Category Archives: Arts

Will urbanization continue or will we soon reach peak city?

For a long time, people have been moving from countryside into cities. The conventional futurist assumption is that this trend will continue, with many mega-cities, some with mega-buildings. I’ve consulted occasionally on future buildings and future cities from a technological angle, but I’ve never really challenged the assumption that urbanization will continue. It’s always good  to challenge our assumptions occasionally, as things can change quite rapidly.

There are forces in both directions. Let’s list those that support urbanisation first.

People are gregarious. They enjoy being with other people. They enjoy eating out and having coffees with friends. They like to go shopping. They enjoy cinemas and theatre and art galleries and museums. They still have workplaces. Many people want to live close to these facilities, where public transport is available or driving times are relatively short. There are exceptions of course, but these still generally apply.

Even though many people can and do work from home sometimes, most of them still go to work, where they actually meet colleagues, and this provides much-valued social contact, and in spite of recent social trends, still provides opportunities to meet new friends and partners. Similarly, they can and do talk to friends via social media or video calls, but still enjoy getting together for real.

Increasing population produces extra pressure on the environment, and governments often try to minimize it by restricting building on green field land. Developers are strongly encouraged to build on brown field sites as far as possible.

Now the case against.

Truly Immersive Interaction

Talking on the phone, even to a tiny video image, is less emotionally rich than being there with someone. It’s fine for chats in between physical meetings of course, but the need for richer interaction still requires ‘being there’. Augmented reality will soon bring headsets that provide high quality 3D life-sized images of the person, and some virtual reality kit will even allow analogs of physical interaction via smart gloves or body suits, making social comms a bit better. Further down the road, active skin will enable direct interaction with the peripheral nervous system to produce exactly the same nerve signals as an actual hug or handshake or kiss, while active contact lenses will provide the same resolution as your retina wherever you gaze. The long term is therefore communication which has the other person effectively right there with you, fully 3D, fully rendered to the capability of your eyes, so you won’t be able to tell they aren’t. If you shake hands or hug or kiss, you’ll feel it just the same as if they were there too. You will still know they are not actually there, so it will never be quite as emotionally rich as if they were, but it can get pretty close. Close enough perhaps that it won’t really matter to most people most of the time that it’s virtual.

In the same long term, many AIs will have highly convincing personalities, some will even have genuine emotions and be fully conscious. I blogged recently on how that might happen if you don’t believe it’s possible:

Biomimetic insights for machine consciousness

None of the technology required for this is far away, and I believe a large IT company could produce conscious machines with almost human-level AI within a couple of years of starting the project. It won’t happen until they do, but when one starts trying seriously to do it, it really won’t be long. That means that as well as getting rich emotional interaction from other humans via networks, we’ll also get lots from AI, either in our homes, or on the cloud, and some will be in robots in our homes too.

This adds up to a strong reduction in the need to live in a city for social reasons.

Going to cinemas, theatre, shopping etc will also all benefit from this truly immersive interaction. As well as that, activities that already take place in the home, such as gaming will also advance greatly into more emotionally and sensory intensive experiences, along with much enhanced virtual tourism and virtual world tourism, virtual clubbing & pubbing, which barely even exist yet but could become major activities in the future.

Socially inclusive self-driving cars

Some people have very little social interaction because they can’t drive and don’t live close to public transport stops. In some rural areas, buses may only pass a stop once a week. Our primitive 20th century public transport systems thus unforgivably exclude a great many people from social inclusion, even though the technology needed to solve that has existed for many years.  Leftist value systems that much prefer people who live in towns or close to frequent public transport over everyone else must take a lot of the blame for the current epidemic of loneliness. It is unreasonable to expect those value systems to be replaced by more humane and equitable ones any time soon, but thankfully self-driving cars will bypass politicians and bureaucrats and provide transport for everyone. The ‘little old lady’ who can’t walk half a mile to wait 20 minutes in freezing rain for an uncomfortable bus can instead just ask her AI to order a car and it will pick her up at her front door and take her to exactly where she wants to go, then do the same for her return home whenever she wants. Once private sector firms like Uber provide cheap self-driving cars, they will be quickly followed by other companies, and later by public transport providers. Redundant buses may finally become extinct, replaced by better socially inclusive transport, large fleets of self-driving or driverless vehicles. People will be able to live anywhere and still be involved in society. As attendance at social events improves, so they will become feasible even in small communities, so there will be less need to go into a town to find one. Even political involvement might increase. Loneliness will decline as social involvement increases, and we’ll see many other social problems decline too.

Distribution drones

We hear a lot about upcoming redundancy caused by AI, but far less about the upside. AI might mean someone is no longer needed in an office, but it also makes it easier to set up a company and run it, taking what used to be just a hobby and making it into a small business. Much of the everyday admin and logistics can be automated Many who would never describe themselves as entrepreneurs might soon be making things and selling them from home and this AI-enabled home commerce will bring in the craft society. One of the big problems is getting a product to the customer. Postal services and couriers are usually expensive and very likely to lose or damage items. Protecting objects from such damage may require much time and expense packing it. Even if objects are delivered, there may be potential fraud with no-payers. Instead of this antiquated inefficient and expensive system, drone delivery could collect an object and take it to a local customer with minimal hassle and expense. Block-chain enables smart contracts that can be created and managed by AI and can directly link delivery to payment, with fully verified interaction video if necessary. If one happens, the other happens. A customer might return a damaged object, but at least can’t keep it and deny receipt. Longer distance delivery can still use cheap drone pickup to take packages to local logistics centers in smart crates with fully block-chained g-force and location detectors that can prove exactly who damaged it and where. Drones could be of any size, and of course self-driving cars or pods can easily fill the role too if smaller autonomous drones are inappropriate.

Better 3D printing technology will help to accelerate the craft economy, making it easier to do crafts by upskilling people and filling in some of their skill gaps. Someone with visual creativity but low manual skill might benefit greatly from AI model creation and 3D printer manufacture, followed by further AI assistance in marketing, selling and distribution. 3D printing might also reduce the need to go to town to buy some things.

Less shopping in high street

This is already obvious. Online shopping will continue to become a more personalized and satisfying experience, smarter, with faster delivery and easier returns, while high street decline accelerates. Every new wave of technology makes online better, and high street stores seem unable or unwilling to compete, in spite of my wonderful ‘6s guide’:

The future of high street survival: the 6S guide

Those that are more agile still suffer decline of shopper numbers as the big stores fail to attract them so even smart stores will find it harder to survive.

Improving agriculture

Farming technology has doubled the amount of food production per hectare in the last few decades. That may happen again by mid-century. Meanwhile, the trend is towards higher vegetable and lower meat consumption. Even with an increased population, less land will be needed to grow our food. As well as reducing the need to protect green belts, that will also allow some of our countryside to be put under better environmental stewardship programs, returning much of it to managed nature. What countryside we have will be healthier and prettier, and people will be drawn to it more.

Improving social engineering

Some objections to green-field building can be reduced by making better use of available land. Large numbers of new homes are needed and they will certainly need some green field to be used, but given the factors already listed above, a larger number of smaller communities might be better approach. Amazingly, in spite of decades of dating technology proving that people can be matched up easily using AI, there is still no obvious use of similar technology to establish new communities by blending together people who are likely to form effective communities. Surely it must be feasible to advertise a new community building program that wants certain kinds of people in it – even an Australian style points system might work sometimes. Unless sociologists have done nothing for the past decades, they must surely know what types of people work well together by now? If the right people live close to each other, social involvement will be high, loneliness low, health improved, care costs minimized, the need for longer distance travel reduced and environmental impact minimized. How hard can it be?

Improving building technology such as 3D printing and robotics will allow more rapid construction, so that when people are ready and willing to move, property suited to them can be available soon.

Lifestyle changes also mean that homes don’t need to be as big. A phone today does what used to need half a living room of technology and space. With wall-hung displays and augmented reality, decor can be partly virtual, and even a 450 sq ft apartment is fine as a starter place, half as big as was needed a few decades ago, and that could be 3D printed and kitted out in a few days.

Even demographic changes favor smaller communities. As wealth increases, people have smaller families, i.e fewer kids. That means fewer years doing the school run, so less travel, less need to be in a town. Smaller schools in smaller communities can still access specialist lessons via the net.

Increasing wealth also encourages and enables people to a higher quality of life. People who used to live in a crowded city street might prefer a more peaceful and spacious existence in a more rural setting and will increasingly be able to afford to move. Short term millennial frustrations with property prices won’t last, as typical 2.5% annual growth more than doubles wealth by 2050 (though automation and its assorted consequences will impact on the distribution of that wealth).

Off-grid technology

Whereas one of the main reasons to live in urban areas was easy access to telecomms, energy and water supply and sewerage infrastructure, all of these can now be achieved off-grid. Mobile networks provide even broadband access to networks. Solar or wind provide easy energy supply. Water can be harvested out of the air even in arid areas (http://www.dailymail.co.uk/sciencetech/article-5840997/The-solar-powered-humidity-harvester-suck-drinkable-water-AIR.html) and human and pet waste can be used as biomass for energy supply too, leaving fertilizer as residue.

There are also huge reasons that people won’t want to live in cities, and they will also cause deurbansisation.

The biggest by far in the problem of epidemics. As antibiotic resistance increases, disease will be a bigger problem. We may find good antibiotics alternatives but we may not. If not, then we may see some large cities where disease runs rampant and kills hundreds of thousands of people, perhaps even millions. Many scientists have listed pandemics among their top ten threats facing humanity. Obviously, being in a large city will incur a higher risk of becoming a victim, so once one or two incidents have occurred, many people will look for options to leave cities everywhere. Linked to this is bioterrorism, where the disease is deliberate, perhaps created in a garden shed by someone who learned the craft in one of today’s bio-hacking clubs. Disease might be aimed at a particular race, gender or lifestyle group or it may simply be designed to be as contagious and lethal as possible to everyone.

I’m still not saying we won’t have lots of people living in cities. I am saying that more people will feel less need to live in cities and will instead be able to find a small community where they can be happier in the countryside. Consequently, many will move out of cities, back to more rural living in smaller, friendlier communities that improving technology makes even more effective.

Urbanization will slow down, and may well go into reverse. We may reach peak city soon.

 

 

Beyond VR: Computer assisted dreaming

I first played with VR in 1983/1984 while working in the missile industry. Back then we didn’t call it VR, we just called it simulation but it was actually more intensive than VR, just as proper flight simulators are. Our office was a pair of 10m wide domes onto which video could be projected, built decades earlier, in the 1950s I think. One dome had a normal floor, the other had a hydraulic platform that could simulate being on a ship. The subject would stand on whichever surface was appropriate and would see pretty much exactly what they would see in a real battlefield. The missile launcher used for simulation was identical to a real one and showed exactly the same image as a real one would. The real missile was not present of course but its weight was simulated and when the fire button was pressed, a 140dB bang was injected into the headset and weights and pulleys compensated for the 14kg of weight, suddenly vanishing from the shoulder. The experience was therefore pretty convincing and with the loud bang and suddenly changing weight, it was almost as hard to stand steady and keep the system on target as it would be in real life – only the presumed fear and knowledge of the reality of the situation was different.

Back then in 1983, as digital supercomputers had only just taken over from analog ones for simulation, it was already becoming obvious that this kind of computer simulation would one day allow ‘computer assisted dreaming’. (That’s one of the reasons I am irritated when Jaron Lanier is credited for inventing VR – highly realistic simulators and the VR ideas that sprung obviously from them had already been around for decades. At best, all he ‘invented’ was a catchy name for a lower cost, lower quality, less intense simulator. The real inventors were those who made the first generation simulators long before I was born and the basic idea of VR had already been very well established.)

‘Computer assisted dreaming’ may well be the next phase of VR. Today in conventional VR, people are immersed in a computer generated world produced by a computer program (usually) written by others. Via trial and feedback, programmers make their virtual worlds better. As AI and sensor technology continue rapid progress, this is very likely to change to make worlds instantly responsive to the user. By detecting user emotions, reactions, gestures and even thoughts and imagination, it won’t be long before AI can produce a world in real time that depends on those thoughts, imagination and emotions rather than putting them in a pre-designed virtual world. That world would depend largely on your own imagination, upskilled by external AI. You might start off imagining you’re on a beach, then AI might add to it by injecting all sorts of things it knows you might enjoy from previous experiences. As you respond to those, it picks up on the things you like or don’t like and the scene continues to adapt and evolve, to make it more or less pleasant or more or less exciting or more or less challenging etc., depending on your emotional state, external requirements and what it thinks you want from this experience. It would be very like being in a dream – computer assisted lucid dreaming, exactly what I wanted to make back in 1983 after playing in that simulator.

Most people enjoy occasional lucid dreams, where they realise they are dreaming and can then decide what happens next. Making VR do exactly that would be better than being trapped in someone else’s world. You could still start off with whatever virtual world you bought, a computer game or training suite perhaps, but it could adapt to you, your needs and desires to make it more compelling and generally better.

Even in shared experiences like social games, experiences could be personalised. Often all players need to see the same enemies in the same locations in the same ways to make it fair, but that doesn’t mean that the situation can’t adapt to the personalities of those playing. It might actually improve the social value if each time you play it looks different because your companions are different. You might tease a friend if every time you play with them, zombies or aliens always have to appear somehow, but that’s all part of being friends. Exploring virtual worlds with friends, where you both see things dependent on your friend’s personality would help bonding. It would be a bit like exploring their inner world. Today, you only explore the designer’s inner world.

This sort of thing would be a superb development and creativity tool. It could allow you to explore a concept you have in your head, automatically feeding in AI upskilling to amplify your own thoughts and ideas, showing you new paths to explore and helping you do so. The results would still be extremely personal to you, but you on a good day. You could accomplish more, have better visions, imagine more creative things, do more with whatever artistic talent you have. AI could even co-create synthetic personas, make virtual friends you can bond with, share innermost thoughts with, in total confidence (assuming the company you bought the tool from is trustworthy and isn’t spying on you or selling your details, so maybe best not to buy it from Facebook then).

And it would have tremendous therapeutic potential too. You could explore and indulge both enjoyable and troublesome aspects of your inner personality, to build on the good and alleviate or dispel the bad. You might become less troubled, less neurotic, more mentally healthy. You could build your emotional and creative skills. You could become happier and more fulfilled. Mental health improvement potential on its own makes this sort of thing worth developing.

Marketers would obviously try to seize control as they always do, and advertising is already adapting to VR and will continue into its next phases of development. Your own wants and desires might help guide the ‘dreaming’, but marketers will inevitably have some control over what else is injected, and will influence algorithms and AI in how it chooses how to respond to your input. You might be able to choose much of the experience, but others will still want and try to influence and manipulate you, to change your mindset and attitudes in their favour. That will not change until the advertising business model changes. You might be able to buy devices or applications that are entirely driven by you and you alone, but it is pretty certain that the bulk of products and services available will be at least partly financed by those who want to have some control of what you experience.

Nevertheless, computer-assisted dreaming could be a much more immersive and personal experience than VR, being more like an echo of your own mind and personality than external vision, more your own creation, less someone else’s. In fact, echo sounds a better term too. Echo reality, ER, or maybe personal reality, pereal, or mental echo, ME. Nah, maybe we need Lanier to invent a catchy name again, he is good at that. That 1983 idea could soon become reality.

 

Guest Post: Blade Runner 2049 is the product of decades of fear propaganda. It’s time to get enlightened about AI and optimistic about the future

This post from occasional contributor Chris Moseley

News from several months ago that more than 100 experts in robotics and artificial intelligence were calling on the UN to ban the development and use of killer robots is a reminder of the power of humanity’s collective imagination. Stimulated by countless science fiction books and films, robotics and AI is a potent feature of what futurist Alvin Toffler termed ‘future shock’. AI and robots have become the public’s ‘technology bogeymen’, more fearsome curse than technological blessing.

And yet curiously it is not so much the public that is fomenting this concern, but instead the leading minds in the technology industry. Names such as Tesla’s Elon Musk and Stephen Hawking were among the most prominent individuals on a list of 116 tech experts who have signed an open letter asking the UN to ban autonomous weapons in a bid to prevent an arms race.

These concerns appear to emanate from decades of titillation, driven by pulp science fiction writers. Such writers are insistent on foretelling a dark, foreboding future where intelligent machines, loosed from their binds, destroy mankind. A case in point – this autumn, a sequel to Ridley Scott’s Blade Runner has been released. Blade Runner,and 2017’s Blade Runner 2049, are of course a glorious tour de force of story-telling and amazing special effects. The concept for both films came from US author Philip K. Dick’s 1968 novel, Do Androids Dream of Electric Sheep? in which androids are claimed to possess no sense of empathy eventually require killing (“retiring”) when they go rogue. Dick’s original novel is an entertaining, but an utterly bleak vision of the future, without much latitude to consider a brighter, more optimistic alternative.

