Category Archives: space

Explaining accelerating universe expansion without dark energy

I am not the only ex-physicist that doesn’t believe in dark matter or dark energy, or multiple universes. All of these are theoretically possible interpretations of the maths, but I do not believe they are interpretations appropriate to our universe. Like the concept of the ether, I expect they will be shown to be incorrect and replaced by explanations that don’t need such concepts.

There are already explanations for accelerating expansion that don’t rely on dark energy, such as relativity: (the title is confusing since the article explains why it isn’t needed).

My theory is even simpler and probably not original, but I can’t find any references to it on the first two pages of Google so either it’s novel or so wrong that it doesn’t even warrant mentions. Anyway, here it is, make up your own mind, it doesn’t even need equations to explain it:

As galaxies get further apart, the various field fluxes reduce with the square of distance – gravitational, electromagnetic, and so must the Higgs flux. The Higgs field is what gives particles their mass. As the Higgs field declines, the mass of the particles in each galaxy must therefore drop too. If energy is to be conserved, then as mass declines, Galaxy speed must increase linearly with distance, as is the observation. QED.

Carbethium, a better-than-scifi material

How to build one of these for real:


Halo light bridge, from

Or indeed one of these:



I recently tweeted that I had an idea how to make the glowy bridges and shields we’ve seen routinely in sci-fi games from Half Life to Destiny, the bridges that seem to appear in a second or two from nothing across a divide, yet are strong enough to drive tanks over, and able to vanish as quickly and completely when they are switched off. I woke today realizing that with a bit of work, that it could be the basis of a general purpose material to make the tanks too, and buildings and construction platforms, bridges, roads and driverless pod systems, personal shields and city defense domes, force fields, drones, planes and gliders, space elevator bases, clothes, sports tracks, robotics, and of course assorted weapons and weapon systems. The material would only appear as needed and could be fully programmable. It could even be used to render buildings from VR to real life in seconds, enabling at least some holodeck functionality. All of this is feasible by 2050.

Since it would be as ethereal as those Halo structures, I first wanted to call the material ethereum, but that name was already taken (for a 2014 block-chain programming platform, which I note could be used to build the smart ANTS network management system that Chris Winter and I developed in BT in 1993), and this new material would be a programmable construction platform so the names would conflict, and etherium is too close. Ethium might work, but it would be based on graphene and carbon nanotubes, and I am quite into carbon so I chose carbethium.

Ages ago I blogged about plasma as a 21st Century building material. I’m still not certain this is feasible, but it may be, and it doesn’t matter for the purposes of this blog anyway.

Around then I also blogged how to make free-floating battle drones and more recently how to make a Star Wars light-saber.

Carbethium would use some of the same principles but would add the enormous strength and high conductivity of graphene to provide the physical properties to make a proper construction material. The programmable matter bits and the instant build would use a combination of 3D interlocking plates, linear induction,  and magnetic wells. A plane such as a light bridge or a light shield would extend from a node in caterpillar track form with plates added as needed until the structure is complete. By reversing the build process, it could withdraw into the node. Bridges that only exist when they are needed would be good fun and we could have them by 2050 as well as the light shields and the light swords, and light tanks.

The last bit worries me. The ethics of carbethium are the typical mixture of enormous potential good and huge potential for abuse to bring death and destruction that we’re learning to expect of the future.

If we can make free-floating battle drones, tanks, robots, planes and rail-gun plasma weapons all appear within seconds, if we can build military bases and erect shield domes around them within seconds, then warfare moves into a new realm. Those countries that develop this stuff first will have a huge advantage, with the ability to send autonomous robotic armies to defeat enemies with little or no risk to their own people. If developed by a James Bond super-villain on a hidden island, it would even be the sort of thing that would enable a serious bid to take over the world.

But in the words of Professor Emmett Brown, “well, I figured, what the hell?”. 2050 values are not 2016 values. Our value set is already on a random walk, disconnected from any anchor, its future direction indicated by a combination of current momentum and a chaos engine linking to random utterances of arbitrary celebrities on social media. 2050 morality on many issues will be the inverse of today’s, just as today’s is on many issues the inverse of the 1970s’. Whatever you do or however politically correct you might think you are today, you will be an outcast before you get old:

We’re already fucked, carbethium just adds some style.

Graphene combines huge tensile strength with enormous electrical conductivity. A plate can be added to the edge of an existing plate and interlocked, I imagine in a hexagonal or triangular mesh. Plates can be designed in many diverse ways to interlock, so that rotating one engages with the next, and reversing the rotation unlocks them. Plates can be pushed to the forward edge by magnetic wells, using linear induction motors, using the graphene itself as the conductor to generate the magnetic field and the design of the structure of the graphene threads enabling the linear induction fields. That would likely require that the structure forms first out of graphene threads, then the gaps between filled by mesh, and plates added to that to make the structure finally solid. This would happen in thickness as well as width, to make a 3D structure, though a graphene bridge would only need to be dozens of atoms thick.

So a bridge made of graphene could start with a single thread, which could be shot across a gap at hundreds of meters per second. I explained how to make a Spiderman-style silk thrower to do just that in a previous blog:

The mesh and 3D build would all follow from that. In theory that could all happen in seconds, the supply of plates and the available power being the primary limiting factors.

Similarly, a shield or indeed any kind of plate could be made by extending carbon mesh out from the edge or center and infilling. We see that kind of technique used often in sci-fi to generate armor, from lost in Space to Iron Man.

The key components in carbetheum are 3D interlocking plate design and magnetic field design for the linear induction motors. Interlocking via rotation is fairly easy in 2D, any spiral will work, and the 3rd dimension is open to any building block manufacturer. 3D interlocking structures are very diverse and often innovative, and some would be more suited to particular applications than others. As for linear induction motors, a circuit is needed to produce the travelling magnetic well, but that circuit is made of the actual construction material. The front edge link between two wires creates a forward-facing magnetic field to propel the next plates and convey enough intertia to them to enable kinetic interlocks.

So it is feasible, and only needs some engineering. The main barrier is price and material quality. Graphene is still expensive to make, as are carbon nanotubes, so we won’t see bridges made of them just yet. The material quality so far is fine for small scale devices, but not yet for major civil engineering.

However, the field is developing extremely quickly because big companies and investors can clearly see the megabucks at the end of the rainbow. We will have almost certainly have large quantity production of high quality graphene for civil engineering by 2050.

This field will be fun. Anyone who plays computer games is already familiar with the idea. Light bridges and shields, or light swords would appear much as in games, but the material would likely  be graphene and nanotubes (or maybe the newfangled molybdenum equivalents). They would glow during construction with the plasma generated by the intense electric and magnetic fields, and the glow would be needed afterward to make these ultra-thin physical barriers clearly visible,but they might become highly transparent otherwise.

