Category Archives: space

Mars trips won’t have to take months

It is exciting seeing the resurgence in interest in space travel, especially the prospect that Mars trips are looking increasingly feasible. Every year, far-future projects come a year closer. Mars has been on the agenda for decades, but now the tech needed is coming over the horizon.

You’ve probably already read about Elon Musk’s SpaceX plans, so I won’t bother repeating them here. The first trips will be dangerous but the passengers on the first successful trip will get to go down in history as the first human Mars visitors. That prospect of lasting fame and a place in history plus the actual experience and excitement of doing the trip will add up to more than enough reward to tempt lots of people to join the queue to be considered. A lucky and elite few will eventually land there. Some might stay as the first colonists. It won’t be long after that before the first babies are born on Mars, and their names will certainly be remembered, the first true Martians.

I am optimistic that the costs and travel times involved in getting to Mars can be reduced enormously. Today’s space travel relies on rockets, but my own invention, the Pythagoras Sling, could reduce the costs of getting materials and people to orbit by a factor of 50 or 100 compared the SpaceX rockets, which already are far cheaper than NASA’s. A system introduction paper can be downloaded from:

https://carbondevices.files.wordpress.com/2017/09/pythagoras-sling-article.pdf

Sadly, in spite of obviously being far more feasible and shorter term than a space elevator, we have not yet been able to get our paper published in a space journal so that is the only source so far.

This picture shows one implementation for non-human payloads, but tape length and scale could be increased to allow low-g human launches some day, or more likely, early systems would allow space-based anchors to be built with different launch architecture for human payloads.

The Sling needs graphene tape, a couple of parachutes or a floating drag platform and a magnetic drive to pull the tape, using standard linear motor principles as used in linear induction motors and rail guns. The tape is simply attached to the rocket and pulled through two high altitude anchors attached to the platforms or parachutes. Here is a pic of the tape drive designed for another use, but the principle is the same. Rail gun technology works well today, and could easily be adapted into this inverse form to drive a suitably engineered tape at incredible speed.

All the components are reusable, but shouldn’t cost much compared to heavy rockets anyway. The required parachutes exist today, but we don’t have graphene tape or the motor to pull it yet. As space industry continues to develop, these will come. The Space Elevator will need millions of tons of graphene, the Sling only needs around 100 kilograms so will certainly be possible decades before a space elevator. The sling configuration can achieve full orbital speeds for payloads using only electrical energy at the ground, so is also much less environmentally damaging than rocketry.

Using tech such as the Sling, material can be put into orbit to make space stations and development factories for all sorts of space activity. One project that I would put high on the priority list would be another tape-pulling launch system, early architecture suggestion here:.

Since it will be in space, laying tape out in a long line would be no real problem, even millions of kms, and with motors arranged periodically along the length, a long tape pointed in the right direction could launch a payload towards a Mars interception system at extreme speeds. We need to think big, since the distances traveled will be big. A launch system weighing 40,000 tons would be large scale engineering but not exceptional, and although graphene today is very expensive as with any novel material, it will become much cheaper as manufacturing technology catches up (if the graphene filament print heads I suggest work as I hope, graphene filament could be made at 200m/s and woven into yarn by a spinneret as it emerges from multiple heads). In the following pics, carbon atoms are fed through nanotubes with the right timing, speed and charges to combine into graphene as they emerge. The second pic shows why the nanotubes need to be tilted towards each other since otherwise the molecular geometry doesn’t work, and this requirement limits the heads to make thin filaments with just two or three carbon rings wide. The second pic mentions carbon foam, which would be perfect to make stratospheric floating platforms as an alternative to using parachutes in the Sling system.

Graphene filament head, ejects graphene filament at 200m/s.

A large ship is of that magnitude, as are some building or bridges. Such a launch system would allow people to get to Mars in 5-12 days, and payloads of g-force tolerant supplies such as water could be sent to arrive in a day. The intercept system at the Mars end would need to be of similar size to catch and decelerate the payload into Mars orbit. The systems at both ends can be designed to be used for launch or intercept as needed.

I’ve been a systems engineer for 36 years and a futurologist for 27 of those. The system solutions I propose should work if there is no better solution available, but since we’re talking about the far future, it is far more likely that better systems will be invented by smarter engineers or AIs by the time we’re ready to use them. Rocketry will probably get us through to the 2040s but after that, I believe these solutions can be made real and Mars trips after that could become quite routine. I present these solutions as proof that the problems can be solved, by showing that potential solutions already exist. As a futurologist, all I really care about is that someone will be able to do it somehow.

 

So, there really is no need to think in terms of months of travel each way, we should think of rapid supply chains and human travel times around a week or two – not so different from the first US immigrants from Europe.

Advertisements

2018 outlook: fragile

Futurists often consider wild cards – events that could happen, and would undoubtedly have high impacts if they do, but have either low certainty or low predictability of timing.  2018 comes with a larger basket of wildcards than we have seen for a long time. As well as wildcards, we are also seeing the intersection of several ongoing trends that are simultaneous reaching peaks, resulting in socio-political 100-year-waves. If I had to summarise 2018 in a single word, I’d pick ‘fragile’, ‘volatile’ and ‘combustible’ as my shortlist.

Some of these are very much in all our minds, such as possible nuclear war with North Korea, imminent collapse of bitcoin, another banking collapse, a building threat of cyberwar, cyberterrorism or bioterrorism, rogue AI or emergence issues, high instability in the Middle East, rising inter-generational conflict, resurgence of communism and decline of capitalism among the young, increasing conflicts within LGBTQ and feminist communities, collapse of the EU under combined pressures from many angles: economic stresses, unpredictable Brexit outcomes, increasing racial tensions resulting from immigration, severe polarization of left and right with the rise of extreme parties at both ends. All of these trends have strong tribal characteristics, and social media is the perfect platform for tribalism to grow and flourish.

Adding fuel to the building but still unlit bonfire are increasing tensions between the West and Russia, China and the Middle East. Background natural wildcards of major epidemics, asteroid strikes, solar storms, megavolcanoes, megatsumanis and ‘the big one’ earthquakes are still there waiting in the wings.

If all this wasn’t enough, society has never been less able to deal with problems. Our ‘snowflake’ generation can barely cope with a pea under the mattress without falling apart or throwing tantrums, so how we will cope as a society if anything serious happens such as a war or natural catastrophe is anyone’s guess. 1984-style social interaction doesn’t help.

If that still isn’t enough, we’re apparently running a little short on Ghandis, Mandelas, Lincolns and Churchills right now too. Juncker, Trump, Merkel and May are at the far end of the same scale on ability to inspire and bring everyone together.

Depressing stuff, but there are plenty of good things coming too. Augmented reality, more and better AI, voice interaction, space development, cryptocurrency development, better IoT, fantastic new materials, self-driving cars and ultra-high speed transport, robotics progress, physical and mental health breakthroughs, environmental stewardship improvements, and climate change moving to the back burner thanks to coming solar minimum.