But let’s get real here. Fiction is fiction; science is science. For the men and women who work in the technology industry the notion that myriad Frankenstein monsters can be created from robots and AI technology is assuredly both confused and histrionic. The latest smart technologies might seem to suggest a frightful and fateful next step, a James Cameron Terminator nightmare scenario. It might suggest a dystopian outcome, but rational thought ought to lead us to suppose that this won’t occur because we have historical precedent on our side. We shouldn’t be drawn to this dystopian idée fixe because summoning golems and ghouls ignores today’s global arsenal of weapons and the fact that, more 70 years after Hiroshima, nuclear holocaust has been kept at bay.

By stubbornly pursuing the dystopian nightmare scenario, we are denying ourselves from marvelling at the technologies which are in fact daily helping mankind. Now frame this thought in terms of human evolution. For our ancient forebears a beneficial change in physiology might spread across the human race over the course of a hundred thousand years. Today’s version of evolution – the introduction of a compelling new technology – spreads throughout a mass audience in a week or two.

Curiously, for all this light speed evolution mass annihilation remains absent – we live on, progressing, evolving and improving ourselves.

And in the workplace, another domain where our unyielding dealers of dystopia have exercised their thoughts, technology is of course necessarily raising a host of concerns about the future. Some of these concerns are based around a number of misconceptions surrounding AI. Machines, for example, are not original thinkers and are unable to set their own goals. And although machine learning is able to acquire new information through experience, for the most part they are still fed information to process. Humans are still needed to set goals, provide data to fuel artificial intelligence and apply critical thinking and judgment. The familiar symbiosis of humans and machines will continue to be salient.

Banish the menace of so-called ‘killer robots’ and AI taking your job, and a newer, fresher world begins to emerge. With this more optimistic mind-set in play, what great feats can be accomplished through the continued interaction between artificial intelligence, robotics and mankind?

Blade Runner 2049 is certainly great entertainment – as Robbie Collin, The Daily Telegraph’s film critic writes, “Roger Deakins’s head-spinning cinematography – which, when it’s not gliding over dust-blown deserts and teeming neon chasms, keeps finding ingenious ways to make faces and bodies overlap, blend and diffuse.” – but great though the art is, isn’t it time to change our thinking and recast the world in a more optimistic light?

——————————————————————————————

Just a word about the film itself. Broadly, director Denis Villeneuve’s done a tremendous job with Blade Runner 2049. One stylistic gripe, though. While one wouldn’t want Villeneuve to direct a slavish homage to Ridley Scott’s original, the alarming switch from the dreamlike techno miasma (most notably, giant nude step-out-the-poster Geisha girls), to Mad Max II Steampunk (the junkyard scenes, complete with a Fagin character) is simply too jarring. I predict that there will be a director’s cut in years to come. Shorter, leaner and sans Steampunk … watch this space!

Author: Chris Moseley, PR Manager, London Business School

cmoseley@london.edu

Tel +44 7511577803

Instant buildings: Kinetic architecture

Revisiting an idea I raised in a blog in July last year. Even I think it was badly written so it’s worth a second shot.

Construction techniques are diverse and will get diverser. Just as we’re getting used to seeing robotic bricklaying and 3D printed walls, another technique is coming over the horizon that will build so fast I call it kinetic architecture. The structure will be built so quickly it can build a bridge from one side just by building upwards at an angle, and the structure will span the gap and meet the ground at the other side before gravity has a chance to collapse it.

The key to such architecture is electromagnetic propulsion, the same as on the Japanese bullet trains or the Hyperloop, using magnetic forces caused by electric currents to propel the next piece along the existing structure to the front end where it acts as part of the path for the next. Adding pieces quickly enough leads to structures that can follow elegant paths, as if the structure is a permanent trace of the path an object would have followed if it were catapulted into the air and falling due to gravity. It could be used for buildings, bridges, or simply art.

It will become possible thanks to new materials such as graphene and other carbon composites using nanotubes. Graphene combines extreme strength, hence lightness for a particular strength requirement, with extreme conductivity, allowing it to carry very high electric currents, and therefore able to generate high magnetic forces. It is a perfect material for kinetic architecture. Pieces would have graphene electromagnet circuitry printed on their surface. Suitable circuit design would mean that every extra piece falling into place becomes an extension to the magnetic railway transporting the next piece. Just as railroads may be laid out just in front of the train using pieces carried by the train, so pieces shot into the air provide a self-building path for other pieces to follow. A building skeleton could be erected in seconds. I mentioned in my original blog (about carbethium) that this could be used to create the sort of light bridges we see in Halo. A kinetic architecture skeleton would be shot across the divide and the filler pieces in between quickly transported into place along the skeleton and assembled.

See https://timeguide.wordpress.com/2016/07/25/carbethium-a-better-than-scifi-material/. The electronic circuitry potential for graphene also allows for generating plasma or simply powering LEDs to give a nice glow just like the light bridges too.

Apart from clever circuit design, kinetic architecture also requires pieces that can interlock. The kinetic energy of the new piece arriving at the front edge would ideally be sufficient to rotate it into place, interlocking with previous front edge. 3d interlocking is tricky but additional circuitry can provide additional magnetic forces to rotate and translate pieces if kinetic energy alone isn’t enough. The key is that once interlocked, the top surface has to form a smooth continuous line with the previous one, so that pieces can move along smoothly. Hooks can catch an upcoming piece to make it rotate, with the hooks merging nicely with part of the new piece as it falls into place, making those hooks part of a now smooth surface and a new hook at the new front end. You’ll have to imagine it yourself, I can’t draw it. Obviously, pieces would need precision engineering because they’d need to fit precisely to give the required strength and fit.

Ideally, with sufficiently well-designed pieces, it should be possible to dismantle the structure by reversing the build process, unlocking each end piece in turn and transporting it back to base along the structure until no structure remains.

I can imagine such techniques being used at first for artistic creations, sculptures using beautiful parabolic arcs. But they could also be used for rapid assembly for emergency buildings, instant evacuation routes for tall buildings, or to make temporary bridges after an earthquake destroyed a permanent one. When a replacement has been made, the temporary one could be rolled back up and used elsewhere. Maybe it could become routine for making temporary structures that are needed quickly such as for pop concerts and festivals. One day it could become an everyday building technique. 

Tips for surviving the future

Challenging times lie ahead, but stress can be lessened by being prepared. Here are my top tips, with some explanation so you can decide whether to accept them.

1 Adaptability is more important than specialization

In a stable environment, being the most specialized means you win most of the time in your specialist field because all your skill is concentrated there.

However, in a fast-changing environment, which is what you’ll experience for the rest of your life, if you are too specialized, you are very likely to find you are best in a filed that no longer exists, or is greatly diminished in size. If you make sure you are more adaptable, then you’ll find it easier to adapt to a new area so your career won’t be damaged when you are forced to change field slightly. Adaptability comes at a price – you will find it harder to be best in your field and will have to settle for 2nd or 3rd much of the time, but you’ll still be lucratively employed when No 1 has been made redundant.

2 Interpersonal, human, emotional skills are more important than knowledge

You’ve heard lots about artificial intelligence (AI) and how it is starting to do to professional knowledge jobs what the steam engine once did to heavy manual work. Some of what you hear is overstated. Google search is a simple form of AI. It has helped everyone do more with their day. It effectively replaced a half day searching for information in a library with a few seconds typing, but nobody has counted how many people it made redundant, because it hasn’t. It up-skilled everyone, made them more effective, more valuable to their employer. The next generation of AI may do much the same with most employees, up-skilling them to do a better job than they were previously capable of, giving them better job satisfaction and their employer better return. Smart employers will keep most of their staff, only getting rid of those entirely replaceable by technology. But some will take the opportunity to reduce costs, increase margins, and many new companies simply won’t employ as many people in similar jobs, so some redundancy is inevitable. The first skills to go are simple administration and simple physical tasks, then more complex admin or physical stuff, then simple managerial or professional tasks, then higher managerial and professional tasks. The skills that will be automated last are those that rely on first hand experience of understanding of and dealing with other people. AI can learn some of that and will eventually become good at it, but that will take a long time. Even then, many people will prefer to deal with another person than a machine, however smart and pleasant it is.

So interpersonal skills, human skills, emotional skills, caring skills, leadership and motivational skills, empathetic skills, human judgement skills, teaching and training skills will be harder to replace. They also tend to be ones that can easily transfer between companies and even sectors. These will therefore be the ones that are most robust against technology impact. If you have these in good shape, you’ll do just fine. Your company may not need you any more one day, but another will.

I called this the Care Economy when I first started writing and lecturing about it 20-odd years ago. I predicted it would start having an affect mid teen years of this century and I got that pretty accurate I think. There is another side that is related but not the same:

3 People will still value human skill and talent just because it’s human

If you buy a box of glasses from your local supermarket, they probably cost very little and are all identical. If you buy some hand-made crystal, it costs a lot more, even though every glass is slightly different. You could call that shoddy workmanship compared to a machine. But you know that the person who made it trained for many years to get a skill level you’d never manage, so you actually value them far more, and are happy to pay accordingly. If you want to go fast, you could get in your car, but you still admire top athletes because they can do their sport far better than you. They started by having great genes for sure, but then also worked extremely hard and suffered great sacrifice over many years to get to that level. In the future, when robots can do any physical task more accurately and faster than people, you will still value crafts and still enjoy watching humans compete. You’ll prefer real human comedians and dancers and singers and musicians and artists. Talent and skill isn’t valued because of the specification of the end result, they are valued because they are measured on the human scale, and you identify closely with that. It isn’t even about being a machine. Gorillas are stronger, cheetahs are faster, eagles have better eyesight and cats have faster reflexes than you. But they aren’t human so you don’t care. You will always measure yourself and others by human scales and appreciate them accordingly.

4 Find hobbies that you love and devote time to developing them

As this care economy and human skills dominance grows in importance, people will also find that AI and robotics helps them in their own hobbies, arts and crafts, filling in skill gaps, improving proficiency. A lot of people will find their hobbies can become semi-professional. At the same time, we’ll be seeing self-driving cars and drones making local delivery far easier and cheaper, and AI will soon make business and tax admin easy too. That all means that barriers to setting up a small business will fall through the floor, while the market for personalized, original products made my people will increase, especially local people. You’ll be able to make arts and crafts, jam or cakes, grow vegetables, make clothes or special bags or whatever, and easily sell them. Also at the same time, automation will be making everyday things cheaper, while expanding the economy, so the welfare floor will be raised, and you could probably manage just fine with a small extra income. Government is also likely to bring in some sort of citizen wage or to encourage such extra entrepreneurial activity without taxing it away, because they also have a need to deal with the social consequences of automation. So it will all probably come together quite well. If the future means you can make extra money or even a full income by doing a hobby you love, there isn’t much to dislike there.

5 You need to escape from your social media bubble

If you watch the goings on anywhere in the West today, you must notice that the Left and the Right don’t seem to get along any more. Each has become very intolerant of the other, treating them more like enemy aliens than ordinary neighbors. A lot of that is caused by people only being exposed to views they agree with. We call that social media bubbles, and they are extremely dangerous. The recent USA trouble is starting to look like some folks want a re-run of the Civil War. I’ve blogged lots about this topic and won’t do it again now except to say that you need to expose yourself to a wide subsection of society. You need to read paper and magazines and blogs, and watch TV or videos from all side of the political spectrum, not just those you agree with, not just those that pat you on the back every day and tell you that you’re right and it is all the other lot’s fault. If you don’t; if you only expose yourself to one side because you find the other side distasteful, then I can’t say this loud enough: You are part of the problem. Get out of your safe space and your social media tribe, expose yourself to the whole of society, not just one tribe. See that there are lots of different views out there but it doesn’t mean the rest are all nasty. Almost everyone is actually quite nice and almost everyone wants a fairer world, an end to exploitation, peace, tolerance and eradication of disease and poverty. The differences are almost all in the world model that they use to figure out the best way to achieve it. Lefties tend to opt for idealistic theoretical models and value the intention behind it, right-wingers tend to be pragmatic and go for what they think works in reality, valuing the outcome. It is actually possible to have best friends who you disagree with. I don’t often agree with any of mine. If you feel too comfortable in your bubble to leave, remember this: your market is only half the population at best , you’re excluding the other half, or even annoying them so they become enemies rather than neutral. If you stay in a bubble, you are damaging your own future, and helping to endanger the whole of society.

6 Don’t worry

There are lots of doom-mongers out there, and I’d be the first to admit that there are many dangers ahead. But if you do the things above, there probably isn’t much more you can do. You can moan and demonstrate and get angry or cry in the corner, but how would that benefit you? Usually when you analyse things long enough from all angles, you realize that the outcome of many of the big political battles is pretty much independent of who wins.  Politicians usually have far less choice than they want you to believe and the big forces win regardless of who is in charge. So there isn’t much point in worrying about it, it will probably all come out fine in the end. Don’t believe me. Take the biggest UK issue right now: Brexit. We are leaving. Does it matter? No. Why? Well, the EU was always going to break up anyway. Stresses and strains have been increasing for years and are accelerating. For all sorts of reasons, and regardless of any current bluster by ‘leaders’, the EU will head away from the vision of a United States of Europe. As tensions and conflicts escalate, borders will be restored. Nations will disagree with the EU ideal. One by one, several countries will copy the UK and have referendums, and then leave. At some point, the EU will be much smaller, and there will be lots of countries outside with their own big markets. They will form trade agreements, the original EU idea, the Common Market, will gradually be re-formed, and the UK will be part of it – even Brexiters want tariff-free-trade agreements. If the UK had stayed, the return to the Common Market would eventually have happened anyway, and leaving has only accelerated it. All the fighting today between Brexiteers and Remainers achieves nothing. It didn’t matter which way we voted, it only really affected timescale. The same applies to many other issues that cause big trouble in the short term. Be adaptable, don’t worry, and you’ll be just fine.

7 Make up your own mind

As society and politics have become highly polarised, any form of absolute truth is becoming harder to find. Much of what you read has been spun to the left or right. You need to get information from several sources and learn to filter the bias, and then make up your own mind on what the truth is. Free thinking is increasingly rare but learning and practicing it means you’ll be able to make correct conclusions about the future while others are led astray. Don’t take anyone else’s word for things. Don’t be anyone’s useful idiot. Think for yourself.

8 Look out for your friends, family and community.

I’d overlooked an important tip in my original posting. As Jases commented sensibly, friends, family and community are the security that doesn’t disappear in troubled economic times. Independence is overrated. I can’t add much to that.

AI is mainly a stimulative technology that will create jobs

AI has been getting a lot of bad press the last few months from doom-mongers predicting mass unemployment. Together with robotics, AI will certainly help automate a lot of jobs, but it will also create many more and will greatly increase quality of life for most people. By massively increasing the total effort available to add value to basic resources, it will increase the size of the economy and if that is reasonably well managed by governments, that will be for all our benefit. Those people who do lose their jobs and can’t find or create a new one could easily be supported by a basic income financed by economic growth. In short, unless government screws up, AI will bring huge benefits, far exceeding the problems it will bring.

Over the last 20 years, I’ve often written about the care economy, where the more advanced technology becomes, the more it allows to concentrate on those skills we consider fundamentally human – caring, interpersonal skills, direct human contact services, leadership, teaching, sport, the arts, the sorts of roles that need emphatic and emotional skills, or human experience. AI and robots can automate intellectual and physical tasks, but they won’t be human, and some tasks require the worker to be human. Also, in most careers, it is obvious that people focus less and less on those automatable tasks as they progress into the most senior roles. Many board members in big companies know little about the industry they work in compared to most of their lower paid workers, but they can do that job because being a board member is often more about relationships than intellect.

AI will nevertheless automate many tasks for many workers, and that will free up much of their time, increasing their productivity, which means we need fewer workers to do those jobs. On the other hand, Google searches that take a few seconds once took half a day of research in a library. We all do more with our time now thanks to such simple AI, and although all those half-days saved would add up to a considerable amount of saved work, and many full-time job equivalents, we don’t see massive unemployment. We’re all just doing better work. So we can’t necessarily conclude that increasing productivity will automatically mean redundancy. It might just mean that we will do even more, even better, like it has so far. Or at least, the volume of redundancy might be considerably less. New automated companies might never employ people in those roles and that will be straight competition between companies that are heavily automated and others that aren’t. Sometimes, but certainly not always, that will mean traditional companies will go out of business.

So although we can be sure that AI and robots will bring some redundancy in some sectors, I think the volume is often overestimated and often it will simply mean rapidly increasing productivity, and more prosperity.

But what about AI’s stimulative role? Jobs created by automation and AI. I believe this is what is being greatly overlooked by doom-mongers. There are three primary areas of job creation:

One is in building or programming robots, maintaining them, writing software, or teaching them skills, along with all the associated new jobs in supporting industry and infrastructure change. Many such jobs will be temporary, lasting a decade or so as machines gradually take over, but that transition period is extremely valuable and important. If anything, it will be a lengthy period of extra jobs and the biggest problem may well be filling those jobs, not widespread redundancy.