Assembling structures as they are needed and disassembling them just as easily will be very resource-friendly, though it is unlikely that carbon will be in short supply. We can just use some oil or coal to get more if needed, or process some CO2. The walls of a building could be grown from the ground up at hundreds of meters per second in theory, with floors growing almost as fast, though there should be little need to do so in practice, apart from pushing space vehicles up so high that they need little fuel to enter orbit. Nevertheless, growing a  building and then even growing the internal structures and even furniture is feasible, all using glowy carbetheum. Electronic soft fabrics, cushions and hard surfaces and support structures are all possible by combining carbon nanotubes and graphene and using the reconfigurable matter properties carbethium convents. So are visual interfaces, electronic windows, electronic wallpaper, electronic carpet, computers, storage, heating, lighting, energy storage and even solar power panels. So is all the comms and IoT and all the smart embdedded control systems you could ever want. So you’d use a computer with VR interface to design whatever kind of building and interior furniture decor you want, and then when you hit the big red button, it would appear in front of your eyes from the carbethium blocks you had delivered. You could also build robots using the same self-assembly approach.

If these structures can assemble fast enough, and I think they could, then a new form of kinetic architecture would appear. This would use the momentum of the construction material to drive the front edges of the surfaces, kinetic assembly allowing otherwise impossible and elaborate arches to be made.

A city transport infrastructure could be built entirely out of carbethium. The linear induction mats could grow along a road, connecting quickly to make a whole city grid. Circuit design allows the infrastructure to steer driverless pods wherever they need to go, and they could also be assembled as required using carbethium. No parking or storage is needed, as the pod would just melt away onto the surface when it isn’t needed.

I could go to town on military and terrorist applications, but more interesting is the use of the defense domes. When I was a kid, I imagined having a house with a defense dome over it. Lots of sci-fi has them now too. Domes have a strong appeal, even though they could also be used as prisons of course. A supply of carbetheum on the city edges could be used to grow a strong dome in minutes or even seconds, and there is no practical limit to how strong it could be. Even if lasers were used to penetrate it, the holes could fill in in real time, replacing material as fast as it is evaporated away.

Anyway, lots of fun. Today’s civil engineering projects like HS2 look more and more primitive by the day, as we finally start to see the true potential of genuinely 21st century construction materials. 2050 is not too early to expect widespread use of carbetheum. It won’t be called that – whoever commercializes it first will name it, or Google or MIT will claim to have just invented it in a decade or so, so my own name for it will be lost to personal history. But remember, you saw it here first.

State of the world in 2050

Some things are getting better, some worse. 2050 will be neither dystopian nor utopian. A balance of good and bad not unlike today, but with different goods and bads, and slightly better overall. More detail? Okay, for most of my followers, this will mostly collate things you may know already, but there’s no harm in a refresher Futures 101.


We will have cost-effective and widespread cures or control for most cancers, heart disease, diabetes, dementia and most other killers. Quality-of-life diseases such as arthritis will also be controllable or curable. People will live longer and remain healthier for longer, with an accelerated decline at the end.

On the bad side, new diseases will exist, including mutated antibiotic-resistant versions of existing ones. There will still be occasional natural flu mutations and other viruses, and there will still be others arising from contacts between people and other animals that are more easily spread due to increased population, urbanization and better mobility. Some previously rare diseases will become big problems due to urbanization and mobility. Urbanization will be a challenge.

However, diagnostics will be faster and better, we will no longer be so reliant on antibiotics to fight back, and sterilisation techniques for hospitals will be much improved. So even with greater challenges, we will be able to cope fine most of the time with occasional headlines from epidemics.

A darker side is the increasing prospect for bio-terrorism, with man-made viruses deliberately designed to be highly lethal, very contagious and to withstand most conventional defenses, optimized for maximum and rapid spread by harnessing mobility and urbanization. With pretty good control or defense against most natural threats, this may well be the biggest cause of mass deaths in 2050. Bio-warfare is far less likely.

Utilizing other techs, these bio-terrorist viruses could be deployed by swarms of tiny drones that would be hard to spot until too late, and of course these could also be used with chemical weapons such as use of nerve gas. Another tech-based health threat is nanotechnology devices designed to invade the body, damage of destroy systems or even control the brain. It is easy to detect and shoot down macro-scale deployment weapons such as missiles or large drones but far harder to defend against tiny devices such as midge-sized drones or nanotech devices.

The overall conclusion on health is that people will mostly experience much improved lives with good health, long life and a rapid end. A relatively few (but very conspicuous) people will fall victim to terrorist attacks, made far more feasible and effective by changing technology and demographics.


An often-overlooked benefit of increasing longevity is the extending multi-generational family. It will be commonplace to have great grandparents and great-great grandparents. With improved health until near their end, these older people will be seen more as welcome and less as a burden. This advantage will be partly offset by increasing global mobility, so families are more likely to be geographically dispersed.

Not everyone will have close family to enjoy and to support them. Loneliness is increasing even as we get busier, fuller lives. Social inclusion depends on a number of factors, and some of those at least will improve. Public transport that depends on an elderly person walking 15 minutes to a bus stop where they have to wait ages in the rain and wind for a bus on which they are very likely to catch a disease from another passenger is really not fit for purpose. Such primitive and unsuitable systems will be replaced in the next decades by far more socially inclusive self-driving cars. Fleets of these will replace buses and taxis. They will pick people up from their homes and take them all the way to where they need to go, then take them home when needed. As well as being very low cost and very environmentally friendly, they will also have almost zero accident rates and provide fast journey times thanks to very low congestion. Best of all, they will bring easier social inclusion to everyone by removing the barriers of difficult, slow, expensive and tedious journeys. It will be far easier for a lonely person to get out and enjoy cultural activity with other people.

More intuitive social networking, coupled to augmented and virtual reality environments in which to socialize will also mean easier contact even without going anywhere. AI will be better at finding suitable companions and lovers for those who need assistance.

Even so, some people will not benefit and will remain lonely due to other factors such as poor mental health, lack of social skills, or geographic isolation. They still do not need to be alone. 2050 will also feature large numbers of robots and AIs, and although these might not be quite so valuable to some as other human contact, they will be a pretty good substitute. Although many will be functional, cheap and simply fit for purpose, those designed for companionship or home support functions will very probably look human and behave human. They will have good intellectual and emotional skills and will be able to act as a very smart executive assistant as well as domestic servant and as a personal doctor and nurse, even as a sex partner if needed.

It would be too optimistic to say we will eradicate loneliness by 2050 but we can certainly make a big dent in it.


Technology progress will greatly increase the size of the global economy. Even with the odd recession our children will be far richer than our parents. It is reasonable to expect the total economy to be 2.5 times bigger than today’s by 2050. That just assumes an average growth of about 2.5% which I think is a reasonable estimate given that technology benefits are accelerating rather than slowing even in spite of recent recession.

While we define poverty level as a percentage of average income, we can guarantee poverty will remain even if everyone lived like royalty. If average income were a million dollars per year, 60% of that would make you rich by any sensible definition but would still qualify as poverty by the ludicrous definition based on relative income used in the UK and some other countries. At some point we need to stop calling people poor if they can afford healthy food, pay everyday bills, buy decent clothes, have a decent roof over their heads and have an occasional holiday. With the global economy improving so much and so fast, and with people having far better access to markets via networks, it will be far easier for people everywhere to earn enough to live comfortably.

In most countries, welfare will be able to provide for those who can’t easily look after themselves at a decent level. Ongoing progress of globalization of compassion that we see today will likely make a global welfare net by 2050. Everyone won’t be rich, and some won’t even be very comfortable, but I believe absolute poverty will be eliminated in most countries, and we can ensure that it will be possible for most people to live in dignity. I think the means, motive and opportunity will make that happen, but it won’t reach everyone. Some people will live under dysfunctional governments that prevent their people having access to support that would otherwise be available to them. Hopefully not many. Absolute poverty by 2050 won’t be history but it will be rare.

