Tag Archives: fashion

New book: Fashion Tomorrow

I finally finished the book I started 2 years ago on future fashion, or rather future technologies relevant to the fashion industry.

It is a very short book, more of a quick guide at 40k words, less than half as long as my other books and covers women’s fashion mostly, though some applies to men too. I would never have finished writing a full-sized book on this topic and I’d rather put out something now, short and packed full of ideas that are (mostly) still novel than delay until they are commonplace. It is aimed at students and people working in fashion design, who have loads of artistic and design talent, but want to know what technology opportunities are coming that they could soon exploit, but anyone interested in fashion who isn’t technophobic should find it interesting. Some sections discussing intimate apparel contain adult comments so the book is unsuitable for minors.

It started as a blog, then I realised I had quite a bit more stuff I could link together, so I made a start, then go sidetracked, for 20 months! I threw away 75% of the original contents list and tidied it up to release a short guide instead. I wanted to put it out for free but 99p or 99c seems to be the lowest price you can start at, but I doubt that would put anyone off except the least interested readers. As with my other books, I’ll occasionally make it free.

Huge areas I left out include swathes of topics on social, political, environmental and psychological fashions, impacts of AI and robots, manufacturing, marketing, distribution and sales. These are all big topics, but I just didn’t have time to write them all up so I just stuck to the core areas with passing mentions of the others. In any case, much has been written on these areas by others, and my book focuses on things that are unique, embryonic or not well covered elsewhere. It fills a large hole in fashion industry thinking.



Future sex, gender and design

This is a presentation I made for the Eindhoven Design Academy. It is mostly self-explanatory


Slide2Slide3 Slide4 Slide5 Slide6 Slide7 Slide8 Slide9 Slide10 Slide11 Slide12 Slide13 Slide14 Slide15 Slide16 Slide17 Slide18 Slide19 Slide20


Pubic fashion and the Internet-of-genitalia

Not for the easily offended, or my parents, who do read my blog sometimes, but hopefully not this one. This is another extract from my forthcoming book on future fashion. No sector is immune to futurology.

The pubic area may not be talked about much in fashion articles, but it is suited to fashion as any other. Pubic hairstyles (including bald) vary from person to person and over time, but they certainly do get fashion consideration. Vajazzling, decorating the female pubic area with stick-on glitter, has also had its limelight as a fashion thing, Beautifying and styling the pubic area is here to stay for as long as casual sex remains common. If an area gets attention, people will want to make it look sexier or more interesting or enticing, so it is just another platform for personal expression, as much as choice of underwear.

Updating stick-on glitter to LEDs or lasers could make a whole light show down there. This could of course tap into data from sensors that pick up on sexual activity and arousal level. That would allow a direct feedback route on performance. Whoever is pleasuring her could see the results echoed in a visual response in local LEDs or flashing glitter or laser beams. That would be fun, but it could use audio too. Since the pubic region is fairly flat and firm, it also presents a potential surface for flat speakers to generate sound effects or music during sex, again linked to arousal sensor feedback. Of course, speakers are another form of vibration device too so they might also take an active role in stimulation.

Hair management already uses lasers to kill hair follicles, but some women regret having their pubic areas completely depilated, and are now having hair implanted back. As hair styles come and go, what is needed is a better trimming and shaving system. I am surprised the shaver industry has not already picked up on this possibility, (if it has I am not aware of it) but a design could be rendered much better if the shaver can access a local positioning system. If a person sticks on a few tiny transmitters, reflectors or transponders in specific places near the trimming zone, the shaver head would know its exact position and orientation and would be able to trim that specific area precisely as dictated by the chosen pattern. Automated precision hair styles would be feasible without taking too much time. Another cheap and easy way of doing this would be to spray a marker pattern through a stencil and have the shaver trim the areas marked.

Naturally, such shaver technology would also be useful for other areas such as the head or chest (for men anyway, I don’t expect female chest hair to be a significant fashion trend any time soon), or to replace waxing anywhere on the body with precision patterns and trims.