Secondly, AI and robots won’t always work direct with customers. Very often they will work via a human intermediary. A good example is in medicine. AI can make better diagnoses than a GP, and could be many times cheaper, but unless the patient is educated, and very disciplined and knowledgeable, it also needs a human with human skills to talk to a patient to make sure they put in correct information. How many times have you looked at an online medical diagnosis site and concluded you have every disease going? It is hard to be honest sometimes when you are free to interpret every possible symptom any way you want, much easier to want to be told that you have a special case of wonderful person syndrome. Having to explain to a nurse or technician what is wrong forces you to be more honest about it. They can ask you similar questions, but your answers will need to be moderated and sensible or you know they might challenge you and make you feel foolish. You will get a good diagnosis because the input data will be measured, normalized and scaled appropriately for the AI using it. When you call a call center and talk to a human, invariably they are already the front end of a massive AI system. Making that AI bigger and better won’t replace them, just mean that they can deal with your query better.

Thirdly, and I believe most importantly of all, AI and automation will remove many of the barriers that stop people being entrepreneurs. How many business ideas have you had and not bothered to implement because it was too much effort or cost or both for too uncertain a gain? 10? 100? 1000? Suppose you could just explain your idea to your home AI and it did it all for you. It checked the idea, made a model, worked out how to make it work or whether it was just a crap idea. It then explained to you what the options were and whether it would be likely to work, and how much you might earn from it, and how much you’d actually have to do personally and how much you could farm out to the cloud. Then AI checked all the costs and legal issues, did all the admin, raised the capital by explaining the idea and risks and costs to other AIs, did all the legal company setup, organised the logistics, insurance, supply chains, distribution chains, marketing, finance, personnel, ran the payroll and tax. All you’d have to do is some of the fun work that you wanted to do when you had the idea and it would find others or machines or AI to fill in the rest. In that sort of world, we’d all be entrepreneurs. I’d have a chain of tea shops and a fashion empire and a media empire and run an environmental consultancy and I’d be an artist and a designer and a composer and a genetic engineer and have a transport company and a construction empire. I don’t do any of that because I’m lazy and not at all entrepreneurial, and my ideas all ‘need work’ and the economy isn’t smooth and well run, and there are too many legal issues and regulations and it would all be boring as hell. If we automate it and make it run efficiently, and I could get as much AI assistance as I need or want at every stage, then there is nothing to stop me doing all of it. I’d create thousands of jobs, and so would many other people, and there would be more jobs than we have people to fill them, so we’d need to build even more AI and machines to fill the gaps caused by the sudden economic boom.

So why the doom? It isn’t justified. The bad news isn’t as bad as people make out, and the good news never gets a mention. Adding it together, AI will stimulate more jobs, create a bigger and a better economy, we’ll be doing far more with our lives and generally having a great time. The few people who will inevitably fall through the cracks could easily be financed by the far larger economy and the very generous welfare it can finance. We can all have the universal basic income as our safety net, but many of us will be very much wealthier and won’t need it.

 

Fluorescent microsphere mist displays

A few 3D mist displays have been demonstrated over the last decade. I’ve seen a couple at trade shows and have been impressed. To date, they use mists or curtains of tiny water droplets to make a 3D space onto which to project an image, so you get a walk-through 3D life-sized display. Like this:

Leia Display System Uses A Screen Made Of Water Mist To Display 3D Projections

or check out: http://ixfocus.com/top-10-best-3d-water-projections-ever/

Two years ago, I suggested using a forehead-mounted mist projector:

Forehead 3D mist projector

so you could have a 3D image made right in front of you anywhere.

This week, a holographic display has been doing the rounds on Twitter, called Gatebox:

https://www.geek.com/tech/gatebox-wants-to-be-your-personal-holographic-companion-1682967/

It looks OK but mist displays might be better solution for everyday use because they can be made a lot bigger more cheaply. However, nobody really wants water mist causing electrical problems in their PCs or making their notebook paper soggy. You can use smoke as a mist substitute but then you have a cloud of smoke around you. So…

Suppose instead of using water droplets and walking around veiled in fog or smoke or accompanied by electrical crackling and dead PCs, that the mist was not made of water droplets but tiny dry and obviously non-toxic particles such as fluorescent micro-spheres that are invisible to the naked eye and transparent to visible light so you can’t see the mist at all, and it won’t make stuff damp. Instead of projecting visible light, the particles are made of fluorescent material, so that they are illuminated by a UV projector and fluoresce with the right colour to make the visible display. There are plenty of fluorescent materials that could be made into tiny particles, even nano-particles, and made into an invisible mist that produces a bright and high-resolution display. Even if non-toxic is too big an ask, or the fluorescent material is too expensive to waste, a large box that keeps them contained and recycles them for the next display could still be bigger, better, brighter and cheaper than a large holographic display.

Remember, you saw it here first. My 101st invention of 2016.

Colour changing cars, everyday objects and makeup

http://www.theverge.com/2016/11/24/13740946/dutch-scientists-use-color-changing-graphene-bubbles-to-create-mechanical-pixels shows how graphene can be used to make displays with each pixel changing colour according to mechanical deformation.

Meanwhile, Lexus have just created a car with a shell covered in LEDs so it can act as a massive display.

http://www.theverge.com/2016/12/5/13846396/lexus-led-lit-is-colors-dua-lipa-vevo

In 2014 I wrote about using polymer LED displays for future Minis so it’s nice to see another prediction come true.

Looking at the mechanical pixels though, it is clear that mechanical pixels could respond directly to sound, or to turbulence of passing air, plus other vibration that arises from motion on a road surface, or the engine. Car panel colours could change all the time powered by ambient energy. Coatings on any solid objects could follow, so people might have plenty of shimmering colours in their everyday environment. Could. Not sure I want it, but they could.

With sound as a control system, sound wave generators at the edges or underneath such surfaces could produce a wide variety of pleasing patterns. We could soon have furniture that does a good impression of being a cuttlefish.

I often get asked about smart makeup, on which I’ve often spoken since the late 90s. Thin film makeup displays could use this same tech. So er, we could have people with makeup pretending to be cuttlefish too. I think I’ll quit while I’m ahead.

Future Augmented Reality

AR has been hot on the list of future IT tech for 25 years. It has been used for various things since smartphones and tablets appeared but really hit the big time with the recent Pokemon craze.

To get an idea of the full potential of augmented reality, recognize that the web and all its impacts on modern life came from the convergence of two medium sized industries – telecoms and computing. Augmented reality will involve the convergence of everything in the real world with everything in the virtual world, including games, media, the web, art, data, visualization, architecture, fashion and even imagination. That convergence will be enabled by ubiquitous mobile broadband, cloud, blockchain payments, IoT, positioning and sensor tech, image recognition, fast graphics chips, display and visor technology and voice and gesture recognition plus many other technologies.

Just as you can put a Pokemon on a lawn, so you could watch aliens flying around in spaceships or cartoon characters or your favorite celebs walking along the street among the other pedestrians. You could just as easily overlay alternative faces onto the strangers passing by.

People will often want to display an avatar to people looking at them, and that could be different for every viewer. That desire competes with the desire of the viewer to decide how to see other people, so there will be some battles over who controls what is seen. Feminists will certainly want to protect women from the obvious objectification that would follow if a woman can’t control how she is seen. In some cases, such objectification and abuse could even reach into hate crime territory, with racist, sexist or homophobic virtual overlays. All this demands control, but it is far from obvious where that control would come from.

As for buildings, they too can have a virtual appearance. Virtual architecture will show off architect visualization skills, but will also be hijacked by the marketing departments of the building residents. In fact, many stakeholders will want to control what you see when you look at a building. The architects, occupants, city authorities, government, mapping agencies, advertisers, software producers and games designers will all try to push appearances at the viewer, but the viewer might want instead to choose to impose one from their own offerings, created in real time by AI or from large existing libraries of online imagery, games or media. No two people walking together on a street would see the same thing.

Interior decor is even more attractive as an AR application. Someone living in a horrible tiny flat could enhance it using AR to give the feeling of far more space and far prettier decor and even local environment. Virtual windows onto Caribbean beaches may be more attractive than looking at mouldy walls and the office block wall that are physically there. Reality is often expensive but images can be free.

Even fashion offers a platform for AR enhancement. An outfit might look great on a celebrity but real life shapes might not measure up. Makeovers take time and money too. In augmented reality, every garment can look as it should, and that makeup can too. The hardest choice will be to choose a large number of virtual outfits and makeups to go with the smaller range of actual physical appearances available from that wardrobe.

Gaming is in pole position, because 3D world design, imagination, visualization and real time rendering technology are all games technology, so perhaps the biggest surprise in the Pokemon success is that it was the first to really grab attention. People could by now be virtually shooting aliens or zombies hoarding up escalators as they wait for their partners. They are a little late, but such widespread use of personal or social gaming on city streets and in malls will come soon.

AR Visors are on their way too, and though the first offerings will be too expensive to achieve widespread adoption, cheaper ones will quickly follow. The internet of things and sensor technology will create abundant ground-up data to make a strong platform. As visors fall in price, so too will the size and power requirements of the processing needed, though much can be cloud-based.

It is a fairly safe bet that marketers will try very hard to force images at us and if they can’t do that via blatant in-your-face advertising, then product placement will become a very fine art. We should expect strong alliances between the big marketing and advertising companies and top games creators.

As AI simultaneously develops, people will be able to generate a lot of their own overlays, explaining to AI what they’d like and having it produced for them in real time. That would undermine marketing use of AR so again there will be some battles for control. Just as we have already seen owners of landmarks try to trademark the image of their buildings to prevent people including them in photographs, so similar battles will fill the courts over AR. What is to stop someone superimposing the image of a nicer building on their own? Should they need to pay a license to do so? What about overlaying celebrity faces on strangers? What about adding multimedia overlays from the web to make dull and ordinary products do exciting things when you use them? A cocktail served in a bar could have a miniature Sydney fireworks display going on over it. That might make it more exciting, but should the media creator be paid and how should that be policed? We’ll need some sort of AR YouTube at the very least with added geolocation.

The whole arts and media industry will see city streets as galleries and stages on which to show off and sell their creations.

Public services will make more mundane use of AR. Simple everyday context-dependent signage is one application, but overlays would be valuable in emergencies too. If police or fire services could superimpose warning on everyone’s visors nearby, that may help save lives in emergencies. Health services will use AR to assist ordinary people to care for a patient until an ambulance arrives

Shopping provide more uses and more battles. AR will show you what a competing shop has on offer right beside the one in front of you. That will make it easy to digitally trespass on a competitor’s shop floor. People can already do that on their smartphone, but AR will put the full image large as life right in front of your eyes to make it very easy to compare two things. Shops won’t want to block comms completely because that would prevent people wanting to enter their shop at all, so they will either have to compete harder or find more elaborate ways of preventing people making direct visual comparisons in-store. Perhaps digital trespassing might become a legal issue.

There will inevitably be a lot of social media use of AR too. If people get together to demonstrate, it will be easier to coordinate them. If police insist they disperse, they could still congregate virtually. Dispersed flash mobs could be coordinated as much as ones in the same location. That makes AR a useful tool for grass-roots democracy, especially demonstrations and direct action, but it also provides a platform for negative uses such as terrorism. Social entrepreneurs will produce vast numbers of custom overlays for millions of different purposes and contexts. Today we have tens of millions of websites and apps. Tomorrow we will have even more AR overlays.

These are just a few of the near term uses of augmented reality and a few hints as issues arising. It will change every aspect of our lives in due course, just as the web has, but more so.

 

Carbethium, a better-than-scifi material

How to build one of these for real:

Light_bridge

Halo light bridge, from halo.wikia.com

Or indeed one of these:

From halo.wikia.com

From halo.wikia.com

I recently tweeted that I had an idea how to make the glowy bridges and shields we’ve seen routinely in sci-fi games from Half Life to Destiny, the bridges that seem to appear in a second or two from nothing across a divide, yet are strong enough to drive tanks over, and able to vanish as quickly and completely when they are switched off. I woke today realizing that with a bit of work, that it could be the basis of a general purpose material to make the tanks too, and buildings and construction platforms, bridges, roads and driverless pod systems, personal shields and city defense domes, force fields, drones, planes and gliders, space elevator bases, clothes, sports tracks, robotics, and of course assorted weapons and weapon systems. The material would only appear as needed and could be fully programmable. It could even be used to render buildings from VR to real life in seconds, enabling at least some holodeck functionality. All of this is feasible by 2050.

Since it would be as ethereal as those Halo structures, I first wanted to call the material ethereum, but that name was already taken (for a 2014 block-chain programming platform, which I note could be used to build the smart ANTS network management system that Chris Winter and I developed in BT in 1993), and this new material would be a programmable construction platform so the names would conflict, and etherium is too close. Ethium might work, but it would be based on graphene and carbon nanotubes, and I am quite into carbon so I chose carbethium.

Ages ago I blogged about plasma as a 21st Century building material. I’m still not certain this is feasible, but it may be, and it doesn’t matter for the purposes of this blog anyway.

Will plasma be the new glass?

Around then I also blogged how to make free-floating battle drones and more recently how to make a Star Wars light-saber.

Free-floating AI battle drone orbs (or making Glyph from Mass Effect)

How to make a Star Wars light saber

Carbethium would use some of the same principles but would add the enormous strength and high conductivity of graphene to provide the physical properties to make a proper construction material. The programmable matter bits and the instant build would use a combination of 3D interlocking plates, linear induction,  and magnetic wells. A plane such as a light bridge or a light shield would extend from a node in caterpillar track form with plates added as needed until the structure is complete. By reversing the build process, it could withdraw into the node. Bridges that only exist when they are needed would be good fun and we could have them by 2050 as well as the light shields and the light swords, and light tanks.

The last bit worries me. The ethics of carbethium are the typical mixture of enormous potential good and huge potential for abuse to bring death and destruction that we’re learning to expect of the future.

If we can make free-floating battle drones, tanks, robots, planes and rail-gun plasma weapons all appear within seconds, if we can build military bases and erect shield domes around them within seconds, then warfare moves into a new realm. Those countries that develop this stuff first will have a huge advantage, with the ability to send autonomous robotic armies to defeat enemies with little or no risk to their own people. If developed by a James Bond super-villain on a hidden island, it would even be the sort of thing that would enable a serious bid to take over the world.

But in the words of Professor Emmett Brown, “well, I figured, what the hell?”. 2050 values are not 2016 values. Our value set is already on a random walk, disconnected from any anchor, its future direction indicated by a combination of current momentum and a chaos engine linking to random utterances of arbitrary celebrities on social media. 2050 morality on many issues will be the inverse of today’s, just as today’s is on many issues the inverse of the 1970s’. Whatever you do or however politically correct you might think you are today, you will be an outcast before you get old: https://timeguide.wordpress.com/2015/05/22/morality-inversion-you-will-be-an-outcast-before-youre-old/

We’re already fucked, carbethium just adds some style.

Graphene combines huge tensile strength with enormous electrical conductivity. A plate can be added to the edge of an existing plate and interlocked, I imagine in a hexagonal or triangular mesh. Plates can be designed in many diverse ways to interlock, so that rotating one engages with the next, and reversing the rotation unlocks them. Plates can be pushed to the forward edge by magnetic wells, using linear induction motors, using the graphene itself as the conductor to generate the magnetic field and the design of the structure of the graphene threads enabling the linear induction fields. That would likely require that the structure forms first out of graphene threads, then the gaps between filled by mesh, and plates added to that to make the structure finally solid. This would happen in thickness as well as width, to make a 3D structure, though a graphene bridge would only need to be dozens of atoms thick.

So a bridge made of graphene could start with a single thread, which could be shot across a gap at hundreds of meters per second. I explained how to make a Spiderman-style silk thrower to do just that in a previous blog:

How to make a Spiderman-style graphene silk thrower for emergency services

The mesh and 3D build would all follow from that. In theory that could all happen in seconds, the supply of plates and the available power being the primary limiting factors.

Similarly, a shield or indeed any kind of plate could be made by extending carbon mesh out from the edge or center and infilling. We see that kind of technique used often in sci-fi to generate armor, from lost in Space to Iron Man.

The key components in carbetheum are 3D interlocking plate design and magnetic field design for the linear induction motors. Interlocking via rotation is fairly easy in 2D, any spiral will work, and the 3rd dimension is open to any building block manufacturer. 3D interlocking structures are very diverse and often innovative, and some would be more suited to particular applications than others. As for linear induction motors, a circuit is needed to produce the travelling magnetic well, but that circuit is made of the actual construction material. The front edge link between two wires creates a forward-facing magnetic field to propel the next plates and convey enough intertia to them to enable kinetic interlocks.

So it is feasible, and only needs some engineering. The main barrier is price and material quality. Graphene is still expensive to make, as are carbon nanotubes, so we won’t see bridges made of them just yet. The material quality so far is fine for small scale devices, but not yet for major civil engineering.

However, the field is developing extremely quickly because big companies and investors can clearly see the megabucks at the end of the rainbow. We will have almost certainly have large quantity production of high quality graphene for civil engineering by 2050.

This field will be fun. Anyone who plays computer games is already familiar with the idea. Light bridges and shields, or light swords would appear much as in games, but the material would likely  be graphene and nanotubes (or maybe the newfangled molybdenum equivalents). They would glow during construction with the plasma generated by the intense electric and magnetic fields, and the glow would be needed afterward to make these ultra-thin physical barriers clearly visible,but they might become highly transparent otherwise.