If we are very lucky, none of the bad things will happen this year and will wait a while longer, but many of the good things will come along on time or early. If.

Yep, fragile it is.

 

Artificial muscles using folded graphene

Slide1

Folded Graphene Concept

Two years ago I wrote a blog on future hosiery where I very briefly mentioned the idea of using folded graphene as synthetic muscles:

https://timeguide.wordpress.com/2015/11/16/the-future-of-nylon-ladder-free-hosiery/

Although I’ve since mentioned it to dozens of journalists, none have picked up on it, so now that soft robotics and artificial muscles are in the news, I guess it’s about time I wrote it up myself, before someone else claims the idea. I don’t want to see an MIT article about how they have just invented it.

The above pic gives the general idea. Graphene comes in insulating or conductive forms, so it will be possible to make sheets covered with tiny conducting graphene electromagnet coils that can be switched individually to either polarity and generate strong magnetic forces that pull or push as required. That makes it ideal for a synthetic muscle, given the potential scale. With 1.5nm-thick layers that could be anything from sub-micron up to metres wide, this will allow thin fibres and yarns to make muscles or shape change fabrics all the way up to springs or cherry-picker style platforms, using many such structures. Current can be switched on and off or reversed very rapidly, to make continuous forces or vibrations, with frequency response depending on application – engineering can use whatever scales are needed. Natural muscles are limited to 250Hz, but graphene synthetic muscles should be able to go to MHz.

Uses vary from high-rise rescue, through construction and maintenance, to space launch. Since the forces are entirely electromagnetic, they could be switched very rapidly to respond to any buckling, offering high stabilisation.

Slide2

The extreme difference in dimensions between folded and opened state mean that an extremely thin force mat made up of many of these cherry-picker structures could be made to fill almost any space and apply force to it. One application that springs to mind is rescues, such as after earthquakes have caused buildings to collapse. A sheet could quickly apply pressure to prize apart pieces of rubble regardless of size and orientation. It could alternatively be used for systems for rescuing people from tall buildings, fracking or many other applications.

Slide3

It would be possible to make large membranes for a wide variety of purposes that can change shape and thickness at any point, very rapidly.

Slide4

One such use is a ‘jellyfish’, complete with stinging cells that could travel around in even very thin atmospheres all by itself. Upper surfaces could harvest solar power to power compression waves that create thrust. This offers use for space exploration on other planets, but also has uses on Earth of course, from surveillance and power generation, through missile defense systems or self-positioning parachutes that may be used for my other invention, the Pythagoras Sling. That allows a totally rocket-free space launch capability with rapid re-use.

Slide5

Much thinner membranes are also possible, as shown here, especially suited for rapid deployment missile defense systems:

Slide6

Also particularly suited to space exploration o other planets or moons, is the worm, often cited for such purposes. This could easily be constructed using folded graphene, and again for rescue or military use, could come with assorted tools or lethal weapons built in.

Slide7

A larger scale cherry-picker style build could make ejector seats, elevation platforms or winches, either pushing or pulling a payload – each has its merits for particular types of application.  Expansion or contraction could be extremely rapid.

Slide8

An extreme form for space launch is the zip-winch, below. With many layers just 1.5nm thick, expanding to 20cm for each such layer, a 1000km winch cable could accelerate a payload rapidly as it compresses to just 7.5mm thick!

Slide9

Very many more configurations and uses are feasible of course, this blog just gives a few ideas. I’ll finish with a highlight I didn’t have time to draw up yet: small particles could be made housing a short length of folded graphene. Since individual magnets can be addressed and controlled, that enables magnetic powders with particles that can change both their shape and the magnetism of individual coils. Precision magnetic fields is one application, shape changing magnets another. The most exciting though is that this allows a whole new engineering field, mixing hydraulics with precision magnetics and shape changing. The powder can even create its own chambers, pistons, pumps and so on. Electromagnetic thrusters for ships are already out there, and those same thrust mechanisms could be used to manipulate powder particles too, but this allows for completely dry hydraulics, with particles that can individually behave actively or  passively.

Fun!

 

 

BAE Systems & Futurizon share thoughts on the future

I recently visited BAE Systems to give a talk on future tech, including the Pythagoras Sling concept. It was a great place to visit. Afterwards, their Principal Technologist Nick Colosimo and I gave a joint interview on future technologies.

Here is the account from their internal magazine:

The Next Chapter

Quantum rack and pinion drive for interstellar travel

This idea from a few weeks back is actually a re-hash of ones that are already known, but that seems the norm for space stuff anyway, and it gives alternative modus operandi for one that NASA is playing with at the moment, so I’ll write it anyway. My brain has gotten rather fixated on space stuff of late, I blame Nick Colosimo who helped me develop the Pythagoras Sling. It’s still most definitely futurology so it belongs on my blog. You won’t see it in operation for a while.

A few railways use a rack and pinion mechanism to climb steep slopes. Usually they are trains that go up a mountainside, where presumably friction of a steel wheel on a steel rail isn’t enough to prevent slipping. Gears give much better traction. It seems to me that we could do that in space too. Imagine if such a train carries the track, lays it out in front of it, and then travels along it while getting the next piece ready. That’s the idea here too, except that the track is quantized space and the gear engaging on it is another basic physics effect chosen to give a minimum energy state when aligned with the appropriate quantum states on the track. It doesn’t really matter what kind of interaction is used as long as it is quantized, and most physics fields and forces are.

Fortunately, since most future physics will be discovered and consequential engineering implemented by AI, and even worse, much will only be understood by AI, AI will do most of the design here and I as a futurist can duck most of the big questions like “how will you actually do it then?” and just let the future computers sort it out. We have plenty of time, we’re not going anywhere far away any time soon.

An electric motor in your washing machine typically has a lot of copper coils that produce a strong magnetic field when electricity is fed through them, and those fields try to force the rotor into a position that is closest to another adjacent set of magnets in the casing. This is a minimum energy state, kind of like a ball rolling into the bottom of a valley. Before it gets a chance to settle there, the electric current is fed  into the next section of coil so the magnetic field changes and the rotor is no longer comfy and instead wants to move to the next orientation. It never gets a chance to settle since the magnet it wants to cosy up with always changes its mind just in time for the next one to look sexy.

Empty space like you find between stars has very little matter in it, but it will still have waves travelling through it, such as light, radio waves, or x-rays, and it will still be exposed to gravitational and electromagnetic forces from all directions. Some scientists also talk of dark energy, a modern equivalent of magic as far as I can tell, or at best the ether. I don’t think scientists in 2050 will still talk of dark energy except as an historic scientific relic. The many fields at a point of space are quantized, that is, they can only have certain values. They are in one state or the next one but they can’t be in between. All we need for our quantum rack and pinion to work is a means to impose a field onto the nearby space so that our quantum gear can interact with it just like our rotor in its electrical casing.