Many people are unhappy with their actual genitalia. Re-scuplting, trimming, tightening, or changing size is becoming common. Gender re-assignment surgery is also growing, but gender-change and gender-play fashion needs a whole section for itself, and I’ve written about it before anyway(my most popular post ever in fact) : https://timeguide.wordpress.com/2014/02/14/the-future-of-gender-2/

Not in the pubic area, but somewhat related  to this topic nonetheless, here is a quick consideration of smart breast implants:

[Smart breast implants

Smart breast implants are one of my best inventions – the only one for which I have ever received a prize. The idea was that if a woman is determined to expand her breasts by putting stuff into them, why not put electronics in? In fact, electronics can be made using silicone, one of the main breast implant materials. It won’t work as fast as silicon-based IT but it will do fine for things like MP3 players (MP4 now of course). A range of smartphone-style functions could be added as well as music playing. For example, navigation could link location and maps to vibrating nipples to indicate left or right. I suggested using nipples as control knobs for my MP3 implants, and that is perfectly feasible. Detectors in the implant could easily detect torsion and interpret the tweaks. Implants would be able to monitor some biological functions more precisely than wristbands. Heartbeat and breathing could be audio recorded far better for example.

Shape changing breast implants

I often cite polymer gel muscles in fashion, because they are so useful. Contracting when a voltage is applied across them, but made of electro-active polymer so they feel organic, they are ideal for many purposes in and on the body for extra strength of for changing shapes or orientation. Breast implants could contain strands of such gel, arranged so that the shape of the implant can be altered. They could be adjusted to change breast shape, improve lift or cleavage, and relaxed when no-one is looking.

Pectoral implants already give some men the appearance of being more muscular and fit. Adding actual strength using polymer gel muscles rather than simple padding would be a lot better.


Shape change materials could also be used in bras of course, allowing control to be varied by an app. A single bra could work for general and sports use for example. Similarly, hydraulic bras could give extra lift or control by inflating tubes with compressed air. Staying with inflation, of course the bra as a whole could be inflated to give the illusion of larger size.

Bras can incorporate energy harvesting for use while running. A suitable material could be plastic capacitors, which make electricity directly as they flex.

Nipple-tapes could be coupled to vibrators for a slightly more immersive sexual experience, and remote controlled for more kinky play.]

Now, back to the pubic area.

Rather along the same lines as smart breast implants, if someone is going to the lengths of having genital surgery and particularly if implants are involved, then electronic implants could be a useful consideration. Some devices use electrical stimulation, applying particular patterns of voltages and currents to create, magnify and sustain arousal. Devices could be implanted to do exactly this. They could be access restricted to the wearer, controlled by a dominant or even networked for remote control, by any chosen individual or group. MEMS or sensors could also be implanted to create vibration or to measure arousal.

Sensors can easily detect moisture levels, skin resistance, blood flow, blood oxygen levels, heart rate, breathing and so on. These together can indicate a great deal about arousal state and that can be fed back into stimulation system to maximise pleasure. Stimulation devices could provide direct stimulation or work along with external devices such as vibrators, controlling their behavior according to location and sensor feedback. Vibrators shouldn’t need control knobs that distract their users, but should automatically adjust their behavior according to the region they are stimulating and the user’s  arousal profile, changing stimulation throughout the session according to programs and recorded routines stored in the cloud. Shared toys could use fingerprint recognition or implanted RFID chips, but I think that would usually be considered to be going too far. 

An important fashion consideration is that visual appearance can mostly be decoupled from function. Electronics can be shrunk to vanishingly small size and fit in the tiniest of sensors or actuators. Genital and pubic electronics can therefore be visually appealing at the same time as providing a full suite of functionality.

Shape change materials such as electro-active polymers can also be implanted. These could also be used to generate vibration by varying applied voltage patterns appropriately. Shape changing implants could be used to vary tightness during penetration, or to make features more appealing during foreplay.