In most developed countries, the more generous welfare net might extend to providing a ‘citizen wage’ for everyone, and the level of that could be the same as average wage is today. No-one need be poor in 2050.


The environment will be in good shape in 2050. I have no sympathy with doom mongers who predict otherwise. As our wealth increases, we tend to look after the environment better. As technology improves, we will achieve a far higher standards of living while looking after the environment. Better mining techniques will allow more reserves to become economic, we will need less resource to do the same job better, reuse and recycling will make more use of the same material.

Short term nightmares such as China’s urban pollution levels will be history by 2050. Energy supply is one of the big contributors to pollution today, but by 2050, combinations of shale gas, nuclear energy (uranium and thorium), fusion and solar energy will make up the vast bulk of energy supply. Oil and unprocessed coal will mostly be left in the ground, though bacterial conversion of coal into gas may well be used. Oil that isn’t extracted by 2030 will be left there, too expensive compared to making the equivalent energy by other means. Conventional nuclear energy will also be on its way to being phased out due to cost. Energy from fusion will only be starting to come on stream everywhere but solar energy will be cheap to harvest and high-tech cabling will enable its easier distribution from sunny areas to where it is needed.

It isn’t too much to expect of future governments that they should be able to negotiate that energy should be grown in deserts, and food crops grown on fertile land. We should not use fertile land to place solar panels, nor should we grow crops to convert to bio-fuel when there is plenty of sunny desert of little value otherwise on which to place solar panels.

With proper stewardship of agricultural land, together with various other food production technologies such as hydroponics, vertical farms and a lot of meat production via tissue culturing, there will be more food per capita than today even with a larger global population. In fact, with a surplus of agricultural land, some might well be returned to nature.

In forests and other ecosystems, technology will also help enormously in monitoring eco-health, and technologies such as genetic modification might be used to improve viability of some specie otherwise threatened.

Anyone who reads my blog regularly will know that I don’t believe climate change is a significant problem in the 2050 time frame, or even this century. I won’t waste any more words on it here. In fact, if I have to say anything, it is that global cooling is more likely to be a problem than warming.

Food and Water

As I just mentioned in the environment section, we will likely use deserts for energy supply and fertile land for crops. Improving efficiency and density will ensure there is far more capability to produce food than we need. Many people will still eat meat, but some at least will be produced in factories using processes such as tissue culturing. Meat pastes with assorted textures can then be used to create a variety of forms of processed meats. That might even happen in home kitchens using 3D printer technology.

Water supply has often been predicted by futurists as a cause of future wars, but I disagree. I think that progress in desalination is likely to be very rapid now, especially with new materials such as graphene likely to come on stream in bulk.  With easy and cheap desalination, water supply should be adequate everywhere and although there may be arguments over rivers I don’t think the pressures are sufficient by themselves to cause wars.

Privacy and Freedom

In 2016, we’re seeing privacy fighting a losing battle for survival. Government increases surveillance ubiquitously and demands more and more access to data on every aspect of our lives, followed by greater control. It invariably cites the desire to control crime and terrorism as the excuse and as they both increase, that excuse will be used until we have very little privacy left. Advancing technology means that by 2050, it will be fully possible to implement thought police to check what we are thinking, planning, desiring and make sure it conforms to what the authorities have decided is appropriate. Even the supposed servant robots that live with us and the AIs in our machines will keep official watch on us and be obliged to report any misdemeanors. Back doors for the authorities will be in everything. Total surveillance obliterates freedom of thought and expression. If you are not free to think or do something wrong, you are not free.

Freedom is strongly linked to privacy. With laws in place and the means to police them in depth, freedom will be limited to what is permitted. Criminals will still find ways to bypass, evade, masquerade, block and destroy and it hard not to believe that criminals will be free to continue doing what they do, while law-abiding citizens will be kept under strict supervision. Criminals will be free while the rest of us live in a digital open prison.

Some say if you don’t want to do wrong, you have nothing to fear. They are deluded fools. With full access to historic electronic records going back to now or earlier, it is not only today’s laws and guidelines that you need to be compliant with but all the future paths of the random walk of political correctness. Social networks can be fiercer police than the police and we are already discovering that having done something in the distant past under different laws and in different cultures is no defense from the social networking mobs. You may be free technically to do or say something today, but if it will be remembered for ever, and it will be, you also need to check that it will probably always be praiseworthy.

I can’t counterbalance this section with any positives. I’ve side before that with all the benefits we can expect, we will end up with no privacy, no freedom and the future will be a gilded cage.

Science and the arts

Yes they do go together. Science shows us how the universe works and how to do what we want. The arts are what we want to do. Both will flourish. AI will help accelerate science across the board, with a singularity actually spread over decades. There will be human knowledge but a great deal more machine knowledge which is beyond un-enhanced human comprehension. However, we will also have the means to connect our minds to the machine world to enhance our senses and intellect, so enhanced human minds will be the norm for many people, and our top scientists and engineers will understand it. In fact, it isn’t safe to develop in any other way.

Science and technology advances will improve sports too, with exoskeletons, safe drugs, active skin training acceleration and virtual reality immersion.

The arts will also flourish. Self-actualization through the arts will make full use of AI assistance. a feeble idea enhanced by and AI assistant can become a work of art, a masterpiece. Whether it be writing or painting, music or philosophy, people will be able to do more, enjoy more, appreciate more, be more. What’s not to like?


by 2050, space will be a massive business in several industries. Space tourism will include short sub-orbital trips right up to lengthy stays in space hotels, and maybe on the moon for the super-rich at least.

Meanwhile asteroid mining will be under way. Some have predicted that this will end resource problems here on Earth, but firstly, there won’t be any resource problems here on Earth, and secondly and most importantly, it will be far too expensive to bring materials back to Earth, and almost all the resources mined will be used in space, to make space stations, vehicles, energy harvesting platforms, factories and so on. Humans will be expanding into space rapidly.

Some of these factories and vehicles and platforms and stations will be used for science, some for tourism, some for military purposes. Many will be used to offer services such as monitoring, positioning, communications just as today but with greater sophistication and detail.

Space will be more militarized too. We can hope that it will not be used in actual war, but I can’t honestly predict that one way or the other.



If the world around you is increasingly unstable, if people are fighting, if times are very hard and government is oppressive, and if there is a land of milk and honey not far away that you can get to, where you can hope for a much better, more prosperous life, free of tyranny, where instead of being part of the third world, you can be in the rich world, then you may well choose to take the risks and traumas associated with migrating. Increasing population way ahead of increasing wealth in Africa, and a drop in the global need for oil will both increase problems in the Middle East and North Africa. Add to that vicious religious sectarian conflict and a great many people will want to migrate indeed. The pressures on Europe and America to accept several millions more migrants will be intense.

By 2050, these regions will hopefully have ended their squabbles, and some migrants will return to rebuild, but most will remain in their new homes.

