Category Archives: 3D printing

Carbethium, a better-than-scifi material

How to build one of these for real:

Light_bridge

Halo light bridge, from halo.wikia.com

Or indeed one of these:

From halo.wikia.com

From halo.wikia.com

I recently tweeted that I had an idea how to make the glowy bridges and shields we’ve seen routinely in sci-fi games from Half Life to Destiny, the bridges that seem to appear in a second or two from nothing across a divide, yet are strong enough to drive tanks over, and able to vanish as quickly and completely when they are switched off. I woke today realizing that with a bit of work, that it could be the basis of a general purpose material to make the tanks too, and buildings and construction platforms, bridges, roads and driverless pod systems, personal shields and city defense domes, force fields, drones, planes and gliders, space elevator bases, clothes, sports tracks, robotics, and of course assorted weapons and weapon systems. The material would only appear as needed and could be fully programmable. It could even be used to render buildings from VR to real life in seconds, enabling at least some holodeck functionality. All of this is feasible by 2050.

Since it would be as ethereal as those Halo structures, I first wanted to call the material ethereum, but that name was already taken (for a 2014 block-chain programming platform, which I note could be used to build the smart ANTS network management system that Chris Winter and I developed in BT in 1993), and this new material would be a programmable construction platform so the names would conflict, and etherium is too close. Ethium might work, but it would be based on graphene and carbon nanotubes, and I am quite into carbon so I chose carbethium.

Ages ago I blogged about plasma as a 21st Century building material. I’m still not certain this is feasible, but it may be, and it doesn’t matter for the purposes of this blog anyway.

https://timeguide.wordpress.com/2013/11/01/will-plasma-be-the-new-glass/

Around then I also blogged how to make free-floating battle drones and more recently how to make a Star Wars light-saber.

https://timeguide.wordpress.com/2013/06/23/free-floating-ai-battle-drone-orbs-or-making-glyph-from-mass-effect/

https://timeguide.wordpress.com/2015/11/25/how-to-make-a-star-wars-light-saber/

Carbethium would use some of the same principles but would add the enormous strength and high conductivity of graphene to provide the physical properties to make a proper construction material. The programmable matter bits and the instant build would use a combination of 3D interlocking plates, linear induction,  and magnetic wells. A plane such as a light bridge or a light shield would extend from a node in caterpillar track form with plates added as needed until the structure is complete. By reversing the build process, it could withdraw into the node. Bridges that only exist when they are needed would be good fun and we could have them by 2050 as well as the light shields and the light swords, and light tanks.

The last bit worries me. The ethics of carbethium are the typical mixture of enormous potential good and huge potential for abuse to bring death and destruction that we’re learning to expect of the future.

If we can make free-floating battle drones, tanks, robots, planes and rail-gun plasma weapons all appear within seconds, if we can build military bases and erect shield domes around them within seconds, then warfare moves into a new realm. Those countries that develop this stuff first will have a huge advantage, with the ability to send autonomous robotic armies to defeat enemies with little or no risk to their own people. If developed by a James Bond super-villain on a hidden island, it would even be the sort of thing that would enable a serious bid to take over the world.

But in the words of Professor Emmett Brown, “well, I figured, what the hell?”. 2050 values are not 2016 values. Our value set is already on a random walk, disconnected from any anchor, its future direction indicated by a combination of current momentum and a chaos engine linking to random utterances of arbitrary celebrities on social media. 2050 morality on many issues will be the inverse of today’s, just as today’s is on many issues the inverse of the 1970s’. Whatever you do or however politically correct you might think you are today, you will be an outcast before you get old: https://timeguide.wordpress.com/2015/05/22/morality-inversion-you-will-be-an-outcast-before-youre-old/

We’re already fucked, carbethium just adds some style.

Graphene combines huge tensile strength with enormous electrical conductivity. A plate can be added to the edge of an existing plate and interlocked, I imagine in a hexagonal or triangular mesh. Plates can be designed in many diverse ways to interlock, so that rotating one engages with the next, and reversing the rotation unlocks them. Plates can be pushed to the forward edge by magnetic wells, using linear induction motors, using the graphene itself as the conductor to generate the magnetic field and the design of the structure of the graphene threads enabling the linear induction fields. That would likely require that the structure forms first out of graphene threads, then the gaps between filled by mesh, and plates added to that to make the structure finally solid. This would happen in thickness as well as width, to make a 3D structure, though a graphene bridge would only need to be dozens of atoms thick.

So a bridge made of graphene could start with a single thread, which could be shot across a gap at hundreds of meters per second. I explained how to make a Spiderman-style silk thrower to do just that in a previous blog:

https://timeguide.wordpress.com/2015/11/12/how-to-make-a-spiderman-style-graphene-silk-thrower-for-emergency-services/

The mesh and 3D build would all follow from that. In theory that could all happen in seconds, the supply of plates and the available power being the primary limiting factors.

Similarly, a shield or indeed any kind of plate could be made by extending carbon mesh out from the edge or center and infilling. We see that kind of technique used often in sci-fi to generate armor, from lost in Space to Iron Man.

The key components in carbetheum are 3D interlocking plate design and magnetic field design for the linear induction motors. Interlocking via rotation is fairly easy in 2D, any spiral will work, and the 3rd dimension is open to any building block manufacturer. 3D interlocking structures are very diverse and often innovative, and some would be more suited to particular applications than others. As for linear induction motors, a circuit is needed to produce the travelling magnetic well, but that circuit is made of the actual construction material. The front edge link between two wires creates a forward-facing magnetic field to propel the next plates and convey enough intertia to them to enable kinetic interlocks.

So it is feasible, and only needs some engineering. The main barrier is price and material quality. Graphene is still expensive to make, as are carbon nanotubes, so we won’t see bridges made of them just yet. The material quality so far is fine for small scale devices, but not yet for major civil engineering.

However, the field is developing extremely quickly because big companies and investors can clearly see the megabucks at the end of the rainbow. We will have almost certainly have large quantity production of high quality graphene for civil engineering by 2050.

This field will be fun. Anyone who plays computer games is already familiar with the idea. Light bridges and shields, or light swords would appear much as in games, but the material would likely  be graphene and nanotubes (or maybe the newfangled molybdenum equivalents). They would glow during construction with the plasma generated by the intense electric and magnetic fields, and the glow would be needed afterward to make these ultra-thin physical barriers clearly visible,but they might become highly transparent otherwise.

Assembling structures as they are needed and disassembling them just as easily will be very resource-friendly, though it is unlikely that carbon will be in short supply. We can just use some oil or coal to get more if needed, or process some CO2. The walls of a building could be grown from the ground up at hundreds of meters per second in theory, with floors growing almost as fast, though there should be little need to do so in practice, apart from pushing space vehicles up so high that they need little fuel to enter orbit. Nevertheless, growing a  building and then even growing the internal structures and even furniture is feasible, all using glowy carbetheum. Electronic soft fabrics, cushions and hard surfaces and support structures are all possible by combining carbon nanotubes and graphene and using the reconfigurable matter properties carbethium convents. So are visual interfaces, electronic windows, electronic wallpaper, electronic carpet, computers, storage, heating, lighting, energy storage and even solar power panels. So is all the comms and IoT and all the smart embdedded control systems you could ever want. So you’d use a computer with VR interface to design whatever kind of building and interior furniture decor you want, and then when you hit the big red button, it would appear in front of your eyes from the carbethium blocks you had delivered. You could also build robots using the same self-assembly approach.

If these structures can assemble fast enough, and I think they could, then a new form of kinetic architecture would appear. This would use the momentum of the construction material to drive the front edges of the surfaces, kinetic assembly allowing otherwise impossible and elaborate arches to be made.

A city transport infrastructure could be built entirely out of carbethium. The linear induction mats could grow along a road, connecting quickly to make a whole city grid. Circuit design allows the infrastructure to steer driverless pods wherever they need to go, and they could also be assembled as required using carbethium. No parking or storage is needed, as the pod would just melt away onto the surface when it isn’t needed.

I could go to town on military and terrorist applications, but more interesting is the use of the defense domes. When I was a kid, I imagined having a house with a defense dome over it. Lots of sci-fi has them now too. Domes have a strong appeal, even though they could also be used as prisons of course. A supply of carbetheum on the city edges could be used to grow a strong dome in minutes or even seconds, and there is no practical limit to how strong it could be. Even if lasers were used to penetrate it, the holes could fill in in real time, replacing material as fast as it is evaporated away.

Anyway, lots of fun. Today’s civil engineering projects like HS2 look more and more primitive by the day, as we finally start to see the true potential of genuinely 21st century construction materials. 2050 is not too early to expect widespread use of carbetheum. It won’t be called that – whoever commercializes it first will name it, or Google or MIT will claim to have just invented it in a decade or so, so my own name for it will be lost to personal history. But remember, you saw it here first.

Diabetes: Electronically controlled drug delivery via smart membrane

This is an invention I made in 2001 as part of my active skin suite to help diabetics. I’ve just been told I am another of the zillions of diabetics in the world so was reminded of it.

This wasn’t feasible in 2001 but it will be very soon, and could be an ideal way of monitoring blood glucose and insulin levels, checking with clinic AI for the correct does, and then opening the membrane pores just enough and long enough to allow the right dose of insulin to pass through. Obviously pore and drug particle design have to be coordinated, but this should be totally feasible. Here’s some pics:

Active skin principles

Active skin principles

Drug delivery overview

Drug delivery overview

Drug delivery mechanism

Drug delivery mechanism

The future of nylon: ladder-free hosiery

Last week I outlined the design for a 3D printer that can print and project graphene filaments at 100m/s. That was designed to be worn on the wrist like Spiderman’s, but an industrial version could print faster. When I checked a few of the figures, I discovered that the spinnerets for making nylon stockings run at around the same speed. That means that graphene stockings could be made at around the same speed. My print head produced 140 denier graphene yarn but it made that from many finer filaments so basically any yarn thickness from a dozen carbon atoms right up to 140 denier would be feasible.

The huge difference is that a 140 denier graphene thread is strong enough to support a man at 2g acceleration. 10 denier stockings are made from yarn that breaks quite easily, but unless I’ve gone badly wrong on the back of my envelope, 10 denier graphene would have roughly 10kg (22lb)breaking strain. That’s 150 times stronger than nylon yarn of the same thickness.

If so, then that would mean that a graphene stocking would have incredible strength. A pair of 10 denier graphene stockings or tights (pantyhose) might last for years without laddering. That might not be good news for the nylon stocking industry, but I feel confident they would adapt easily to such potential.

Alternatively, much finer yarns could be made that would still have reasonable ladder resistance, so that would also affect the visual appearance and texture. They could be made so fine that the fibers are invisible even up close. People might not always want that, but the key message is that wear-resistant, ladder free hosiery could be made that has any gauge from 0.1 denier to 140 denier.