As with the pubic area as a whole, genitals could also incorporate visual feedback using color change, LEDS or even music or other sound effects according to arousal state. Sound is better generated by pubic speakers though as surfaces are more cooperative to engineering.

Clearly, with a number of feedback and bio-sign monitoring sensors, MEMS, speaker systems, illumination, decoration and visual effects systems, the whole pubic and genital region is a potentially large electronics ecosystem, and we will need a whole branch of IoT technology, which could be termed ‘Internet of genitalia’.

The future of fashion: hair waves

I don’t do hair. I shave my head to 3mm every month or so, and never let it grow long., but I watch telly and observe that very many women use hair extensions and wigs, and I spot a high voltage technology opportunity.

Remember the Van der Graff generator in your school physics lab? It makes a high voltage than makes your hair stand up. When you finally touch something, the tiny charge involved dissipates and gives you a tiny shock.

So, suppose you are a wig manufacturer, making a wig with fine filaments, or hair I guess. You add a base layer of circuitry, ideally separated from your scalp by an insulating layer. You design the circuits so that you can apply specific voltages individually to any region of the hair, and you design a nice algorithm to move those voltages around in patterns, so that patches of hair stand up, fall down, and overall the effect is dynamic patterns such as waves all over your head. Hair will be mobile.

Total charge doesn’t need to change much, mainly just be moved around, so battery drain would be OK, and the power supply could be hidden in a collar or shoulder pad.

Hair patterns could even adopt fashion language, used for secret tribal signalling, and internet of hair will be needed. It is also capable of misuse and another potential signalling path to guard against in casinos.

It would also be trivially easy to monitor your emotional state, or even thought recognition, and have you hair respond and illustrate your emotions. So when you think “shock, horror”, you hair would actually stand on end 🙂

Well, you get the idea. Fun! And you read it here first.

Digital Halos

I enjoyed watching a few seconds of the Lady Gaga video from the Grammy’s where Intel used a projection system to display a spider crawling around her face along with Bowie images. State of the art today is dirt cheap tomorrow. So soon everyone will be doing that, projecting images and videos onto their faces. They will do that to look like other people too, as Gaga hinted. I do like Gaga. She may not have the advantage of being born the prettiest singer ever but she makes up for that 100-fold by her creativity and pushing boundaries in every way she can and making good use of tech. I love her music too.

I’ve written about digital or smart makeup lots of times so i won’t do that here. But another idea that springs to mind is the digital halo.

Some fog generators use water and ultrasonic transducers to create a fine mist, the sort of thing you see on indoor water features where fog tumbles down the ornament. Of course, some come with a bank of LEDs, because they can, and that makes pretty colors too. At least one trade show projection system uses a fine mist as a 3D projection medium too. Put these together, and you have the capability to make a fine mist around your head and project images onto it. I blogged that idea quite a while ago as a Star Wars projection in front of you, but imagine doing this as a sort of halo, a mist that surrounds your head and immerses it in visual effects. You could project a halo if you so desire, and it could be a single whitish color as tradition dictates, changing colors, patterns or images, or you could do the full thing and go for a full-blown video spectacular, and – haute to Family Guy –  you could accompany it with your personal theme too.

Taste seemingly has few boundaries, and it is frequently obvious that the lower echelons of bad taste often offer the greatest rewards. So I am confident that we will soon see people sporting the most hideously garish digital halos.

The future of nylon: ladder-free hosiery

Last week I outlined the design for a 3D printer that can print and project graphene filaments at 100m/s. That was designed to be worn on the wrist like Spiderman’s, but an industrial version could print faster. When I checked a few of the figures, I discovered that the spinnerets for making nylon stockings run at around the same speed. That means that graphene stockings could be made at around the same speed. My print head produced 140 denier graphene yarn but it made that from many finer filaments so basically any yarn thickness from a dozen carbon atoms right up to 140 denier would be feasible.

