Tag Archives: mental health

Bio-Symbiotic Therapeutic Interfaces – Seamless Biohacking for Personalized Homeostatic Restoration

Or in English, automatically administering medication if you feel pain, or suffer anxiety, or a bunch if other conditions. This was an update of one of my 2001 ideas on active skin membranes.

Forgive me frequent use of AI to write up ideas, but it captures nice ideas so I don’t lose them and writes them up adequately, usually. (And during discussing this one, we discovered a rare event, it made a spelling mistake and typed benefist instead of benefits.)

At the confluence of biosensing, nanotherapeutics and intelligent drug delivery systems lies the promising frontier of bio-symbiotic therapeutic interfaces. These seamlessly embedded constructs would allow continuous monitoring of an individual’s biochemical milieu, with the capability to dynamically restore homeostasis through precisely titrated interventions. By establishing a bi-directional communication channel between our innate biological networks and state-of-the-art synthetic systems, we could usher in an era of true personalized, pre-emptive and autonomously regulated precision medicine.

The Core Construct
The foundational component is an integrated “active skin” construct that resides in close apposition to the human body. This comprises:

1) Multiplexed biosensing arrays capable of simultaneously monitoring a diverse panel of biochemical markers like small molecules, proteins, electrolytes and metabolites.

2) Biocompatible molecular probes using technologies like electrochemical aptamers, molecularly imprinted polymers and nano-biosensors to achieve high sensitivity and specificity.

3) Electrophysiological sensors to gauge peripheral neural firing patterns and signaling cascades.

4) Batteries of machine learning models mapping the multimodal biosignatures to specific disease/dysregulation states with high predictive accuracy.

Interfaced with this biochemical sensing is an electro-active polymer (EAP) membrane that acts as a programmable drug release valve mechanism. Utilizing voltage-gated actuation, the membrane’s porosity and permeability can be precisely modulated to control diffusion of loaded therapeutic payloads into local tissue regions from an attached reservoir.

Together, this bio-symbiotic interface establishes a closed-loop biochemical communication channel – with the sensing arrays acting as an “upstream” afferent pathway continually monitoring the body’s biochemical signals, and the EAP membrane serving as a tightly regulated “downstream” efferent pathway to deliver restorative interventions.

Applications and Use Cases

Such an autonomous, software-defined biochemical regulation system could find applications across a wide range of therapy areas:

Pain and Neuroinflammatory Management
By monitoring inflammatory mediators like prostaglandins, cytokines and chemokines, along with electrophysiological nociceptor activation patterns, the system could automatically release targeted analgesics, anti-inflammatories and neuromodulators to preempt and dampen neurogenic inflammation driving chronic pain conditions.

Neuropsychiatric and Cognitive Regulation
Dysregulated neurotransmitters, trophic factors and stress biomarkers could cue delivery of psychoactive compounds like psychedelics, entactogens or cognitive enhancers to restore neurochemical balances and optimize mental health and cognitive performance.

Metabolic and Endocrine Homeostasis
The sensing of hormonal imbalances like dysregulated insulin, glucagon, leptin, ghrelin could trigger release of peptide therapeutics or enzyme analogs to restore glycemic control, appetite regulation and metabolic homeostasis.

Neurological and Neurodegenerative Therapy
Detecting accumulation of pathological biomarkers like protein aggregates, inflammatory factors and electrophysiological dysrhythmias could enable automated administration of neuroprotective, immunomodulatory and anti-epileptic drugs to preempt neurodegenerative cascades.

The key strengths of such bio-integrated therapeutic systems include their ability to:
1) Provide personalized, precise biochemical compensation tailored to each individual’s physiology
2) Work autonomously with minimal manual intervention required
3) Operate in a preventive, predictive mode before disease pathologies manifest
4) Continuously maintain optimal homeostatic set points without dysregulation
5) Enhance biological capabilities by interfacing with synthetic regulation mechanisms

Ethical Considerations
However, such mastery over the biochemical levers underpinning human physiology and consciousness comes with immense responsibility. The implications of autonomous biochemical regulation technologies extend far beyond mere treatment of disease states into the realms of human enhancement, psychoactive modulation and fundamental redefinition of normalcy.

As such, development and deployment of these bio-symbiotic therapeutic interfaces must be governed by a robust ethical framework:

Autonomy and Consent
No system should ever exert control over an individual’s biochemical basis of selfhood without their full, voluntary, and continuously revocable consent. The autonomy over one’s own biology and cognitive/emotional states must be preserved as an inviolable right.