There is also a bonus that graphene is a superb conductor. That means that graphene fibers could be woven into nylon hosiery to add circuits. Those circuits might be to harvest radio energy, act as an aerial, power LEDS in the hosiery or change its colors or patterns. So even if it isn’t used for the whole garment, it might still have important uses in the garment as an addition to the weave.

There is yet another bonus. Graphene circuits could allow electrical supply to shape changing polymers that act rather like muscles, contracting when a voltage is applied across them, so that a future pair of tights could shape a leg far better, with tensions and pressures electronically adjusted over the leg to create the perfect shape. Graphene can make electronic muscles directly too, but in a more complex mechanism (e.g. using magnetic field generation and interaction, or capacitors and electrical attraction/repulsion).

How to make a Spiderman-style graphene silk thrower for emergency services

I quite like Spiderman movies, and having the ability to fire a web at a distant object or villain has its appeal. Since he fires web from his forearm, it must be lightweight to withstand the recoil, and to fire enough to hold his weight while he swings, it would need to have extremely strong fibers. It is therefore pretty obvious that the material of choice when we build such a thing will be graphene, which is even stronger than spider silk (though I suppose a chemical ejection device making spider silk might work too). A thin graphene thread is sufficient to hold him as he swings so it could fit inside a manageable capsule.

So how to eject it?

One way I suggested for making graphene threads is to 3D print the graphene, using print nozzles made of carbon nanotubes and using a very high-speed modulation to spread the atoms at precise spacing so they emerge in the right physical patterns and attach appropriate positive or negative charge to each atom as they emerge from the nozzles so that they are thrown together to make them bond into graphene. This illustration tries to show the idea looking at the nozzles end on, but shows only a part of the array:printing graphene filamentsIt doesn’t show properly that the nozzles are at angles to each other and the atoms are ejected in precise phased patterns, but they need to be, since the atoms are too far apart to form graphene otherwise so they need to eject at the right speed in the right directions with the right charges at the right times and if all that is done correctly then a graphene filament would result. The nozzle arrangements, geometry and carbon atom sizes dictate that only narrow filaments of graphene can be produced by each nozzle, but as the threads from many nozzles are intertwined as they emerge from the spinneret, so a graphene thread would be produced made from many filaments. Nevertheless, it is possible to arrange carbon nanotubes in such a way and at the right angle, so provided we can get the high-speed modulation and spacing right, it ought to be feasible. Not easy, but possible. Then again, Spiderman isn’t real yet either.

The ejection device would therefore be a specially fabricated 3D print head maybe a square centimeter in area, backed by a capsule containing finely powdered graphite that could be vaporized to make the carbon atom stream through the nozzles. Some nice lasers might be good there, and some cool looking electronic add-ons to do the phasing and charging. You could make this into one heck of a cool gun.

How thick a thread do we need?

Assuming a 70kg (154lb) man and 2g acceleration during the swing, we need at least 150kg breaking strain to have a small safety margin, bearing in mind that if it breaks, you can fire a new thread. Steel can achieve that with 1.5mm thick wire, but graphene’s tensile strength is 300 times better than steel so 0.06mm is thick enough. 60 microns, or to put it another way, roughly 140 denier, although that is a very quick guess. That means roughly the same sort of graphene thread thickness is needed to support our Spiderman as the nylon used to make your backpack. It also means you could eject well over 10km of thread from a 200g capsule, plenty. Happy to revise my numbers if you have better ones. Google can be a pain!

How fast could the thread be ejected?

Let’s face it. If it can only manage 5cm/s, it is as much use as a chocolate flamethrower. Each bond in graphene is 1.4 angstroms long, so a graphene hexagon is about 0.2nm wide. We would want our graphene filament to eject at around 100m/s, about the speed of a crossbow bolt. 100m/s = 5 x 10^11 carbon atoms ejected per second from each nozzle, in staggered phasing. So, half a terahertz. Easy! That’s well within everyday electronics domains. Phew! If we can do better, we can shoot even faster.

We could therefore soon have a graphene filament ejection device that behaves much like Spiderman’s silk throwers. It needs some better engineers than me to build it, but there are plenty of them around.

Having such a device would be fun for sports, allowing climbers to climb vertical rock faces and overhangs quickly, or to make daring leaps and hope the device works to save them from certain death. It would also have military and police uses. It might even have uses in road accident prevention, yanking pedestrians away from danger or tethering cars instantly to slow them extra quickly. In fact, all the emergency services would have uses for such devices and it could reduce accidents and deaths. I feel confident that Spiderman would think of many more exciting uses too.

Producing graphene silk at 100m/s might also be pretty useful in just about every other manufacturing industry. With ultra-fine yarns with high strength produced at those speeds, it could revolutionize the fashion industry too.

Technology 2040: Technotopia denied by human nature

This is a reblog of the Business Weekly piece I wrote for their 25th anniversary.

It’s essentially a very compact overview of the enormous scope for technology progress, followed by a reality check as we start filtering that potential through very imperfect human nature and systems.

25 years is a long time in technology, a little less than a third of a lifetime. For the first third, you’re stuck having to live with primitive technology. Then in the middle third it gets a lot better. Then for the last third, you’re mainly trying to keep up and understand it, still using the stuff you learned in the middle third.

The technology we are using today is pretty much along the lines of what we expected in 1990, 25 years ago. Only a few details are different. We don’t have 2Gb/s per second to the home yet and AI is certainly taking its time to reach human level intelligence, let alone consciousness, but apart from that, we’re still on course. Technology is extremely predictable. Perhaps the biggest surprise of all is just how few surprises there have been.

The next 25 years might be just as predictable. We already know some of the highlights for the coming years – virtual reality, augmented reality, 3D printing, advanced AI and conscious computers, graphene based materials, widespread Internet of Things, connections to the nervous system and the brain, more use of biometrics, active contact lenses and digital jewellery, use of the skin as an IT platform, smart materials, and that’s just IT – there will be similarly big developments in every other field too. All of these will develop much further than the primitive hints we see today, and will form much of the technology foundation for everyday life in 2040.

For me the most exciting trend will be the convergence of man and machine, as our nervous system becomes just another IT domain, our brains get enhanced by external IT and better biotech is enabled via nanotechnology, allowing IT to be incorporated into drugs and their delivery systems as well as diagnostic tools. This early stage transhumanism will occur in parallel with enhanced genetic manipulation, development of sophisticated exoskeletons and smart drugs, and highlights another major trend, which is that technology will increasingly feature in ethical debates. That will become a big issue. Sometimes the debates will be about morality, and religious battles will result. Sometimes different parts of the population or different countries will take opposing views and cultural or political battles will result. Trading one group’s interests and rights against another’s will not be easy. Tensions between left and right wing views may well become even higher than they already are today. One man’s security is another man’s oppression.

There will certainly be many fantastic benefits from improving technology. We’ll live longer, healthier lives and the steady economic growth from improving technology will make the vast majority of people financially comfortable (2.5% real growth sustained for 25 years would increase the economy by 85%). But it won’t be paradise. All those conflicts over whether we should or shouldn’t use technology in particular ways will guarantee frequent demonstrations. Misuses of tech by criminals, terrorists or ethically challenged companies will severely erode the effects of benefits. There will still be a mix of good and bad. We’ll have fixed some problems and created some new ones.

The technology change is exciting in many ways, but for me, the greatest significance is that towards the end of the next 25 years, we will reach the end of the industrial revolution and enter a new age. The industrial revolution lasted hundreds of years, during which engineers harnessed scientific breakthroughs and their own ingenuity to advance technology. Once we create AI smarter than humans, the dependence on human science and ingenuity ends. Humans begin to lose both understanding and control. Thereafter, we will only be passengers. At first, we’ll be paying passengers in a taxi, deciding the direction of travel or destination, but it won’t be long before the forces of singularity replace that taxi service with AIs deciding for themselves which routes to offer us and running many more for their own culture, on which we may not be invited. That won’t happen overnight, but it will happen quickly. By 2040, that trend may already be unstoppable.

Meanwhile, technology used by humans will demonstrate the diversity and consequences of human nature, for good and bad. We will have some choice of how to use technology, and a certain amount of individual freedom, but the big decisions will be made by sheer population numbers and statistics. Terrorists, nutters and pressure groups will harness asymmetry and vulnerabilities to cause mayhem. Tribal differences and conflicts between demographic, religious, political and other ideological groups will ensure that advancing technology will be used to increase the power of social conflict. Authorities will want to enforce and maintain control and security, so drones, biometrics, advanced sensor miniaturisation and networking will extend and magnify surveillance and greater restrictions will be imposed, while freedom and privacy will evaporate. State oppression is sadly as likely an outcome of advancing technology as any utopian dream. Increasing automation will force a redesign of capitalism. Transhumanism will begin. People will demand more control over their own and their children’s genetics, extra features for their brains and nervous systems. To prevent rebellion, authorities will have little choice but to permit leisure use of smart drugs, virtual escapism, a re-scoping of consciousness. Human nature itself will be put up for redesign.

We may not like this restricted, filtered, politically managed potential offered by future technology. It offers utopia, but only in a theoretical way. Human nature ensures that utopia will not be the actual result. That in turn means that we will need strong and wise leadership, stronger and wiser than we have seen of late to get the best without also getting the worst.

The next 25 years will be arguably the most important in human history. It will be the time when people will have to decide whether we want to live together in prosperity, nurturing and mutual respect, or to use technology to fight, oppress and exploit one another, with the inevitable restrictions and controls that would cause. Sadly, the fine engineering and scientist minds that have got us this far will gradually be taken out of that decision process.

Stimulative technology

You are sick of reading about disruptive technology, well, I am anyway. When a technology changes many areas of life and business dramatically it is often labelled disruptive technology. Disruption was the business strategy buzzword of the last decade. Great news though: the primarily disruptive phase of IT is rapidly being replaced by a more stimulative phase, where it still changes things but in a more creative way. Disruption hasn’t stopped, it’s just not going to be the headline effect. Stimulation will replace it. It isn’t just IT that is changing either, but materials and biotech too.

Stimulative technology creates new areas of business, new industries, new areas of lifestyle. It isn’t new per se. The invention of the wheel is an excellent example. It destroyed a cave industry based on log rolling, and doubtless a few cavemen had to retrain from their carrying or log-rolling careers.