The most obvious way to do that is to use a strong electromagnetic field. Why? Well, we know how to do that, we use electrics, electronics and radio and lasers and such all the time. The other fields we know of are out of our reach and likely to remain so for decades or centuries, i.e. strong and weak forces and gravity. We know about them, and can make good use of them but we can’t yet engineer  with them. We can’t even do anti-gravity yet. AI might fix that, but not yet.

If we generate a strong oscillating EM field in front of our space ship, it would impose a convenient quantum structure on nearby space. Another EM field slightly out of alignment should create a force pulling them into alignment just like it does for our washing machine motor. That will be harder than it sounds due to EM fields moving at light speed, relativity and all that stuff. It would need the right pulse design and phasing, and accurate synchronization of phase differences too. We have many devices that can generate high frequency EM waves, such as lasers and microwaves, and microwaves particularly interact well with metals, generating eddy currents that produce large magnetic forces. Therefore, clever design should be able to make a motor that generates microwaves as the rack and the metal shell of the microwave containment should then be able to act as the pinion.

Or engineers could do it accidentally (and that happens more often than you’d like to believe). You’ve probably already heard of the EM drive that has NASA all excited.

https://en.wikipedia.org/wiki/RF_resonant_cavity_thruster

It produces microwaves that bounce around in a funnel-shaped cavity and experiments do seem to indicate that it produces measurable thrust. NASA thinks it works by asymmetric forces caused by the shape of their motor. I beg to differ. The explanation is important because you need to know how something works if you want to get the most from it.

I think their EM drive works as a quantum rack and pinion device as I’ve described. I think the microwaves impose the quantum structure and phase differences caused by the shape accidentally interact and create a very inefficient thruster which would be a hell of a lot better if they phase their fields correctly. When NASA realizes that, and starts designing it with that theoretical base then they’ll be able to adjust the beam frequencies and phases and the shape of the cavity to optimize the result, and they’ll get far greater force.

If you don’t like my theory, another one has since come to light that is also along similar lines, Pilot Wave theory:

https://www.sciencealert.com/physicists-have-a-weird-new-idea-about-how-the-impossible-em-drive-could-produce-thrust

It may well all be the same idea, just explained from different angles and experiences. If it works, and if we can make it better, then we may well have a mechanism that can realistically take us to the stars. That is something we should all hope for.

Explaining accelerating universe expansion without dark energy

I am not the only ex-physicist that doesn’t believe in dark matter or dark energy, or multiple universes. All of these are theoretically possible interpretations of the maths, but I do not believe they are interpretations appropriate to our universe. Like the concept of the ether, I expect they will be shown to be incorrect and replaced by explanations that don’t need such concepts.

There are already explanations for accelerating expansion that don’t rely on dark energy, such as relativity: https://astronomynow.com/2015/01/05/dark-energy-explained-by-relativistic-time-dilation/ (the title is confusing since the article explains why it isn’t needed).

My theory is even simpler and probably not original, but I can’t find any references to it on the first two pages of Google so either it’s novel or so wrong that it doesn’t even warrant mentions. Anyway, here it is, make up your own mind, it doesn’t even need equations to explain it:

As galaxies get further apart, the various field fluxes reduce with the square of distance – gravitational, electromagnetic, and so must the intergalactic portion of the Higgs flux. The Higgs field is what gives particles their mass. As the Higgs field declines, the mass of the particles in each galaxy must therefore drop too. If energy is to be conserved, then as mass declines, Galaxy speed must increase linearly with distance, as is the observation. QED.

Carbethium, a better-than-scifi material

How to build one of these for real:

Light_bridge

Halo light bridge, from halo.wikia.com

Or indeed one of these:

From halo.wikia.com

From halo.wikia.com

I recently tweeted that I had an idea how to make the glowy bridges and shields we’ve seen routinely in sci-fi games from Half Life to Destiny, the bridges that seem to appear in a second or two from nothing across a divide, yet are strong enough to drive tanks over, and able to vanish as quickly and completely when they are switched off. I woke today realizing that with a bit of work, that it could be the basis of a general purpose material to make the tanks too, and buildings and construction platforms, bridges, roads and driverless pod systems, personal shields and city defense domes, force fields, drones, planes and gliders, space elevator bases, clothes, sports tracks, robotics, and of course assorted weapons and weapon systems. The material would only appear as needed and could be fully programmable. It could even be used to render buildings from VR to real life in seconds, enabling at least some holodeck functionality. All of this is feasible by 2050.

Since it would be as ethereal as those Halo structures, I first wanted to call the material ethereum, but that name was already taken (for a 2014 block-chain programming platform, which I note could be used to build the smart ANTS network management system that Chris Winter and I developed in BT in 1993), and this new material would be a programmable construction platform so the names would conflict, and etherium is too close. Ethium might work, but it would be based on graphene and carbon nanotubes, and I am quite into carbon so I chose carbethium.

Ages ago I blogged about plasma as a 21st Century building material. I’m still not certain this is feasible, but it may be, and it doesn’t matter for the purposes of this blog anyway.

https://timeguide.wordpress.com/2013/11/01/will-plasma-be-the-new-glass/

Around then I also blogged how to make free-floating battle drones and more recently how to make a Star Wars light-saber.

https://timeguide.wordpress.com/2013/06/23/free-floating-ai-battle-drone-orbs-or-making-glyph-from-mass-effect/

https://timeguide.wordpress.com/2015/11/25/how-to-make-a-star-wars-light-saber/

Carbethium would use some of the same principles but would add the enormous strength and high conductivity of graphene to provide the physical properties to make a proper construction material. The programmable matter bits and the instant build would use a combination of 3D interlocking plates, linear induction,  and magnetic wells. A plane such as a light bridge or a light shield would extend from a node in caterpillar track form with plates added as needed until the structure is complete. By reversing the build process, it could withdraw into the node. Bridges that only exist when they are needed would be good fun and we could have them by 2050 as well as the light shields and the light swords, and light tanks.

The last bit worries me. The ethics of carbethium are the typical mixture of enormous potential good and huge potential for abuse to bring death and destruction that we’re learning to expect of the future.

If we can make free-floating battle drones, tanks, robots, planes and rail-gun plasma weapons all appear within seconds, if we can build military bases and erect shield domes around them within seconds, then warfare moves into a new realm. Those countries that develop this stuff first will have a huge advantage, with the ability to send autonomous robotic armies to defeat enemies with little or no risk to their own people. If developed by a James Bond super-villain on a hidden island, it would even be the sort of thing that would enable a serious bid to take over the world.