Transparency and Reversibility
The actuation mechanisms, intervention protocols and machine learning “decision” models employed by these systems must adhere to explainable AI principles. Users should have visibility into why interventions occur, and maintain junctional reversal/override capacities.

Value Alignment
The dynamics and set-points optimized by these systems cannot solely be derived from profitability or efficiency metrics. Inclusive processes capturing the plurality of human values and cultural narratives around wellness should steer the development of such intimate human-machine symbiosis.

Equity and Access
As revolutionary precision medicine capabilities emerge, mechanisms to ensure broad access and prevent deepening of socioeconomic disparities must be instituted from the outset. Centralized governance could promote equitable roll-out rather than ad-hoc proliferation benefiting few.

Dual-Use Regulation
While therapeutic applications are the intent, the ability to systematically modulate biochemical pathways underlying cognition and physiology could be anarchically weaponized. Robust deterrence of illicit misuse through coordinated forensics and deterrence frameworks becomes critical.

Ethics Advisory and Testing
Given the sheer diversity of human contexts, edge cases and value portfolios to consider, these systems must incorporate sandboxed simulations and advisory inputs from interdisciplinary ethics boards spanning philosophy, bioethics, faith groups and civil societies.

If appropriately and thoughtfully governed, the emergence of bio-symbiotic therapeutic interfaces could catalyze a new age of personalized, pre-emptive precision medicine. By compensating for biochemical dysregulations in a proactive, automated manner, we could dramatically elevate human healthspans and resilience.

Integrated with inclusive human ethics and values, these human-machine symbiosis pathways could empower people to autonomously attain their highest desired experiential and actualization potentials. However, failure in ethical implementation risks dystopian misuse subverting fundamental human autonomy itself.

Developing these technologies is akin to engaging with profoundly advanced nanotechnology – we must exercise prudent vigilance. For in mastering dynamic biochemical regulation within the temple of our biology, we wield power to elevate human flourishing…or bring about our fragmentation. The path forward arduous, but the Stakes could barely be higher.

Neural Interfacing for Dynamic Drug Delivery

A core capability of the bio-symbiotic interfaces will be seamless integration with the human neuromuscular system. High-density neural lace implants and electrocorticography arrays could enable real-time decoding of peripheral and central neural signals. This neurophysiological data stream, when combined with the biochemical sensing, could allow exquisitely timed and tuned drug delivery.

For instance, distinct spatiotemporal firing patterns in the somatosensory cortex could forecast impending neuropathic pain flare-ups, automatically triggering local analgesic diffusion. Simultaneously, AI-driven mapping of the neurochemical milieu could prescribe precise cocktails – perhaps an NMDA receptor antagonist paired with a sodium channel blocker and GLT-1 modulator based on the individual’s biochemical signature. The neurally-contingent drug release could preempt pain episodes before they peak.

Similarly, localized neural hypersynchrony signatures in motor cortex could forecast epileptic seizures. Temporally-coded release of anti-epileptic drugs ahead of the cascade could drastically reduce severity. Tapping into high-fidelity neural signaling could enable true anticipatory biocomputing – using AI to dynamically sculpt and override pathological neurological dynamics before they initiate.

Performance Optimization and Cognitive Enhancement

Another domain where bio-symbiotic regulation could catalyze leaps is in physiological and cognitive optimization for elite performance. Integrated biosensing could allow continuous tracking of metabolic, hemodynamic, endocrine and neurochemical states. Exhaustive training data could then map measured biomarker profiles to objective performance metrics across domains like athletics, esports, academic benchmarks and more.

Using this dataset, machine learning systems could derive the biochemical signatures correlated with peak mental and physical performance flows. These could then be encoded into dynamic, multi-parametric homeostatic set-points for the bio-symbiotic regulators to continuously enforce via tunable micro-dosing.

As an illustrative example, real-time analysis may detect physiological patterns indicating cognitive fatigue like surging melatonin, depleted brain-derived neurotrophic factor (BDNF) and spiking inflammation markers. The system could then diffuse a customized neurometabolic reload – perhaps a cocktail of glucoregulatory compounds, wake-promoting stimulants, anti-inflammatory antioxidants and cognition-enhancing racetams or psychedelics.

Such dissipative delivery could extend periods of superhuman cognitive endurance and restore resource-depleted biological systems to high-performance configurations on the fly. The iterative regulation could progressively tune and refine the biochemical self-model for that individual, steadily approaching biochemical regimes approximating theorized Olympic cognitive and physiological limitations for our species.