I won’t waffle on for ages here, I don’t need to. The internet of things, digital jewelry, active skin, AI, neural chips, storage and processing that is physically tiny but with huge capacity, dirt cheap displays, lighting, local 3D mapping and location, 3D printing, far-reach inductive powering, virtual and augmented reality, smart drugs and delivery systems, drones, new super-materials such as graphene and molybdenene, spray-on solar … The list carries on and on. These are all developing very, very quickly now, and are all capable of stimulating entire new industries and revolutionizing lifestyle and the way we do business. They will certainly disrupt, but they will stimulate even more. Some jobs will be wiped out, but more will be created. Pretty much everything will be affected hugely, but mostly beneficially and creatively. The economy will grow faster, there will be many beneficial effects across the board, including the arts and social development as well as manufacturing industry, other commerce and politics. Overall, we will live better lives as a result.

So, you read it here first. Stimulative technology is the next disruptive technology.

 

The future of creativity

Another future of… blog.

I can play simple tunes on a guitar or keyboard. I compose music, mostly just bashing out some random sequences till a decent one happens. Although I can’t offer any Mozart-level creations just yet, doing that makes me happy. Electronic keyboards raise an interesting point for creativity. All I am actually doing is pressing keys, I don’t make sounds in the same way as when I pick at guitar strings. A few chips monitor the keys, noting which ones I hit and how fast, then producing and sending appropriate signals to the speakers.

The point is that I still think of it as my music, even though all I am doing is telling a microprocessor what to do on my behalf. One day, I will be able to hum a few notes or tap a rhythm with my fingers to give the computer some idea of a theme, and it will produce beautiful works based on my idea. It will still be my music, even when 99.9% of the ‘creativity’ is done by an AI. We will still think of the machines and software just as tools, and we will still think of the music as ours.

The other arts will be similarly affected. Computers will help us build on the merest hint of human creativity, enhancing our work and enabling us to do much greater things than we could achieve by our raw ability alone. I can’t paint or draw for toffee, but I do have imagination. One day I will be able to produce good paintings, design and make my own furniture, design and make my own clothes. I could start with a few downloads in the right ballpark. The computer will help me to build on those and produce new ones along divergent lines. I will be able to guide it with verbal instructions. ‘A few more trees on the hill, and a cedar in the foreground just here, a bit bigger, and move it to the left a bit’. Why buy a mass produced design when you can have a completely personal design?

These advances are unlikely to make a big dent in conventional art sales. Professional artists will always retain an edge, maybe even by producing the best seeds for computer creativity. Instead, computer assisted and computer enhanced art will make our lives more artistically enriched, and ourselves more fulfilled as a result. We will be able to express our own personalities more effectively in our everyday environment, instead of just decorating it with a few expressions of someone else’s.

However, one factor that seems to be overrated is originality. Anyone can immediately come up with many original ideas in seconds. Stick a safety pin in an orange and tie a red string through the loop. There, can I have my Turner prize now? There is an infinitely large field to pick from and only a small number have ever been realized, so coming up with something from the infinite set that still haven’t been thought of is easy and therefore of little intrinsic value. Ideas are ten a penny. It is only when it is combined with judgement or skill in making it real that it becomes valuable. Here again, computers will be able to assist. Analyzing a great many existing pictures or works or art should give some clues as to what most people like and dislike. IBM’s new neural chip is the sort of development that will accelerate this trend enormously. Machines will learn how to decide whether a picture is likely to be attractive to people or not. It should be possible for a computer to automatically create new pictures in a particular style or taste by either recombining appropriate ideas, or just randomly mixing any ideas together and then filtering the new pictures according to ‘taste’.

Augmented reality and other branches of cyberspace offer greater flexibility. Virtual objects and environments do not have to conform to laws of physics, so more elaborate and artistic structures are possible. Adding in 3D printing extends virtual graphics into the physical domain, but physics will only apply to the physical bits, and with future display technology, you might not easily be able to see where the physical stops and the virtual begins.

So, with machine assistance, human creativity will no longer be as limited by personal skill and talent. Anyone with a spark of creativity will be able to achieve great works, thanks to machine assistance. So long as you aren’t competitive about it, (someone else will always be able to do it better than you) your world will feel nicer, more friendly and personal, you’ll feel more in control, empowered, and your quality of life will improve. Instead of just making do with what you can buy, you’ll be able to decide what your world looks, sounds, feels, tastes and smells like, and design personality into anything you want too.

More future fashion fun

A nice light hearted shorty again. It started as one on smart makeup, but I deleted that and will do it soon. This one is easier and in line with today’s news.

I am the best dressed and most fashion conscious futurologist in my office. Mind you, the population is 1. I liked an article in the papers this morning about Amazon starting to offer 3D printed bobble-heads that look like you.

See: http://t.co/iFBtEaRfBd.

I am especially pleased since I suggested it over 2 years ago  in a paper I wrote on 3D printing.

https://timeguide.wordpress.com/2012/04/30/more-uses-for-3d-printing/

In the news article, you see the chappy with a bobble-head of him wearing the same shirt. It is obvious that since Amazon sells shirts too, that it won’t be long at all before they send you cute little avatars of you wearing the outfits you buy from them. It starts with bobble-heads but all the doll manufacturers will bring out versions based on their dolls, as well as character merchandise from films, games, TV shows. Kids will populate doll houses with minis of them and their friends.

You could even give one of a friend to them for a birthday present instead of a gift voucher, so that they can see the outfit you are offering them before they decide whether they want that or something different. Over time, you’d have a collection of minis of you and your friends in various outfits.

3D cameras are coming to phones too, so you’ll be able to immortalize embarrassing office party antics in 3D office ornaments. When you can’t afford to buy an outfit or accessory sported by your favorite celeb, you could get a miniature wearing it. Clothing manufacturers may well appreciate the extra revenue from selling miniatures of their best kit.

Sports manufacturers will make replicas of you wearing their kit, doing sporting activities. Car manufacturers will have ones of you driving the car they want you to buy, or you could buy a fleet of miniatures. Holiday companies could put you in a resort hotspot. Or in a bedroom ….with your chosen celeb.

OK, enough.

 

 

Active Skin part 3 – key fields and inventions

This entry only makes sense if you read the previous two parts!

https://timeguide.wordpress.com/2014/01/08/active-skin-an-old-idea-whose-time-is-coming/

and

https://timeguide.wordpress.com/2014/01/09/active-skin-part-2-initial-applications/

if you have looked at them, time to read this one. Remember, this is onl;y a list of the ideas we had way back in 2001, I haven’t listed any we invented since.

Key active skin technology fields

Many of our original ideas had similarities, so I analysed them and produced a set of basic platforms that could be developed. The following platform components are obvious:

  1. A multilevel device architecture with some of the layers in or on the body, working in conjunction.

Tattoo layer

  1. Sub-surface imprints that monitor various body state parameters, such as chemical, electrical, temperature, and signal this information to higher layer devices.
  2. Permanently imprinted ID circuitry or patterns
  3. Permanently imprinted display components
  4. Permanently imprinted circuitry to link to nerves
  5. Imprinted devices that use chemical energy from the body to power external devices, e.g. ATP

Mid-term layer

  1. Similar technology to tattoo layer but higher in skin so therefore degradable over time
  2. Soluble or body-degradable circuitry
  3. photodegradable circuitry
  4. transparent circuitry using transparent conducting polymers
  5. inconspicuous positioning systems
  6. devices that transfer body material such as DNA or body fluids to external devices
  7. imprinted data storage devices with I/O, or permanent dumb storage
  8. imprinted sensors and recorders for radiation, magnetic fields, electrical or mechanical variation
  9. imprinted signalling devices for communication between body devices and external world
  10. smart monitoring and alarm technology that integrates body or surface events or position to external behaviours such as control systems, or surveillance systems
  11. synthetic sense systems based on synthetic sensing and translation to biological sense and possibly direct nerve stimuli
  12. smart teeth with sampling and analysis functions with signalling and storage capability
  13. imprinted actuators using piezoelectric, memory metal or ‘muscle wire’ technology, interacting with external monitoring to use as interface or feedback devices
  14. infection monitor and control devices
  15. devices that make electrical or magnetic stimuli to assist wound healing or control pain
  16. semi-permanent tags for visitors, contractors, criminals and babies, location and context dependent
  17. medical tags that directly interact with hospital equipment to control errors, hold medical records etc
  18. links to nervous system by connecting to nerves in the skin and to outside by radio

Mid-term & Transfer Layers – Smart cosmetics

  1. semi-permanent self organising displays for applications such as smart nail varnish and smart cosmetics
  2. context sensitive cosmetics, reacting to time, location, person, emotions, temperature
  3. electrically sensitive chemicals that interact with imprinted electronic circuits
  4. semi-permanent underlay for smart overlays to assist self-organisation
  5. smart sunscreens with sensors and electro-active filters
  6. colour sensitive or exposure sensitive sun-blocks
  7. cosmetics with actuators in suspension controlled by embedded electronics
  8. Active jewellery, active Bindies etc , e.g. Led optical control linked to thought recognition system
  9. Smart perfumes that respond to context, temperature, location etc

Transfer Layer

This layer has by far the most opportunities since it is not restricted to materials that can be tolerated in the body, and can also use a factory pre-printed membrane that can be transferred onto the skin. It can encompass a wide range of devices that can be miniaturised sufficiently to fit in a thin flexible package. Many currently wearable devices such as phones and computers could end up in this layer in a few years.

Most of the mid-term and some of the tattoo layer devices are also appropriate at this layer.

  1. Smart fingerprints encompass range of ID, pressure detection, interfacing and powering devices
  2. Use of vibrating membranes as signalling, e.g. ring tone, alarms, synthetic senses etc, allows personal signalling. Possible use for insect repellent if ultrasonic vibration
  3. Use of ultrasound to communicate with outside or to constantly monitor foetus
  4. Use of touch or proximity sensitive membranes to allow typing or drawing on body surface, use of skin as part of input device, may use in conjunction with smart fingerprints for keypad-free dialling etc
  5. Palm of hand can be used as computer in conjunction with smart fingerprints
  6. Use of strain gauges in smart skin allows force measurement for interfaces, force feedback, policing child abuse etc
  7. Actuators built into membrane, allows program interface and force feedback systems, drug dosing, skin tensioning etc, use for training and games, sports, immersive environments etc.
  8. Use of combinations of such devices that measure distance between them, allowing training and monitoring functions
  9. Transfer on eye allows retinal display, ultraviolet vision, eye tracking, visual interface
  10. Transfer based phones and computers
  11. Electronic jewellery
  12. Direct link between body and avatars based on variety of sensors around body and force feedback devices, connection to nervous system via midterm layer devices
  13. Thermal membranes that change conductivity on demand to control heating or cooling, also use as alarm and signalling
  14. Electronic muscles based on contracting gels, muscle wires etc, used as temporary training devices for people in recovery or physiotherapy, or for sports training
  15. Electronic stimulation devices allowing electro-acupuncture, electrolysis, itching control etc
  16. Printed aerials worn on body
  17. Permanent EEG patches for use in thought recognition and control systems
  18. Emotionally sensitive electronics, for badges, displays, context sensitivity etc
  19. Olfactory sensors for environmental monitoring linked to tongue to enhance sense of smell or taste, or for warning purposes. Olfactory data could be recorded as part of experience for memory assistance later
  20. Power supplies using induction
  21. Frequency translation in ear patch to allow supersonic hearing
  22. Devices for pets to assist in training and health monitoring, control nerves directly, police virtual electric fences for cats
  23. Fingertip mouse and 3d interface
  24. E-cash on the skin, use simply by touching a terminal

Smart drug delivery

  1. Allowing variable hole membranes for drug dosing. Body properties used with ID patch to control drug dose via smart membrane. May communicate with hospital. Off  the shelf drug containers can then be used
  2. Control of pain by linking measurement of nerve activity and emotional cues to dispensing device

Fully removable layer

This layer is occupied by relatively conventional devices. There are no obviously lucrative technologies suggested for this layer.