But in the words of Professor Emmett Brown, “well, I figured, what the hell?”. 2050 values are not 2016 values. Our value set is already on a random walk, disconnected from any anchor, its future direction indicated by a combination of current momentum and a chaos engine linking to random utterances of arbitrary celebrities on social media. 2050 morality on many issues will be the inverse of today’s, just as today’s is on many issues the inverse of the 1970s’. Whatever you do or however politically correct you might think you are today, you will be an outcast before you get old: https://timeguide.wordpress.com/2015/05/22/morality-inversion-you-will-be-an-outcast-before-youre-old/

We’re already fucked, carbethium just adds some style.

Graphene combines huge tensile strength with enormous electrical conductivity. A plate can be added to the edge of an existing plate and interlocked, I imagine in a hexagonal or triangular mesh. Plates can be designed in many diverse ways to interlock, so that rotating one engages with the next, and reversing the rotation unlocks them. Plates can be pushed to the forward edge by magnetic wells, using linear induction motors, using the graphene itself as the conductor to generate the magnetic field and the design of the structure of the graphene threads enabling the linear induction fields. That would likely require that the structure forms first out of graphene threads, then the gaps between filled by mesh, and plates added to that to make the structure finally solid. This would happen in thickness as well as width, to make a 3D structure, though a graphene bridge would only need to be dozens of atoms thick.

So a bridge made of graphene could start with a single thread, which could be shot across a gap at hundreds of meters per second. I explained how to make a Spiderman-style silk thrower to do just that in a previous blog:

https://timeguide.wordpress.com/2015/11/12/how-to-make-a-spiderman-style-graphene-silk-thrower-for-emergency-services/

The mesh and 3D build would all follow from that. In theory that could all happen in seconds, the supply of plates and the available power being the primary limiting factors.

Similarly, a shield or indeed any kind of plate could be made by extending carbon mesh out from the edge or center and infilling. We see that kind of technique used often in sci-fi to generate armor, from lost in Space to Iron Man.

The key components in carbetheum are 3D interlocking plate design and magnetic field design for the linear induction motors. Interlocking via rotation is fairly easy in 2D, any spiral will work, and the 3rd dimension is open to any building block manufacturer. 3D interlocking structures are very diverse and often innovative, and some would be more suited to particular applications than others. As for linear induction motors, a circuit is needed to produce the travelling magnetic well, but that circuit is made of the actual construction material. The front edge link between two wires creates a forward-facing magnetic field to propel the next plates and convey enough intertia to them to enable kinetic interlocks.

So it is feasible, and only needs some engineering. The main barrier is price and material quality. Graphene is still expensive to make, as are carbon nanotubes, so we won’t see bridges made of them just yet. The material quality so far is fine for small scale devices, but not yet for major civil engineering.

However, the field is developing extremely quickly because big companies and investors can clearly see the megabucks at the end of the rainbow. We will have almost certainly have large quantity production of high quality graphene for civil engineering by 2050.

This field will be fun. Anyone who plays computer games is already familiar with the idea. Light bridges and shields, or light swords would appear much as in games, but the material would likely  be graphene and nanotubes (or maybe the newfangled molybdenum equivalents). They would glow during construction with the plasma generated by the intense electric and magnetic fields, and the glow would be needed afterward to make these ultra-thin physical barriers clearly visible,but they might become highly transparent otherwise.

Assembling structures as they are needed and disassembling them just as easily will be very resource-friendly, though it is unlikely that carbon will be in short supply. We can just use some oil or coal to get more if needed, or process some CO2. The walls of a building could be grown from the ground up at hundreds of meters per second in theory, with floors growing almost as fast, though there should be little need to do so in practice, apart from pushing space vehicles up so high that they need little fuel to enter orbit. Nevertheless, growing a  building and then even growing the internal structures and even furniture is feasible, all using glowy carbetheum. Electronic soft fabrics, cushions and hard surfaces and support structures are all possible by combining carbon nanotubes and graphene and using the reconfigurable matter properties carbethium convents. So are visual interfaces, electronic windows, electronic wallpaper, electronic carpet, computers, storage, heating, lighting, energy storage and even solar power panels. So is all the comms and IoT and all the smart embdedded control systems you could ever want. So you’d use a computer with VR interface to design whatever kind of building and interior furniture decor you want, and then when you hit the big red button, it would appear in front of your eyes from the carbethium blocks you had delivered. You could also build robots using the same self-assembly approach.

If these structures can assemble fast enough, and I think they could, then a new form of kinetic architecture would appear. This would use the momentum of the construction material to drive the front edges of the surfaces, kinetic assembly allowing otherwise impossible and elaborate arches to be made.

A city transport infrastructure could be built entirely out of carbethium. The linear induction mats could grow along a road, connecting quickly to make a whole city grid. Circuit design allows the infrastructure to steer driverless pods wherever they need to go, and they could also be assembled as required using carbethium. No parking or storage is needed, as the pod would just melt away onto the surface when it isn’t needed.

I could go to town on military and terrorist applications, but more interesting is the use of the defense domes. When I was a kid, I imagined having a house with a defense dome over it. Lots of sci-fi has them now too. Domes have a strong appeal, even though they could also be used as prisons of course. A supply of carbetheum on the city edges could be used to grow a strong dome in minutes or even seconds, and there is no practical limit to how strong it could be. Even if lasers were used to penetrate it, the holes could fill in in real time, replacing material as fast as it is evaporated away.

Anyway, lots of fun. Today’s civil engineering projects like HS2 look more and more primitive by the day, as we finally start to see the true potential of genuinely 21st century construction materials. 2050 is not too early to expect widespread use of carbetheum. It won’t be called that – whoever commercializes it first will name it, or Google or MIT will claim to have just invented it in a decade or so, so my own name for it will be lost to personal history. But remember, you saw it here first.

State of the world in 2050

Some things are getting better, some worse. 2050 will be neither dystopian nor utopian. A balance of good and bad not unlike today, but with different goods and bads, and slightly better overall. More detail? Okay, for most of my followers, this will mostly collate things you may know already, but there’s no harm in a refresher Futures 101.

Health

We will have cost-effective and widespread cures or control for most cancers, heart disease, diabetes, dementia and most other killers. Quality-of-life diseases such as arthritis will also be controllable or curable. People will live longer and remain healthier for longer, with an accelerated decline at the end.

On the bad side, new diseases will exist, including mutated antibiotic-resistant versions of existing ones. There will still be occasional natural flu mutations and other viruses, and there will still be others arising from contacts between people and other animals that are more easily spread due to increased population, urbanization and better mobility. Some previously rare diseases will become big problems due to urbanization and mobility. Urbanization will be a challenge.

However, diagnostics will be faster and better, we will no longer be so reliant on antibiotics to fight back, and sterilisation techniques for hospitals will be much improved. So even with greater challenges, we will be able to cope fine most of the time with occasional headlines from epidemics.

