Tag Archives: sci-fi

How to make a Star Wars light saber

A couple of years ago I explained how to make a free-floating combat drone: http://carbonweapons.com/2013/06/27/free-floating-combat-drones/ , like the ones in Halo or Mass Effect. They could realistically be made in the next couple of decades and are very likely to feature heavily in far future warfare, or indeed terrorism. I was chatting to a journalist this morning about light sabers, another sci-fi classic. They could also be made in the next few decades, using derivatives of the same principles. A prototype is feasible this side of 2050.

I’ll ignore the sci-fi wikis that explain how they are meant to work, which mostly approximate to fancy words for using magic or The Force and various fictional crystals. On the other hand, we still want something that will look and sound and behave like the light saber.

The handle bit is pretty obvious. It has to look good and contain a power source and either a powerful laser or plasma generator. The traditional problem with using a laser-based saber is that the saber is only meant to be a metre long but laser beams don’t generally stop until they hit something. Plasma on the other hand is difficult to contain and needs a lot of energy even when it isn’t being used to strike your opponent. A laser can be switched on and off and is therefore better. But we can have some nice glowy plasma too, just for fun.

The idea is pretty simple then. The blade would be made of graphene flakes coated with carbon nanotube electron pipes, suspended using the same technique I outlined in the blog above. These could easily be made to form a long cylinder and when you want the traditional Star Wars look, they would move about a bit, giving the nice shimmery blurry edge we all like so that the tube looks just right with blurry glowy edges. Anyway, with the electron pipe surface facing inwards, these flakes would generate the internal plasma and its nice glow. They would self-organize their cylinder continuously to follow the path of the saber. Easy-peasy. If they strike something, they would just re-organize themselves into the cylinder again once they are free.

For later models, a Katana shaped blade will obviously be preferred. As we know, all ultimate weapons end up looking like a Katana, so we might as well go straight to it, and have the traditional cylindrical light saber blade as an optional cosmetic envelope for show fights. The Katana is a universal physics result in all possible universes.

The hum could be generated by a speaker in the handle if you have absolutely no sense of style, but for everyone else, you could simply activate pulsed magnetic fields between the flakes so that they resonate at the required band to give your particular tone. Graphene flakes can be magnetized so again this is perfectly consistent with physics. You could download and customize hums from the cloud.

Now the fun bit. When the blade gets close to an object, such as your opponent’s arm, or your loaf of bread in need of being sliced, the capacitance of the outer flakes would change, and anyway, they could easily transmit infrared light in every direction and pick up reflections. It doesn’t really matter which method you pick to detect the right moment to activate the laser, the point is that this bit would be easy engineering and with lots of techniques to pick from, there could be a range of light sabers on offer. Importantly, at least a few techniques could work that don’t violate any physics. Next, some of those self-organizing graphene flakes would have reflective surface backings (metals bond well with graphene so this is also a doddle allowed by physics), and would therefore form a nice reflecting surface to deflect the laser beam at the object about to be struck. If a few flakes are vaporized, others would be right behind them to reflect the beam.

So just as the blade strikes the surface of the target, the powerful laser switches on and the beam is bounced off the reflecting flakes onto the target, vaporizing it and cauterizing the ends of the severed blood vessels to avoid unnecessary mess that might cause a risk of slipping. The shape of the beam depends on the locations and angles of the reflecting surface flakes, and they could be in pretty much any shape to create any shape of beam needed, which could be anything from a sharp knife to a single point, severing an arm or drilling a nice neat hole through the heart. Obviously, style dictates that the point of the saber is used for a narrow beam and the edge is used as a knife, also useful for cutting bread or making toast (the latter uses transverse laser deflection at lower aggregate power density to char rather than vaporize the bread particles, and toast is an option selectable by a dial on the handle).

What about fights? When two of these blades hit each other there would be a variety of possible effects. Again, it would come down to personal style. There is no need to have any feel at all, the beams could simple go through each other, but where’s the fun in that? Far better that the flakes also carry high electric currents so they could create a nice flurry of sparks and the magnetic interactions between the sabers could also be very powerful. Again, self organisation would allow circuits to form to carry the currents at the right locations to deflect or disrupt the opponent’s saber. A galactic treaty would be needed to ensure that everyone fights by the rules and doesn’t cheat by having an ethereal saber that just goes right through the other one without any nice show. War without glory is nothing, and there can be no glory without a strong emotional investment and physical struggle mediated by magnetic interactions in the sabers.

This saber would have a very nice glow in any color you like, but not have a solid blade, so would look and feel very like the Star Wars saber (when you just want to touch it, the lasers would not activate to slice your fingers off, provided you have read the safety instructions and have the safety lock engaged). The blade could also grow elegantly from the hilt when it is activated, over a second or so, it would not just suddenly appear at full length. We need an on/off button for that bit, but that could simply be emotion or thought recognition so it turns on when you concentrate on The Force, or just feel it.

The power supply could be a battery or graphene capacitor bank of a couple of containers of nice chemicals if you want to build it before we can harness The Force and magic crystals.