Key Specific inventions

Taking another angle of view, the above applications and platforms yield 28 very promising inventions. In most cases, although humans are assumed to be the users, other animals, plants, inorganic objects such as robots or other machines, and even simple dumb objects may be targets in some cases.

*Asterixes indicate reference to another area from this set.

1         Sub-skin-surface imprints and implants

Sub-skin-surface imprints and implants that monitor various body state parameters, such as chemical, electrical, temperature, and signal this information to higher layer devices.

  • Circuitry is imprinted into the skin using ink-jet technology or high pressure diffusion. e.g. a hand may be inserted into a print chamber, or a print device may be held in contact with the required area.
  • Passive components such as ink patterns may be imprinted, which may function as part of a system such as a positioning system
  • Other small encapsulated components such as skin capsules* may be injected using high pressure air bursts.
  • Some of the circuit components assembled in situ may require high temperatures for a short time, but this would cause only momentary pain.
  • Deeper implants may be injected directly into the required position using needles or intravenous injection, allowing later transport to the required location in the blood flow.
  • The implants may anchor themselves in position by mechanical or magnetic means, their positioning determined in co-operation with higher layer devices.
  • Components may be imprinted higher in the skin to be capable or wearing away, or lower in the skin to ensure relative permanence, or to give greater contact with the body
  • Circuitry may be designed to be transparent to visible light by using transparent polymers, but may be visible under UV or infrared
  • Patterns implanted may be used as part of an external system. An ink-based pattern could be used as an identifier, for holding data, or as a means of positioning. They may be used as part of a, which would effectively be enhanced biometric security system.
  • Other identifiers may be permanently imprinted, which may be active or passive such as inductive loops, bar-codes, digital paper, snowflakes etc. Intra-skin power supplies* may be used to power more sophisticated tags that can be imprinted or injected
  • Circuitry or patterns may be harmlessly biodegradable so that it would vanish over time, or may be permanent.
  • they may be made photo-degradable so that it breaks down under external light of appropriate intensity and frequency, e.g. UV
  • Inks may be used that are rewritable, e.g. they change their colour when exposed to UV or a magnetic field, so data may be modified, and these devices are therefore dynamic data storage devices. They need not operate in the visible spectrum, since external sensors are not limited by human characteristics.
  • Baby tags may be inserted to prevent babies from being abducted

2         Skin conduits

Devices may be implanted that are able to act as a conduit to lower skin layers.

  • This may facilitate drug delivery, monitoring or nerve connection.
  • Probes of various types may be inserted through the conduits for a variety of medical or interface reasons.
  • Even body fluids and DNA samples may be extracted via these conduits.
  • This may provide a means of blood transfer for transfusion or blood cleaning, and a replacement for drips
  • Conduits would be sealed to prevent bacterial or viral entry except when actively in use.
  • The conduits can be implemented in several ways: tubes may be implanted that have muscle wires arranged so that when they contract the holes flatten and thus close; the walls of the tube may be comprised of magnetic materials so can be closed magnetically; the default position may be closed and magnetic repulsion is used to stretch the holes open; similarly, muscle wire may be used to open the holes by rounding a previously flattened hole; the open or closed states can be provided by elongating or shortening a tube; heat may be used to cause expansion or contraction; synthesised muscle tissue may be used to stretch the area and make holes open; shape change and memory metals or plastics may be used. Other techniques may be possible.

3         Implanted or imprinted links to nerves

  • Permanently imprinted circuitry to link to nerves would comprise electrical connections to nerves nearby, by means of conducting wires between nerves and the devices.
  • The devices meanwhile would be in communication with the higher layers.
  • They would signal impulses to higher layers and capable of producing impulses in various patterns into the nerves.
  • The connections would be made using specialised skin capsules* or directly injected wires.
  • These devices would encapsulate very thin wires that propagate out from the device on request until they make electrical contact with a suitable nerve. They may be wound in a spiral pattern inside the capsules and unwound to form radiating wires.
  • These wires may be made of metal today or carbon fullerene ‘buckytubes’ in due course
  • They may be connected by wire, radio or optical links to the external world
  • Being able to stimulate nerves directly implies that body movement could be directly controlled by an external system
  • It would be possible to implant control devices in people or animals in order to remotely control them
  • Although primarily a military technology, this would enable pets to be sent on a predetermined walk, to prevent children from stepping out in front of a car, to prohibit many crimes that are detectable by electronic means and a wide range of other ethically dubious activities
  • Nerve stimulation can be linked extensively into other electronic systems
  • Email or other communications could include instructions that translate into nerve stimuli in the recipient. This may link to emotional stimulation too. A very rich form of intimate communication could thus be achieved.
  • It would be possible to send an orgasm by email
  • Filters can easily prevent abuse of such a system, since the user would be able to block unauthorised nerve stimulation
  • For some purposes, this choice to block stimuli could be removed by a suitable authority or similar, for policing, military and control purposes

4         Sensory enhancement and translation technique

A range of sensors may be implanted that are sensitive to various forms of radiation, EM, magnetic fields, electrical fields, nuclear radiation or heat. These would form part of an augmented sensory system.

  • Conventional technology based radiation monitors worn on a detachable layer may monitor cumulative radiation dose, or record intensity over time.
  • Other conventional technology sensors may also be worn at the detachable layer, some my be imprinted or implanted.
  • They may be connected systemically with the nervous system using implanted or imprinted nerve links* to create nerve stimuli related to sensor activity.
  • An array of synthetic senses may thus be created that would facilitate operation in a range of environments and applications. A primary market would be for sexual use, where sexual stimulation can be produced remotely directly into the nervous system.
  • Nerve stimuli could be amplified to increase sensory sensitivity.
  • Alternatively, stimuli could be translated into vibration, heat, pain, other tactile stimulus, or audio that would be picked up by the body more easily than the original form.
  • Such sensory enhancement may be used to link stimuli in different people, or to link people with real or virtual objects.
  • When connected to deep implants in the brain, this could perhaps eventually be used to implement crude telepathic communication via a network.
  • Remote control of robotics or other external machinery may be facilitated by means of linking sensory stimuli directly to machine operations or sensors. The communication would be via implanted or imprinted antennae.
  • Active teeth* may be used as part of such a system
  • Frequency shifters in the ear would permit hearing outside of normal human capability
  • Ditto visual spectrum
  • People would be able to interact fully with virtual objects using such virtual sensory stimulation

5         Alarm systems

  • Sensors in or on the skin may be used to initiate external alarms or to initiate corrective action. For example, an old person taking a shower may not realise the water temperature is too high, but the sensors could detect this and signal to the shower control system.
  • The most useful implementation of this would be one or more thermocouples or infrared sensors implanted in the skin at or near areas most likely to be exposed first to hot water such as hands or feet.
  • Thermal membranes that change conductivity according to temperature could be used as a transfer layer device.
  • Such membranes may form a part of an external alarm or control system of signal the body by other senses that a problem exists
  • As well as signalling to external systems, these sensors will use implanted or imprinted nerve links* to initiate direct local sensory stimulation by means of vibration* or pain enhancement, or produce audible warnings.
  • Alarms may also be triggered by the position of the person. A warning may be set up by interaction of the implant and external devices. A circuit in the skin can be detected by an external monitor, and warn that the person is moving into a particular area. This may be used to set off an alarm or alert either secretly or to the knowledge of the either only the person or only the external system. This can obviously be used to police criminals on parole in much the same way as existing tags, except that the technology would be less visible, and could potentially cause a sensation or even pain directly in the criminal. A virtual prison could be thus set up, with it being painful to leave the confines set by the authorities.
  • This would permit the creation of virtual electric fences for animal confinement
  • Sensors may measure force applied to the skin. This would enable policing of child care, preventing physical abuse for example. Alerts could be sent to authorities if the child is abused.

6         Skin based displays

  • Permanently imprinted display components may be developed that use the energy produced in this way to produce light or dark or even colours.
  • These may emit light but may be simply patches of colour beneath the skin surface, which would be clearly visible under normal lighting.
  • Small ink capsules that deform under pressure,
  • electrostatic or magnetic liquids, liquid crystals or light emitting or colour changing polymers would all be good candidates

7         Intra-skin power supply

  • Inductive loops and capacitors may be used to power active components that can be imprinted or injected. Inductive loops can pick up electromagnetic energy from an external transmitter that may be in the vicinity or even worn as a detachable device. Such energy can be stored in capacitors.
  • Detachable devices such as battery based power supplies may be worn that are electrically connected to devices at lower layers, either by thin wires or induction.
  • Optical power supply may be adequate and appropriate for some devices, and this again can be provided by a detachable supply via the skin, which is reasonable transparent across a wide frequency range
  • Devices that use chemical energy from the body to power external devices, e.g. ATP
  • Thermal energy may be obtained by using temperature difference between the body and the external environment. The temperature gradient within the skin itself may be insufficient for a thermocouple to produce enough voltage, so probes may be pushed further into body tissue to connect to tissue at the full body temperature. The probes would be thin wires inserted either directly through the surface, or by skin capsules*.
  • Mechanical energy may also be used, harnessing body movement using conventional kinetic power production such as used in digital watches. Devices on the feet may also be used, but may be less desirable than other conventional alternatives.
  • Thin batteries such as polymer batteries may be worn on the detachable layer
  • Solar cells may be worn on the detachable layer

8         Antennas and communicators in or on the skin

  • Some of the many devices in the layered active skin systems require communication with the outside world. Many of these require only very short distance communication, to a detachable device in contact with the skin, but others need to transmit some distance away from the body. Various implementations of communication device are possible for these purposes.
  • A vertical wire may be implemented by direct insertion into the skin, or it may be injected
  • It may be printed using conductive inks in a column through the skin
  • It may be simply inserted into a skin conduit
  • Skin capsules* may eject a length of wire
  • Wires from skin capsules may join together to make a larger aerial of variable architecture
  • This may be one, two or three dimensional
  • Skin capsules may co-operate and co-ordinate their wires so that they link together more easily in optimal designs
  • Self organising algorithms may be used to determine which of an array of skin capsules are used for this purpose.
  • Optical transmitters such as LEDs may be used to communicate in conjunction with photodiodes, CCDs or other optical signal detectors
  • Vibration may be used to communicate between devices
  • Ultrasonic transducers and detectors may be used
  • Printed aerials may be worn as transfers or detachable devices. They may be electrically connected to devices directly or via high frequency transmission across the skin, or by local radio to other smaller aerials.