A darker side is the increasing prospect for bio-terrorism, with man-made viruses deliberately designed to be highly lethal, very contagious and to withstand most conventional defenses, optimized for maximum and rapid spread by harnessing mobility and urbanization. With pretty good control or defense against most natural threats, this may well be the biggest cause of mass deaths in 2050. Bio-warfare is far less likely.

Utilizing other techs, these bio-terrorist viruses could be deployed by swarms of tiny drones that would be hard to spot until too late, and of course these could also be used with chemical weapons such as use of nerve gas. Another tech-based health threat is nanotechnology devices designed to invade the body, damage of destroy systems or even control the brain. It is easy to detect and shoot down macro-scale deployment weapons such as missiles or large drones but far harder to defend against tiny devices such as midge-sized drones or nanotech devices.

The overall conclusion on health is that people will mostly experience much improved lives with good health, long life and a rapid end. A relatively few (but very conspicuous) people will fall victim to terrorist attacks, made far more feasible and effective by changing technology and demographics.

Loneliness

An often-overlooked benefit of increasing longevity is the extending multi-generational family. It will be commonplace to have great grandparents and great-great grandparents. With improved health until near their end, these older people will be seen more as welcome and less as a burden. This advantage will be partly offset by increasing global mobility, so families are more likely to be geographically dispersed.

Not everyone will have close family to enjoy and to support them. Loneliness is increasing even as we get busier, fuller lives. Social inclusion depends on a number of factors, and some of those at least will improve. Public transport that depends on an elderly person walking 15 minutes to a bus stop where they have to wait ages in the rain and wind for a bus on which they are very likely to catch a disease from another passenger is really not fit for purpose. Such primitive and unsuitable systems will be replaced in the next decades by far more socially inclusive self-driving cars. Fleets of these will replace buses and taxis. They will pick people up from their homes and take them all the way to where they need to go, then take them home when needed. As well as being very low cost and very environmentally friendly, they will also have almost zero accident rates and provide fast journey times thanks to very low congestion. Best of all, they will bring easier social inclusion to everyone by removing the barriers of difficult, slow, expensive and tedious journeys. It will be far easier for a lonely person to get out and enjoy cultural activity with other people.

More intuitive social networking, coupled to augmented and virtual reality environments in which to socialize will also mean easier contact even without going anywhere. AI will be better at finding suitable companions and lovers for those who need assistance.

Even so, some people will not benefit and will remain lonely due to other factors such as poor mental health, lack of social skills, or geographic isolation. They still do not need to be alone. 2050 will also feature large numbers of robots and AIs, and although these might not be quite so valuable to some as other human contact, they will be a pretty good substitute. Although many will be functional, cheap and simply fit for purpose, those designed for companionship or home support functions will very probably look human and behave human. They will have good intellectual and emotional skills and will be able to act as a very smart executive assistant as well as domestic servant and as a personal doctor and nurse, even as a sex partner if needed.

It would be too optimistic to say we will eradicate loneliness by 2050 but we can certainly make a big dent in it.

Poverty

Technology progress will greatly increase the size of the global economy. Even with the odd recession our children will be far richer than our parents. It is reasonable to expect the total economy to be 2.5 times bigger than today’s by 2050. That just assumes an average growth of about 2.5% which I think is a reasonable estimate given that technology benefits are accelerating rather than slowing even in spite of recent recession.

While we define poverty level as a percentage of average income, we can guarantee poverty will remain even if everyone lived like royalty. If average income were a million dollars per year, 60% of that would make you rich by any sensible definition but would still qualify as poverty by the ludicrous definition based on relative income used in the UK and some other countries. At some point we need to stop calling people poor if they can afford healthy food, pay everyday bills, buy decent clothes, have a decent roof over their heads and have an occasional holiday. With the global economy improving so much and so fast, and with people having far better access to markets via networks, it will be far easier for people everywhere to earn enough to live comfortably.

In most countries, welfare will be able to provide for those who can’t easily look after themselves at a decent level. Ongoing progress of globalization of compassion that we see today will likely make a global welfare net by 2050. Everyone won’t be rich, and some won’t even be very comfortable, but I believe absolute poverty will be eliminated in most countries, and we can ensure that it will be possible for most people to live in dignity. I think the means, motive and opportunity will make that happen, but it won’t reach everyone. Some people will live under dysfunctional governments that prevent their people having access to support that would otherwise be available to them. Hopefully not many. Absolute poverty by 2050 won’t be history but it will be rare.

In most developed countries, the more generous welfare net might extend to providing a ‘citizen wage’ for everyone, and the level of that could be the same as average wage is today. No-one need be poor in 2050.

Environment

The environment will be in good shape in 2050. I have no sympathy with doom mongers who predict otherwise. As our wealth increases, we tend to look after the environment better. As technology improves, we will achieve a far higher standards of living while looking after the environment. Better mining techniques will allow more reserves to become economic, we will need less resource to do the same job better, reuse and recycling will make more use of the same material.

Short term nightmares such as China’s urban pollution levels will be history by 2050. Energy supply is one of the big contributors to pollution today, but by 2050, combinations of shale gas, nuclear energy (uranium and thorium), fusion and solar energy will make up the vast bulk of energy supply. Oil and unprocessed coal will mostly be left in the ground, though bacterial conversion of coal into gas may well be used. Oil that isn’t extracted by 2030 will be left there, too expensive compared to making the equivalent energy by other means. Conventional nuclear energy will also be on its way to being phased out due to cost. Energy from fusion will only be starting to come on stream everywhere but solar energy will be cheap to harvest and high-tech cabling will enable its easier distribution from sunny areas to where it is needed.

It isn’t too much to expect of future governments that they should be able to negotiate that energy should be grown in deserts, and food crops grown on fertile land. We should not use fertile land to place solar panels, nor should we grow crops to convert to bio-fuel when there is plenty of sunny desert of little value otherwise on which to place solar panels.

With proper stewardship of agricultural land, together with various other food production technologies such as hydroponics, vertical farms and a lot of meat production via tissue culturing, there will be more food per capita than today even with a larger global population. In fact, with a surplus of agricultural land, some might well be returned to nature.

In forests and other ecosystems, technology will also help enormously in monitoring eco-health, and technologies such as genetic modification might be used to improve viability of some specie otherwise threatened.

Anyone who reads my blog regularly will know that I don’t believe climate change is a significant problem in the 2050 time frame, or even this century. I won’t waste any more words on it here. In fact, if I have to say anything, it is that global cooling is more likely to be a problem than warming.

Food and Water

As I just mentioned in the environment section, we will likely use deserts for energy supply and fertile land for crops. Improving efficiency and density will ensure there is far more capability to produce food than we need. Many people will still eat meat, but some at least will be produced in factories using processes such as tissue culturing. Meat pastes with assorted textures can then be used to create a variety of forms of processed meats. That might even happen in home kitchens using 3D printer technology.