Assembling structures as they are needed and disassembling them just as easily will be very resource-friendly, though it is unlikely that carbon will be in short supply. We can just use some oil or coal to get more if needed, or process some CO2. The walls of a building could be grown from the ground up at hundreds of meters per second in theory, with floors growing almost as fast, though there should be little need to do so in practice, apart from pushing space vehicles up so high that they need little fuel to enter orbit. Nevertheless, growing a  building and then even growing the internal structures and even furniture is feasible, all using glowy carbetheum. Electronic soft fabrics, cushions and hard surfaces and support structures are all possible by combining carbon nanotubes and graphene and using the reconfigurable matter properties carbethium convents. So are visual interfaces, electronic windows, electronic wallpaper, electronic carpet, computers, storage, heating, lighting, energy storage and even solar power panels. So is all the comms and IoT and all the smart embdedded control systems you could ever want. So you’d use a computer with VR interface to design whatever kind of building and interior furniture decor you want, and then when you hit the big red button, it would appear in front of your eyes from the carbethium blocks you had delivered. You could also build robots using the same self-assembly approach.

If these structures can assemble fast enough, and I think they could, then a new form of kinetic architecture would appear. This would use the momentum of the construction material to drive the front edges of the surfaces, kinetic assembly allowing otherwise impossible and elaborate arches to be made.

A city transport infrastructure could be built entirely out of carbethium. The linear induction mats could grow along a road, connecting quickly to make a whole city grid. Circuit design allows the infrastructure to steer driverless pods wherever they need to go, and they could also be assembled as required using carbethium. No parking or storage is needed, as the pod would just melt away onto the surface when it isn’t needed.

I could go to town on military and terrorist applications, but more interesting is the use of the defense domes. When I was a kid, I imagined having a house with a defense dome over it. Lots of sci-fi has them now too. Domes have a strong appeal, even though they could also be used as prisons of course. A supply of carbetheum on the city edges could be used to grow a strong dome in minutes or even seconds, and there is no practical limit to how strong it could be. Even if lasers were used to penetrate it, the holes could fill in in real time, replacing material as fast as it is evaporated away.

Anyway, lots of fun. Today’s civil engineering projects like HS2 look more and more primitive by the day, as we finally start to see the true potential of genuinely 21st century construction materials. 2050 is not too early to expect widespread use of carbetheum. It won’t be called that – whoever commercializes it first will name it, or Google or MIT will claim to have just invented it in a decade or so, so my own name for it will be lost to personal history. But remember, you saw it here first.

The future of fashion: hair waves

I don’t do hair. I shave my head to 3mm every month or so, and never let it grow long., but I watch telly and observe that very many women use hair extensions and wigs, and I spot a high voltage technology opportunity.

Remember the Van der Graff generator in your school physics lab? It makes a high voltage than makes your hair stand up. When you finally touch something, the tiny charge involved dissipates and gives you a tiny shock.

So, suppose you are a wig manufacturer, making a wig with fine filaments, or hair I guess. You add a base layer of circuitry, ideally separated from your scalp by an insulating layer. You design the circuits so that you can apply specific voltages individually to any region of the hair, and you design a nice algorithm to move those voltages around in patterns, so that patches of hair stand up, fall down, and overall the effect is dynamic patterns such as waves all over your head. Hair will be mobile.

Total charge doesn’t need to change much, mainly just be moved around, so battery drain would be OK, and the power supply could be hidden in a collar or shoulder pad.

Hair patterns could even adopt fashion language, used for secret tribal signalling, and internet of hair will be needed. It is also capable of misuse and another potential signalling path to guard against in casinos.

It would also be trivially easy to monitor your emotional state, or even thought recognition, and have you hair respond and illustrate your emotions. So when you think “shock, horror”, you hair would actually stand on end 🙂

Well, you get the idea. Fun! And you read it here first.

Digital Halos

I enjoyed watching a few seconds of the Lady Gaga video from the Grammy’s where Intel used a projection system to display a spider crawling around her face along with Bowie images. State of the art today is dirt cheap tomorrow. So soon everyone will be doing that, projecting images and videos onto their faces. They will do that to look like other people too, as Gaga hinted. I do like Gaga. She may not have the advantage of being born the prettiest singer ever but she makes up for that 100-fold by her creativity and pushing boundaries in every way she can and making good use of tech. I love her music too.

I’ve written about digital or smart makeup lots of times so i won’t do that here. But another idea that springs to mind is the digital halo.

Some fog generators use water and ultrasonic transducers to create a fine mist, the sort of thing you see on indoor water features where fog tumbles down the ornament. Of course, some come with a bank of LEDs, because they can, and that makes pretty colors too. At least one trade show projection system uses a fine mist as a 3D projection medium too. Put these together, and you have the capability to make a fine mist around your head and project images onto it. I blogged that idea quite a while ago as a Star Wars projection in front of you, but imagine doing this as a sort of halo, a mist that surrounds your head and immerses it in visual effects. You could project a halo if you so desire, and it could be a single whitish color as tradition dictates, changing colors, patterns or images, or you could do the full thing and go for a full-blown video spectacular, and – haute to Family Guy –  you could accompany it with your personal theme too.

Taste seemingly has few boundaries, and it is frequently obvious that the lower echelons of bad taste often offer the greatest rewards. So I am confident that we will soon see people sporting the most hideously garish digital halos.

State of the world in 2050

Some things are getting better, some worse. 2050 will be neither dystopian nor utopian. A balance of good and bad not unlike today, but with different goods and bads, and slightly better overall. More detail? Okay, for most of my followers, this will mostly collate things you may know already, but there’s no harm in a refresher Futures 101.

Health

We will have cost-effective and widespread cures or control for most cancers, heart disease, diabetes, dementia and most other killers. Quality-of-life diseases such as arthritis will also be controllable or curable. People will live longer and remain healthier for longer, with an accelerated decline at the end.

On the bad side, new diseases will exist, including mutated antibiotic-resistant versions of existing ones. There will still be occasional natural flu mutations and other viruses, and there will still be others arising from contacts between people and other animals that are more easily spread due to increased population, urbanization and better mobility. Some previously rare diseases will become big problems due to urbanization and mobility. Urbanization will be a challenge.

However, diagnostics will be faster and better, we will no longer be so reliant on antibiotics to fight back, and sterilisation techniques for hospitals will be much improved. So even with greater challenges, we will be able to cope fine most of the time with occasional headlines from epidemics.

A darker side is the increasing prospect for bio-terrorism, with man-made viruses deliberately designed to be highly lethal, very contagious and to withstand most conventional defenses, optimized for maximum and rapid spread by harnessing mobility and urbanization. With pretty good control or defense against most natural threats, this may well be the biggest cause of mass deaths in 2050. Bio-warfare is far less likely.

Utilizing other techs, these bio-terrorist viruses could be deployed by swarms of tiny drones that would be hard to spot until too late, and of course these could also be used with chemical weapons such as use of nerve gas. Another tech-based health threat is nanotechnology devices designed to invade the body, damage of destroy systems or even control the brain. It is easy to detect and shoot down macro-scale deployment weapons such as missiles or large drones but far harder to defend against tiny devices such as midge-sized drones or nanotech devices.

The overall conclusion on health is that people will mostly experience much improved lives with good health, long life and a rapid end. A relatively few (but very conspicuous) people will fall victim to terrorist attacks, made far more feasible and effective by changing technology and demographics.

Loneliness

An often-overlooked benefit of increasing longevity is the extending multi-generational family. It will be commonplace to have great grandparents and great-great grandparents. With improved health until near their end, these older people will be seen more as welcome and less as a burden. This advantage will be partly offset by increasing global mobility, so families are more likely to be geographically dispersed.

Not everyone will have close family to enjoy and to support them. Loneliness is increasing even as we get busier, fuller lives. Social inclusion depends on a number of factors, and some of those at least will improve. Public transport that depends on an elderly person walking 15 minutes to a bus stop where they have to wait ages in the rain and wind for a bus on which they are very likely to catch a disease from another passenger is really not fit for purpose. Such primitive and unsuitable systems will be replaced in the next decades by far more socially inclusive self-driving cars. Fleets of these will replace buses and taxis. They will pick people up from their homes and take them all the way to where they need to go, then take them home when needed. As well as being very low cost and very environmentally friendly, they will also have almost zero accident rates and provide fast journey times thanks to very low congestion. Best of all, they will bring easier social inclusion to everyone by removing the barriers of difficult, slow, expensive and tedious journeys. It will be far easier for a lonely person to get out and enjoy cultural activity with other people.

More intuitive social networking, coupled to augmented and virtual reality environments in which to socialize will also mean easier contact even without going anywhere. AI will be better at finding suitable companions and lovers for those who need assistance.

Even so, some people will not benefit and will remain lonely due to other factors such as poor mental health, lack of social skills, or geographic isolation. They still do not need to be alone. 2050 will also feature large numbers of robots and AIs, and although these might not be quite so valuable to some as other human contact, they will be a pretty good substitute. Although many will be functional, cheap and simply fit for purpose, those designed for companionship or home support functions will very probably look human and behave human. They will have good intellectual and emotional skills and will be able to act as a very smart executive assistant as well as domestic servant and as a personal doctor and nurse, even as a sex partner if needed.

It would be too optimistic to say we will eradicate loneliness by 2050 but we can certainly make a big dent in it.

Poverty

Technology progress will greatly increase the size of the global economy. Even with the odd recession our children will be far richer than our parents. It is reasonable to expect the total economy to be 2.5 times bigger than today’s by 2050. That just assumes an average growth of about 2.5% which I think is a reasonable estimate given that technology benefits are accelerating rather than slowing even in spite of recent recession.

While we define poverty level as a percentage of average income, we can guarantee poverty will remain even if everyone lived like royalty. If average income were a million dollars per year, 60% of that would make you rich by any sensible definition but would still qualify as poverty by the ludicrous definition based on relative income used in the UK and some other countries. At some point we need to stop calling people poor if they can afford healthy food, pay everyday bills, buy decent clothes, have a decent roof over their heads and have an occasional holiday. With the global economy improving so much and so fast, and with people having far better access to markets via networks, it will be far easier for people everywhere to earn enough to live comfortably.

In most countries, welfare will be able to provide for those who can’t easily look after themselves at a decent level. Ongoing progress of globalization of compassion that we see today will likely make a global welfare net by 2050. Everyone won’t be rich, and some won’t even be very comfortable, but I believe absolute poverty will be eliminated in most countries, and we can ensure that it will be possible for most people to live in dignity. I think the means, motive and opportunity will make that happen, but it won’t reach everyone. Some people will live under dysfunctional governments that prevent their people having access to support that would otherwise be available to them. Hopefully not many. Absolute poverty by 2050 won’t be history but it will be rare.

In most developed countries, the more generous welfare net might extend to providing a ‘citizen wage’ for everyone, and the level of that could be the same as average wage is today. No-one need be poor in 2050.

Environment

The environment will be in good shape in 2050. I have no sympathy with doom mongers who predict otherwise. As our wealth increases, we tend to look after the environment better. As technology improves, we will achieve a far higher standards of living while looking after the environment. Better mining techniques will allow more reserves to become economic, we will need less resource to do the same job better, reuse and recycling will make more use of the same material.

Short term nightmares such as China’s urban pollution levels will be history by 2050. Energy supply is one of the big contributors to pollution today, but by 2050, combinations of shale gas, nuclear energy (uranium and thorium), fusion and solar energy will make up the vast bulk of energy supply. Oil and unprocessed coal will mostly be left in the ground, though bacterial conversion of coal into gas may well be used. Oil that isn’t extracted by 2030 will be left there, too expensive compared to making the equivalent energy by other means. Conventional nuclear energy will also be on its way to being phased out due to cost. Energy from fusion will only be starting to come on stream everywhere but solar energy will be cheap to harvest and high-tech cabling will enable its easier distribution from sunny areas to where it is needed.

It isn’t too much to expect of future governments that they should be able to negotiate that energy should be grown in deserts, and food crops grown on fertile land. We should not use fertile land to place solar panels, nor should we grow crops to convert to bio-fuel when there is plenty of sunny desert of little value otherwise on which to place solar panels.

With proper stewardship of agricultural land, together with various other food production technologies such as hydroponics, vertical farms and a lot of meat production via tissue culturing, there will be more food per capita than today even with a larger global population. In fact, with a surplus of agricultural land, some might well be returned to nature.

In forests and other ecosystems, technology will also help enormously in monitoring eco-health, and technologies such as genetic modification might be used to improve viability of some specie otherwise threatened.

Anyone who reads my blog regularly will know that I don’t believe climate change is a significant problem in the 2050 time frame, or even this century. I won’t waste any more words on it here. In fact, if I have to say anything, it is that global cooling is more likely to be a problem than warming.

Food and Water

As I just mentioned in the environment section, we will likely use deserts for energy supply and fertile land for crops. Improving efficiency and density will ensure there is far more capability to produce food than we need. Many people will still eat meat, but some at least will be produced in factories using processes such as tissue culturing. Meat pastes with assorted textures can then be used to create a variety of forms of processed meats. That might even happen in home kitchens using 3D printer technology.

Water supply has often been predicted by futurists as a cause of future wars, but I disagree. I think that progress in desalination is likely to be very rapid now, especially with new materials such as graphene likely to come on stream in bulk.  With easy and cheap desalination, water supply should be adequate everywhere and although there may be arguments over rivers I don’t think the pressures are sufficient by themselves to cause wars.

Privacy and Freedom

In 2016, we’re seeing privacy fighting a losing battle for survival. Government increases surveillance ubiquitously and demands more and more access to data on every aspect of our lives, followed by greater control. It invariably cites the desire to control crime and terrorism as the excuse and as they both increase, that excuse will be used until we have very little privacy left. Advancing technology means that by 2050, it will be fully possible to implement thought police to check what we are thinking, planning, desiring and make sure it conforms to what the authorities have decided is appropriate. Even the supposed servant robots that live with us and the AIs in our machines will keep official watch on us and be obliged to report any misdemeanors. Back doors for the authorities will be in everything. Total surveillance obliterates freedom of thought and expression. If you are not free to think or do something wrong, you are not free.

Freedom is strongly linked to privacy. With laws in place and the means to police them in depth, freedom will be limited to what is permitted. Criminals will still find ways to bypass, evade, masquerade, block and destroy and it hard not to believe that criminals will be free to continue doing what they do, while law-abiding citizens will be kept under strict supervision. Criminals will be free while the rest of us live in a digital open prison.

Some say if you don’t want to do wrong, you have nothing to fear. They are deluded fools. With full access to historic electronic records going back to now or earlier, it is not only today’s laws and guidelines that you need to be compliant with but all the future paths of the random walk of political correctness. Social networks can be fiercer police than the police and we are already discovering that having done something in the distant past under different laws and in different cultures is no defense from the social networking mobs. You may be free technically to do or say something today, but if it will be remembered for ever, and it will be, you also need to check that it will probably always be praiseworthy.

I can’t counterbalance this section with any positives. I’ve side before that with all the benefits we can expect, we will end up with no privacy, no freedom and the future will be a gilded cage.

Science and the arts

Yes they do go together. Science shows us how the universe works and how to do what we want. The arts are what we want to do. Both will flourish. AI will help accelerate science across the board, with a singularity actually spread over decades. There will be human knowledge but a great deal more machine knowledge which is beyond un-enhanced human comprehension. However, we will also have the means to connect our minds to the machine world to enhance our senses and intellect, so enhanced human minds will be the norm for many people, and our top scientists and engineers will understand it. In fact, it isn’t safe to develop in any other way.

Science and technology advances will improve sports too, with exoskeletons, safe drugs, active skin training acceleration and virtual reality immersion.

The arts will also flourish. Self-actualization through the arts will make full use of AI assistance. a feeble idea enhanced by and AI assistant can become a work of art, a masterpiece. Whether it be writing or painting, music or philosophy, people will be able to do more, enjoy more, appreciate more, be more. What’s not to like?

Space

by 2050, space will be a massive business in several industries. Space tourism will include short sub-orbital trips right up to lengthy stays in space hotels, and maybe on the moon for the super-rich at least.

Meanwhile asteroid mining will be under way. Some have predicted that this will end resource problems here on Earth, but firstly, there won’t be any resource problems here on Earth, and secondly and most importantly, it will be far too expensive to bring materials back to Earth, and almost all the resources mined will be used in space, to make space stations, vehicles, energy harvesting platforms, factories and so on. Humans will be expanding into space rapidly.

Some of these factories and vehicles and platforms and stations will be used for science, some for tourism, some for military purposes. Many will be used to offer services such as monitoring, positioning, communications just as today but with greater sophistication and detail.

Space will be more militarized too. We can hope that it will not be used in actual war, but I can’t honestly predict that one way or the other.