9         Smart teeth & breast implants

·         Various sampling, analysis, monitoring, processing, storage, and communication facilities may be added to an artificial tooth that may be inserted in place of a crown, filling, or false tooth. Powering may be by piezoelectric means using normal chewing as a power source, or for some purposes, small batteries may be used.

·         Infection monitoring may be implemented by monitoring chemical composition locally.

·         Conventional olfactory sensing may be used

  • Breath may be monitored for chemical presence that may indicate a range of medical or hygiene conditions, including bad breath or diabetes
  • Data may be stored in the tooth that allows interaction with external devices and systems. This could be a discrete security component, or it may hold personal medical records or a personal profile for an external system.
  • Significant processing capability could be built into the volume of a tooth, so it could act as a processor for other personal electronics
  • Small cameras could be built into the tooth
  • Piezoelectric speakers could be used to make the tooth capable of audio-synthesis. This could allow some trivial novelty uses, but could later more usefully be used in conjunction with though recognition systems to allow people to talk who have lost their voice for medical reasons. Having the voice originate from the mouth would be a much more natural interface.
  • Some of these functions could be implemented in breast implants, especially data storage – mammary memory! Very significant processing capability could also be implanted easily in the volume of a breast implant. MP3 players that can be reprogrammed by radio such as bluetooth and communicate with headphones also via bluetooth. Power in batteries can be recharged using induction
  • the terms ‘mammary memory’, and ‘nipple nibbles’ (a nibble is half a byte, i.e. 4 bits) see appropriate
  • breast implant electronics may be the heart of a body IT centre
  • taste and smell sensors in the tooth may be used as part of a sensory stimulation system whereby a sense of taste or smell could be synthetically recreated in someone who has lost this sense An active skin implant in the tongue, nose or a deeper implant in the appropriate brain region may be required to recreate the sense
  • this could be used to augment the range of taste or smell for normally sensed people in order to give them a wider experience or allow them to detect potentially dangerous gases or other agents, which may be physical or virtual
  • smart teeth may also make use of light emission to enhance a smile

10     Healing assistance devices and medical tags

 

  • Medical tags or semi-permanent tags* such as inductive loops can be imprinted that allow identification and store medical records. They may interact directly with equipment. This could be used for example to prevent operation errors. More sophisticated tags could be installed using skin conduits*
  • Active skin components may be used to apply an electric field across a wound, which has been shown to accelerate healing. These would be imprinted or implanted at a health centre during treatment. Voltage can be produced by external battery or power supply, by solar cells at the detachable layer, or by thermocouples that have probes at different body depths as described above.
  • Infection monitors can be implemented using chemical analysis of the area and by measuring the electrical properties and temperature of the region
  • The infection may be controlled by emission of electrical impulses and by secreting drugs or antibiotics into the area. This may be in conjunction with a detachable drug storage device, which can inject the drugs through skin conduits*.
  • Pain can be controlled to a point by means of electrical impulses that can be provided by the implants
  • The monitors may be in communication with a health centre.
  • Electrical impulses can be used to alleviate itching, and these could be produced by active skin components
  • Electronic acupuncture can be easily implemented using active skin, with implants at various acupuncture points precisely located by a skilled practitioner, and later stimulated according to a programmed routine
  • Electrolysis to prevent hair growth may be achieved by the same means

11     Semi-permanent tags

  • Semi-permanent tags or ID patterns may be implanted in upper skin layers to allow short term electronically facilitated access to buildings. The tags are not easily removable in the short term, but will vanish over a period of time depending on the depth of penetration. They may photo-degrade, biodegrade or simply wear away with the skin over time.
  • They may communicate electronically or optically with external systems
  • They may interact as part of alarm systems*
  • They may be aware of their position by means of detecting electronic signals such as GPS, wireless LANs
  • They may be used to give accurate positioning of devices on the skin surface or deeper, thus assisting automatic operations of medical equipment, in surgery, irradiation or drug dispensing
  • Babies can be secured against mistaken identification in hospital and their tags can interact with security systems to prevent their abduction. Proximity alerts could be activated when an unauthorised person approached them.

12     Self-organising circuits and displays

  • Self-organisation of circuits has been demonstrated and is known widely.
  • Active skin components with generic re-programmable circuitry may be installed and self-organisation used to configure the devices into useful circuits.
  • Components may be printed, injected or deposited via skin conduits* and may be contained in skin capsules*
  • Organisation can be facilitated or directed by external devices that provide position and orientation information as well as instructions to the embedded components
  • Combinations of display components may be linked by wires radiating out from each component to several other components, for instance by using skin capsules*. A self-organisation algorithm can be used to determine which connections are redundant and they can be withdrawn or severed. The remaining circuitry can be used as part of a control system to convert these individual display components into a co-ordinated display.
  • These display components may alternatively be painted onto skin, lip, eyelid or nail surfaces for example, to provide a multimedia display capability in place of conventional makeup and nail varnish. These displays would be less permanent than implanted circuitry
  • This body adornment could be more functional, with informative displays built in for some medical purpose perhaps. Text warnings and alerts could indicate problems.
  • Varnish would provide a high degree of protection for the components. Varnishes could also be fabricated to chemically assist in the self-organisation, by for example, providing a crystal matrix

13     Active Context-sensitive cosmetics and medicines

  • Cosmetics today are stand-alone combinations of chemicals, dies and aromatic agents. The addition of electronically active components either to the cosmetics themselves or into the underlying skin will permit them to be made intelligent
  • Cosmetics containing active skin components that interact with other layers and the outside world
  • Electrically sensitive chemicals would be useful components for such cosmetics. Many chemicals respond to electric fields and currents by changing their chemical bonding and hence optical properties. Some magnetic fluids are known that can be manipulated by magnetic fields. Active components may also be included that can change shape and hence their appearance, that are known in the field of digital ink.
  • Such chemicals may interact with underlying active skin circuits or components, and may respond to signals from external systems or active skin components or both
  • Cosmetics may use underlying active skin to facilitate precision location and some self-organisation
  • Active actuator components may be able to physically move cosmetics around on the skin surface
  • Characteristics of the appearance may depend on time of day, or location, or on the presence or properties of other environmental characteristics.
  • Sensors detecting UV may activate sunscreen components, releasing them from containers as required
  • Sensors detecting the presence of other cosmetics allow combination effects to be co-ordinated
  • Colours may change according to context, e.g. colour change lipstick and eye shadow
  • Kaleidoscopic or chameleon makeup, that changes colour in patterns regularly
  • Perfumes may be emitted according to context or temperature. This circumvents the problem where little perfume is given off when skin is cool, and much is lost outside in wind or when it is hot. Electronic control would allow more sophisticated evaporation for more consistent effect
  • Perfumes may be constructed with variable display properties that can be put on in variable quantities, with their precise effect controlled automatically by intelligence in the makeup or active skin
  • Make-up effects may be remotely controlled
  • Make-up may include light-emitting chemicals or electronics that are co-ordinated using active skin
  • Medicines may be administered on detection of allergenic agents such as pollen or chemicals
  • Active cosmetics may include actuators to contract the skin. The actuators would be based in small skin capsules* that would send thin wires into the skin to anchor themselves, and other wires to connect to other capsules
  • Intelligence in the cosmetics might be in constant or occasional communication with the manufacturer. This permits control of the effects by the manufacturer, and the capability to offer usage based licenses, making makeup into an ongoing service rather than a single product. This is implemented by adding active skin components that together communicate with nearby network connections
  • Cosmetics may adapt in appearance depending on the presence of signals. These signals may originate from other people’s active skin or from environmental systems. People wearing such cosmetics could thus look different to different people. Also, corporate styles could be implemented , controlled by building signalling systems.
  • Cosmetics may adjust automatically to ambient light conditions and local colours, allowing automated co-ordination with clothing and furnishing
  • Cosmetics may adjust their properties as part of an emotion detection and display system. This can be used to enhance emotional conveyance or to dampen emotional signals. They may also act as part of a psychological feedback loop that permits some emotional control

14     Digital mirror

  • A digital mirror, as described on my web site, has a combination of a camera and display that can show an image that may be the true image as the user, or a modified version of the user’s image. This disclosed concept is part of a wider non-disclosed system
  • Smart cosmetics may be used in conjunction with such a digital mirror
  • The cosmetic manufacturer or a service provider may use such a digital mirror to provide the customer with an enhanced view of themselves with various options, co-ordinating the application of smart make-up by means of ‘make-up by numbers’, and controlling its precise properties after application. Active skin components that are clinic installed could be used to provide the positioning systems and intelligence for the upper layers of removable cosmetics.
  • The customer would apply a quantity of makeup and then watch as various potential makeup effects are illustrated. On selection, that effect would be implemented, though several additional effects and contexts could be selected and assigned, and appropriate context effects implemented during the day. The effects could include the mechanical removal of wrinkles by means of actuators included in smart cosmetics*. Skin-based displays* may also form part of the overall effect.
  • Medicines may be applied in a similar way under control by a clinic.
  • Cosmetics may be controlled under license so that customers do not have unlimited freedom of appearance while wearing them. They may only be seen in a limited range of appearance combinations.