The huge difference is that a 140 denier graphene thread is strong enough to support a man at 2g acceleration. 10 denier stockings are made from yarn that breaks quite easily, but unless I’ve gone badly wrong on the back of my envelope, 10 denier graphene would have roughly 10kg (22lb)breaking strain. That’s 150 times stronger than nylon yarn of the same thickness.

If so, then that would mean that a graphene stocking would have incredible strength. A pair of 10 denier graphene stockings or tights (pantyhose) might last for years without laddering. That might not be good news for the nylon stocking industry, but I feel confident they would adapt easily to such potential.

Alternatively, much finer yarns could be made that would still have reasonable ladder resistance, so that would also affect the visual appearance and texture. They could be made so fine that the fibers are invisible even up close. People might not always want that, but the key message is that wear-resistant, ladder free hosiery could be made that has any gauge from 0.1 denier to 140 denier.

There is also a bonus that graphene is a superb conductor. That means that graphene fibers could be woven into nylon hosiery to add circuits. Those circuits might be to harvest radio energy, act as an aerial, power LEDS in the hosiery or change its colors or patterns. So even if it isn’t used for the whole garment, it might still have important uses in the garment as an addition to the weave.

There is yet another bonus. Graphene circuits could allow electrical supply to shape changing polymers that act rather like muscles, contracting when a voltage is applied across them, so that a future pair of tights could shape a leg far better, with tensions and pressures electronically adjusted over the leg to create the perfect shape. Graphene can make electronic muscles directly too, but in a more complex mechanism (e.g. using magnetic field generation and interaction, or capacitors and electrical attraction/repulsion).

The future of make-up

I was digging through some old 2002 powerpoint slides for an article on active skin and stumbled across probably the worst illustration I have ever done, though in my defense, I was documenting a great many ideas that day and spent only a few minutes on it:

smart makeup

If a woman ever looks like this, and isn’t impersonating a bald Frenchman, she has more problems to worry about than her make-up. The pic does however manage to convey the basic principle, and that’s all that is needed for a technical description. The idea is that her face can be electronically demarked into various makeup regions and the makeup on those regions can therefore adopt the appropriate colour for that region. In the pic ‘nanosomes’ wasn’t a serious name, but a sarcastic take on the cosmetics industry which loves to take scientific sounding words and invent new ones that make their products sound much more high tech than they actually are. Nanotech could certainly play a role, but since the eye can’t discern features smaller than 0.1mm, it isn’t essential. This is no longer just an idea, companies are now working on development of smart makeup, and we already have prototype electronic tattoos, one of the layers I used for my active skin but again based on an earlier vision.

The original idea didn’t use electronics, but simply used self-organisation tech I’d designed in 1993 on an electronic DNA project. Either way would work, but the makeup would be different for each.

The electronic layer, if required, would most likely be printed onto the skin at a beauty salon, would be totally painless, last weeks and could take only a few minutes to print. It extends IoT to the face.

Both mechanisms could use makeup containing flat plates that create colour by diffraction the same way the scales on a butterfly does. That would make an excellent colour pallet. Beetles produce colour a different way and that would work too. Or we could copy squids or cuttlefish. Nature has given us many excellent start points for biomimetics, and indeed the self-organisation principles were stolen from nature too. Nature used hormone gradients to help your cells differentiate when you were an embryo. If nature can arrange the rich microscopic detail of every part of your face, then similar techniques can certainly work for a simple surface layer of make-up. Having the electronic underlay makes self organisation easier but it isn’t essential. There are many ways to implement self organisation in makeup and only some of them require any electronics at all, and some of those would use electronic particles embedded in the make-up rather than an underlay.

An electronic underlay can be useful to provide the energy for a transition too, and that allows the makeup to change colour on command. That means in principle that a woman could slap the makeup all over her face and touch a button on her digital mirror (which might simply be a tablet or smart phone) and the make-up would instantly change to be like the picture she selected. With suitable power availability, the make-up could be a full refresh rate video display, and we might see teenagers walking future streets wearing kaleidoscopic make-up that shows garish cartoon video expressions and animates their emoticons. More mature women might choose different appearances for different situations and they could be selected manually via an app or gesture or automatically by predetermined location settings.