 

Migration

If the world around you is increasingly unstable, if people are fighting, if times are very hard and government is oppressive, and if there is a land of milk and honey not far away that you can get to, where you can hope for a much better, more prosperous life, free of tyranny, where instead of being part of the third world, you can be in the rich world, then you may well choose to take the risks and traumas associated with migrating. Increasing population way ahead of increasing wealth in Africa, and a drop in the global need for oil will both increase problems in the Middle East and North Africa. Add to that vicious religious sectarian conflict and a great many people will want to migrate indeed. The pressures on Europe and America to accept several millions more migrants will be intense.

By 2050, these regions will hopefully have ended their squabbles, and some migrants will return to rebuild, but most will remain in their new homes.

Most of these migrants will not assimilate well into their new countries but will mainly form their own communities where they can have a quite separate culture, and they will apply pressure to be allowed to self-govern. A self-impose apartheid will result. It might if we are lucky gradually diffuse as religion gradually becomes less important and the western lifestyle becomes more attractive. However, there is also a reinforcing pressure, with this self-exclusion and geographic isolation resulting in fewer opportunities, less mixing with others and therefore a growing feeling of disadvantage, exclusion and victimization. Tribalism becomes reinforced and opportunities for tension increase. We already see that manifested well in  the UK and other European countries.

Meanwhile, much of the world will be prosperous, and there will be many more opportunities for young capable people to migrate and prosper elsewhere. An ageing Europe with too much power held by older people and high taxes to pay for their pensions and care might prove a discouragement to stay, whereas the new world may offer increasing prospects and lowering taxes, and Europe and the USA may therefore suffer a large brain drain.

Politics

If health care is better and cheaper thanks to new tech and becomes less of a political issue; if resources are abundantly available, and the economy is healthy and people feel wealthy enough and resource allocation and wealth distribution become less of a political issue; if the environment is healthy; if global standards of human rights, social welfare and so on are acceptable in most regions and if people are freer to migrate where they want to go; then there may be a little less for countries to fight over. There will be a little less ‘politics’ overall. Most 2050 political arguments and debates will be over social cohesion, culture, generational issues, rights and so on, not health, defence, environment, energy or industry

We know from history that that is no guarantee of peace. People disagree profoundly on a broad range of issues other than life’s basic essentials. I’ve written a few times on the increasing divide and tensions between tribes, especially between left and right. I do think there is a strong chance of civil war in Europe or the USA or both. Social media create reinforcement of views as people expose themselves only to other show think the same, and this creates and reinforces and amplifies an us and them feeling. That is the main ingredient for conflict and rather than seeing that and trying to diffuse it, instead we see left and right becoming ever more entrenched in their views. The current problems we see surrounding Islamic migration show the split extremely well. Each side demonizes the other, extreme camps are growing on both sides and the middle ground is eroding fast. Our leaders only make things worse by refusing to acknowledge and address the issues. I suggested in previous blogs that the second half of the century is when tensions between left and right might result in the Great Western War, but that might well be brought forward a decade or two by a long migration from an unstable Middle East and North Africa, which looks to worsen over the next decade. Internal tensions might build for another decade after that accompanied by a brain drain of the most valuable people, and increasing inter-generational tensions amplifying the left-right divide, with a boil-over in the 2040s. That isn’t to say we won’t see some lesser conflicts before then.

I believe the current tensions between the West, Russia and China will go through occasional ups and downs but the overall trend will be towards far greater stability. I think the chances of a global war will decrease rather than increase. That is just as well since future weapons will be far more capable of course.

So overall, the world peace background will improve markedly, but internal tensions in the West will increase markedly too. The result is that wars between countries or regions will be less likely but the likelihood of civil war in the West will be high.

Robots and AIs

I mentioned robots and AIs in passing in the loneliness section, but they will have strong roles in all areas of life. Many that are thought of simply as machines will act as servants or workers, but many will have advanced levels of AI (not necessarily on board, it could be in the cloud) and people will form emotional bonds with them. Just as important, many such AI/robots will be so advanced that they will have relationships with each other, they will have their own culture. A 21st century version of the debates on slavery is already happening today for sentient AIs even though we don’t have them yet. It is good to be prepared, but we don’t know for sure what such smart and emotional machines will want. They may not want the same as our human prejudices suggest they will, so they will need to be involved in debate and negotiation. It is almost certain that the upper levels of AIs and robots (or androids more likely) will be given some rights, to freedom from pain and abuse, ownership of their own property, a degree of freedom to roam and act of their own accord, the right to pursuit of happiness. They will also get the right to government representation. Which other rights they might get is anyone’s guess, but they will change over time mainly because AIs will evolve and change over time.

OK, I’ve rambled on long enough and I’ve addressed some of the big areas I think. I have ignored a lot more, but it’s dinner time.

A lot of things will be better, some things worse, probably a bit better overall but with the possibility of it all going badly wrong if we don’t get our act together soon. I still think people in 2050 will live in a gilded cage.

The future of make-up

I was digging through some old 2002 powerpoint slides for an article on active skin and stumbled across probably the worst illustration I have ever done, though in my defense, I was documenting a great many ideas that day and spent only a few minutes on it:

smart makeup

If a woman ever looks like this, and isn’t impersonating a bald Frenchman, she has more problems to worry about than her make-up. The pic does however manage to convey the basic principle, and that’s all that is needed for a technical description. The idea is that her face can be electronically demarked into various makeup regions and the makeup on those regions can therefore adopt the appropriate colour for that region. In the pic ‘nanosomes’ wasn’t a serious name, but a sarcastic take on the cosmetics industry which loves to take scientific sounding words and invent new ones that make their products sound much more high tech than they actually are. Nanotech could certainly play a role, but since the eye can’t discern features smaller than 0.1mm, it isn’t essential. This is no longer just an idea, companies are now working on development of smart makeup, and we already have prototype electronic tattoos, one of the layers I used for my active skin but again based on an earlier vision.

The original idea didn’t use electronics, but simply used self-organisation tech I’d designed in 1993 on an electronic DNA project. Either way would work, but the makeup would be different for each.

The electronic layer, if required, would most likely be printed onto the skin at a beauty salon, would be totally painless, last weeks and could take only a few minutes to print. It extends IoT to the face.

Both mechanisms could use makeup containing flat plates that create colour by diffraction the same way the scales on a butterfly does. That would make an excellent colour pallet. Beetles produce colour a different way and that would work too. Or we could copy squids or cuttlefish. Nature has given us many excellent start points for biomimetics, and indeed the self-organisation principles were stolen from nature too. Nature used hormone gradients to help your cells differentiate when you were an embryo. If nature can arrange the rich microscopic detail of every part of your face, then similar techniques can certainly work for a simple surface layer of make-up. Having the electronic underlay makes self organisation easier but it isn’t essential. There are many ways to implement self organisation in makeup and only some of them require any electronics at all, and some of those would use electronic particles embedded in the make-up rather than an underlay.

An electronic underlay can be useful to provide the energy for a transition too, and that allows the makeup to change colour on command. That means in principle that a woman could slap the makeup all over her face and touch a button on her digital mirror (which might simply be a tablet or smart phone) and the make-up would instantly change to be like the picture she selected. With suitable power availability, the make-up could be a full refresh rate video display, and we might see teenagers walking future streets wearing kaleidoscopic make-up that shows garish cartoon video expressions and animates their emoticons. More mature women might choose different appearances for different situations and they could be selected manually via an app or gesture or automatically by predetermined location settings.

Obviously, make-up is mostly used on the face, but once it becomes the basis of a smear-on computer display, it could be used on any part of the body as a full touch sensitive display area, e.g. the forearm.

Although some men already wear makeup, many more might use smart make-up as its techie nature makes it more acceptable.

The future of feminism and fashion

Perhaps it’s a bit presumptive of me to talk about what feminists want or don’t want, but I will make the simplifying assumption that they vary somewhat and don’t all want the same things. When it comes to makeup, many feminists want to look how they want to look for their own pleasure, not specifically to appeal to men, or they may want to attract some people and not others, or they may not want to bother with makeup at all, but still be able to look nice for the right people.

Augmented reality will allow those options. AR creates an extra layer of appearance that allows a woman to present herself any way she wants via an avatar, and also to vary presented appearance according to who is looking at her. So she may choose to be attractive to people she finds attractive, and plain to people she’d rather not get attention from. This is independent of any makeup she might be wearing, so she may choose not to wear any at all and rely entirely on the augmented reality layer to replace makeup, saving a lot of time, effort and expense. She could even use skin care products such as face masks that are purely functional, nourishing or protecting her face, but which don’t look very nice. Friends, colleagues and particular subsections of total strangers would still see her as she wants to be seen and she might not care about how she appears to others.

It may therefore be possible that feminism could use makeup as a future activist platform. It would allow women to seize back control over their appearance in a far more precise way, making it abundantly clear that their appearance belongs to them and is under their control and that they control who they look nice for. They would not have to give up looking good for themselves or their friends, but would be able to exclude any groups currently out of favour.

However, it doesn’t have to be just virtual appearance that they can control electronically. It is also possible to have actual physical makeup that changes according to time, location, emotional state or circumstances. Active makeup does just that, but I’ve written too often about that. Let’s look instead at other options:

Fashion has created many different clothing accessories over the years. It has taken far longer than it should, but we are now finally seeing flexible polymer displays being forged into wrist watch straps and health monitoring bands as well as bendy and curvy phones. As 1920s era fashion makes a small comeback, it can’t be long before headbands and hair-bands come back and they would be a perfect display platform too. Hair accessories can be pretty much any shape and size, and be a single display zone or multiple ones. Some could even use holographic displays, so that the accessory seems to change its form, or have optional remote components seemingly hanging free in the nearby air. Any of these could be electronically controllable or set to adjust automatically according to location and the people present.

Displays would also make good forehead jewellery, such as electronic eyebrows, holographic jewels, smart bindis, forehead tattoos and so on. They could change colour or pattern according to emotions for example. As long as displays are small, skin flexing doesn’t present too big an engineering barrier.

In fact, small display particles such as electronic glitter could group together to appear as a single display, even though each is attached to a different piece of skin. Thus, flexing of the skin is still possible with a collection of rigid small displays, which could be millimetre sized electronic glitter. Electronic glitter could contain small capacitors that store energy harvested from temperature difference between the skin and the environment, periodically allowing a colour change.

However, it won’t be just the forehead that is available once displays become totally flexible. That will make the whole visible face an electronic display platform instead of just a place for dumb makeup. Smart freckles and moles could make a fashion reappearance. Lips and cheeks could change colour according to mood and pre-decided protocols, rather than just at the whim of nature.

Other parts of the body would likely house displays too. Fingernails and toenails could be an early candidate since they are relatively rigid. The wrist and forearm are also often exposed. Much of the rest of the body is concealed by clothing most of the time, but seasonal displays are likely when it is more often bare. Beach displays could interact with swimwear, or even substitute for it.

In fact, enabling a multitude of tiny displays on the face and around the body will undoubtedly create a new fashion design language. Some dialects could be secret, only understood by certain groups, a tribal language. Fashion has always had an extensive symbology and adding electronic components to the various items will extend its potential range. It is impossible to predict what different things will mean to mainstream and sub-cultures, as meanings evolve chaotically from random beginnings. But there will certainly be many people and groups willing to capitalise on the opportunities presented. Feminism could use such devices and languages to good effect.

Clothing and accessories such as jewellery are also obvious potential display platforms. A good clue for the preferred location is the preferred location today for similar usage. For example, many people wear logos, messages and pictures on their T-shirts, whereas other items of clothing remain mostly free of them. The T-shirt is therefore by far the most likely electronic display area. Belts, boots, shoes and bag-straps offer a likely platform too, not because they are used so much today, but because they again present an easy and relatively rigid physical platform.

Timescales for this run from historical appearance of LED jewellery at Christmas (which I am very glad to say I also predicted well in advance) right through to holographic plates that appear to hover around the person as they walk around. I’ve explained in previous blogs how actual floating and mobile plates could be made using plasma and electro-magnetics. But the timescale of relevance in the next few years is that of the cheaper and flexible polymer display. As costs fall and size increases, in parallel with an ever improving wireless and cloud infrastructure, the potential revenue from a large new sector combining the fashion and display industries will make this not so much likely as  inevitable.

A poem for the royal baby, Wossername

I read that the Poet Laureate, Carol Ann Duffy won’t write a poem for the new royal baby, so that creates a wonderful vacuum for the rest of us to fill. I’ve always enjoyed writing silly rhymes. I don’t like the monarchy, but I’m no Poet Laureate either, so they cancel and make it appropriate for me to write and get back in fun a little of what I have to shell out in taxes to support them.

In fairness, as with any other new baby, I wish them all well. The new princess didn’t choose to be royal any more than you or I. This ‘poem’ reflects on the outdated principle of the monarchy rather than the personal.

 

An ode to Princess Wossername

Two point seven new babies per second,

The world produces, so it’s reckoned

They may be born to rich or poor

Whiter, blacker, browner, bluer

 

Now one has come to Wills and Kate

Her whole life paid for by the state

A posher form of welfare sure

A form of exploitation pure

 

The kings and queens of ages old

Got rich by winning battles bold

They had to risk the chop or Tower

To get their bloodied hands on power

 

Now silver spoon and golden chalice

Fancy gown and finest palace

Are paid for out of hard-won tax

Squeezed from subjects to the max

 

So what sets this new girl apart

From cleaner, doctor, maid or tart?

What justifies her life of ease

Her right to wealth instead of fleas?

 

I do not know the answer there

It seems to me a bit unfair

That she’ll be given so much more

Than babies born through other doors

 

It’s time to stop this royal scam

While she’s confined within her pram

To treat like any other wain

This little Princess Wossername

 

possibly helpful note: wain is scottish slang for ‘child’

 

Will making fun of people soon become illegal?

I don’t think I need to add much more than the title really, but here’s a little encouragement to think about it yourself:

 

I enjoy watching comedy a lot, and I would hate for it to be restrained even further than it already is, but taking an outside view, trends certainly suggest a gradual closing down of any form of aggression or intimidation or discrimination towards any type of person for any reason. Much of comedy could be considered a form of aggression or bullying as anyone who has been made fun of could testify. A lot more could be considered intimidation and a lot more is discriminatory, certainly from a party viewpoint.

Gender, sexuality, religion and race comedy have all been closing rapidly except to those from the victim groups, who may use comedy as a form of defense, or to cast light on particular problems, or let’s face it, to make money by exploiting the monopoly created by forbidding others to joke about it.

Comedians are very often extremely left or right wing. They do have influence on people’s voting because nobody wants to be the butt of a joke. It is not impossible that comedy shows could fall into regulatory control to ensure fairness during political campaigns, just as party political broadcasts and air time on debates.

In the election, a huge amount of comedy was simple making fun of the candidates personally, not based on their views, but simply based on how they look (Sturgeon portrayed as Jimmy Crankie), or how they tackle a bacon sandwich. I am very pleased Miliband lost, but I’m not the most photogenic person in the world either and I have to empathise with the personal attacks on his nerdity and awkwardness during the campaign, which have nothing to do with his political views or capability (or in his case otherwise). If you go frame by frame through a video of almost anyone as they talk, you can eventually find an expression to support almost any agenda you want. I think that people should develop a thick skin if they are in the public eye, or should they? Should they be defended against blatant and possibly hurtful personal attacks.

I laugh as much as anyone at jokes at someone else’s expense. I’m no politically correct saint. I am happy to suffer occasional jokes at my expense if I can laugh at others, but maybe that’s just because I don’t get all that many. But as a futurist, it seems to me that this sort of comedy is likely to be in the firing line soon too. It may not happen, and I hope it doesn’t, but PC trends are heading that way.

The future of publishing

There are more information channels now than ever. These include thousands of new TV and radio channels that are enabled by the internet, millions of YouTube videos, new electronic book and magazine platforms such as tablets and mobile devices, talking books, easy print-on-demand, 3D printing, holograms, games platforms, interactive books, augmented reality and even AI chatbots, all in parallel with blogs, websites and social media such as Facebook, Linked-In, Twitter, Pinterest, Tumblr and so on. It has never been easier to publish something. It no longer has to cost money, and many avenues can even be anonymous so it needn’t even cost reputation if you publish something you shouldn’t. In terms of means and opportunity, there is plenty of both. Motive is built into human nature. People want to talk, to write, to create, to be looked at, to be listened to.

That doesn’t guarantee fame and fortune. Tens of millions of electronic books are written by software every year – mostly just themed copy and paste collections using content found online –  so that already makes it hard for a book to be seen, even before you consider the millions of other human authors. There are hundreds of times more new books every year now than when we all had to go via ‘proper publishers’.

The limiting factor is attention. There are only so many eyeballs, they only have a certain amount of available time each day and they are very spoiled for choice. Sure, we’re making more people, but population has doubled in 30 years, whereas published material volume doubles every few months. That means ever more competition for the attention of those eyeballs.