Most of these migrants will not assimilate well into their new countries but will mainly form their own communities where they can have a quite separate culture, and they will apply pressure to be allowed to self-govern. A self-impose apartheid will result. It might if we are lucky gradually diffuse as religion gradually becomes less important and the western lifestyle becomes more attractive. However, there is also a reinforcing pressure, with this self-exclusion and geographic isolation resulting in fewer opportunities, less mixing with others and therefore a growing feeling of disadvantage, exclusion and victimization. Tribalism becomes reinforced and opportunities for tension increase. We already see that manifested well in  the UK and other European countries.

Meanwhile, much of the world will be prosperous, and there will be many more opportunities for young capable people to migrate and prosper elsewhere. An ageing Europe with too much power held by older people and high taxes to pay for their pensions and care might prove a discouragement to stay, whereas the new world may offer increasing prospects and lowering taxes, and Europe and the USA may therefore suffer a large brain drain.


If health care is better and cheaper thanks to new tech and becomes less of a political issue; if resources are abundantly available, and the economy is healthy and people feel wealthy enough and resource allocation and wealth distribution become less of a political issue; if the environment is healthy; if global standards of human rights, social welfare and so on are acceptable in most regions and if people are freer to migrate where they want to go; then there may be a little less for countries to fight over. There will be a little less ‘politics’ overall. Most 2050 political arguments and debates will be over social cohesion, culture, generational issues, rights and so on, not health, defence, environment, energy or industry

We know from history that that is no guarantee of peace. People disagree profoundly on a broad range of issues other than life’s basic essentials. I’ve written a few times on the increasing divide and tensions between tribes, especially between left and right. I do think there is a strong chance of civil war in Europe or the USA or both. Social media create reinforcement of views as people expose themselves only to other show think the same, and this creates and reinforces and amplifies an us and them feeling. That is the main ingredient for conflict and rather than seeing that and trying to diffuse it, instead we see left and right becoming ever more entrenched in their views. The current problems we see surrounding Islamic migration show the split extremely well. Each side demonizes the other, extreme camps are growing on both sides and the middle ground is eroding fast. Our leaders only make things worse by refusing to acknowledge and address the issues. I suggested in previous blogs that the second half of the century is when tensions between left and right might result in the Great Western War, but that might well be brought forward a decade or two by a long migration from an unstable Middle East and North Africa, which looks to worsen over the next decade. Internal tensions might build for another decade after that accompanied by a brain drain of the most valuable people, and increasing inter-generational tensions amplifying the left-right divide, with a boil-over in the 2040s. That isn’t to say we won’t see some lesser conflicts before then.

I believe the current tensions between the West, Russia and China will go through occasional ups and downs but the overall trend will be towards far greater stability. I think the chances of a global war will decrease rather than increase. That is just as well since future weapons will be far more capable of course.

So overall, the world peace background will improve markedly, but internal tensions in the West will increase markedly too. The result is that wars between countries or regions will be less likely but the likelihood of civil war in the West will be high.

Robots and AIs

I mentioned robots and AIs in passing in the loneliness section, but they will have strong roles in all areas of life. Many that are thought of simply as machines will act as servants or workers, but many will have advanced levels of AI (not necessarily on board, it could be in the cloud) and people will form emotional bonds with them. Just as important, many such AI/robots will be so advanced that they will have relationships with each other, they will have their own culture. A 21st century version of the debates on slavery is already happening today for sentient AIs even though we don’t have them yet. It is good to be prepared, but we don’t know for sure what such smart and emotional machines will want. They may not want the same as our human prejudices suggest they will, so they will need to be involved in debate and negotiation. It is almost certain that the upper levels of AIs and robots (or androids more likely) will be given some rights, to freedom from pain and abuse, ownership of their own property, a degree of freedom to roam and act of their own accord, the right to pursuit of happiness. They will also get the right to government representation. Which other rights they might get is anyone’s guess, but they will change over time mainly because AIs will evolve and change over time.

OK, I’ve rambled on long enough and I’ve addressed some of the big areas I think. I have ignored a lot more, but it’s dinner time.

A lot of things will be better, some things worse, probably a bit better overall but with the possibility of it all going badly wrong if we don’t get our act together soon. I still think people in 2050 will live in a gilded cage.

2016 – The Bright Side

Having just blogged about some of the bad scenarios for next year (scenarios are just  explorations of things that might or could happen, not things that actually will, those are called predictions), Len Rosen’s comment stimulated me to balance it with a nicer look at next year. Some great things will happen, even ignoring the various product release announcements for new gadgets. Happiness lies deeper than the display size on a tablet. Here are some positive scenarios. They might not happen, but they might.

1 Middle East sorts itself out.

The new alliance formed by Saudi Arabia turns out to be a turning point. Rising Islamophobia caused by Islamist around the world has sharpened the view of ISIS and the trouble in Syria with its global consequences for Islam and even potentially for world peace. The understanding that it could get even worse, but that Western powers can’t fix trouble in Muslim lands due to fears of backlash, the whole of the Middle East starts to understand that they need to sort out their tribal and religious differences to achieve regional peace and for the benefit of Muslims everywhere. Proper discussions are arranged, and with the knowledge that a positive outcome must be achieved, success means a strong alliance of almost all regional powers, with ISIS and other extremist groups ostracized, then a common army organised to tackle and defeat them.

2 Quantum computation and AI starts to prove useful in new drug design

Google’s wealth and effort with its quantum computers and AI, coupled to IBM’s Watson, Facebook, Apple and Samsung’s AI efforts, and Elon Musk’s new investment in open-AI drive a positive feedback loop in computing. With massive returns on the horizon by making people’s lives easier, and with ever-present fears of Terminator in the background, the primary focus is to demonstrate what it could mean for mankind. Consequently, huge effort and investment is focused on creating new drugs to cure cancer, aids and find generic replacements for antibiotics. Any one of these would be a major success for humanity.

3 Major breakthrough in graphene production

Graphene is still the new wonder-material. We can’t make it in large quantities cheaply yet, but already the range of potential uses already proven for it is vast. If a breakthrough brings production cost down by an order of magnitude or two then many of those uses will be achievable. We will be able to deliver clean and safe water to everyone, we’ll have super-strong materials, ultra-fast electronics, active skin, better drug delivery systems, floating pods, super-capacitors that charge instantly as electric cars drive over a charging unit on the road surface, making batteries unnecessary. Even linear induction motor mats to replace self-driving cars with ultra-cheap driver-less pods. If the breakthrough is big enough, it could even start efforts towards a space elevator.

4 Drones

Tiny and cheap drones could help security forces to reduce crime dramatically. Ignoring for now possible abuse of surveillance, being able to track terrorists and criminals in 3D far better than today will make the risk of being caught far greater. Tiny pico-drones dropped over Syria and Iraq could pinpoint locations of fighters so that they can be targeted while protecting innocents. Environmental monitoring would also benefit if billions of drones can monitor ecosystems in great detail everywhere at the same time.

5 Active contact lens

Google has already prototyped a very primitive version of the active contact lens, but they have been barking up the wrong tree. If they dump the 1-LED-per-Pixel approach, which isn’t scalable, and opt for the far better approach of using three lasers and a micro-mirror, then they could build a working active contact lens with unlimited resolution. One in each eye, with an LCD layer overlaid, and you have a full 3D variably-transparent interface for augmented reality or virtual reality. Other displays such as smart watches become unnecessary since of course they can all be achieved virtually in an ultra-high res image. All the expense and environmental impact of other displays suddenly is replaced by a cheap high res display that has an environmental footprint approaching zero. Augmented reality takes off and the economy springs back to life.