Obviously, make-up is mostly used on the face, but once it becomes the basis of a smear-on computer display, it could be used on any part of the body as a full touch sensitive display area, e.g. the forearm.

Although some men already wear makeup, many more might use smart make-up as its techie nature makes it more acceptable.

The future of holes

H already in my alphabetic series! I was going to write about happiness, or have/have nots, or hunger, or harassment, or hiding, or health. Far too many options for H. Holes is a topic I have never written about, not even a bit, whereas the others would just be updates on previous thoughts. So here goes, the future of holes.

Holes come in various shapes and sizes. At one extreme, we have great big holes from deep mining, drilling, fracking, and natural holes such as meteor craters, rifts and volcanoes. Some look nice and make good documentaries, but I have nothing to say about them.

At the other we have long thin holes in optical fibers that increase bandwidth or holes through carbon nanotubes to make them into electron pipes. And short fat ones that make nice passages through semi-permeable smart membranes.

Electron pipes are an idea I invented in 1992 to increase internet capacity by several orders of magnitude. I’ve written about them in this blog before: https://timeguide.wordpress.com/2015/05/04/increasing-internet-capacity-electron-pipes/

Short fat holes are interesting. If you make a fabric using special polymers that can stretch when a voltage is applied across it, then round holes in it would become oval holes as long as you only stretch it in one direction.  Particles that may fit through round holes might be too thick to pass through them when they are elongated. If you can do that with a membrane on the skin surface, then you have an electronically controllable means of allowing the right mount of medication to be applied. A dispenser could hold medication and use the membrane to allow the right doses at the right time to be applied.

Long thin holes are interesting too. Hollow fiber polyester has served well as duvet and pillow filling for many years. Suppose more natural material fibers could be engineered to have holes, and those holes could be filled with chemicals that are highly distasteful to moths. As a moth larva starts to eat the fabric, it would very quickly be repelled, protecting the fabric from harm.

Conventional wisdom says when you are in a hole, stop digging. End.

The future of feminism and fashion

Perhaps it’s a bit presumptive of me to talk about what feminists want or don’t want, but I will make the simplifying assumption that they vary somewhat and don’t all want the same things. When it comes to makeup, many feminists want to look how they want to look for their own pleasure, not specifically to appeal to men, or they may want to attract some people and not others, or they may not want to bother with makeup at all, but still be able to look nice for the right people.

Augmented reality will allow those options. AR creates an extra layer of appearance that allows a woman to present herself any way she wants via an avatar, and also to vary presented appearance according to who is looking at her. So she may choose to be attractive to people she finds attractive, and plain to people she’d rather not get attention from. This is independent of any makeup she might be wearing, so she may choose not to wear any at all and rely entirely on the augmented reality layer to replace makeup, saving a lot of time, effort and expense. She could even use skin care products such as face masks that are purely functional, nourishing or protecting her face, but which don’t look very nice. Friends, colleagues and particular subsections of total strangers would still see her as she wants to be seen and she might not care about how she appears to others.

It may therefore be possible that feminism could use makeup as a future activist platform. It would allow women to seize back control over their appearance in a far more precise way, making it abundantly clear that their appearance belongs to them and is under their control and that they control who they look nice for. They would not have to give up looking good for themselves or their friends, but would be able to exclude any groups currently out of favour.

However, it doesn’t have to be just virtual appearance that they can control electronically. It is also possible to have actual physical makeup that changes according to time, location, emotional state or circumstances. Active makeup does just that, but I’ve written too often about that. Let’s look instead at other options:

Fashion has created many different clothing accessories over the years. It has taken far longer than it should, but we are now finally seeing flexible polymer displays being forged into wrist watch straps and health monitoring bands as well as bendy and curvy phones. As 1920s era fashion makes a small comeback, it can’t be long before headbands and hair-bands come back and they would be a perfect display platform too. Hair accessories can be pretty much any shape and size, and be a single display zone or multiple ones. Some could even use holographic displays, so that the accessory seems to change its form, or have optional remote components seemingly hanging free in the nearby air. Any of these could be electronically controllable or set to adjust automatically according to location and the people present.