15     Active and emotional jewellery

  • Active Bindies, nose studs or other facial jewellery could be used as relatively deep implants to pick up reasonably good nerve signals from the brain as part of an EEG patch system*. These may be used to control apparatus via a signal recognition system.
  • Bindi would be top layer over active skin sub-layers and could contain much more complex chip than could be implanted in active skin
  • May contain battery and be used as power supply for sub-layers
  • Sub layers pick up clean signals from around scalp and send them to bindi for processing
  • Communication between devices may be radio or at high frequency via scalp
  • Infrared or ultrasound transmitter built into bindi relays the signals directly to external apparatus
  • Processing may recognise and process in-situ, transmitting control signals or data to external apparatus
  • Bindi may change appearance or include a display that reacts according to the signals detected
  • May act as emotion conveyance device
  • Signals from sensors in or on the skin can be used to pick up emotional cues, that are often manifested in changes in blood pressure, pulse rate, blood chemistry, skin resistivity and various muscular activity, some of which is subconsciously activated.
  • Collecting and analysing such data permits a range of electronics that responds to emotional activity. The active bind is just one piece of jewellery that may be useful in this regard, and is limited by culture.
  • Other forms of emotional jewellery may use displays or LEDs to indicate the wearer’s emotional state. Almost any form of jewellery could be used as part of this system, since active skin components that collect the data do not have to be in physical contact with the display devices
  • Active skin displays* may form part of this emotional display system
  • Active jewellery may also display data from other systems such as external computers or communication devices. This communication may be via active skin communication systems
  • Displays around the body may co-ordinate their overall effect via active skin devices
  • Emotions in groups of people may be linked together forming ‘emotilinks’ across the network, linking sensors, actuators, drug delivery systems and nerve stimulation together in emotion management systems. Drug delivery systems may instead dispense hormones
  • These systems may be linked into other electronic systems
  • Emotional messages may be sent that electronically trigger emotions in the recipient according to the intentions or emotions of the sender. Emotional email or voice messaging results. This enhances the capability and reach of communications dramatically.
  • Active jewellery such as a smart signet ring could be used as part of an authentication or security system, that may involve biometrics at any active skin layer as well as conventional electronic components and data that may also be housed in active skin

16     Active fingerprints

  • Active skin in the finger tip would greatly enhance interfacing to security systems and also to computer system interfaces, which can be made much more tactile
  • Smart fingerprints may include chips, passive ID, pressure indication, pressure transducers, vibration devices, interface and powering devices
  • Patterns and circuits built into the fingertips can link directly with external equipment by touch
  • Inductive loop in finger tip makes for simple ID system
  • Electronic signals can be conveyed in each direction for identification or programming or data transfer via contacts in the skin
  • A persons personal profile may be downloaded to an external system from data in the skin via such contacts. A computer can thus adapt instantly to the person using it
  • Data may be similarly ‘sucked up’ into body based storage via such contacts
  • Other devices elsewhere on the skin may be temporarily connected via high frequency transmission through the skin to the external system
  • Patterns visible in infrared or UV regions may be used
  • Ultrasonic vibrations may be used
  • Synthetic textures may be produced by keys by means of producing different vibration patterns than material would normally produce. This would assist greatly in the use of virtual environments to create synthetic objects
  • Actuators based on for example muscle wire can be used to stretch the skin in various directions, which conveys much information to the body on texture and other feedback. This can be by means of a rectangular wire with muscle wire between two opposite corners
  • Heat and cold can be produced as a feedback mechanism
  • Positioning systems incorporating the fingertips by means of inductive loop tracking, motion detectors and dead reckoning systems, allow interaction with virtual objects.
  • People could type in air, and feel physical feedback on interaction with objects, particularly useful in surgery using robotic tools.
  • Active skin with muscle wires implanted or imprinted at finger joints give a force feedback mechanism
  • Links between people may be formed by linking sensors in one person’s joints to actuators in another person’s. This would be useful for training purposes.
  • Vibrating membranes may be used as a signalling device. Vibration can be implemented via muscle wires or piezoelectric crystals in the detachable layer. These would allow personal signalling systems, ringing vibration, and development of synthetic senses*.
  • They may have some use in insect repellence if vibrations are ultrasonic
  • Micro-electro-mechanical systems (MEMs) implanted in the fingertips would allow a fingertip to be used as a mouse for a computer, by tracking movement accurately
  • Fingertip sensors could similarly be used to capture textures for re-use in virtual environment applications
  • Textures can be recreated in the fingertips by means of vibration devices
  • Electronic cash could be transferred through active fingerprints which also contain the authentication mechanisms as well as the means to transfer the cash
  • Short term software licenses could be implemented in this way, with the fingertip effectively holding a dongle

17     Ultrasonic monitors

  • An array of active skin devices may be arranged around the abdominal region of a pregnant woman, that would allow easy periodic ultrasonic monitoring of the baby during pregnancy.
  • Some patches of active skin would house ultrasound generators, and others would house ultrasound receivers. The system is therefore capable of bathing the baby in a well defined ultrasound field for monitoring purposes.
  • The patterns of reflections can be analysed by either processors in active skin or by a remote device, either worn or via the network, e.g. at a clinic. This produces images of the baby that can determine whether there is a problem. For instance, heartbeat and baby movements can easily be monitored.
  • Growth of cancers may be monitored in much the same way, with alerts automatically sent to hospital via the network if tumour size or growth rate exceeds a defined limit
  • A simple microphone may be sufficient for just heartbeat monitoring if that is all that is needed.
  • Ultrasonic communication to an external systems or another active skin device nearby.

18     Touch and proximity sensitive membranes

  • A region of active skin on the arm may be used as a data entry device such as a keyboard by means of adding positioning information such as digital paper patterns or other indication of location.
  • A simple circuit completion would suffice that could be implemented by contacts in close proximity that are connected when pressed, or by a sudden change in resistance or capacitance
  • Arm-embedded components can interact with active fingerprint components to enable easy data entry. Data may be transferred between arm and finger components
  • Different components in different fingers increase dramatically the range of combinations available. Different fingers may represent different tools in a drawing package for example
  • Visible patterns on the arm could indicate where the letters or other keys are. This indication could be a simple ink pattern.
  • Alternatively, display components in the skin may be used to create a dynamic keyboard or interface with different inputs according to application
  • Alternatively, a virtual display in a head-up display worn by the user could indicate the position of the appropriate keys without any visible pattern on the skin. Positioning may be by means of image analysis or by means of processing of the inputs from various inbuilt strain gauges
  • With a virtual display, no components at all are actually required in the arm to implement the minimal system (similar systems already exist with purely virtual keyboards).
  • Deeper ink patterns could enable a longer term keyboard
  • Data from the interface can be stored locally in memory implants or relayed at high frequency across the skin to other active skin system components
  • This could be used as a dialling keypad for cellphones
  • It may be used to enter security identification codes
  • A keyboard may be implanted in the palm of the hand as an alternative to the forearm to allow a computer to be effectively a ‘palm computer’, a ‘digital computer’, calculator or
  • interface to any electronic device carried on the person or across the network
  • signals from the interface may be relayed by a radio device elsewhere on the body

19     Use of strain gauges for touch sensitivity

  • A high degree of touch sensitivity is afforded by the body’s own sensory system, so this could act as a very high precision interface for some applications. The amount of pressure, or characteristics of strokes may be easily detected by the wearer to accurately control their input. Detection of this input can be by means of strain or relative position sensors
  • Alternatively, in later generations of the devices, signals may be directly picked up from the nervous system and appropriate analysis used to determine the precise input.
  • Touch or proximity sensors such as capacitors, inductors, piezoelectric strain gauges, movement detectors, or other devices in the arm can detect key-presses or drawing movements and could act as a mousepad
  • Relative movement between active skin components in touch sensitive membranes indicates not only what has been pressed but also by how much
  • Movement may be measured by change of capacitance between components, or change of resistance in conductive polymers attached to the skin, by induction changes, change of skin resistance itself, accumulated mechanical stress measurement or by other means
  • A system comprised of a range of such gauges and position sensors in various parts of the body may be used to gather a great deal of data about the movement of the body.
  • This may be used extensively in training and correction applications by means of force feedback or sensory amplification.
  • Force feedback or other actuator components* would give a signal or apply a force back to the body on detection of various parameter values. Movements may be precisely recorded and recreated via force feedback.
  • An expert recording the correct procedure can use such recording and force feedback to ‘play back’ a correct movement into the student. Repeated practice of the correct movement would enable rapid training
  • Computer games may also make use of this system in a ‘training mode’, where users learn to behave appropriately, thus improving the quality of game play
  • Highly specialised interfaces may be developed using a collection of appropriately configured gauges or sensors, with appropriate force of signal feedback devices
  • Such systems may be used to record the behaviour of people or animals for research, monitoring or policing purposes
  • Signal feedback systems may allow direct correction of such behaviours. See alarm systems.
  • The means to directly associate a movement or behaviour with pain would be a valuable means of training and controlling animals or criminals. Such feedback may also be linked to emotional states to control aggression for example. A combination of movements, position or emotional state may be used to prohibit certain behaviours in certain locations.
  • Strain gauges would be an important component of avatar based communication systems to allow the direct physical interaction of people across a network, whether a handshake or a hug or something more.

20     Force feedback and other actuators in skin

 

  • A range of actuators may be implanted or injected for various purposes
  • Muscle wires may be used as simple actuators
  • Some polymer gels may be made to respond mechanically to various stimuli. These may be used as synthetic muscles in some systems and membranes composed of these may be key active skin components
  • Membranes with arrays of holes may be used to control drug delivery as part of an active skin system. Such membranes may be dumb, or may contract in response to electronic or thermal stimuli from other components. Obviously holes will contract as the membrane contracts, thereby giving a means of controlling drug dosing
  • Such membranes may provide a convenient means of allowing blood exchange for blood cleaning and processing (e.g. for dialysis)
  • Ultrasonic actuators may be used or signalling between devices
  • Lower frequency may be used to create sensation of texture
  • Stretching, compression and torsion may be used in force feedback and signalling
  • Actuators may be used to open or close holes in the skin or activate skin conduits*
  • These holes may be used usefully as part of drug delivery systems or as a means of implanting devices or other materials
  • They may be used extensively as part of force feedback and interface devices as described above for training, communication, monitoring or corrective purposes
  • Systems using combinations of such force feedback and actuators may be used for medical purposes
  • Holes with actuators mounted across them may be opened or closed on command
  • These work in conjunction with higher layers to allow smart and precise drug delivery in a feedback loop with monitoring systems. Health or nerve signal monitors may allow direct control of such holes and actuators in drug dispensers
  • Actuators may respond directly to skin temperature
  • Actuators may form part of alarm systems
  • Exoskeletal structures based on actuators may be implemented to give physical assistance or support, especially for disabled or frail people. This would require large areas of such actuator membranes
  • Physical appearance may be controlled to a degree by such membranes or implants, that would shape the body, reduce wrinkles, reduce the impact of fat, tone muscles etc
  • They may work in conjunction with electrical stimuli for muscle toning, which currently needs external pads and power supplies