6 Star Wars stimulates renewed innovation

Engineers can’t watch a film without making at least 3 new inventions. A lot of things on Star Wars are entirely feasible – I have invented and documented mechanisms to make both a light saber and the land speeder. Millions of engineers have invented some way of doing holographic characters. In a world that seems full of trouble, we are fortunate that some of the super-rich that we criticise for not paying as much taxes as we’d like are also extremely good engineers and have the cash to back up their visions with real progress. Natural competitiveness to make the biggest contribution to humanity will do the rest.

7 Europe fixes itself

The UK is picking the lock on the exit door, others are queuing behind. The ruling bureaucrats finally start to realize that they won’t get their dream of a United States of Europe in quite the way they hoped, that their existing dream is in danger of collapse due to a mismanaged migrant crisis, and consequently the UK renegotiation stimulates a major new treaty discussion, where all the countries agree what their people really want out of the European project, rather than just a select few. The result is a reset. A new more democratic European dream emerges that the vest majority of people actually wants. Agreement on progress to sort out the migrant crisis is a good test and after that, a stronger, better, more vibrant Europe starts to emerge from the ashes with a renewed vigor and rapidly recovering economy.

8 Africa rearranges boundaries to get tribal peace

Breakthrough in the Middle East ripples through North Africa resulting in the beginnings of stability in some countries. Realization that tribal conflicts won’t easily go away, and that peace brings prosperity, boundaries are renegotiated so that different people can live in and govern their own territories. Treaties agree fair access to resources independent of location.

9 The Sahara become Europe’s energy supply

With stable politics finally on the horizon, energy companies re-address the idea of using the Sahara as a solar farm. Local people earn money by looking after panels, keeping them clean and in working order, and receive welcome remuneration, bringing prosperity that was previously beyond them. Much of this money in turn is used to purify water, irrigating deserts and greening them, making a better food supply while improving the regional climate and fixing large quantities of CO2. Poverty starts to reduce as the environment improves. Much of this is replicated in Central and South America.

10 World Peace emerges

By fighting alongside in the Middle East and managing to avoid World War 3, a very positive relationship between Russia and the West emerges. China meanwhile, makes some of the energy breakthroughs needed to get solar efficiency and cost down below oil cost. This forces the Middle East to also look Westward for new markets and to add greater drive to their regional peace efforts to avoid otherwise inevitable collapse. Suddenly a world that was full of wars becomes one where all countries seem to be getting along just fine, all realizing that we only have this one world and one life and we’d better not ruin it.

2016: The Dark Side

Bloomberg reports the ‘Pessimists guide to the world in 2016’, by By Flavia Krause-Jackson, Mira Rojanasakul, and John Fraher.

Excellent stuff. A healthy dose of realism to counter the spin and gloss and outright refusals to notice things that don’t fit the agenda that we so often expect from today’s media. Their entries deserve some comment, and I’ll add a few more. I’m good at pessimism.

Their first entry is oil reaching $100 a barrel as ISIS blows up oil fields. Certainly possible, though they also report the existing oil glut:

Just because the second option is the more likely does not invalidate the first as a possible scenario, so that entry is fine.

An EU referendum in June is their 2nd entry. Well, that will only happen if Cameron gets his way and the EU agrees sufficient change to make the referendum result more likely to end in a Yes. If there is any hint of a No, it will be postponed as far as possible to give politics time to turn the right way. Let’s face facts. When the Ukraine had their referendum, they completed the entire process within two weeks. If the Conservatives genuinely wanted a referendum on Europe, it would have happened years ago. The Conservatives make frequent promises to do the Conservative thing very loudly, and then quietly do the Labour thing and hope nobody notices. Osborne promised to cut the deficit but faced with the slightest objections from the media performed a text-book U-turn. That follow numerous U-turns on bin collections, speed cameras, wheel clamping, environment, surveillance, immigration, pensions, fixing the NHS…. I therefore think he will spin the EU talks as far as possible to pretend that tiny promises to think about the possibility of reviewing policies are the same as winning guarantees of major changes. Nevertheless, an ongoing immigration flood and assorted Islamist problems are increasing the No vote rapidly, so I think it far more likely that the referendum will be postponed.

The 3rd is banks being hit by a massive cyber attack. Very possible, even quite likely.

4th, EU crumbles under immigration fears. Very likely indeed. Schengen will be suspended soon and increasing Islamist violence will create increasing hostility to the migrant flow. Forcing countries to accept a proportion of the pain caused by Merkel’s naivety will increase strains between countries to breaking point. The British referendum on staying or leaving adds an escape route that will be very tempting for politicians who want to stay in power.

Their 5th is China’s economy failing and military rising. Again, quite feasible. Their economy has suffered a slowdown, and their military looks enthusiastically at Western decline under left-wing US and Europe leadership, strained by Middle Eastern and Russian tensions. There has never been a better time for their military to exploit weaknesses.

6 is Israel attacking Iranian nuclear facilities. Well, with the US and Europe rapidly turning antisemitic and already very anti-Israel, they have pretty much been left on their own, surrounded by countries that want them eliminated. If anything, I’m surprised they have been so patient.

7 Putin sidelines America. Is that not history?

8 Climate change heats up. My first significant disagreement. With El-Nino, it will be a warm year, but evidence is increasing that the overall trend for the next few decades will be cooling, due to various natural cycles. Man made warming has been greatly exaggerated and people are losing interest in predictions of catastrophe when they can see plainly that most of the alleged change is just alterations to data. Yes, next year will be warm, but thanks to far too many cries of wolf, apart from meta-religious warmists, few people still believe things will get anywhere near as bad as doom-mongers suggest. They will notice that the Paris agreement, if followed, would trash western economies and greatly increase their bills, even though it can’t make any significant change on global CO2 emissions. So, although there will be catastrophe prediction headlines next year making much of higher temperatures due to El Nino, the overall trend will be that people won’t be very interested any more.

9 Latin America’s lost decade. I have to confess I did expect great things from South America, and they haven’t materialized. It is clear evidence that a young vibrant population does not necessarily mean one full of ideas, enthusiasm and entrepreneurial endeavor. Time will tell, but I think they are right on this one.

Their 10th scenario is Trump winning the US presidency. I can’t put odds on it, but it certainly is possible, especially with Islamist violence increasing. He offers the simple choice of political correctness v security, and framed that way, he is certainly not guaranteed to win but he is in with a decent chance. A perfectly valid scenario.

Overall, I’m pretty impressed with this list. As good as any I could have made. But I ought to add a couple.

My first and most likely offering is that a swarm of drones is used in a terrorist attack on a stadium or even a city center. Drones are a terrorist’s dream, and the lack of licensing has meant that people can acquire lots of them and they could be used simultaneously, launched from many locations and gathering together in the same place to launch the attack. The attack could be chemical, biological, explosive or even blinding lasers, but actually, the main weapon would be the panic that would result if even one or two of them do anything. Many could be hurt in the rush to escape.

My second is a successful massive cyber-attack on ordinary people and businesses. There are several forms of attack that could work and cause enormous problems. Encryption based attacks such as ransomware are already here, but if this is developed by the IT experts in ISIS and rogue regimes, the ransom might not be the goal. Simply destroying data or locking it up is quite enough to be a major terrorist goal. It could cause widespread economic harm if enough machines are infected before defenses catch up, and AI-based adaptation might make that take quite a while. The fact is that so far we have been very lucky.

