a glass of water and watch it. Every atom, every subatomic particle in that glass, will instantaneously and continually account for every physical interaction with every passing photon, and every other particle in the universe, taking full account of space-time geography and the distances of each particle. It would work pretty well, it would be a good analog, even though it’s probably a glass of different water from a different tap. It will give you a continuous model at almost zero cost that works perfectly and greatly outperforms the digital one. Analog wins.

If you want to add 2+2, an analog computer will give you a result of roughly 4. The next time, it will still be roughly 4 but will be slightly different. A  digital one will always give an answer of precisely 4, unless you’ve messed up badly somewhere. Digital wins.

It is obvious that digital has some advantages and analog does too. Analog is less reproducible, liable to drift, is not always transparent and has many other faults that eventually led to it being replaced for most purpose by digital computing. The truth remains that a glass of water has more processing power than all the digital computers every built put together, if you want to simulate water behavior.

Digital and analog processing are both used in nature. In vision, the retina sends an essentially digital stream of data to the brain. In IT, pretty much all communications is done digitally, as is storage of data. It is far easier to repair the degradation that occurs over time or transmission that way. If a signal level has shrunk slightly, it will still be clear whether it is a 1 or a 0 so it can be corrected, reset to the right level and re-transmitted or stored. For an analog signal, degradation just accumulates until the signal disappears. Digital wins in most of IT.

But back to analog. Much of the processing in many electronic circuits and systems is done in the analog domain before digital takes over for transmission or computation. Even computer motherboards, graphics cards, fans and power supplies have resistors, capacitors and even a transformer can be thought of as an analog device. So analog processing and devices are with us still, just hiding behind the scenes.

I think analog computing will make a comeback, albeit in certain niches. Imagine a typical number-crunching problem for supercomputers, such as simulating heat and force transfer. Imagine making an actual analog of it using some futuristic putty and exposing that putty to actual forces and heat. If there are nano-sensors embedded throughout, you could measure the transfer of forces and heat directly and  not have to calculate it. Again the speed advantage of analog would return. Now suppose a hybrid machine with some such analogs and some digital programming too. Those bit best left to digital could be done digitally and others where real analogs could be made could shortcut the number-crunching requirements tremendously. The overall speed might be dramatically improved without sacrificing integrity. Furthermore, the old problems of drift faced by analog systems could be reduced or almost eliminated by frequent cross referencing and calibration as the system goes on.

Finally, AI may well have a powerful place in consciousness and AI realization. Many people believe AI would be best done using adaptive analog neurons. Until today I was one of them. However, I am starting to doubt that, and this looking again at analog has made me realize a bit more about consciousness techniques, so I will divert from this piece forthwith to write more on conscious computing.