21     Active contact lens

  • Active contact lens has been wholly disclosed in the form of a removable contact lens that acts as a dumb display
  • It could however be differently realised by using active skin instead of a detachable contact lens
  • Active contact lens may include actuator components that stretch or compress the eye to correct vision for all distances
  • Lens components could be implanted in eye surface using above techniques
  • Signals displayed may originate in other active skin components elsewhere on body
  • Processing may be embedded in nearby skin outside the eye
  • Powering could be inductive or ultrasonic
  • Tracking of the eyeball can be in conjunction with other nearby components such as proximity and position detectors
  • Light may be produced externally (e.g. by lasers adjacent to the eyeball) and the lens merely reflects it to its proper destination by means of micromirrors
  • Lens film may contain identification circuitry or data that can be conveyed to an external system by passive recognition or active transmission
  • Images seen by the eye may be processed and recorded by nearby active skin components and relayed to storage or transmitted on a network
  • Appropriate implanted dyes could facilitate ultraviolet vision
  • Appropriate infrared detectors and lasers may be used to enable infrared vision
  • Other sensory data from sensors elsewhere on the skin or fully externally, may be projected in the image produced by the active skin implant

22     Skin-based processing, memory, and consumer electronics

 

  • Miniaturised circuitry will soon allow very small versions of many popular devices.
  • These circuits may fit in a single skin capsule or be distributed across several capsules.
  • These capsules contain means to connect with others and with the outside as well as housing some electronics capability
  • They will be able to produce phones, calculators, computers, storage devices, MP3 players, identifiers, electronic cash, text readers, scanners
  • Some of these would benefit from being implemented in active fingerprint systems
  • Capsules may be directly injected or inserted into a skin conduit, perhaps facilitated by various actuators for positioning and connection
  • They may be easily ejected by the skin conduits if necessary
  • Ingestion or ejection may be by means of peristaltic motion of the skin conduit, facilitated by means of contractible rings
  • A wide range of sensors are now available in watches and other small wearable devices, to monitor parameters such as air and skin temperature, air pressure, direction, blood pressure, pulse, heart beat, walking distance, GPS location and navigation, paging, infrared controls, voice recording and others. Many of these can be sufficiently miniaturised to be embedded in or on one or more active skin layers. The performance of some of the sensors would be improved
  • Membrane based transfers implementing these devices may be easily attached to the skin and easily removed if required. They may co-operate with other permanent or temporary active skin devices
  • Transfer based electronic jewellery* may interact with smart cosmetics* and other inbuilt processing or memory

23     Body-avatar link

  • Avatars will be an important communication tool in the near future. Avatars may be controlled manually or via video image interpretation, which is complex and invasive. Active skin presents an efficient means of accurately controlling avatars.
  • Sensors in skin at key parts of the body, e.g. finger joints, hands, wrists, elbows and face can be used to detect body movement and position.
  • They may also detect emotional state and audio
  • Data from the sensors may be transmitted to a central body transmitter for collation, pre-processing or simply transmission
  • This information is relayed via active skin or other transmitters to a computer, phone or other conferencing device. The phone may itself be an active skin component
  • The body position and movement information is transmitted across the link, and used to control the avatar movements directly
  • Interactions between avatars in virtual space are relayed back to the people involved via force feedback membranes, pressure transducers, smart fingerprints to convey texture, and direct nerve stimulation using nerve links.
  • A highly sensory realistic communications link is thus established between the inhabitants of the virtual environment which is potentially far richer than that which may be obtained without the use of active skin or a full body suit.
  • Inhabitants need not be real people, but may be synthetic entities such as computer game characters or interactive TV avatars
  • Almost all functions of body suits may be replaced by active skin components, which do not interfere with normal clothing and are therefore much less invasive
  • If all the above components are implemented in active skin, it is possible that avatars may be controlled without the knowledge of anyone else present, making a very discrete interface
  • Instead of controlling avatars, the link may be used to directly control a robot. Sensors in the robot could be linked to senses in the human, allowing a high quality implementation of telepresence and teleaction. This would be very useful for surgery or for maintenance in hostile environments. It would also be useful for police or military use to control robots or androids in hostile environments.
  • Surgical applications could be enhanced by filtering and pre-processing the body movements and possible translating them into a appropriate actions for robotic surgical apparatus. For example, large jerky hand movements may be converted into small smoother scalpel movements.
  • Again, such systems may be used extensively for training or correction purposes, or for interaction with computer games
  • Interactive TV may use such avatar links to permit greater participation of remote audience members
  • Visual systems may be linked to such active skin avatar links so that people can interact with avatars on the move rather than just when confined to a conferencing suite or in front of a computer monitor
  • This permits people to interact fully with virtual objects and characters overlaid in the real environment

24     EEG patches

 

  • An array of smart skin patches on the scalp could be arranged to collect electrical signals from the brain.
  • Such devices could make it less invasive for EEG patients who need repeated investigation
  • Devices would signal using high frequency electrical signals or by ultrasound to other sensors or collectors or processors.
  • Signals could be relayed to external apparatus by a single contact point or by means of radio aerials, LEDs or an active bindi.
  • Such signals may be used for conventional medical analysis purposes,
  • or may be used for thought recognition purposes, whereby pattern recognition technology is applied to analysis of the signals from the various sensors.
  • Sensors need not only be on the scalp, but could be anywhere on the body, such as fingertips.
  • Lie detection may be implemented using a combination of data regarding such brain signals and other data regarding emotional state, blood hormone or other chemical content, skin conductivity, temperature, pulse etc All of these data types are liable to address by active skin variants
  • Signals from the scalp may be used to control medical prostheses to assist disabled people. The intention to move an arm could result in the arm moving for example. Nerve signals for such applications may be detected on the scalp, or nearer to the prosthesis.
  • Active skin in the stump could be used for this purpose and also to inject synthetic senses back into the nervous system by way of feedback from the prosthesis
  • Such patches may be used as a component of a policing system for criminals, whereupon certain types of thought pattern result in the creation of pain

25     Use with or in place of active clothing

 

Many of the applications discussed above would work well in harmony with active clothing, most of which is known technology. Active clothing already houses consumer electronics, reacts thermally and optically to the environment, monitors body activity, reports on injuries and casualty location, injects antibiotics, antiseptics and anaesthetics in case of battlefield injury. A wide variety of other ‘smart’ capabilities is also available off the shelf or in prototype.

Some of these clothes require data that can best be obtained by active skin. For example:

  • Active skin can house the identity and personal profile for use by active clothing
  • Active clothing may provide the power supply or communications for active skin
  • Active clothing may contain medical apparatus that is controlled in conjunction with active skin and a remote clinic
  • Active skin may actually replace some clothing in terms of thermal and chemical protection
  • Active skin may act as a final line of defence on a battlefield by filtering out hostile bacteria, viruses or chemicals and in due course act to protect against nanotechnology or micro-technology attack
  • Active skin may physically repair organic skin tissues or augment them with self-organising self-constructing membranes
  • Active skin may contain synthetic hairs that may be extended or contracted to provide variable thermal protection, and also to help filter out bacteria
  • With a high degree of such protection against nature, clothing may be more optional, especially if active inks and other display components are used to change the optical appearance of the body for cultural reasons
  • Key active skin components of this system are displays, actuators, sensors, reservoirs, membranes, processors, signalling and aerials

26     Skin capsules

  • A range of skin capsules for various purposes may be developed, which are capable of being injected into the skin by high pressure air, or inserted through skin conduits
  • Skin conduits themselves may be implanted as a special case of skin capsules. They may start off as a spherical device and then open up into a ‘pore’ once implanted
  • Skin capsules may contain drugs or other chemicals for various purposes
  • They may house substantial quantities of electronics for processing, memory, analysis or sensory purposes
  • They may house MEM devices that are capable of mechanical interaction with surrounding tissues
  • They may house a range of actuator devices or wires
  • They may house wires for the purpose of connection to nearby capsules or devices, for example to make antennas
  • They may house identification devices or data
  • These wires may be metallic, organic polymer, shape memory alloy, memory plastic, or buckminster fullerene tubes
  • Capsules may be made of any materials that is largely inert regarding body tissues. Titanium and its alloys, glass and ceramics, diamond film coated materials, gold, platinum and surgical steel and many plastics, as well as some biodegradable and soluble materials etc would be good for some purposes, but other materials may be better for some purposes

27     Drug delivery system

  • Drugs may be administered under control by means of active skin systems
  • Membranes may be contracted so that the holes shrink and drugs cannot permeate as quickly through the membrane
  • Blood chemistry may be analysed by active skin lower layers to detect the amount of drugs needed in order to control such membranes. They can also monitor the rate of diffusion of the drug into the bloodstream
  • Clinics can communicate via the network with such systems and active skin devices react to such communication to effect drug delivery under remote supervision, while sensors in the body transmit their information via aerials to the clinic
  • Membranes may be made to react to environmental conditions such as pollen content. These can then form part of the sensory array as well as permitting appropriate diffusion of anti-allergy drugs
  • Drugs may be contained in external reservoirs or in skin capsules* or in patches e.g. nicotine patches. The rates of diffusion may be altered by means of active membranes or via skin conduits.

28     Animal husbandry technology

  • Active skin drug delivery systems* may be used extensively on farm livestock to control drugs use on a wide scale
  • Captured wild animals may be tagged and fitted with such systems to control their reproduction or behaviours, or to protect them against diseases
  • Active skin tags may be used to track and monitor the behaviour of such animals
  • Sensory stimulation and translation devices may be used to train animals for certain tasks
  • This may also be used in conjunction with control systems to automatically steer or co-ordinate groups of animals
  • Sensory systems in individual animals may be linked together with others, not necessarily of the same species, to make super-sensory collections of animals with unusual properties
  • Robotic animals may be able to interface with real ones by manipulating their sensory inputs
  • Drug development may be enhanced by gaining extra feedback via active skin technology on the condition of animals being experimented upon

Active Skin part 2: initial applications

When I had the active skin idea, it was obvious that there would be a lot of applications so I dragged the others from the office into a brainstorm to determine the scope of this concept. These are the original ideas from that 2001 brainstorm and the following days as I wrote them up, so don’t expect this to be an updated 2014 list, I might do that another time. Some of these have been developed at least in part by other companies in the years since, and many more are becoming more obvious as applications now that the technology foundations are catching up. I have a couple more parts of this to publish, with some more ideas. I’ve loosely listed them here in sections according to layer, but some of the devices may function at two or more different layers. I won’t repeat them, so it should be assumed that any of these could be appropriate to more than one layer. You’ll notice we didn’t bother with the wearables layer since even in 2001 wearable computing was already a well-established field in IT labs, with lots of ideas already. Slide2 Smart tattoos layer This layer is produced by deep printing well into the skin, possibly using similar means to that for tattooing. Some devices could be implanted by means of water or air pressure injection Slide10 Slide11 Slide6

  1. Display capability leading to static or multimedia display instead of static ink
  2. Use for multimedia body adornment, context dependent tattoos, tribalism
  3. monitor body chemicals for clues to emotional, hormonal or health state
  4. Measurement of blood composition to assist in drug dosing
  5. monitor nerve signals
  6. tattoos that show body’s medical state or other parameters
  7. health monitor displays, e.g.  blood insulin level, warning displays, instructions and recommendations on what actions to take
  8. show emotional state, emoticons shown according to biochemical or electrical cues
  9. may convert information on body’s state into other stimuli, such as heat or vibration
  10. may do same from external stimuli
  11. devices in different people could be linked in this way, forming emotilinks. Groups of people could be linked. People belonging to several such groups might have different signalling or position for each group.
  12. Identification, non-erasable, much less invasive than having an implant for the same purpose so would not have the same public objection. This could be electronic, or as simple as ultraviolet ink in a machine readable form such as barcode, snowflake etc
  13. Power supply for external devices using body’s energy supply, e.g. ATP
  14. Metallic ear implants on ear drum as hearing aid – electrostatic or magnetically driven
  15. Electronic signet ring, electronics that will only function when held by the rightful user
  16. Electronic signature devices

Mid-term layer Slide8 Slide9 Slide7Slide5 These components could be imprinted by printing onto the skin surface. Some could be implemented by adsorption from transfers, others by mechanical injection.