The third is a major solar storm, which could knock out IT infrastructure, again with enormous economic damage. The Sun is entering a period of sunspot drought quite unprecedented since we started using IT. We don’t really know what will happen.

My fourth is a major virus causing millions of deaths. Megacities are such a problem waiting to happen. The virus could evolve naturally, or it could be engineered. It could spread far and wide before quarantines come into effect. This could happen any time, so next year is a valid possibility.

My fifth and final scenario is unlikely but possible, and that is the start of a Western civil war. I have blogged about it in and suggested it is likely in the middle or second half of the century, but it could possibly start next year given the various stimulants we see rising today. It would affect Europe first and could spread to the USA.

Networked telescopes

A very short one since I am still recovering from a painful trapped nerve that has prevented me writing. Anyway, the best ideas are often the simplest. I re-discovered this one in a 2008 article I wrote but I don’t think it has been done yet and it easily could.

So you buy a telescope for use at home. You point it up at a planet or a star. It probably does a magnification of a few hundred. Why not add a digital zoom that is linked to networked images from large telescope such as Hubble? When you reach the limits of your cheaper version, you see images from more expensive better ones. You also could swap to radio or IR or xray images just as easily. Adding that networked function would be fairly simple and cheap, maybe adding a few tens of dollars even to do it well.

Naturally, you could add networked zoom to cameras too, for landscapes and beauty spots anyway.

You could just make a fully digital telescope of course that has no real telescope function at all, just seeming to be one, and working the same way except that ll the images it provides are digital, using direction tracking to pull up the right one.

Ok, my arm hurts again.


How to make a Star Wars light saber

A couple of years ago I explained how to make a free-floating combat drone: , like the ones in Halo or Mass Effect. They could realistically be made in the next couple of decades and are very likely to feature heavily in far future warfare, or indeed terrorism. I was chatting to a journalist this morning about light sabers, another sci-fi classic. They could also be made in the next few decades, using derivatives of the same principles. A prototype is feasible this side of 2050.

I’ll ignore the sci-fi wikis that explain how they are meant to work, which mostly approximate to fancy words for using magic or The Force and various fictional crystals. On the other hand, we still want something that will look and sound and behave like the light saber.

The handle bit is pretty obvious. It has to look good and contain a power source and either a powerful laser or plasma generator. The traditional problem with using a laser-based saber is that the saber is only meant to be a metre long but laser beams don’t generally stop until they hit something. Plasma on the other hand is difficult to contain and needs a lot of energy even when it isn’t being used to strike your opponent. A laser can be switched on and off and is therefore better. But we can have some nice glowy plasma too, just for fun.

The idea is pretty simple then. The blade would be made of graphene flakes coated with carbon nanotube electron pipes, suspended using the same technique I outlined in the blog above. These could easily be made to form a long cylinder and when you want the traditional Star Wars look, they would move about a bit, giving the nice shimmery blurry edge we all like so that the tube looks just right with blurry glowy edges. Anyway, with the electron pipe surface facing inwards, these flakes would generate the internal plasma and its nice glow. They would self-organize their cylinder continuously to follow the path of the saber. Easy-peasy. If they strike something, they would just re-organize themselves into the cylinder again once they are free.

For later models, a Katana shaped blade will obviously be preferred. As we know, all ultimate weapons end up looking like a Katana, so we might as well go straight to it, and have the traditional cylindrical light saber blade as an optional cosmetic envelope for show fights. The Katana is a universal physics result in all possible universes.

The hum could be generated by a speaker in the handle if you have absolutely no sense of style, but for everyone else, you could simply activate pulsed magnetic fields between the flakes so that they resonate at the required band to give your particular tone. Graphene flakes can be magnetized so again this is perfectly consistent with physics. You could download and customize hums from the cloud.

Now the fun bit. When the blade gets close to an object, such as your opponent’s arm, or your loaf of bread in need of being sliced, the capacitance of the outer flakes would change, and anyway, they could easily transmit infrared light in every direction and pick up reflections. It doesn’t really matter which method you pick to detect the right moment to activate the laser, the point is that this bit would be easy engineering and with lots of techniques to pick from, there could be a range of light sabers on offer. Importantly, at least a few techniques could work that don’t violate any physics. Next, some of those self-organizing graphene flakes would have reflective surface backings (metals bond well with graphene so this is also a doddle allowed by physics), and would therefore form a nice reflecting surface to deflect the laser beam at the object about to be struck. If a few flakes are vaporized, others would be right behind them to reflect the beam.

So just as the blade strikes the surface of the target, the powerful laser switches on and the beam is bounced off the reflecting flakes onto the target, vaporizing it and cauterizing the ends of the severed blood vessels to avoid unnecessary mess that might cause a risk of slipping. The shape of the beam depends on the locations and angles of the reflecting surface flakes, and they could be in pretty much any shape to create any shape of beam needed, which could be anything from a sharp knife to a single point, severing an arm or drilling a nice neat hole through the heart. Obviously, style dictates that the point of the saber is used for a narrow beam and the edge is used as a knife, also useful for cutting bread or making toast (the latter uses transverse laser deflection at lower aggregate power density to char rather than vaporize the bread particles, and toast is an option selectable by a dial on the handle).

What about fights? When two of these blades hit each other there would be a variety of possible effects. Again, it would come down to personal style. There is no need to have any feel at all, the beams could simple go through each other, but where’s the fun in that? Far better that the flakes also carry high electric currents so they could create a nice flurry of sparks and the magnetic interactions between the sabers could also be very powerful. Again, self organisation would allow circuits to form to carry the currents at the right locations to deflect or disrupt the opponent’s saber. A galactic treaty would be needed to ensure that everyone fights by the rules and doesn’t cheat by having an ethereal saber that just goes right through the other one without any nice show. War without glory is nothing, and there can be no glory without a strong emotional investment and physical struggle mediated by magnetic interactions in the sabers.

This saber would have a very nice glow in any color you like, but not have a solid blade, so would look and feel very like the Star Wars saber (when you just want to touch it, the lasers would not activate to slice your fingers off, provided you have read the safety instructions and have the safety lock engaged). The blade could also grow elegantly from the hilt when it is activated, over a second or so, it would not just suddenly appear at full length. We need an on/off button for that bit, but that could simply be emotion or thought recognition so it turns on when you concentrate on The Force, or just feel it.

The power supply could be a battery or graphene capacitor bank of a couple of containers of nice chemicals if you want to build it before we can harness The Force and magic crystals.

A light saber that looks, feels and behaves just like the ones on Star Wars is therefore entirely feasible, consistent with physics, and could be built before 2050. It might use different techniques than I have described, but if no better techniques are invented, we could still do it the way I describe above. One way or another, we will have light sabers.


How nigh is the end?

“We’re doomed!” is a frequently recited observation. It is great fun predicting the end of the world and almost as much fun reading about it or watching documentaries telling us we’re doomed. So… just how doomed are we? Initial estimate: Maybe a bit doomed. Read on.