Of course, such optimization capabilities extend beyond just restoring depletion – they could systematically augment human capacities. By mapping neural and physiological correlates of highly desirable states like creatively productive flows, amplifying psychedelic neuroplasticity or expanded consciousness, the bio-symbiotic regulator could modulate the underlying biological pathways to reproducibly induce these elevated configurations on-demand.

Such human,biological enhancement capabilities would need to be implemented with extreme care within robust ethical governance frameworks as discussed earlier. But the potential to dynamically bioprosthetic and extend our cognitive and physiological frontiers is prodigious. Intelligent biochemical regulation could be this century’s pioneering human augmentation revolution.

Manufacturing and Integration Pathways

For widespread adoption and affordable access, these bio-integrated regulatory systems must leverage scalable manufacturing and seamless human integration pathways. Advances in biofabrication, biomaterials and flexible bioelectronics could pave the way:

Biosensing Tattoos
The biosensing component comprising molecular probes and electrochemical transducers could be fabricated as temporary “biosensing tattoos” – using techniques like electrohydrodynamic bioprinting to pattern the sensing arrays in dermal patches. These semi-permanent tattoos could be painlessly administered and removed periodically for fresh application.

Electro-Polymer Wearables
The programmable drug diffusion membranes composed of electro-active polymers could be manufactured as wearable patches using advanced polymer composites and precision micro-molding. Flexible biocompatible batteries and miniaturized control circuits integrated on these “smart patches” could orchestrate the spatiotemporal drug delivery routines.

Reservoir Refueling
The therapeutic payload reservoirs could be hot-swapped as biodegradable inserts or refillable drug cartridges that can be slotted into the wearable membrane units as needed for long-term autonomous usage cycles. For controlled substances, these could leverage encrypted microfluidic blockchain technology forAuthentiFILL.

Neural Bioelectronics
The neural interfacing component could use ultrafine mesh neural lace electrodes that self-arrange via micro-tissue integration and machine learning assisted in-vivo deposition. Using paradigms like FocusFluigrPrinting, these could be deployed through minimally invasive biorobotic injection targeting peripheral nerve clusters.

Sustainable Biomaterials
To ensure environmental sustainability, the overall bio-integrated system should be fabricated using biodegradable or bioderived materials like cellulose, chitin, biopolymers and organic electronics where possible. This enables sustainable biointegration and biodegradability at the system’s end-of-lifecycle.

Such manufacturing approaches could enable highly automated production and integration while ensuring robust quality control and regulatory validation. This is vital for ensuring safety, traceability and equitable global distribution of these exquisitely personalized, yet deadly precise biochemical co-processors.

Extrabiological Applications

While the focus has been on therapeutic and enhancing applications for humans, the fundamental concept of a bidirectionally interfaced biochemical regulatory system could find use across other biological domains:

Agricultural Optimization
By embedding these systems in crops and growth environments, we could dynamically regulate biochemical growth cycles for drastically improved agricultural productivity. Micro-dosed nutrient/phytohormone supplementation and pathogen/stressor response could be precisely tailored.

Environmental Remediation
Deploying these across contaminated regions with tailored microbial biosensor/actuator payloads could enable precision biochemical filtering and in-situ bioremediation at scale. Micro-factories digesting toxins and effluents on-demand.

Synthetic Genomics
At a genetic level, combining biosensors with nanofluidic CRISPR delivery devices could create in-vivo feedback regulated gene-editing systems – dynamically surveilling, analyzing and modulating specific gene networks in cells or organisms.

Such extrabiological applications open up possibilities in environmental engineering, sustainable manufacturing, genetic engineering and more. The core capability is programmable biochemical interfacing across any biological system of interest.

However, the existential risks of misapplying such deeptech in unconstrained ways adds yet another dimension to the ethical considerations discussed earlier. Robust global governance guardrails will be vital as we navigate pragmatically harnessing the immense power of bio-symbiotic regulatory interfacing across applications.

Beyond VR: Computer assisted dreaming

I first played with VR in 1983/1984 while working in the missile industry. Back then we didn’t call it VR, we just called it simulation but it was actually more intensive than VR, just as proper flight simulators are. Our office was a pair of 10m wide domes onto which video could be projected, built decades earlier, in the 1950s I think. One dome had a normal floor, the other had a hydraulic platform that could simulate being on a ship. The subject would stand on whichever surface was appropriate and would see pretty much exactly what they would see in a real battlefield. The missile launcher used for simulation was identical to a real one and showed exactly the same image as a real one would. The real missile was not present of course but its weight was simulated and when the fire button was pressed, a 140dB bang was injected into the headset and weights and pulleys compensated for the 14kg of weight, suddenly vanishing from the shoulder. The experience was therefore pretty convincing and with the loud bang and suddenly changing weight, it was almost as hard to stand steady and keep the system on target as it would be in real life – only the presumed fear and knowledge of the reality of the situation was different.