Water supply has often been predicted by futurists as a cause of future wars, but I disagree. I think that progress in desalination is likely to be very rapid now, especially with new materials such as graphene likely to come on stream in bulk.  With easy and cheap desalination, water supply should be adequate everywhere and although there may be arguments over rivers I don’t think the pressures are sufficient by themselves to cause wars.

Privacy and Freedom

In 2016, we’re seeing privacy fighting a losing battle for survival. Government increases surveillance ubiquitously and demands more and more access to data on every aspect of our lives, followed by greater control. It invariably cites the desire to control crime and terrorism as the excuse and as they both increase, that excuse will be used until we have very little privacy left. Advancing technology means that by 2050, it will be fully possible to implement thought police to check what we are thinking, planning, desiring and make sure it conforms to what the authorities have decided is appropriate. Even the supposed servant robots that live with us and the AIs in our machines will keep official watch on us and be obliged to report any misdemeanors. Back doors for the authorities will be in everything. Total surveillance obliterates freedom of thought and expression. If you are not free to think or do something wrong, you are not free.

Freedom is strongly linked to privacy. With laws in place and the means to police them in depth, freedom will be limited to what is permitted. Criminals will still find ways to bypass, evade, masquerade, block and destroy and it hard not to believe that criminals will be free to continue doing what they do, while law-abiding citizens will be kept under strict supervision. Criminals will be free while the rest of us live in a digital open prison.

Some say if you don’t want to do wrong, you have nothing to fear. They are deluded fools. With full access to historic electronic records going back to now or earlier, it is not only today’s laws and guidelines that you need to be compliant with but all the future paths of the random walk of political correctness. Social networks can be fiercer police than the police and we are already discovering that having done something in the distant past under different laws and in different cultures is no defense from the social networking mobs. You may be free technically to do or say something today, but if it will be remembered for ever, and it will be, you also need to check that it will probably always be praiseworthy.

I can’t counterbalance this section with any positives. I’ve side before that with all the benefits we can expect, we will end up with no privacy, no freedom and the future will be a gilded cage.

Science and the arts

Yes they do go together. Science shows us how the universe works and how to do what we want. The arts are what we want to do. Both will flourish. AI will help accelerate science across the board, with a singularity actually spread over decades. There will be human knowledge but a great deal more machine knowledge which is beyond un-enhanced human comprehension. However, we will also have the means to connect our minds to the machine world to enhance our senses and intellect, so enhanced human minds will be the norm for many people, and our top scientists and engineers will understand it. In fact, it isn’t safe to develop in any other way.

Science and technology advances will improve sports too, with exoskeletons, safe drugs, active skin training acceleration and virtual reality immersion.

The arts will also flourish. Self-actualization through the arts will make full use of AI assistance. a feeble idea enhanced by and AI assistant can become a work of art, a masterpiece. Whether it be writing or painting, music or philosophy, people will be able to do more, enjoy more, appreciate more, be more. What’s not to like?

Space

by 2050, space will be a massive business in several industries. Space tourism will include short sub-orbital trips right up to lengthy stays in space hotels, and maybe on the moon for the super-rich at least.

Meanwhile asteroid mining will be under way. Some have predicted that this will end resource problems here on Earth, but firstly, there won’t be any resource problems here on Earth, and secondly and most importantly, it will be far too expensive to bring materials back to Earth, and almost all the resources mined will be used in space, to make space stations, vehicles, energy harvesting platforms, factories and so on. Humans will be expanding into space rapidly.

Some of these factories and vehicles and platforms and stations will be used for science, some for tourism, some for military purposes. Many will be used to offer services such as monitoring, positioning, communications just as today but with greater sophistication and detail.

Space will be more militarized too. We can hope that it will not be used in actual war, but I can’t honestly predict that one way or the other.

 

Migration

If the world around you is increasingly unstable, if people are fighting, if times are very hard and government is oppressive, and if there is a land of milk and honey not far away that you can get to, where you can hope for a much better, more prosperous life, free of tyranny, where instead of being part of the third world, you can be in the rich world, then you may well choose to take the risks and traumas associated with migrating. Increasing population way ahead of increasing wealth in Africa, and a drop in the global need for oil will both increase problems in the Middle East and North Africa. Add to that vicious religious sectarian conflict and a great many people will want to migrate indeed. The pressures on Europe and America to accept several millions more migrants will be intense.

By 2050, these regions will hopefully have ended their squabbles, and some migrants will return to rebuild, but most will remain in their new homes.

Most of these migrants will not assimilate well into their new countries but will mainly form their own communities where they can have a quite separate culture, and they will apply pressure to be allowed to self-govern. A self-impose apartheid will result. It might if we are lucky gradually diffuse as religion gradually becomes less important and the western lifestyle becomes more attractive. However, there is also a reinforcing pressure, with this self-exclusion and geographic isolation resulting in fewer opportunities, less mixing with others and therefore a growing feeling of disadvantage, exclusion and victimization. Tribalism becomes reinforced and opportunities for tension increase. We already see that manifested well in  the UK and other European countries.

Meanwhile, much of the world will be prosperous, and there will be many more opportunities for young capable people to migrate and prosper elsewhere. An ageing Europe with too much power held by older people and high taxes to pay for their pensions and care might prove a discouragement to stay, whereas the new world may offer increasing prospects and lowering taxes, and Europe and the USA may therefore suffer a large brain drain.

Politics

If health care is better and cheaper thanks to new tech and becomes less of a political issue; if resources are abundantly available, and the economy is healthy and people feel wealthy enough and resource allocation and wealth distribution become less of a political issue; if the environment is healthy; if global standards of human rights, social welfare and so on are acceptable in most regions and if people are freer to migrate where they want to go; then there may be a little less for countries to fight over. There will be a little less ‘politics’ overall. Most 2050 political arguments and debates will be over social cohesion, culture, generational issues, rights and so on, not health, defence, environment, energy or industry

We know from history that that is no guarantee of peace. People disagree profoundly on a broad range of issues other than life’s basic essentials. I’ve written a few times on the increasing divide and tensions between tribes, especially between left and right. I do think there is a strong chance of civil war in Europe or the USA or both. Social media create reinforcement of views as people expose themselves only to other show think the same, and this creates and reinforces and amplifies an us and them feeling. That is the main ingredient for conflict and rather than seeing that and trying to diffuse it, instead we see left and right becoming ever more entrenched in their views. The current problems we see surrounding Islamic migration show the split extremely well. Each side demonizes the other, extreme camps are growing on both sides and the middle ground is eroding fast. Our leaders only make things worse by refusing to acknowledge and address the issues. I suggested in previous blogs that the second half of the century is when tensions between left and right might result in the Great Western War, but that might well be brought forward a decade or two by a long migration from an unstable Middle East and North Africa, which looks to worsen over the next decade. Internal tensions might build for another decade after that accompanied by a brain drain of the most valuable people, and increasing inter-generational tensions amplifying the left-right divide, with a boil-over in the 2040s. That isn’t to say we won’t see some lesser conflicts before then.