My 2012 blog addressed some of the possibilities for extinction-level events possibly affecting us. I recently watched a Top 10 list of threats to our existence on TV and it was similar to most you’d read, with the same errors and omissions – nuclear war, global virus pandemic, terminator scenarios, solar storms, comet or asteroid strikes, alien invasions, zombie viruses, that sort of thing. I’d agree that nuclear war is still the biggest threat, so number 1, and a global pandemic of a highly infectious and lethal virus should still be number 2. I don’t even need to explain either of those, we all know why they are in 1st and 2nd place.

The TV list included a couple that shouldn’t be in there.

One inclusion was an mega-eruption of Yellowstone or another super-volcano. A full-sized Yellowstone mega-eruption would probably kill millions of people and destroy much of civilization across a large chunk of North America, but some of us don’t actually live in North America and quite a few might well survive pretty well, so although it would be quite annoying for Americans, it is hardly a TEOTWAWKI threat. It would have big effects elsewhere, just not extinction-level ones. For most of the world it would only cause short-term disruptions, such as economic turbulence, at worst it would start a few wars here and there as regions compete for control in the new world order.

Number 3 on their list was climate change, which is an annoyingly wrong, albeit a popularly held inclusion. The only climate change mechanism proposed for catastrophe is global warming, and the reason it’s called climate change now is because global warming stopped in 1998 and still hasn’t resumed 17 years and 9 months later, so that term has become too embarrassing for doom mongers to use. CO2 is a warming agent and emissions should be treated with reasonable caution, but the net warming contribution of all the various feedbacks adds up to far less than originally predicted and the climate models have almost all proven far too pessimistic. Any warming expected this century is very likely to be offset by reduction in solar activity and if and when it resumes towards the end of the century, we will long since have migrated to non-carbon energy sources, so there really isn’t a longer term problem to worry about. With warming by 2100 pretty insignificant, and less than half a metre sea level rise, I certainly don’t think climate change deserves to be on any list of threats of any consequence in the next century.

The top 10 list missed two out by including climate change and Yellowstone, and my first replacement candidate for consideration might be the grey goo scenario. The grey goo scenario is that self-replicating nanobots manage to convert everything including us into a grey goo.  Take away the silly images of tiny little metal robots cutting things up atom by atom and the laughable presentation of this vanishes. Replace those little bots with bacteria that include electronics, and are linked across their own cloud to their own hive AI that redesigns their DNA to allow them to survive in any niche they find by treating the things there as food. When existing bacteria find a niche they can’t exploit, the next generation adapts to it. That self-evolving smart bacteria scenario is rather more feasible, and still results in bacteria that can conquer any ecosystem they find. We would find ourselves unable to fight back and could be wiped out. This isn’t very likely, but it is feasible, could happen by accident or design on our way to transhumanism, and might deserve a place in the top ten threats.

However, grey goo is only one of the NBIC convergence risks we have already imagined (NBIC= Nano-Bio-Info-Cogno). NBIC is a rich seam for doom-seekers. In there you’ll find smart yogurt, smart bacteria, smart viruses, beacons, smart clouds, active skin, direct brain links, zombie viruses, even switching people off. Zombie viruses featured in the top ten TV show too, but they don’t really deserve their own category and more than many other NBIC derivatives. Anyway, that’s just a quick list of deliberate end of world solutions – there will be many more I forgot to include and many I haven’t even thought of yet. Then you have to multiply the list by 3. Any of these could also happen by accident, and any could also happen via unintended consequences of lack of understanding, which is rather different from an accident but just as serious. So basically, deliberate action, accidents and stupidity are three primary routes to the end of the world via technology. So instead of just the grey goo scenario, a far bigger collective threat is NBIC generally and I’d add NBIC collectively into my top ten list, quite high up, maybe 3rd after nuclear war and global virus. AI still deserves to be a separate category of its own, and I’d put it next at 4th.

Another class of technology suitable for abuse is space tech. I once wrote about a solar wind deflector using high atmosphere reflection, and calculated it could melt a city in a few minutes. Under malicious automated control, that is capable of wiping us all out, but it doesn’t justify inclusion in the top ten. One that might is the deliberate deflection of a large asteroid to impact on us. If it makes it in at all, it would be at tenth place. It just isn’t very likely someone would do that.

One I am very tempted to include is drones. Little tiny ones, not the Predators, and not even the ones everyone seems worried about at the moment that can carry 2kg of explosives or Anthrax into the midst of football crowds. Tiny drones are far harder to shoot down, but soon we will have a lot of them around. Size-wise, think of midges or fruit flies. They could be self-organizing into swarms, managed by rogue regimes, terrorist groups, or set to auto, terminator style. They could recharge quickly by solar during short breaks, and restock their payloads from secret supplies that distribute with the swarm. They could be distributed globally using the winds and oceans, so don’t need a plane or missile delivery system that is easily intercepted. Tiny drones can’t carry much, but with nerve gas or viruses, they don’t have to. Defending against such a threat is easy if there is just one, you can swat it. If there is a small cloud of them, you could use a flamethrower. If the sky is full of them and much of the trees and the ground infested, it would be extremely hard to wipe them out. So if they are well designed to cause an extinction level threat, as MAD 2.0 perhaps, then this would be way up in the top tem too, 5th.

Solar storms could wipe out our modern way of life by killing our IT. That itself would kill many people, via riots and fights for the last cans of beans and bottles of water. The most serious solar storms could be even worse. I’ll keep them in my list, at 6th place

Global civil war could become an extinction level event, given human nature. We don’t have to go nuclear to kill a lot of people, and once society degrades to a certain level, well we’ve all watched post-apocalypse movies or played the games. The few left would still fight with each other. I wrote about the Great Western War and how it might result, see

and such a thing could easily spread globally. I’ll give this 7th place.

A large asteroid strike could happen too, or a comet. Ones capable of extinction level events shouldn’t hit for a while, because we think we know all the ones that could do that. So this goes well down the list at 8th.

Alien invasion is entirely possible and could happen at any time. We’ve been sending out radio signals for quite a while so someone out there might have decided to come see whether our place is nicer than theirs and take over. It hasn’t happened yet so it probably won’t, but then it doesn’t have to be very probably to be in the top ten. 9th will do.

High energy physics research has also been suggested as capable of wiping out our entire planet via exotic particle creation, but the smart people at CERN say it isn’t very likely. Actually, I wasn’t all that convinced or reassured and we’ve only just started messing with real physics so there is plenty of time left to increase the odds of problems. I have a spare place at number 10, so there it goes, with a totally guessed probability of physics research causing a problem every 4000 years.

My top ten list for things likely to cause human extinction, or pretty darn close:

  1. Nuclear war
  2. Highly infectious and lethal virus pandemic
  3. NBIC – deliberate, accidental or lack of foresight (includes smart bacteria, zombie viruses, mind control etc)
  4. Artificial Intelligence, including but not limited to the Terminator scenario
  5. Autonomous Micro-Drones
  6. Solar storm
  7. Global civil war
  8. Comet or asteroid strike
  9. Alien Invasion
  10. Physics research

Not finished yet though. My title was how nigh is the end, not just what might cause it. It’s hard to assign probabilities to each one but someone’s got to do it.  So, I’ll make an arbitrarily wet finger guess in a dark room wearing a blindfold with no explanation of my reasoning to reduce arguments, but hey, that’s almost certainly still more accurate than most climate models, and some people actually believe those. I’m feeling particularly cheerful today so I’ll give my most optimistic assessment.