Back then in 1983, as digital supercomputers had only just taken over from analog ones for simulation, it was already becoming obvious that this kind of computer simulation would one day allow ‘computer assisted dreaming’. (That’s one of the reasons I am irritated when Jaron Lanier is credited for inventing VR – highly realistic simulators and the VR ideas that sprung obviously from them had already been around for decades. At best, all he ‘invented’ was a catchy name for a lower cost, lower quality, less intense simulator. The real inventors were those who made the first generation simulators long before I was born and the basic idea of VR had already been very well established.)

‘Computer assisted dreaming’ may well be the next phase of VR. Today in conventional VR, people are immersed in a computer generated world produced by a computer program (usually) written by others. Via trial and feedback, programmers make their virtual worlds better. As AI and sensor technology continue rapid progress, this is very likely to change to make worlds instantly responsive to the user. By detecting user emotions, reactions, gestures and even thoughts and imagination, it won’t be long before AI can produce a world in real time that depends on those thoughts, imagination and emotions rather than putting them in a pre-designed virtual world. That world would depend largely on your own imagination, upskilled by external AI. You might start off imagining you’re on a beach, then AI might add to it by injecting all sorts of things it knows you might enjoy from previous experiences. As you respond to those, it picks up on the things you like or don’t like and the scene continues to adapt and evolve, to make it more or less pleasant or more or less exciting or more or less challenging etc., depending on your emotional state, external requirements and what it thinks you want from this experience. It would be very like being in a dream – computer assisted lucid dreaming, exactly what I wanted to make back in 1983 after playing in that simulator.

Most people enjoy occasional lucid dreams, where they realise they are dreaming and can then decide what happens next. Making VR do exactly that would be better than being trapped in someone else’s world. You could still start off with whatever virtual world you bought, a computer game or training suite perhaps, but it could adapt to you, your needs and desires to make it more compelling and generally better.

Even in shared experiences like social games, experiences could be personalised. Often all players need to see the same enemies in the same locations in the same ways to make it fair, but that doesn’t mean that the situation can’t adapt to the personalities of those playing. It might actually improve the social value if each time you play it looks different because your companions are different. You might tease a friend if every time you play with them, zombies or aliens always have to appear somehow, but that’s all part of being friends. Exploring virtual worlds with friends, where you both see things dependent on your friend’s personality would help bonding. It would be a bit like exploring their inner world. Today, you only explore the designer’s inner world.

This sort of thing would be a superb development and creativity tool. It could allow you to explore a concept you have in your head, automatically feeding in AI upskilling to amplify your own thoughts and ideas, showing you new paths to explore and helping you do so. The results would still be extremely personal to you, but you on a good day. You could accomplish more, have better visions, imagine more creative things, do more with whatever artistic talent you have. AI could even co-create synthetic personas, make virtual friends you can bond with, share innermost thoughts with, in total confidence (assuming the company you bought the tool from is trustworthy and isn’t spying on you or selling your details, so maybe best not to buy it from Facebook then).

And it would have tremendous therapeutic potential too. You could explore and indulge both enjoyable and troublesome aspects of your inner personality, to build on the good and alleviate or dispel the bad. You might become less troubled, less neurotic, more mentally healthy. You could build your emotional and creative skills. You could become happier and more fulfilled. Mental health improvement potential on its own makes this sort of thing worth developing.

Marketers would obviously try to seize control as they always do, and advertising is already adapting to VR and will continue into its next phases of development. Your own wants and desires might help guide the ‘dreaming’, but marketers will inevitably have some control over what else is injected, and will influence algorithms and AI in how it chooses how to respond to your input. You might be able to choose much of the experience, but others will still want and try to influence and manipulate you, to change your mindset and attitudes in their favour. That will not change until the advertising business model changes. You might be able to buy devices or applications that are entirely driven by you and you alone, but it is pretty certain that the bulk of products and services available will be at least partly financed by those who want to have some control of what you experience.

Nevertheless, computer-assisted dreaming could be a much more immersive and personal experience than VR, being more like an echo of your own mind and personality than external vision, more your own creation, less someone else’s. In fact, echo sounds a better term too. Echo reality, ER, or maybe personal reality, pereal, or mental echo, ME. Nah, maybe we need Lanier to invent a catchy name again, he is good at that. That 1983 idea could soon become reality.