I believe the current tensions between the West, Russia and China will go through occasional ups and downs but the overall trend will be towards far greater stability. I think the chances of a global war will decrease rather than increase. That is just as well since future weapons will be far more capable of course.

So overall, the world peace background will improve markedly, but internal tensions in the West will increase markedly too. The result is that wars between countries or regions will be less likely but the likelihood of civil war in the West will be high.

Robots and AIs

I mentioned robots and AIs in passing in the loneliness section, but they will have strong roles in all areas of life. Many that are thought of simply as machines will act as servants or workers, but many will have advanced levels of AI (not necessarily on board, it could be in the cloud) and people will form emotional bonds with them. Just as important, many such AI/robots will be so advanced that they will have relationships with each other, they will have their own culture. A 21st century version of the debates on slavery is already happening today for sentient AIs even though we don’t have them yet. It is good to be prepared, but we don’t know for sure what such smart and emotional machines will want. They may not want the same as our human prejudices suggest they will, so they will need to be involved in debate and negotiation. It is almost certain that the upper levels of AIs and robots (or androids more likely) will be given some rights, to freedom from pain and abuse, ownership of their own property, a degree of freedom to roam and act of their own accord, the right to pursuit of happiness. They will also get the right to government representation. Which other rights they might get is anyone’s guess, but they will change over time mainly because AIs will evolve and change over time.

OK, I’ve rambled on long enough and I’ve addressed some of the big areas I think. I have ignored a lot more, but it’s dinner time.

A lot of things will be better, some things worse, probably a bit better overall but with the possibility of it all going badly wrong if we don’t get our act together soon. I still think people in 2050 will live in a gilded cage.

2016 – The Bright Side

Having just blogged about some of the bad scenarios for next year (scenarios are just  explorations of things that might or could happen, not things that actually will, those are called predictions), Len Rosen’s comment stimulated me to balance it with a nicer look at next year. Some great things will happen, even ignoring the various product release announcements for new gadgets. Happiness lies deeper than the display size on a tablet. Here are some positive scenarios. They might not happen, but they might.

1 Middle East sorts itself out.

The new alliance formed by Saudi Arabia turns out to be a turning point. Rising Islamophobia caused by Islamist around the world has sharpened the view of ISIS and the trouble in Syria with its global consequences for Islam and even potentially for world peace. The understanding that it could get even worse, but that Western powers can’t fix trouble in Muslim lands due to fears of backlash, the whole of the Middle East starts to understand that they need to sort out their tribal and religious differences to achieve regional peace and for the benefit of Muslims everywhere. Proper discussions are arranged, and with the knowledge that a positive outcome must be achieved, success means a strong alliance of almost all regional powers, with ISIS and other extremist groups ostracized, then a common army organised to tackle and defeat them.

2 Quantum computation and AI starts to prove useful in new drug design

Google’s wealth and effort with its quantum computers and AI, coupled to IBM’s Watson, Facebook, Apple and Samsung’s AI efforts, and Elon Musk’s new investment in open-AI drive a positive feedback loop in computing. With massive returns on the horizon by making people’s lives easier, and with ever-present fears of Terminator in the background, the primary focus is to demonstrate what it could mean for mankind. Consequently, huge effort and investment is focused on creating new drugs to cure cancer, aids and find generic replacements for antibiotics. Any one of these would be a major success for humanity.

3 Major breakthrough in graphene production

Graphene is still the new wonder-material. We can’t make it in large quantities cheaply yet, but already the range of potential uses already proven for it is vast. If a breakthrough brings production cost down by an order of magnitude or two then many of those uses will be achievable. We will be able to deliver clean and safe water to everyone, we’ll have super-strong materials, ultra-fast electronics, active skin, better drug delivery systems, floating pods, super-capacitors that charge instantly as electric cars drive over a charging unit on the road surface, making batteries unnecessary. Even linear induction motor mats to replace self-driving cars with ultra-cheap driver-less pods. If the breakthrough is big enough, it could even start efforts towards a space elevator.

4 Drones

Tiny and cheap drones could help security forces to reduce crime dramatically. Ignoring for now possible abuse of surveillance, being able to track terrorists and criminals in 3D far better than today will make the risk of being caught far greater. Tiny pico-drones dropped over Syria and Iraq could pinpoint locations of fighters so that they can be targeted while protecting innocents. Environmental monitoring would also benefit if billions of drones can monitor ecosystems in great detail everywhere at the same time.

5 Active contact lens

Google has already prototyped a very primitive version of the active contact lens, but they have been barking up the wrong tree. If they dump the 1-LED-per-Pixel approach, which isn’t scalable, and opt for the far better approach of using three lasers and a micro-mirror, then they could build a working active contact lens with unlimited resolution. One in each eye, with an LCD layer overlaid, and you have a full 3D variably-transparent interface for augmented reality or virtual reality. Other displays such as smart watches become unnecessary since of course they can all be achieved virtually in an ultra-high res image. All the expense and environmental impact of other displays suddenly is replaced by a cheap high res display that has an environmental footprint approaching zero. Augmented reality takes off and the economy springs back to life.

6 Star Wars stimulates renewed innovation

Engineers can’t watch a film without making at least 3 new inventions. A lot of things on Star Wars are entirely feasible – I have invented and documented mechanisms to make both a light saber and the land speeder. Millions of engineers have invented some way of doing holographic characters. In a world that seems full of trouble, we are fortunate that some of the super-rich that we criticise for not paying as much taxes as we’d like are also extremely good engineers and have the cash to back up their visions with real progress. Natural competitiveness to make the biggest contribution to humanity will do the rest.

7 Europe fixes itself

The UK is picking the lock on the exit door, others are queuing behind. The ruling bureaucrats finally start to realize that they won’t get their dream of a United States of Europe in quite the way they hoped, that their existing dream is in danger of collapse due to a mismanaged migrant crisis, and consequently the UK renegotiation stimulates a major new treaty discussion, where all the countries agree what their people really want out of the European project, rather than just a select few. The result is a reset. A new more democratic European dream emerges that the vest majority of people actually wants. Agreement on progress to sort out the migrant crisis is a good test and after that, a stronger, better, more vibrant Europe starts to emerge from the ashes with a renewed vigor and rapidly recovering economy.

8 Africa rearranges boundaries to get tribal peace

Breakthrough in the Middle East ripples through North Africa resulting in the beginnings of stability in some countries. Realization that tribal conflicts won’t easily go away, and that peace brings prosperity, boundaries are renegotiated so that different people can live in and govern their own territories. Treaties agree fair access to resources independent of location.