  1. Access technology – temporary access to buildings or theme parks. Rather than a simple stamp, people could have a smarter ID device printed into their skin
  2. The device could monitor where the wearer goes and for how long
  3. It could interact with monitoring equipment in buildings or equipment
  4. The device might include the use of invisible active inks on smart membrane
  5. Components could be made soluble to wash off easily, or more permanent
  6. Components could be photodegradable
  7. Could use ultraviolet inks that may be read by either external devices or other components
  8. Like smart tattoo ID systems, they could use snowflakes, colour snowflakes, barcodes or ‘digital paper’, to give a ‘digital skin’ functionality
  9. This could interact with ‘digital air’ devices
  10. Could be used to co-ordinate external device positioning accurately for medical reasons, e.g. acupuncture, TENS etc.
  11. Ultra-smart finger prints, wide range of functions based on interaction with computers and external devices, other smart skin systems, or digital paper
  12. Outputs DNA or DNA code to external reader for ID or medical reasons
  13. Combine with smart tags to achieve complex management and control systems, e.g. in package handling, product assembly
  14. SOS talismans, full health record built into body, including blood groups, tissue groups etc
  15. Degradable radiation monitors that can be positioned at key body points for more accurate dose measurement
  16. Could signal between such devices to a central display via the skin
  17. Devices might communicate using ad-hoc networks, could be used as a distributed antenna for external communication
  18. Thermometers & alarms. Use to measure heat for alarms for old people with degraded senses
  19. Directly interact with smart showers to prevent scalding
  20. Could monitor peoples behaviour for behaviour based alarms, e.g. fall alarms
  21. Overlay synthetic nervous system, use for medical prostheses, bionics or external interfacing
  22. Synthesised senses, making us sensitive to stimuli outside our biological capability
  23. Smart teeth, checks food for presence of bacteria or toxins
  24. Monitor breath for bad odours or illness
  25. Diabetic supervision, monitor ketones
  26. Monitor diet and link to smart devices in the home or hospital to police diet
  27. Modify taste by directly stimulating nerves in the tongue? Probably not feasible
  28. Calorie counting
  29. Smile enhancement, using light emission or fluorescence
  30. Smile training, e.g. tactile feedback on mouth position after operation
  31. Operation scar monitoring, patch across wound could monitor structural integrity,
  32. infection monitor based on detecting presence of harmful bacteria, or characteristics of surrounding skin affected by infection
  33. semi-permanent nail varnish with variable colour
  34. context sensitive nail varnish
  35. multimedia nail varnish
  36. Baby tagging for security purposes & wide range of medical applications such as breathing monitoring, temperature, movement etc
  37. Operation tagging to prevent mistakes, direct interaction with electronic equipment in theatre
  38. ITU applications
  39. Active alarms, integrated into external devices, directly initiate action
  40. Position based sensors and alarms
  41. Personality badge

Transfer layer This layer could use printing techniques straight onto the skin surface, or use transfers. A thin transfer membrane may stay in place for the duration of the required functionality, but could be removed relatively easily if necessary. It is envisaged that this membrane would be a thin polymer that acts as a carrier for the components as well as potentially shielding them from direct contact with the body or from the outside world. It could last for up to several days.

  1. Tactile interfaces – vibration membranes that convey texture or simple vibration
  2. Tactile stimuli as a means for alarms, coupled with heat, cold, or radiation sensors
  3. Text to Braille translation without need for external devices, using actuators in fingertip pads
  4. Use for navigation based on external magnetic field measurement, GPS or other positioning systems, translated into sensory stimuli
  5. Measurement and possible recording of force
  6. use to police child abuse, or other handling in the workplace as safety precautions. Could link to alarms
  7. motion detection, using kinetic or magnetic detection for use in sports or medical systems
  8. actuators built into transfers could give force feedback.
  9. Could directly link to nerve stimulation via lower layers to accomplish full neural feedback
  10. combine sensor and actuators to directly control avatars in cyberspace and for computer interfacing feedback
  11. interfaces for games
  12. short duration software licenses for evaluation purposes, needs fragile transfer so limits use to single user for lifetime of transfer
  13. sensors on eyes allow eye tracking
  14. direct retinal display, active contact lens replacement
  15. UV phosphors allow ultraviolet vision
  16. Actuators or tensioning devices could control wrinkles
  17. could assist in training for sports
  18. training for typing, playing music, music composition, virtual instruments
  19. keypad-free dialling
  20. air typing, drawing, sculpting
  21. type on arm using finger and arm patches
  22. finger snap control
  23. active sign languages
  24. ‘palm pilot’, computer on hand
  25. digital computer, count on fingers
  26. generic 3D interface
  27. use with transfer phone
  28. education use to explore surfaces of virtual objects in virtual environments
  29. use for teletravel navigation, or use in dangerous environments for controlling robotics
  30. direct nervous system links
  31. could assist in body language in conjunction with emotion sensors for socially disadvantaged people
  32. could act as signalling device in place of phone ring or audible alarms (actuator is not necessarily piezoelectric vibrator)
  33. doorbell on skin, personal doorbell, only alerts person of relevance
  34. active sunscreen using electrical stimuli to change sun-block cream to block UV when UV dose is reached
  35. could electrically alter heat radiation properties to enhance heating or cooling of body
  36. membranes with smart holes allow just the right amount of drug delivery in conjunction with smart tattoos. May use lower layers to accurately position and record dosing data
  37. Could use heat, cold, vibration as signals between people
  38. Electronic muscles – use polymer gel or memory metal or contracting wires
  39. Ultrasonic communication between devices and outside world
  40. Teledildonic applications
  41. Oscillating magnetic patches for medical reasons
  42. Applies voltage across wound to assist healing
  43. Smart Nicotine or antibiotic patches
  44. Painkilling patches using pain measurement (nerve activity) and directly controlling using electric stimuli, or administering drugs
  45. Placebo device patches
  46. Multimedia cosmetics
  47. Smart cosmetics, with actuators, smart tattoos that are removable
  48. Self organising cosmetic circuits, sensor, smart chemicals and actuator matrices
  49. Continuous electrolysis as hair growth limiter
  50. Electro-acupuncture with accurate positioning
  51. Control of itching to allow more rapid recovery
  52. Baby-care anti-scratch patches
  53. Printed aerials on body for device communication
  54. Detect, record, process and transmit nerve signals
  55. EEG use
  56. Thought control of devices
  57. Invisible scalp sensors for thought collection
  58. Emotion badge
  59. Truth badge, using body cues to convey whether lying or not. Could be unknown to wearer, transmitting by radio or ultrasound or in UV
  60. Context sensitive perfumes, emotionally sensitive perfumes
  61. Inverse heat sensitive perfumes, prevent too much being given off when warm
  62. Smell sensitive deodorant, or temperature dependent
  63. Context sensitive makeup, that behaves differently with different people at different situations or times
  64. Colour sensitive sun-block, protects more on fairer skin
  65. Active Bindies (dots on Indian women foreheads)
  66. Active jewellery
  67. Power generation for wearable electrical devices, using body heat, solar power, kinetics or skin contraction
  68. Microphones
  69. Frequency translation to allow hearing out of normal audible spectrum
  70. Bugs – unspecified functions in devices
  71. Mosquito killers, zapping insects with charge, or deterring with ultrasound or electrical signals
  72. Automatic antiseptic injections
  73. Use on animals for medical and pest control purposes
  74. Pet signalling and training
  75. Pet homing
  76. Pet ID systems
  77. Jam nerves
  78. Muscle toning
  79. Image capture, compound eyes, raster scan with micro-mirror and transverse lens
  80. Phones, watches, diaries etc
  81. Chameleon, cuttlefish pattern novelties
  82. Orifice monitoring
  83. Transfer body suit, self-organising polymer coating. Use for sports etc.
  84. Position-based devices
  85. Morse code devices for children’s communications
  86. Movement to voice translation – guidance for blind people or use for everyday navigation, sports feedback
  87. Strain alarms
  88. Use with smart drugs
  89. Smell as ring tone
  90. Smell as alarm
  91. Smell for emotion conveyance
  92. Snap fingers to switch lights on
  93. Tactile interfaces
  94. Emotional audio-video capture
  95. record on body condition
  96. wires on skin as addition to MIT bodynet
  97. tension control devices to assist wound healing
  98. avatar mimicry, electronically control ones appearance
  99. electronic paint-by numbers

100.means to charge up other devices by linking to external electrical device or by induction 101.devices that can read ultraviolet ink on sub layer 102.finger mouse, using fingertip sensors instead of mouse, can be used in 3D with appropriate technology base 103.Use of combinations of patches to monitor relative movements of body parts for use in training and medical treatments. Could communicate using infrared, radio or ultrasound 104.Use of an all-over skin that acts as a protective film so that each device doesn’t have to be dermatologically tested. Unlikely to be full body but could cover some key areas. E.g. some people are allergic to Elastoplast, so could have their more vulnerable areas covered. 105.Strain gauges on stomach warning of overeating 106.Strain gauge based posture alarms on the neck, back and shoulders etc 107.Breathalysers in smart teeth alert drivers to being over the limit and interact directly with car immobilisers 108.Pedometers and weight sensors built into feet to monitor exercise etc 109.Battlefield management systems using above systems with remote management Fully Removable layer

  1. Smart elastoplasts
  2. Smart contact lenses with cameras and video
  3. Smart suits with sensors and actuators for sports and work
  4. Almost all conventional personal electronic devices
  5. Web server
  6. Web sites