Displays would also make good forehead jewellery, such as electronic eyebrows, holographic jewels, smart bindis, forehead tattoos and so on. They could change colour or pattern according to emotions for example. As long as displays are small, skin flexing doesn’t present too big an engineering barrier.

In fact, small display particles such as electronic glitter could group together to appear as a single display, even though each is attached to a different piece of skin. Thus, flexing of the skin is still possible with a collection of rigid small displays, which could be millimetre sized electronic glitter. Electronic glitter could contain small capacitors that store energy harvested from temperature difference between the skin and the environment, periodically allowing a colour change.

However, it won’t be just the forehead that is available once displays become totally flexible. That will make the whole visible face an electronic display platform instead of just a place for dumb makeup. Smart freckles and moles could make a fashion reappearance. Lips and cheeks could change colour according to mood and pre-decided protocols, rather than just at the whim of nature.

Other parts of the body would likely house displays too. Fingernails and toenails could be an early candidate since they are relatively rigid. The wrist and forearm are also often exposed. Much of the rest of the body is concealed by clothing most of the time, but seasonal displays are likely when it is more often bare. Beach displays could interact with swimwear, or even substitute for it.

In fact, enabling a multitude of tiny displays on the face and around the body will undoubtedly create a new fashion design language. Some dialects could be secret, only understood by certain groups, a tribal language. Fashion has always had an extensive symbology and adding electronic components to the various items will extend its potential range. It is impossible to predict what different things will mean to mainstream and sub-cultures, as meanings evolve chaotically from random beginnings. But there will certainly be many people and groups willing to capitalise on the opportunities presented. Feminism could use such devices and languages to good effect.

Clothing and accessories such as jewellery are also obvious potential display platforms. A good clue for the preferred location is the preferred location today for similar usage. For example, many people wear logos, messages and pictures on their T-shirts, whereas other items of clothing remain mostly free of them. The T-shirt is therefore by far the most likely electronic display area. Belts, boots, shoes and bag-straps offer a likely platform too, not because they are used so much today, but because they again present an easy and relatively rigid physical platform.

Timescales for this run from historical appearance of LED jewellery at Christmas (which I am very glad to say I also predicted well in advance) right through to holographic plates that appear to hover around the person as they walk around. I’ve explained in previous blogs how actual floating and mobile plates could be made using plasma and electro-magnetics. But the timescale of relevance in the next few years is that of the cheaper and flexible polymer display. As costs fall and size increases, in parallel with an ever improving wireless and cloud infrastructure, the potential revenue from a large new sector combining the fashion and display industries will make this not so much likely as  inevitable.

Forehead 3D mist projector

Another simple idea. I was watching the 1920s period drama Downton Abbey and Lady Mary was wearing a headband with a large jewel in it. I had an idea based on linking mist projection systems to headbands. I couldn’t find a pic of Lady Mary’s band on Google but many other designs would work just as well and the one from ASOS would be just as feasible. The idea is that a forehead band (I’m sure there is a proper fashion name for them) would have a central ‘jewel’ which is actually just an ornamental IT capsule containing a misting device and a projector as well as the obvious power supply, comms, processing, direction detectors etc. A 3D image would be projected onto water mist emitted from the reservoir in the device. A simple illustration might help:

forehead projector


Many fashion items make comebacks and a lot of 1920s things seem to be in fashion again now. This could be a nice electronic update to a very old fashion concept. With a bit more miniaturisation, smart bindis would also be feasible. It could be used with direction sensing to enable augmented reality use, or simply to display the same image regardless of gaze direction. Unlike visor based augmented reality, others would be able to see the same scene visualised for the wearer.