When there is a glut of material available for consumption, potential viewers must somehow decide what to look at to make the most of their own time. Conventional publishing had that sorted very well. Publishers only published things they knew they could sell, and made sure the work was done to a high quality – something it is all too easy to skip when self-publishing – and devoted the largest marketing budgets at those products that had the greatest potential. That was mostly determined by how well known the author was and how well liked their work. So when you walked through a bookshop door, you are immediately faced with the books most people want. New authors took years of effort to get to those places, and most never did. Now, it is harder still. Self-publishing authors can hit the big time, but it is very hard to do so, and very few make it.

Selling isn’t the only motivation for writing. Writing helps me formulate ideas, flesh them out, debug them, and tidy them up into cohesive arguments or insights. It helps me maintain a supply of fresh and original content that I need to stay in business. I write even when I have no intention of publishing and a large fraction of my writing stays as drafts, never published, having served its purpose during the act of writing. (Even so, when I do bother to write a book, it is still very nice if someone wants to buy it). It is also fun to write, and rewarding to see a finished piece appear. My sci-fi novel Space Anchor was written entirely for the joy of writing. I had a fantastic month writing it. I started on 3 July and published on 29th. I woke every night with ideas for the next day and couldn’t wait to get up and start typing. When I ran out of ideas, I typed its final paragraphs, lightly edited it and published.

The future of writing looks even more fun. Artificial intelligence is nowhere near the level yet where you can explain an idea to a computer in ordinary conversation and tell it to get on with it, but it will be one day, fairly soon. Interactive writing using AI to do the work will be very reward-rich, creativity-rich, a highly worthwhile experience in itself regardless of any market. Today, it takes forever to write and tidy up a piece. If AI does most of that, you could concentrate on the ideas and story, the fun bits. AI could also make suggestions to make your work better. We could all write fantastic novels. With better AI, it could even make a film based on your ideas. We could all write sci-fi films to rival the best blockbusters of today. But when there are a billion fantastic films to watch, the same attention problem applies. If nobody is going to see your work because of simple statistics, then that is only a problem if your motivation is to be seen or to sell. If you are doing it for your own pleasure, then it could be just as rewarding, maybe even more so. A lot of works would be produced simply for pleasure, but that still dilutes the marketplace for those hoping to sell.

An AI could just write all by itself and cut you out of the loop completely. It could see what topics are currently fashionable and instantaneously make works to tap that market. Given the volume of computer-produced books we already have, adding high level AI could fill the idea space in a genre very quickly. A book or film would compete against huge numbers of others catering to similar taste, many of which are free.

AI also extends the market for cooperative works. Groups of people could collaborate with AI doing all the boring admin and organisation as well as production and value add. The same conversational interface would work just as well for software or app or website production, or setting up a company. Groups of friends could formulate ideas together, and produce works for their own consumption. Books or films that are made together are shared experiences and help bind the group together, giving them shared stories that each has contributed to. Such future publication could therefore be part of socialization, a tribal glue, tribal identity.

This future glut of content doesn’t mean we won’t still have best sellers. As the market supply expands towards infinity, the attention problem means that people will be even more drawn to proven content suppliers. Brands become more important. Production values and editorial approach become more important. People who really understand a market sector and have established a strong presence in it will do even better as the market expands, because customers will seek out trusted suppliers.

So the future publishing market may be a vast sea of high quality content, attached to even bigger oceans of low quality content. In that world of virtually infinite supply, the few islands where people can feel on familiar ground and have easy access to a known and trusted quality product will become strong attractors. Supply and demand equations normally show decreasing price as supply rises, but I suspect that starts to reverse once supply passes a critical point. Faced with an infinite supply of cheap products, people will actually pay more to narrow the choice. In that world, self-publishing will primarily be self-motivated, for fun or self-actualization with only a few star authors making serious money from it. Professional publishing will still have most of the best channels with the most reliable content and the most customers and it will still be big business.

I’ll still do both.

Forehead 3D mist projector

Another simple idea. I was watching the 1920s period drama Downton Abbey and Lady Mary was wearing a headband with a large jewel in it. I had an idea based on linking mist projection systems to headbands. I couldn’t find a pic of Lady Mary’s band on Google but many other designs would work just as well and the one from ASOS would be just as feasible. The idea is that a forehead band (I’m sure there is a proper fashion name for them) would have a central ‘jewel’ which is actually just an ornamental IT capsule containing a misting device and a projector as well as the obvious power supply, comms, processing, direction detectors etc. A 3D image would be projected onto water mist emitted from the reservoir in the device. A simple illustration might help:

forehead projector

 

Many fashion items make comebacks and a lot of 1920s things seem to be in fashion again now. This could be a nice electronic update to a very old fashion concept. With a bit more miniaturisation, smart bindis would also be feasible. It could be used with direction sensing to enable augmented reality use, or simply to display the same image regardless of gaze direction. Unlike visor based augmented reality, others would be able to see the same scene visualised for the wearer.

OLED fashion contact lenses

Self explanatory concept, but not connected to my original active contact lens direct retinal projection concept. This one is just fashion stuff and could be done easily tomorrow. I allowed a small blank central area so that you aren’t blinded if you wear them. This version doesn’t project onto the retina, though future versions could also house and power devices to do so.

Fashion contacts

OK, the illustration is crap, but I’m an engineer, not a fashion designer. Additional functionality could be to display a high res one time code into iris recognition systems for high security access.

The future of rubbish quality art

Exhibit A: Tracey Emin – anything at all from her portfolio will do.

Exhibit B: What I just knocked up in 5 minutes:

Exploration of the real-time gravitational interaction of some copper atoms

Exploration of the real-time gravitational interaction of some copper atoms

A recent work, I can Cu Now

As my obvious  artistic genius quickly became apparent to me, I had a huge flash of inspiration and produced this:

Investigating the fundamental essence of futurology and whether the process of looking into the future can be fully contained within a finite cultural bottle.

Investigating the fundamental essence of futurology and whether the process of looking into the future can be fully contained within a finite cultural bottle.

Trying to bottle the future

I have to confess that I didn’t make the beautiful bottle, but even Emin only has a little personal  input into some of the works she produces and it is surely obvious that my talent in arranging this so beautifully is vastly greater than that of the mere sculptor who produced the vase, or bottle, or whatever. Then, I produced my magnum opus, well so far, towards the end of my five minutes of exploration of the art world. I think you’ll agree I ought immediately to be assigned Professor of Unified Arts in the Royal Academy. Here it is, if I can see well enough to upload it through my tears of joy at having produced such insight.

Can we measure the artistic potential of a rose?

Can we measure the artistic potential of a rose?

This work needs no further explanation. I rest my case.

The future of creativity

Another future of… blog.

I can play simple tunes on a guitar or keyboard. I compose music, mostly just bashing out some random sequences till a decent one happens. Although I can’t offer any Mozart-level creations just yet, doing that makes me happy. Electronic keyboards raise an interesting point for creativity. All I am actually doing is pressing keys, I don’t make sounds in the same way as when I pick at guitar strings. A few chips monitor the keys, noting which ones I hit and how fast, then producing and sending appropriate signals to the speakers.

The point is that I still think of it as my music, even though all I am doing is telling a microprocessor what to do on my behalf. One day, I will be able to hum a few notes or tap a rhythm with my fingers to give the computer some idea of a theme, and it will produce beautiful works based on my idea. It will still be my music, even when 99.9% of the ‘creativity’ is done by an AI. We will still think of the machines and software just as tools, and we will still think of the music as ours.

The other arts will be similarly affected. Computers will help us build on the merest hint of human creativity, enhancing our work and enabling us to do much greater things than we could achieve by our raw ability alone. I can’t paint or draw for toffee, but I do have imagination. One day I will be able to produce good paintings, design and make my own furniture, design and make my own clothes. I could start with a few downloads in the right ballpark. The computer will help me to build on those and produce new ones along divergent lines. I will be able to guide it with verbal instructions. ‘A few more trees on the hill, and a cedar in the foreground just here, a bit bigger, and move it to the left a bit’. Why buy a mass produced design when you can have a completely personal design?

These advances are unlikely to make a big dent in conventional art sales. Professional artists will always retain an edge, maybe even by producing the best seeds for computer creativity. Instead, computer assisted and computer enhanced art will make our lives more artistically enriched, and ourselves more fulfilled as a result. We will be able to express our own personalities more effectively in our everyday environment, instead of just decorating it with a few expressions of someone else’s.

However, one factor that seems to be overrated is originality. Anyone can immediately come up with many original ideas in seconds. Stick a safety pin in an orange and tie a red string through the loop. There, can I have my Turner prize now? There is an infinitely large field to pick from and only a small number have ever been realized, so coming up with something from the infinite set that still haven’t been thought of is easy and therefore of little intrinsic value. Ideas are ten a penny. It is only when it is combined with judgement or skill in making it real that it becomes valuable. Here again, computers will be able to assist. Analyzing a great many existing pictures or works or art should give some clues as to what most people like and dislike. IBM’s new neural chip is the sort of development that will accelerate this trend enormously. Machines will learn how to decide whether a picture is likely to be attractive to people or not. It should be possible for a computer to automatically create new pictures in a particular style or taste by either recombining appropriate ideas, or just randomly mixing any ideas together and then filtering the new pictures according to ‘taste’.

Augmented reality and other branches of cyberspace offer greater flexibility. Virtual objects and environments do not have to conform to laws of physics, so more elaborate and artistic structures are possible. Adding in 3D printing extends virtual graphics into the physical domain, but physics will only apply to the physical bits, and with future display technology, you might not easily be able to see where the physical stops and the virtual begins.

So, with machine assistance, human creativity will no longer be as limited by personal skill and talent. Anyone with a spark of creativity will be able to achieve great works, thanks to machine assistance. So long as you aren’t competitive about it, (someone else will always be able to do it better than you) your world will feel nicer, more friendly and personal, you’ll feel more in control, empowered, and your quality of life will improve. Instead of just making do with what you can buy, you’ll be able to decide what your world looks, sounds, feels, tastes and smells like, and design personality into anything you want too.

Future fashion fun – digital eyebrows

I woke in the middle of the night with another idea not worth patenting, and I’m too lazy to do it, so any entrepreneur who’s too lazy to think of ideas can have it, unless someone already has.

If you make an app that puts a picture of an eyebrow on a phone screen and moves it according to some input (e.g voice, touch, or networked control by your friends or venue), you could use phones to do fun eyebrowy type things at parties, concerts, night clubs etc. You need two phones or a midi-sized tablet unless your eyes are very close together. The phones have accelerometers that know which way up they are and can therefore balance the eyebrows in the right positions. So you can make lots of funny expression on people’s faces using your phones.

Not a Facebook-level idea you’ll agree, but I can imagine some people doing it at parties, especially if they are all controlled by a single app, so that everyone’s eyebrows make the same expression.

You could do it for the whole eye/eyebrow, but then of course you can’t see the your friends laughing, since you’re holding a screen in front of your eyes.

You could have actual physical eyebrows that attach to the tops of your glasses, also controlled remotely.

You could use e-ink/e-paper and make small patches to stick on the skin that do the same function, or a headband. Since they don’t need much power, you won’t need big batteries.

You could do the same for your nose or mouth, so that you have a digitally modifiable face controlled by your friends.

I’m already bored.

Time – The final frontier. Maybe

It is very risky naming the final frontier. A frontier is just the far edge of where we’ve got to.

Technology has a habit of opening new doors to new frontiers so it is a fast way of losing face. When Star Trek named space as the final frontier, it was thought to be so. We’d go off into space and keep discovering new worlds, new civilizations, long after we’ve mapped the ocean floor. Space will keep us busy for a while. In thousands of years we may have gone beyond even our own galaxy if we’ve developed faster than light travel somehow, but that just takes us to more space. It’s big, and maybe we’ll never ever get to explore all of it, but it is just a physical space with physical things in it. We can imagine more than just physical things. That means there is stuff to explore beyond space, so space isn’t the final frontier.

So… not space. Not black holes or other galaxies.

Certainly not the ocean floor, however fashionable that might be to claim. We’ll have mapped that in details long before the rest of space. Not the centre of the Earth, for the same reason.

How about cyberspace? Cyberspace physically includes all the memory in all our computers, but also the imaginary spaces that are represented in it. The entire physical universe could be simulated as just a tiny bit of cyberspace, since it only needs to be rendered when someone looks at it. All the computer game environments and virtual shops are part of it too. The cyberspace tree doesn’t have to make a sound unless someone is there to hear it, but it could. The memory in computers is limited, but the cyberspace limits come from imagination of those building or exploring it. It is sort of infinite, but really its outer limits are just a function of our minds.

Games? Dreams? Human Imagination? Love? All very new agey and sickly sweet, but no. Just like cyberspace, these are also all just different products of the human mind, so all of these can be replaced by ‘the human mind’ as a frontier. I’m still not convinced that is the final one though. Even if we extend that to greatly AI-enhanced future human mind, it still won’t be the final frontier. When we AI-enhance ourselves, and connect to the smart AIs too, we have a sort of global consciousness, linking everyone’s minds together as far as each allows. That’s a bigger frontier, since the individual minds and AIs add up to more cooperative capability than they can achieve individually. The frontier is getting bigger and more interesting. You could explore other people directly, share and meld with them. Fun, but still not the final frontier.

Time adds another dimension. We can’t do physical time travel, and even if we can do so in physics labs with tiny particles for tiny time periods, that won’t necessarily translate into a practical time machine to travel in the physical world. We can time travel in cyberspace though, as I explained in

The future of time travel: cheat

and when our minds are fully networked and everything is recorded, you’ll be able to travel back in time and genuinely interact with people in the past, back to the point where the recording started. You would also be able to travel forwards in time as far as the recording stops and future laws allow (I didn’t fully realise that when I wrote my time travel blog, so I ought to update it, soon). You’d be able to inhabit other peoples’ bodies, share their minds, share consciousness and feelings and emotions and thoughts. The frontier suddenly jumps out a lot once we start that recording, because you can go into the future as far as is continuously permitted. Going into that future allows you to get hold of all the future technologies and bring them back home, short circuiting the future, as long as time police don’t stop you. No, I’m not nuts – if you record everyone’s minds continuously, you can time travel into the future using cyberspace, and the effects extend beyond cyberspace into the real world you inhabit, so although it is certainly a cheat, it is effectively real time travel, backwards and forwards. It needs some security sorted out on warfare, banking and investments, procreation, gambling and so on, as well as lot of other causality issues, but to quote from Back to the Future: ‘What the hell?’ [IMPORTANT EDIT: in my following blog, I revise this a bit and conclude that although time travel to the future in this system lets you do pretty much what you want outside the system, time travel to the past only lets you interact with people and other things supported within the system platform, not the physical universe outside it. This does limit the scope for mischief.]

So, time travel in fully networked fully AI-enhanced cosmically-connected cyberspace/dream-space/imagination/love/games would be a bigger and later frontier. It lets you travel far into the future and so it notionally includes any frontiers invented and included by then. Is it the final one though? Well, there could be some frontiers discovered after the time travel windows are closed. They’d be even finaller, so I won’t bet on it.

 

 

The future of music creation

When I was a student, I saw people around me that could play musical instruments and since I couldn’t, I felt a bit inadequate, so I went out and bought a £13 guitar and taught myself to play. Later, I bought a keyboard and learned to play that too. I’ve never been much good at either, and can’t read music, but  if I know a tune, I can usually play it by ear and sometimes I compose, though I never record any of my compositions. Music is highly rewarding, whether listening or creating. I play well enough for my enjoyment and there are plenty of others who can play far better to entertain audiences.

Like almost everyone, most of the music I listen to is created by others and today, you can access music by a wide range of means. It does seem to me though that the music industry is stuck in the 20th century. Even concerts seem primitive compared to what is possible. So have streaming and download services. For some reason, new technology seems mostly to have escaped its attention, apart from a few geeks. There are a few innovative musicians and bands out there but they represent a tiny fraction of the music industry. Mainstream music is decades out of date.

Starting with the instruments themselves, even electronic instruments produce sound that appears to come from a single location. An electronic violin or guitar is just an electronic version of a violin or guitar, the sound all appears to come from a single point all the way through. It doesn’t  throw sound all over the place or use a wide range of dynamic effects to embrace the audience in surround sound effects. Why not? Why can’t a musician or a technician make the music meander around the listener, creating additional emotional content by getting up close, whispering right into an ear, like a violinist picking out an individual woman in a bar and serenading her? High quality surround sound systems have been in home cinemas for yonks. They are certainly easy to arrange in a high budget concert. Audio shouldn’t stop with stereo. It is surprising just how little use current music makes of existing surround sound capability. It is as if they think everyone only ever listens on headphones.

Of course, there is no rule that electronic instruments have to be just electronic derivatives of traditional ones, and to be fair, many sounds and effects on keyboards and electric guitars do go a lot further than just emulating traditional variants. But there still seems to be very little innovation in new kinds of instrument to explore dynamic audio effects, especially any that make full use of the space around the musician and audience. With the gesture recognition already available even on an Xbox or PS3, surely we should have a much more imaginative range of potential instruments, where you can make precise gestures, wave or throw your arms, squeeze your hands, make an emotional facial expression or delicately pinch, bend or slide fingers to create effects. Even multi-touch on phones or pads should have made a far bigger impact by now.