So, with probabilities of occurrence per year:

  1. Nuclear war:  0.5%
  2. Highly infectious and lethal virus pandemic: 0.4%
  3. NBIC – deliberate, accidental or lack of foresight (includes smart bacteria, zombie viruses, mind control etc): 0.35%
  4. Artificial Intelligence, including but not limited to the Terminator scenario: 0.25%
  5. Autonomous Micro-Drones: 0.2%
  6. Solar storm: 0.1%
  7. Global civil war: 0.1%
  8. Comet or asteroid strike 0.05%
  9. Alien Invasion: 0.04%
  10. Physics research: 0.025%

I hope you agree those are all optimistic. There have been several near misses in my lifetime of number 1, so my 0.5% could have been 2% or 3% given the current state of the world. Also, 0.25% per year means you’d only expect such a thing to happen every 4 centuries so it is a very small chance indeed. However, let’s stick with them and add them up. The cumulative probability of the top ten is 2.015%. Lets add another arbitrary 0.185% for all the risks that didn’t make it into the top ten, rounding the total up to a nice neat 2.2% per year.

Some of the ones above aren’t possible quite yet, but others will vary in probability year to year, but I think that won’t change the guess overall much. If we take a 2.2% probability per year, we have an expectation value of 45.5 years for civilization life expectancy from now. Expectation date for human extinction:

2015.5 + 45.5 years= 2061,

Obviously the probability distribution extends from now to eternity, but don’t get too optimistic, because on these figures there currently is only a 15% chance of surviving past this century.

If you can think of good reasons why my figures are far too pessimistic, by all means make your own guesses, but make them honestly, with a fair and reasonable assessment of how the world looks socially, religiously, politically, the quality of our leaders, human nature etc, and then add them up. You might still be surprised how little time we have left.

I’ll revise my original outlook upwards from ‘a bit doomed’.

We’re reasonably doomed.

The future of nothing

Some light philosophical exploration for the weekend.

In everyday life, we all learn that an empty glass still is full of air. If you do it in space, when you remove the air, current physics says that even the vacuum is still supposedly full of virtual particles popping in and out of existence and some scientists are trying to harness vacuum energy to power spaceflight. So the meaning of nothing has changed quite a bit.

My own sci-fi Space Anchor invention uses this principle too, using stacks of Casimir combs that vibrate in such a way that virtual particles can pop into existence and are separated before they can annihilate. This locks the anchor onto the local space time fabric at a quantum level and the anchor then moves with the local space time or can lock on and pivot around a point in space. Dynamic changes in spacetime curvature caused by the movements of stars and planets are used to propel the spacecraft (called the C14). Well, it might work. Nature abhors a vacuum but it won’t let you steal it. You won’t ever see a ‘404 space not found’ error. There might be nothing of any substance in that particular bit of space, but when you prevent those virtual particles that pop up from annihilating and try to move them away, you can’t. The space anchor behaves as a space anchor.

Even in the space between Casimir plates, where virtual particles can’t form, there isn’t nothing. It still has coordinates. These might only be a human construct, but the emptiest space in nature still is full of mathematics, coordinates, equations, references, still potentially full of virtual worlds, in the new sense of virtual, the cyber sense.

To prevent that, the space would need to be virtual itself. It can’t be part of the physical universe, because then it would have a location and an address and coordinates. It needs to be a virtual one to have any chance.

So what about a place in virtual worlds? Can you make an empty box there? A cyberspace world has whatever physics the designers give it. Portal links places together in ways that aren’t possible with normal physics, but they are still navigable. You can work out a route from A to B. In the 1970s computer adventure game, Classic Adventure, you’d find yourself at some point lost in a Maze of Twisty Little Passages. Eventually you’d figure out that and the Twisty Little Maze of Passages and the Maze of Little Twisty Passages were all different locations, 16 in all, and you’d draw a map and escape. To be truly nothingness, it mustn’t be on a map or have any sort of coordinates, not even ‘close your eyes, spin round three times and click your heels’ coordinates.

So, our empty place full of nothing is virtual, in a virtual world, but you can’t get there using any kind of map, it mustn’t have any kind of reference or coordinates by which you might find it. It can be done. A game could randomly spawn random places on a strictly non-repeatable basis with one-time random algorithms, and nobody could ever find one except by accident because it isn’t connected in any way at all to anywhere else and there is nothing there, nothing at all. No light or darkness even, no visual descriptors, no smells, no texture, no temperature, no properties, no coordinates, no space-time. Nothing, absolutely nothing. That could be done.

So we could make nothing, in cyberspace. But you can’t describe it or imagine it and you could only find it by the most unlikely of accidents.

Like most philosophical problems, trying to solve it just causes more questions. If nothing exists but it can’t ever be found except by a rare accident, does it become the hottest property in existence, and does it cease to be nothing when you find it?

The future of planetary exploration robots

An article in Popular Science about explorer robots:

BwPQ4LWIcAAefKu (1)

This is a nice idea for an explorer. I’m a bit surprised it is in Popular Science, unless it’s an old edition, since the idea first appeared ages ago, but then again, why not, it’s still a good idea. Anyway…

The most impressive idea I ever saw for an explorer robot was back in the 90s from Joe Michael of Robodyne Cybernetics, which used fractal cubes that could slide along each face, thereby rearranging into any shape. Once the big cubes were in place, smaller ones would rearrange to give fine structure. That was way before everyone and his dog new all about nanotech, his thinking was well ahead of his time. A huge array of fractal cubes could become any shape – a long snake to cross high or narrow obstacles, a thin plate to capture wind like a sail, a ball to roll around, or a dense structure to minimize volume or wind resistance.

NASA tends to opt for ridiculously expensive and complex landers with wheels and lots of gadgetry that can drive to where they want to be.

I do wonder though whether people are avoiding the simple ideas just because they’re simple. In nature, some tiny spiders get around just by spinning a length of thread and letting the wind carry them. Bubbles can float on the wind too, as can balloons. Where there’s an atmosphere, there is likely to be wind, and if simple exploration is the task, why not just let the winds carry you around? If not a thread, use a balloon that can be inflated and deflated, or a sail. Why not use a large cloud of tiny explorers using wind by diverse techniques instead of a large single robotic vehicle? Even if there is no atmosphere, surely a large cloud of tiny and diverse explorers is more capable and robust than a single one? The clue to solving the IT bits are that a physical cloud can also be an IT cloud. Why not let them use different shapes for different circumstances, so that they can float up, be blown around, and when they want to go somewhere interesting, then glide to where they want to be? Dropping from a high altitude is an easy way of gathering the kinetic energy for ground penetration too, you don’t have to carry sophisticated drills. Local atmosphere can be used as the gas source and ballast (via freezing atmospheric gases or taking some dust with you) for balloons and wind or solar can be the power supply. Obviously, people in all space agencies must have thought of these ideas themselves. I just don’t understand why they have thrown them away in favor of far more heavier and more expensive variants.

I’m not an expert on space. Maybe there are excellent reasons that each and every one of these can’t work. But I also have enough experience of engineering to know that one of the most likely reasons is that they just aren’t exciting enough and the complex, expensive, unreliable and less capable solutions simply look far more cool and trendy. Maybe it is simply that ego is more important than mission success.