9 The Sahara become Europe’s energy supply

With stable politics finally on the horizon, energy companies re-address the idea of using the Sahara as a solar farm. Local people earn money by looking after panels, keeping them clean and in working order, and receive welcome remuneration, bringing prosperity that was previously beyond them. Much of this money in turn is used to purify water, irrigating deserts and greening them, making a better food supply while improving the regional climate and fixing large quantities of CO2. Poverty starts to reduce as the environment improves. Much of this is replicated in Central and South America.

10 World Peace emerges

By fighting alongside in the Middle East and managing to avoid World War 3, a very positive relationship between Russia and the West emerges. China meanwhile, makes some of the energy breakthroughs needed to get solar efficiency and cost down below oil cost. This forces the Middle East to also look Westward for new markets and to add greater drive to their regional peace efforts to avoid otherwise inevitable collapse. Suddenly a world that was full of wars becomes one where all countries seem to be getting along just fine, all realizing that we only have this one world and one life and we’d better not ruin it.

2016: The Dark Side

Bloomberg reports the ‘Pessimists guide to the world in 2016’, by By Flavia Krause-Jackson, Mira Rojanasakul, and John Fraher.

http://www.bloomberg.com/graphics/pessimists-guide-to-2016/

Excellent stuff. A healthy dose of realism to counter the spin and gloss and outright refusals to notice things that don’t fit the agenda that we so often expect from today’s media. Their entries deserve some comment, and I’ll add a few more. I’m good at pessimism.

Their first entry is oil reaching $100 a barrel as ISIS blows up oil fields. Certainly possible, though they also report the existing oil glut: http://www.bloomberg.com/news/articles/2015-12-17/shale-drillers-are-now-free-to-export-u-s-oil-into-global-glut

Just because the second option is the more likely does not invalidate the first as a possible scenario, so that entry is fine.

An EU referendum in June is their 2nd entry. Well, that will only happen if Cameron gets his way and the EU agrees sufficient change to make the referendum result more likely to end in a Yes. If there is any hint of a No, it will be postponed as far as possible to give politics time to turn the right way. Let’s face facts. When the Ukraine had their referendum, they completed the entire process within two weeks. If the Conservatives genuinely wanted a referendum on Europe, it would have happened years ago. The Conservatives make frequent promises to do the Conservative thing very loudly, and then quietly do the Labour thing and hope nobody notices. Osborne promised to cut the deficit but faced with the slightest objections from the media performed a text-book U-turn. That follow numerous U-turns on bin collections, speed cameras, wheel clamping, environment, surveillance, immigration, pensions, fixing the NHS…. I therefore think he will spin the EU talks as far as possible to pretend that tiny promises to think about the possibility of reviewing policies are the same as winning guarantees of major changes. Nevertheless, an ongoing immigration flood and assorted Islamist problems are increasing the No vote rapidly, so I think it far more likely that the referendum will be postponed.

The 3rd is banks being hit by a massive cyber attack. Very possible, even quite likely.

4th, EU crumbles under immigration fears. Very likely indeed. Schengen will be suspended soon and increasing Islamist violence will create increasing hostility to the migrant flow. Forcing countries to accept a proportion of the pain caused by Merkel’s naivety will increase strains between countries to breaking point. The British referendum on staying or leaving adds an escape route that will be very tempting for politicians who want to stay in power.

Their 5th is China’s economy failing and military rising. Again, quite feasible. Their economy has suffered a slowdown, and their military looks enthusiastically at Western decline under left-wing US and Europe leadership, strained by Middle Eastern and Russian tensions. There has never been a better time for their military to exploit weaknesses.

6 is Israel attacking Iranian nuclear facilities. Well, with the US and Europe rapidly turning antisemitic and already very anti-Israel, they have pretty much been left on their own, surrounded by countries that want them eliminated. If anything, I’m surprised they have been so patient.

7 Putin sidelines America. Is that not history?

8 Climate change heats up. My first significant disagreement. With El-Nino, it will be a warm year, but evidence is increasing that the overall trend for the next few decades will be cooling, due to various natural cycles. Man made warming has been greatly exaggerated and people are losing interest in predictions of catastrophe when they can see plainly that most of the alleged change is just alterations to data. Yes, next year will be warm, but thanks to far too many cries of wolf, apart from meta-religious warmists, few people still believe things will get anywhere near as bad as doom-mongers suggest. They will notice that the Paris agreement, if followed, would trash western economies and greatly increase their bills, even though it can’t make any significant change on global CO2 emissions. So, although there will be catastrophe prediction headlines next year making much of higher temperatures due to El Nino, the overall trend will be that people won’t be very interested any more.

9 Latin America’s lost decade. I have to confess I did expect great things from South America, and they haven’t materialized. It is clear evidence that a young vibrant population does not necessarily mean one full of ideas, enthusiasm and entrepreneurial endeavor. Time will tell, but I think they are right on this one.

Their 10th scenario is Trump winning the US presidency. I can’t put odds on it, but it certainly is possible, especially with Islamist violence increasing. He offers the simple choice of political correctness v security, and framed that way, he is certainly not guaranteed to win but he is in with a decent chance. A perfectly valid scenario.

Overall, I’m pretty impressed with this list. As good as any I could have made. But I ought to add a couple.

My first and most likely offering is that a swarm of drones is used in a terrorist attack on a stadium or even a city center. Drones are a terrorist’s dream, and the lack of licensing has meant that people can acquire lots of them and they could be used simultaneously, launched from many locations and gathering together in the same place to launch the attack. The attack could be chemical, biological, explosive or even blinding lasers, but actually, the main weapon would be the panic that would result if even one or two of them do anything. Many could be hurt in the rush to escape.

My second is a successful massive cyber-attack on ordinary people and businesses. There are several forms of attack that could work and cause enormous problems. Encryption based attacks such as ransomware are already here, but if this is developed by the IT experts in ISIS and rogue regimes, the ransom might not be the goal. Simply destroying data or locking it up is quite enough to be a major terrorist goal. It could cause widespread economic harm if enough machines are infected before defenses catch up, and AI-based adaptation might make that take quite a while. The fact is that so far we have been very lucky.

The third is a major solar storm, which could knock out IT infrastructure, again with enormous economic damage. The Sun is entering a period of sunspot drought quite unprecedented since we started using IT. We don’t really know what will happen.

My fourth is a major virus causing millions of deaths. Megacities are such a problem waiting to happen. The virus could evolve naturally, or it could be engineered. It could spread far and wide before quarantines come into effect. This could happen any time, so next year is a valid possibility.

My fifth and final scenario is unlikely but possible, and that is the start of a Western civil war. I have blogged about it in https://timeguide.wordpress.com/2013/12/19/machiavelli-and-the-coming-great-western-war/ and suggested it is likely in the middle or second half of the century, but it could possibly start next year given the various stimulants we see rising today. It would affect Europe first and could spread to the USA.