(As an aside, ever since I was a child, I have thought that there must be a visual equivalent to music. I don’t know what it is, and probably never will, but surely, there must be visual patterns or effects that can generate an equivalent emotional response to music. I feel sure that one day someone will discover how to generate them and the field will develop.)

The human body is a good instrument itself. Most people can sing to a point or at least hum or whistle a tune even if they can’t play an instrument. A musical instrument is really just an unnecessary interface between your brain, which knows what sound you want to make, and an audio production mechanism. Up until the late 20th century, the instrument made the sound, today, outside of a live concert at least,  it is very usually a computer with a digital to analog converter and a speaker attached. Links between computers and people are far better now though, so we can bypass the hard-to-learn instrument bit. With thought recognition, nerve monitoring, humming, whistling, gesture and expression recognition and so on, there is a very rich output from the body that can potentially be used far more intuitively and directly to generate the sound. You shouldn’t have to learn how to play an instrument in the 21st century. The sound creation process should interface almost directly to your brain as intuitively as your body does. If you can hum it, you can play it. Or should be able to, if the industry was keeping up.

Going a bit further, most of us have some idea what sort of music or effect we want to create, but don’t know quite enough about music to have the experience or skill to know quite what. A skilled composer may be able to write something down right away to achieve a musical effect that the rest of us would struggle to imagine. So, add some AI. Most music is based on fairly straightforward mathematical principles, even symphonies are mostly combinations of effects and sequences that fit well within AI-friendly guidelines. We use calculators to do calculations, so use AI to help compose music. Any of us should be able to compose great music with tools we should be able to build now. It shouldn’t be the future, it should be the present.

Let’s look at music distribution. When we buy a music track or stream it, why do we still only get the audio? Why isn’t the music video included by default? Sure, you can watch on YouTube but then you generally get low quality audio and video. Why isn’t purchased music delivered at the highest quality with full HD 3D video included, or videos if the band has made a few, with all the latest ones included as they emerge? If a video is available for music video channels, it surely should be available to those who have bought the music. That it isn’t reflects the contempt that the music industry generally shows to its customers. It treats us as a bunch of thieves who must only ever be given the least possible access for the greatest possible outlay, to make up for all the times we must of course be stealing off them. That attitude has to change if the industry is to achieve its potential. 

Augmented reality is emerging now. It already offers some potential to add overlays at concerts but in a few years, when video visors are commonplace, we should expect to see band members playing up in the air, flying around the audience, virtual band members, cartoon and fantasy creations all over the place doping all sorts of things, visual special effects overlaying the sound effects. Concerts will be a spectacular opportunity to blend the best of visual, audio, dance, storytelling, games and musical arts together. Concerts could be much more exciting, if they use the technology potential. Will they? I guess we’ll have to wait and see. Much of this could be done already, but only a little is.

Now lets consider the emotional connection between a musician and the listener. We are all very aware of the intense (though unilateral) relationship teens can often build with their pop idols. They may follow them on Twitter and other social nets as well as listening to their music and buying their posters. Augmented reality will let them go much further still. They could have their idol with them pretty much all the time, virtually present in their field of view, maybe even walking hand in hand, maybe even kissing them. The potential spectrum extends from distant listening to intimate cuddles. Bearing in mind especially the ages of many fans, how far should we allow this to go and how could it be policed?

Clothing adds potential to the emotional content during listening too. Headphones are fine for the information part of audio, but the lack of stomach-throbbing sound limits the depth of the experience. Music is more than information. Some music is only half there if it isn’t at the right volume. I know from personal experience that not everyone seems to understand this, but turning the volume down (or indeed up) sometimes destroys the emotional content. Sometimes you have to feel the music, sometimes let it fully conquer your senses. Already, people are experimenting with clothes that can house electronics, some that flash on and off in synch with the music, and some that will be able to contract and expand their fibres under electronic control. You will be able to buy clothes that give you the same vibration you would otherwise get from the sub-woofer or the rock concert.

Further down the line, we will be able to connect IT directly into the nervous system. Active skin is not far away. Inducing voltages and current in nerves via tiny implants or onplants on patches of skin will allow computers to generate sensations directly.

This augmented reality and a link to the nervous system gives another whole dimension to telepresence. Band members at a concert will be able to play right in front of audience members, shake them, cuddle them. The emotional connection could be a lot better.

Picking up electrical clues from the skin allows automated music selection according to the wearers emotional state. Even properties like skin conductivity can give clues about emotional state. Depending on your stress level for example, music could be played that soothes you, or if you feel calm, maybe more stimulating tracks could be played. Playlists would thus adapt to how you feel.

Finally, music is a social thing too. It brings people together in shared experiences. This is especially true for the musicians, but audience members often feel some shared experience too. Atmosphere. Social networking already sees some people sharing what music they are listening too (I don’t want to share my tastes but I recognise that some people do, and that’s fine). Where shared musical taste is important to a social group, it could be enhanced by providing tools to enable shared composition. AI can already write music in particular styles – you can feed Mozart of Beethoven into some music generators and they will produce music that sounds like it had been composed by that person, they can compose that as fast as it comes out of the speakers. It could take style preferences from a small group of people and produce music that fits across those styles. The result is a sort of tribal music, representative of the tribe that generated it. In this way, music could become even more of a social tool in the future than it already is.

Vampires are yesterday, zombies will peak soon, then clouds are coming

Most things that you can imagine have been the subject of sci-fi or fantasy at some point. There is certainly a large fashion element in the decision what to make the next film about and it is fun trying to spot what will come next.

Witches went out of fashion a decade ago even while other sword and sorcery, dungeons and dragons stuff remained stable and recurrent, albeit a niche. Vampires and werewolves accounted for far too many films and became boring, though admittedly, some of them were very good fun, so it’s safe to bury them for a decade or hopefully two.

Zombies are among the current leaders, (as I predicted several years ago, in spite of being laughed at back then). It is still hard to find a computer game that doesn’t have some sort of zombies in it, so they have a good while to go yet. The zombie apocalypse is scientifically and technologically feasible (see https://timeguide.wordpress.com/2012/02/14/zombies-are-coming/and that makes them far more disturbing than vampires and dragons, though the parasites in Alien are arguably even scarier.

Star Trek and the Terminator series introduced us to shape shifters. Avatar and Star Trek enthused over futuristic Indians. Symbionts and proxies are interesting but that’s really quite a shallow seam, there is really only one idea and it’s been used already. Religion and New Age trash has generally polluted throughout sci-fi and fantasy, but people are getting tired of it – American Indians and Australian Aborigines have been apologised to now. Recent Muslim backlash however suggests that the days are numbered for Star Wars, Dune, Mk 1 Klingons and others tapping into middle eastern stereotypes, so maybe  that will force other exotic cultures into the sci-fi limelight. The Cold War has already been done in overdose. South America has already been fully mined too. It’s a good while since the Chinese and Japanese cultures had a decent turn and I suspect they will come back strongly soon, whereas Africa doesn’t hold enough cultural identification points yet. Homophilia is having recurrent effects from Star Wars to Dr Who, but apart from gender-hopping, there isn’t really very far it can go. You can’t make many films from it.

So if those are the areas that are already showing signs of exhaustion  what comes after zombies? Gay zombies? Chinese zombies? Virtual zombies? Time travel zombies? Yeah, but after that?

Here’s my guess. Clouds.

Clouds are the IT Zeitgeist. They are the mid term future for sci-fi. There are a few possible manifestations and some tap well into other things we are getting to like. Clouds are a deep seam too. Not just one idea there. We have self-organisation, distribution, virtualisation, hybridisation, miniaturisation, self-replication, adaptation and evolution. We have AI, biomimetics, symbiosis, parasitic and commensalistic relationships. We have new kinds of gender, new kinds of intelligence, new physical and electronic forms. We have new kinds of materials, new ways of reproduction, new forms of attack and defense. I could write dozens of sci-fi books based on clouds. So could other people, and some of them will. Books, games, films, lots of them. About clouds.

You heard it here first. Clouds are the future of sci-fi.

 

The future of music and video media

With the death of HMV and Blockbuster this week, I’ve done some radio interviews on the future of the high street and one on the future of media. I wrote about retailing yesterday so today I’ll pick up on media. I wrote a while back that Spotify isn’t the future of music, not in its current form anyway, though I will admit that streaming is part of the future. Spotify will probably up its game and survive. If it doesn’t, it won’t. (I didn’t properly answer the question then of what the future would actually be. I will now.)

CDs aren’t the future of music either. DVDs or Blu-rays aren’t the future of video. Think about it. If you were starting from scratch today, would you base media distribution on plastic discs that have to be spun quickly in a mechanical device, and need to be read by lasers, are easily damaged, and take up lots of storage space? Of course you wouldn’t. You’d almost certainly go for either solid state or web storage. I’d go for solid state. Here’s why.

Web storage is fine as long as you have a good connection all the time and don’t have to pay for data downloads. I think we will still have streaming services in the far future and they might even remain a large market, but streaming isn’t a perfect solution. Transmitting data requires energy, and transmitting lots of data streams to lots of customers requires big server farms. It also clogs up bandwidth and that is limited too.

Downloading to local storage is also fine to a point. It is a large market now, and will remain so for some time. But there are also big problems with it. Licenses are not the same for downloaded music. You have a much more restricted ownership of music you buy online. The companies’ desire to protect their revenue is a higher priority for them that giving their customers full rights, just as it is with streaming (another reason streaming is not what it could be). With physical media, even though you may have ripped (and hence stolen) the content of the disc before you transferred it, the disc itself stops being yours if you pass it on to someone else. The concept of ownership and theft is very clear with physical media. With an MP3, less so. It is clear that the extra actual cost to the music provider is zero if you give a copy of an MP3 away, and you won’t buy a replacement anyway, and they probably wouldn’t either, so there is no clear revenue loss, so you can easily reason away any guilt in keeping a copy. So the music companies put in stuff like copy protection and non-transferable licenses that make it harder to keep your music organised, use it on multiple devices, recover it after disk crashes or sell it on when you’re bored with it. And with an MP3, you don’t have a nice box to look at and know that you own it. The music companies are more conspicuously stingy with MP3s too. If you are downloading the music, why don’t you get the music videos thrown in too? It’s obvious with the CD, there isn’t space on the disc, so you don’t mind, and the tradition has never been there anyway. A DVD could contain the video, but would cost more. With online music, you can usually watch it on YouTube so why don’t you get a proper decent resolution copy when you actually pay for it?

Anyway, solid state storage. I don’t want to be stuck with CDs or DVDs, and would much prefer to get a USB memory stick with the media on. I could plug it straight into my home cinema systems and watch a full Dolby Digital 7.1 Hi-def music video, preferably in 3D. I could easily play or transfer the files to any device I want. But that’s just today. Already, flexible displays and flexible batteries are appearing in electronics shows. It won’t be long at all before they are extremely common.

yoummain_2447820b

This is a demo flexible battery/display from Samsung. This is far more suited to carrying around and everyday abuse than glass. This could be a general purpose display but is also perfectly suited to be an all-round CD/DVD replacement, eventually. It will cost too much initially to directly replace CDs or DVDs or downloads, but the price of such devices is governed by Moore’s Law and will tumble. It could show you the music video or movie, it could hold the music or video, it could communicate with any of your display and audio devices as well as being one itself. It is collectable, and could hold a permanent album cover image or slideshow of video clips or stills. It could be of any shape and size and still do the job. It ticks all the boxes for ownership, portability, robustness, media future-proofing. The battery could be built in or it could be powered inductively, or using solar.

It could support a range of business models too. You could buy albums, one per device, just like CDs, proudly keeping them on a nice rack or display shelf. Resell them at car boot sales or give them to friends. Or you could subscribe to a band or a music producer, and it could hold all of their stuff, and be immediately updated with any of their new releases. It could be locked to just their stuff and just you if that’s what you bought.  The device could support lots of different kinds of license. Or you could buy stuff online and it would download to one you have as a replacement for today’s MP3 player. So it could hold one track, an album, a group, an entire collection, or be the front end device of a streaming service. Devices like this could support many business models. It meets the requirements of the music industry and the customer, doesn’t need lots of energy for cloud based storage, improves the potential quality of offering for everyone. This is the future of music media and probably video.

Of course you can do some of this with an app on a pad too. But having a dedicated device solves a lot of the problems we are used to that are associated with doing that.

What will your next body be like?

Many engineers, including me, think that some time around 2050, we will be able to make very high quality links between the brains and machines. To such an extent that it will thereafter be possible (albeit expensive for some years) to arrange that most of your mind – your thinking, memories, even sensations and emotions, could reside mainly in the machine world. Some (perhaps some memories that are rarely remembered for example) may not be suited to such external accessibility, but the majority should be.

The main aim of this research area is to design electronic solutions to immortality. But actually, that is only one application, and I have discussed electronic immortality a few times now :

How to live forever

Increasing longevity and electronic immortality. 3Bn people to live forever.

What I want to focus on this time is that you don’t have to die to benefit. If your mind is so well connected, you could inhabit a new body, without having to vacate your existing one. Furthermore, there really isn’t much to stop you getting a new body, using that, and dumping your old one in a life support system. You won’t do that, but you could. Either way, you could get a new body or an extra one, and as I asked in passing in my last blog, what will your new body look like?

Firstly, why would you want to do this? Well, you might be old, suffering the drawbacks of ageing, not as mobile and agile as you want to be, you might be young, but not as pretty or fit as you want to be, or maybe you would prefer to be someone else, like your favourite celebrity, a top sports hero, or maybe you’d prefer to be a different gender perhaps? Or maybe you just generally feel you’d like to have the chance to start over, do it differently. Maybe you want to explore a different lifestyle, or maybe it is a way of expressing your artistic streak. So, with all these reasons and more, there will be plenty of demand for wanting a new body and a potentially new life.

Options

Lets explore some of the options. Don’t be too channelled by assuming you even have to be human. There is a huge range of potential here, but some restrictions will be necessary too. Lots of things will be possible, but not permissible.

Firstly, tastes will vary a lot. People may want their body to look professional for career reasons, others will prefer sexy, others sporty. Most people will only have one at a time, so will choose it carefully. A bit like buying a house. But not everyone will be conservative.

Just like buying a house, some rich people will want to own several for different circumstances, and many others would want several but can’t afford it, so there could be a rental market. But as I will argue shortly, you probably won’t be allowed to use too many at the same time, so that means we will need some form of storage, and ethics dictates that the ‘spare’ bodies mustn’t be ‘alive’ or conscious. There are lots of ways to do this. Using a detachable brain is one, or not to put a brain in at all, using empty immobile husks that are switched on and then linked to your remote mind in the cloud to become alive. This sounds preferable to me. Most likely they would be inorganic. I don’t think it will be ethically acceptable to grow cloned bodies in some sort of farm and remove their brains, so using some sort of android is probably best all round.

So, although you can do a lot with biotech, and there are some options there, I do think that most replacement bodies, if not all, will be androids using synthetic materials and AI’s, not biological bodies.

As for materials, it is already possible to buy lifelike full sized dolls, but the materials will continue to improve, as will robotics. You could look how you want to look, and your new body would be as youthful, strong, and flexible as you want or need it to be.

Now that we’re in that very broad android/robot creativity space, you could be any species, fantasy character, alien, robot, android or pretty much any imaginary form that could be fabricated. You could be any size or shape from a bacterium to an avatar for an AI spaceship (such as Rommy’s avatar in Andromeda, or Edi in Mass Effect. Noteworthy of course is that both Rommy and Edi felt compelled to get bodies too, so that they could maximise their usefuleness, even though they were both useful in their pure AI form.)

You could be any age. It might be very difficult to make a body that can grow, so you might need a succession of bodies if you want to start off as a child again. Already, warning bells are ringing in my head and I realise that we will need to restrict options and police things. Do we really want to allow adults people to assume the bodies of children, with all the obvious paedophilic dangers that would bring? Probably not, and I suspect this will be one of the first regulations restricting choice. You could become young again, but the law will make it so your appearance must remain adult. For the same obvious reasons, you wouldn’t be allowed to become something like a teddy bear or doll or any other form that would provide easy access to children.

You could be any gender. I wrote about future gender potential recently in:

https://timeguide.wordpress.com/2012/09/02/the-future-of-gender/

There will be lots of genders and sexuality variations in that time frame.  Getting a new or an extra body with a different gender will obviously appeal to people with transgender desires, but it might go further and appeal to those who want a body of each sex too. Why not? You can be perfectly comfortable with your sexuality in your existing gender, but  still choose a different gender for your new body. If you can have a body in each gender, many people will want to. You may not be restricted to one or two bodies, so you might buy several bodies of different ages, genders, races and appearances. You could have a whole village of variants of you. Again, obvious restrictions loom large. Regulation would not allow people, however rich or powerful, to have huge numbers of bodies running around at the same time. The environmental, social, political and military impacts would get too large. I can’t say what the limits will be, but there will certainly be limits. But within those limits, you could have a lot of flexibility, and fun.