A light saber that looks, feels and behaves just like the ones on Star Wars is therefore entirely feasible, consistent with physics, and could be built before 2050. It might use different techniques than I have described, but if no better techniques are invented, we could still do it the way I describe above. One way or another, we will have light sabers.


My new sci-fi book: Space Anchor

I haven’t blogged for a while. That’s because I have been busy writing my first sci-fi book, which is now out.

ISBN-13: 978-1491220023 in paperback


and as ASIN: B00E9X02IE in ebook form, with a lighter cover:

kindle cover

It is a not-too-serious book, set towards the end of this century, and is first one I have written on the adventures of Carbon Girl and her partner Carbon Man, who manage to make an entire superhero lifestyle using carbon and not much else. Although it is meant to be a bit light-hearted, most of the tech in it is supposed to be reasonably plausible. I have had to make a couple of concession to artistic license for the space bits – a sad fact of life in sci-fi is that if you want ships to go any distance in a short period, you have to invent some pseudo-scientific way of side-stepping what we currently think of as basic physics. It has AI romance and zombies in it too.

With recent complaints in the media that most sci-fi has a severe shortage of female characters, my book tries to improve the balance a bit, and uses Carbon Girl as its main character. A couple of examples of its general flavour so far:

“When a sexy woman puts on a figure enhancing cat-suit and lethal stilettos, usually people fall in line. Just in case they didn’t, she also took her whip. Now she felt right. She was Carbon Girl again. She was dressed to kill. No, today, they would probably form a queue to be killed by her.”

“It isn’t every day that your arch-nemesis becomes your lover, but then again, as Carbon Man frequently observed “Sometimes, things come right back and bite you on the bum.””

“Corel surrendered totally and unconditionally to temptation, invited it in and told it to make itself feel at home.”

It is available in paper and e-book form. Both available from 2/8/13 via Amazon.

Free-floating AI battle drone orbs (or making Glyph from Mass Effect)

I have spent many hours playing various editions of Mass Effect, from EA Games. It is one of my favourites and has clearly benefited from some highly creative minds. They had to invent a wide range of fictional technology along with technical explanations in the detail for how they are meant to work. Some is just artistic redesign of very common sci-fi ideas, but they have added a huge amount of their own too. Sci-fi and real engineering have always had a strong mutual cross-fertilisation. I have lectured sometimes on science fact v sci-fi, to show that what we eventually achieve is sometimes far better than the sci-fi version (Exhibit A – the rubbish voice synthesisers and storage devices use on Star Trek, TOS).


Liara talking to her assistant Glyph.Picture Credit: social.bioware.com

In Mass Effect, lots of floating holographic style orbs float around all over the place for various military or assistant purposes. They aren’t confined to a fixed holographic projection system. Disruptor and battle drones are common, and  a few home/lab/office assistants such as Glyph, who is Liara’s friendly PA, not a battle drone. These aren’t just dumb holograms, they can carry small devices and do stuff. The idea of a floating sphere may have been inspired by Halo’s, but the Mass Effect ones look more holographic and generally nicer. (Think Apple v Microsoft). Battle drones are highly topical now, but current technology uses wings and helicopters. The drones in sci-fi like Mass Effect and Halo are just free-floating ethereal orbs. That’s what I am talking about now. They aren’t in the distant future. They will be here quite soon.

I recently wrote on how to make force field and floating cars or hover-boards.


Briefly, they work by creating a thick cushion of magnetically confined plasma under the vehicle that can be used to keep it well off the ground, a bit like a hovercraft without a skirt or fans. Using layers of confined plasma could also be used to make relatively weak force fields. A key claim of the idea is that you can coat a firm surface with a packed array of steerable electron pipes to make the plasma, and a potentially reconfigurable and self organising circuit to produce the confinement field. No moving parts, and the coating would simply produce a lifting or propulsion force according to its area.

This is all very easy to imagine for objects with a relatively flat base like cars and hover-boards, but I later realised that the force field bit could be used to suspend additional components, and if they also have a power source, they can add locally to that field. The ability to sense their exact relative positions and instantaneously adjust the local fields to maintain or achieve their desired position so dynamic self-organisation would allow just about any shape  and dynamics to be achieved and maintained. So basically, if you break the levitation bit up, each piece could still work fine. I love self organisation, and biomimetics generally. I wrote my first paper on hormonal self-organisation over 20 years ago to show how networks or telephone exchanges could self organise, and have used it in many designs since. With a few pieces generating external air flow, the objects could wander around. Cunning design using multiple components could therefore be used to make orbs that float and wander around too, even with the inspired moving plates that Mass Effect uses for its drones. It could also be very lightweight and translucent, just like Glyph. Regular readers will not be surprised if I recommend some of these components should be made of graphene, because it can be used to make wonderful things. It is light, strong, an excellent electrical and thermal conductor, a perfect platform for electronics, can be used to make super-capacitors and so on. Glyph could use a combination of moving physical plates, and use some to add some holographic projection – to make it look pretty. So, part physical and part hologram then.