You could be any species. An alien, or an elf, or a dog. Technology can do most shapes and as for how it might feel, noone knows how elves or dogs or aliens feel anyway, so you have a clean slate to work with, customising till you are satisfied that what you create matches your desire. But again, should elves be allowed to interbreed with people, or aliens? Or dogs? The technology is exciting, but it does create a whole new genre of ethical, regulatory and policing problems too. But then again, we need to create new jobs anyway.

Other restrictions on relationships might spring up. If you have two or more bodies, will they be allowed to have sex with each other, marry, adopt kids, or be both parents of your own kids. Bear in mind cloning may well be legal by then and artificial wombs may even exist, so being both parents of your own cloned offspring is possible. If they do have sex, you will be connected into both bodies, so will control and experience both sides. It is worth noting here that you will also be able to link into other people’s nervous systems using similar technology, so the idea of experiencing the ‘other’ side of a sex act will not be unique to using your own bodies.

What about being a superhero? You could do that too, within legal limits, and of course those stretch a bit for police and military roles. Adding extra senses and capabilities is easy if your mind is connected to an entire network of sensors, processors and actuators. Remember, the body you use is just an android so if your superheroing activity gets you killed, it is just a temporary inconvenience. Claim on insurance or expenses and buy a new body for the next performance.

In this future world, you may think it would be hard to juggle mindsets between different bodies, but today’s computer games give us some insight. Many people take on roles every day, as aliens, wizards or any fantasy in their computer gaming. They still achieve sanity in their main life, showing that it is almost certainly possible to safely juggle multiple bodies with their distinct roles and appearances too. The human mind is pretty versatile, and a healthy adult mind is also very robust. With future AI assistance and monitoring it should be even safer. So it ought to be safe to explore and have fun in a world where you can use a different body at will, maybe for an hour or maybe for a lifetime, and even inhabit a few at once.

So, again, what will your next body look like?

Casual displays

I had a new idea. If I was adventurous or an entrepreneur, I’d develop it, but I’m not, so I won’t. But you can, before Apple patents it. Or maybe they already have.

Many people own various brands of pads, but they are generally expensive, heavy, fragile and need far too much charging. That’s because they try to be high powered computers. Even e-book readers have too much functionality for some display purposes and that creates extra expense. I believe there is a large market for more casual displays that are cheap enough to throw around at all sorts of tasks that don’t need anything other than the ability to change and hold a display.

Several years ago, Texas Instruments invented memory spots, that let people add multimedia to everyday objects. The spots could hold a short video for example, and be stuck on any everyday object.These were a good idea, but one of very many good ideas competing for attention by development engineers. Other companies have also had similar ideas. However, turning the idea around, spots like this could be used to hold data for a  display, and could be programmed by a similar pen-like device or even a finger touch. Up to 2Mb/s can be transmitted through the skin surface.

Cheap displays that have little additional functionality could be made cheaply and use low power. If they are cheap enough, less than ten pounds say, they could be used for many everyday purposes where cards or paper are currently used. And since they are cheap, there could be many of them. With a pad, it has to do many tasks. A casual display would do only one. You could have them all over the place, as recipe cards, photos, pieces of art, maps, books, body adornment, playing cards, messages, birthday cards, instructions, medical advice, or anything. For example:

Friend cards could act as a pin-board reminder of a friend, or sit in a wallet or handbag. You might have one for each of several best friends. A touch of the spot would update the card with the latest photo or status from Facebook or another social site. Or it could be done via a smart phone jack. But since the card only has simple functionality  it would stay cheap. It does nothing that can’t also be done by a smartphone or pad, but the point is that it doesn’t have to. It is always the friend card. The image would stay. It doesn’t need anything to be clicked or charged up. It only needs power momentarily to change the picture.

There are displays that can hold pictures without power that are postcard sized, for less than £10. Adding a simple data storage chip and drivers shouldn’t add significantly to cost. So this idea should be perfectly feasible. We should be able to have lots of casual displays all over our houses and offices if they don’t have to do numerous other things. In the case of displays, less may mean more.

Spotify definitely isn’t the future for music. So what is?

Rant ahead, move along if you aren’t interested.

My final update on Spotify. I gave up. I cancelled and there will be no more chances now. They have lost me permanently. Content-wise, it was far better, with a lot of stuff I wanted now available, albeit they have the same probs scanning in albums as me, with some tracks mixed up. I don’t mind paying £5 per month to ditch the ads and stream, which is what I thought I’d bought. It implied very strongly when I subscribed that I could stream it, but it turned out that wasn’t true. My squeezebox insisted I couldn’t use it because I need a premium subscription. Apparently the £5 per month one isn’t sufficient. I wasted a little cash but I will survive. I played 10 songs during the trial period, and had it 3  months, and that is the same price as buying them, which is easier to do and I can play them anywhere. If I can’t play stuff via my squeezebox, I don’t want it.

There is one other fault that is worthy of mention. When I wanted to cancel, I couldn’t find Spotify on my PC any more. It had totally vanished. That has happened a few times before. I didn’t remove it, it just left. Why they should remove an application I am actively paying for is totally beyond me. That really is the final straw. I’m done with them. I recommend you find an alternative if you’re shopping around too.

I know many of you have a good experience with it. I didn’t, and I’ve now given them several chances. It isn’t user error. I’m not thick. Spotify works for some people on some devices. It doesn’t work for me on mine. Bye bye Spotify. I’ll try an alternative.

The following is my original piece, what I wrote above is just an  update. Just bear in mind that some is now out of date.

 

Old blog follows:

So, I just cancelled my Spotify premium account. I gave it a good try – just over a year, so that’s over a hundred quid, and I reckon because of the problems using it I have listened to about 100 tracks over that time. Pretty poor value for me. It can be used, but is so difficult to use with my setup, I hardly ever did. And when I tried, usually the licenses had expired so it would spend ages downloading them again before it would let letting me listen. And usually several of the tracks on each playlist were no longer available. And worse still, on three occasions over that time, the whole application has gone missing off my PC spontaneously and I have had to download it afresh.

When I just want to listen to a music track, I don’t want to have to find the Spotify page, download the app again, wait ages while it installs, resyncs a few hundred tracks across all my playlists, clogging up my internet access for ages, log in again, figure out why it won’t talk my Squeezebox any more, fix the complaints by the software that my Squeezebox is logged in so I cant log in via my PC, put up with the inexplicably bad interface to the Squeezebox, wondering why the hell I can’t just use my PC version and then click a button to stream it, then take a trip to the lounge to change channel on my media system, then come back, switch off the one on playing on my PC speakers at the same time, and then figure out which of the two playlists I now have up is the right one, and then work out that the reason it isn’t playing the one I want to listen to is no longer available from Spotify, then figure out how to go back to the Squeezebox interface and find it on my hard drive from my CD collection, then play that, then wonder how I get back onto Spotify without losing the track playing, then try to find which playlist I had going…. etc etc.

Spotify does not work for me. It is better than Napster, but only on a 3/10 score is better than a 1/10 score basis. Both are total rubbish when used with a Squeezebox in another room. Part of that is the Squeezebox’s (Logitech’s) fault, part Spotify’s but if they have an agreement to work together, and claim to do so in their sales pitches, then it is both their faults. My Squeezebox is wonderful when it works. When!

So that’s why I cancelled. I clicked the ‘don’t use enough’ button on their form, but couldn’t click all the others that applied because they only permit one option. I didn’t use it enough because it is total crap. The only reason I didn’t cancel earlier is because I kept forgetting to.

Spotify is fine on just my PC, but then I don’t need the streaming, so the free one is fine, I just turn down my speakers when the adds come on.

OK, let’s move on from Spotify and my darned Squeezebox. I like listening to music, when it’s easy. When I used CDs I listened frequently. Then I got my first MP3 player, and much later various iphones. I have never used any of them more than a few minutes at a time. Having all your music on an easy button click means that with my hamster-like attention span, I hit a new track every few seconds and my enthusiasm quickly burns out. A kid in a sweet shop soon gets sick. And anyway, my iPhone battery seems to be empty every time I pick it up. Another piece of crap but that’s Apple for you.

I use my PC to store all my CD music, and rarely use them now. One problem I have and I am sure must share with others is that on iTunes some tracks get misnamed or worse still, just come over as unknown. I made the huge mistake once of letting iTunes reorganise my library and everything got so screwed up I had to scan in all my CDs again. I own about 20 tracks I bought from Amazon or Napster. They are on my PC, but are always hard to find when I use the media server or Squeezebox because the interfaces are bad. So even there, with music I own, on my own PC, listening is OK to a point, but still has loads of problems. I am listening to a playlist right now and picked ‘play all’, but I still have to go into the Logitech screen every track to make it play the next one instead of  letting it repeat the same track endlessly. It doesn’t work! It isn’t my fault. I am reasonably smart and have 30 years IT experience. If I can’t use it, it is designed badly. Simple as that.

I have a new Freesat system with a hard drive, and am told I can use that to store and play my music. I’ll reserve judgement on that till I try it. I haven’t plugged it in yet.

The future

So how do I get music? I don’t want to use a personal MP3 player all the time. What I really want is to be able to just see a big swathe of album covers, preferably virtual ones hanging in space in front of me, and touch one, then pick the track, or do all that with a playlist. Or speak a voice command, or use a simple search tool by .

When I play it, I want to watch the music video, and I want music made for full 7.1 surround, not bloody stereo. I want to feel I am there in the studio or concert. I want full sensory, full immersion music, with every sense stimulated in synch.

I don’t mind paying. I have never listened to a track I don’t have the legal right to listen to. That never has been an issue. I have bought a lot of what turned out to be rubbish and I’d like a refund please. Same with all the many dupes I own. Can I sell them please? Also, can I give in all my vinyl LPs and get lifetime licenses to digital version please? But I won’t hold my breath on that.

I want to pay a subscription to something a bit like Spotify, but a more professional one that sort of works. I want access to all the other music. And when I spend time making  a playlist, I don’t want to find 20% of the tracks won’t play next time I access it. I want it to integrate seamlessly with my owned tracks, in the correct sense of the word, not exaggerated sales hype. And I want to be able to point at any set of speakers in my house, or anywhere else for that matter and stream it from there, now. I don’t want to fight battles with software or have to log in to anything, or to update software, or re-establish internet connections, or be told I cant use it in the lounge because I am logged on in the office.

The music industry insists on being paid. But by doing so in such clumsy and badly implemented ways, they have destroyed any pleasure from listening to music and alienated countless customers. I tried to buy CDs, but Apple can’t copy them properly onto my PC. My PC can’t stream them reliably through my Squeezebox because of Microsoft and Logitech. No music subscription service I can access on the Squeezebox is any good at all. So I’ll keep the money in my bank account. I listen to music so much less now because it’s such a pain, so the novelty doesn’t wear off any more, so I have enough. A small loss to the global music industry perhaps, but many others aren’t willing to pay at all so I am part of the group they needed to keep on board. For 20 years they have been trying to get a working business model. This isn’t it.

Spotify aimed at the future, and missed.

Fairy stories as a guide to the future?

OK, clutching at straws for a topic this morning, but here goes. Arthur C. Clarke said that sufficiently advanced technology is indistinguishable from magic and I agree. Engineers often derive inspiration from science fiction (and vice versa), but the magic in fairy stories might be a rich source of ideas too. If we look to fairy stories to see the sorts of things people do with magic, then we should see some markets for real advanced technology. Not all of them will be feasible, but some will. It may not be a very standard futures technique, but it should work. We won’t know if we don’t try. There is a pretty standard formula now for producing ideas and techniques in science fiction and computer games. Just mix together some nice potions such as synthetic biology, nanotechnology, genetic modification, artificial intelligence, neurotechnology, virtual, quantum and so on, and you can’t go far wrong, you will end up with all the magic you can imagine. Fairy stories are a bit pre-technology, but maybe we’ll see some ideas.

Let’s start with love potions, evil kisses, poisoned needles and the like. These are included in many stories as tricks that conceal means to control others, spy on them, make them do things or think things. Could that be done? Yes, probably. I wrote about hacking into people’s brains and remote controlling them in my ‘Zombies are coming’ piece, and about some related concepts in my pieces on immortality via direct links to the brain. It essentially uses bacteria to infiltrate the other person’s body via hand contact, a simple kiss, or eating something, and once introduced, the bacteria reproduce and synthesise the components that then connect to nerves in the brain and form a remote control channel. So you could create anything in their mind – sensations, memories, ideas, anything. You could make them believe anything, love anyone, or just hack into their mind to see what they are thinking, any of those sorts of things. Sure, it would be difficult, but it will be feasible one day.

Mind reading is already with us to some degree. Some computer games can be controlled by thought, wheelchairs for the disabled. Scientists can even work out what videos someone is thinking about by comparing the electrical signal they emit to those gathered when they were actually viewing  a selection of videos earlier.

How about preserving someone? Like sleeping beauty. Well, hibernation research has been going on for ages already, and one day that will come up with the goods too. It probably won’t involve spinning wheels, but an injection of some sort is quite likely.

Invisibility is a common occurrence in fairy stories too, and in real life, scientists can make small objects almost invisible too, using special fabrics that bend light or cameras coupled to light emitting fabrics. So far they only work from one direction, and some only work in small colour ranges, but we’re getting there.

Levitation can be done with magnets and superconductivity. Being in two places at once, well I guess that is called Skype.

I am struggling to think of stuff in fairy stories that can’t already be done in the lab or that we at least have a good idea how to do it. Ah yes, frogs that turn into princes. Well, outside of computer games or virtual worlds, it would be difficult, but as augmented reality becomes everyday stuff, we”’ see lots of people using weird avatars, and who knows, some princes with a sense of fun might well choose to be frogs.

The magic wand would also feature well in augmented reality but in the real world would have little real application except as a simple interface to start other processes.

Actually though, I am going to stop here. Fairy stories are a rich source of ideas for technologies we already have or already know about. A part record of the scope of imagination in days gone by. They maybe aren’t so good as a future tool after all. Maybe we need more science fiction writers to do fairy stories before that will be fixed.

More uses for 3d printing

3D printers are growing in popularity, with a wide range in price from domestic models to high-end industrial printers. The field is already over-hyped, but there is still room for even more, so here we go.

Restoration

3D printing is a good solution for production of items in one-off or small run quantity, so restoration is one field that will particularly benefit. If a component of a machine is damaged or missing, it can be replaced, if a piece has been broken off an ornament, a 3D scan of the remaining piece could be compared with how it should be and 3D patches designed and printed to restore the full object.

Creativity & Crafts

Creativity too will benefit. Especially with assistance from clever software, many people will find that what they thought was their small streak of creativity is actually not that small at all, and will be encouraged to create. The amateur art world can be expected to expand greatly, both in virtual art and physical sculpture. We will see a new renaissance, especially in sculpture and crafts, but also in imaginative hybrid virtual-physical arts. Physical objects may be printed or remain virtual, displayed in augmented reality perhaps. Some of these will be scalable, with tiny versions made on home 3D printers. People may use these test prints to refine their works, and possibly then have larger ones produced on more expensive printers owned by clubs or businesses. They could print it using the 3D printing firm down the road, or just upload the design to a web-based producer for printing and home delivery later in the week.

Fashion will benefit from 3D printing too, with accessories designed or downloaded and printed on demand. A customer may not want to design their own accessories fully, but may start with a choice of template of some sort that they customise to taste, so that their accessories are still personalised but don’t need to much involvement of time and effort.

Could printed miniatures become as important as photos?

People take a lot of photos and videos, and they are a key tool in social networking as well as capturing memories. If 3D scans or photos are taken, and miniature physical models printed, they might have a greater social and personal value even than photos.

Micro-robotics and espionage

3D printing is capable of making lots of intricate parts that would be hard to manufacture by any other means, so should be appropriate for some of the parts useful in making small robots, such as tiny insects that can fly into properties undetected.

Internal printing

Conventional 3D printers, if there can be such a thing so early in their development, use line of sight to make objects by building them in thin layers. Although this allows elaborate structures to be made, it doesn’t allow everything, and there are some structures or objects that would be more easily made if it were possible to print internally. Although lasers would be of little use in opaque objects, x-rays might work fine in some circumstances. This would allow retro-fitting too.

Cancer treatment

If x-ray or printing can be made to work, then it may be possible to build heating circuits inside cancers, and then inductive power supplies could burn away the tumours. Alternatively, smart circuits could be implanted to activate encapsulated drugs when they arrive at the scene.

This would require a one-off exposure to x-rays, but not necessarily similarly damaging levels to those used in radiotherapy.

Direct brain-machine links

Looking further ahead, internal printing of circuits or electronic components inside the brain will be a superb means to do interfacing between man and machine. X-rays can in principle be focused to 1nm, easily fine enough resolution to make contacts to specific brain regions. Obviously x-rays are not something that people would want to be exposed to frequently, but many people would volunteer  (e.g. I would) to have some circuits implanted at least for R&D purposes, since greater insights into how the brain does stuff will accelerate greatly the development of biomimetic AI. But if those circuits were able to link parts of the brain to the web for fast thought based access to search, processing, or sensory enhancement, I’d be fighting millions of transhumanists to get to the front of the long queue.