Plates used in the structure can dynamically attract or repel each other and use tethers, or use confined plasma cushions. They can create air jets in any direction. They would have a small load-bearing capability. Since graphene foam is potentially lighter than helium


it could be added into structures to reduce forces needed. So, we’re not looking at orbs that can carry heavy equipment here, but carrying processing, sensing, storage and comms would be easy. Obviously they could therefore include whatever state of the art artificial intelligence has got to, either on-board, distributed, or via the cloud. Beyond that, it is hard to imagine a small orb carrying more than a few hundred grammes. Nevertheless, it could carry enough equipment to make it very useful indeed for very many purposes. These drones could work pretty much anywhere. Space would be tricky but not that tricky, the drones would just have to carry a little fuel.

But let’s get right to the point. The primary market for this isn’t the home or lab or office, it is the battlefield. Battle drones are being regulated as I type, but that doesn’t mean they won’t be developed. My generation grew up with the nuclear arms race. Millennials will grow up with the drone arms race. And that if anything is a lot scarier. The battle drones on Mass Effect are fairly easy to kill. Real ones won’t.

a Mass Effect combat droneMass Effect combat drone, picture credit: masseffect.wikia.com

If these cute little floating drone things are taken out of the office and converted to military uses they could do pretty much all the stuff they do in sci-fi. They could have lots of local energy storage using super-caps, so they could easily carry self-organising lightweight  lasers or electrical shock weaponry too, or carry steerable mirrors to direct beams from remote lasers, and high definition 3D cameras and other sensing for reconnaissance. The interesting thing here is that self organisation of potentially redundant components would allow a free roaming battle drone that would be highly resistant to attack. You could shoot it for ages with laser or bullets and it would keep coming. Disruption of its fields by electrical weapons would make it collapse temporarily, but it would just get up and reassemble as soon as you stop firing. With its intelligence potentially local cloud based, you could make a small battalion of these that could only be properly killed by totally frazzling them all. They would be potentially lethal individually but almost irresistible as a team. Super-capacitors could be recharged frequently using companion drones to relay power from the rear line. A mist of spare components could make ready replacements for any that are destroyed. Self-orientation and use of free-space optics for comms make wiring and circuit boards redundant, and sub-millimetre chips 100m away would be quite hard to hit.

Well I’m scared. If you’re not, I didn’t explain it properly.

Vampires are yesterday, zombies will peak soon, then clouds are coming

Most things that you can imagine have been the subject of sci-fi or fantasy at some point. There is certainly a large fashion element in the decision what to make the next film about and it is fun trying to spot what will come next.

Witches went out of fashion a decade ago even while other sword and sorcery, dungeons and dragons stuff remained stable and recurrent, albeit a niche. Vampires and werewolves accounted for far too many films and became boring, though admittedly, some of them were very good fun, so it’s safe to bury them for a decade or hopefully two.

Zombies are among the current leaders, (as I predicted several years ago, in spite of being laughed at back then). It is still hard to find a computer game that doesn’t have some sort of zombies in it, so they have a good while to go yet. The zombie apocalypse is scientifically and technologically feasible (see https://timeguide.wordpress.com/2012/02/14/zombies-are-coming/and that makes them far more disturbing than vampires and dragons, though the parasites in Alien are arguably even scarier.

Star Trek and the Terminator series introduced us to shape shifters. Avatar and Star Trek enthused over futuristic Indians. Symbionts and proxies are interesting but that’s really quite a shallow seam, there is really only one idea and it’s been used already. Religion and New Age trash has generally polluted throughout sci-fi and fantasy, but people are getting tired of it – American Indians and Australian Aborigines have been apologised to now. Recent Muslim backlash however suggests that the days are numbered for Star Wars, Dune, Mk 1 Klingons and others tapping into middle eastern stereotypes, so maybe  that will force other exotic cultures into the sci-fi limelight. The Cold War has already been done in overdose. South America has already been fully mined too. It’s a good while since the Chinese and Japanese cultures had a decent turn and I suspect they will come back strongly soon, whereas Africa doesn’t hold enough cultural identification points yet. Homophilia is having recurrent effects from Star Wars to Dr Who, but apart from gender-hopping, there isn’t really very far it can go. You can’t make many films from it.

So if those are the areas that are already showing signs of exhaustion  what comes after zombies? Gay zombies? Chinese zombies? Virtual zombies? Time travel zombies? Yeah, but after that?

Here’s my guess. Clouds.

Clouds are the IT Zeitgeist. They are the mid term future for sci-fi. There are a few possible manifestations and some tap well into other things we are getting to like. Clouds are a deep seam too. Not just one idea there. We have self-organisation, distribution, virtualisation, hybridisation, miniaturisation, self-replication, adaptation and evolution. We have AI, biomimetics, symbiosis, parasitic and commensalistic relationships. We have new kinds of gender, new kinds of intelligence, new physical and electronic forms. We have new kinds of materials, new ways of reproduction, new forms of attack and defense. I could write dozens of sci-fi books based on clouds. So could other people, and some of them will. Books, games, films, lots of them. About clouds.

You heard it here first. Clouds are the future of sci-fi.