Tag Archives: medicine

The future of holes

H already in my alphabetic series! I was going to write about happiness, or have/have nots, or hunger, or harassment, or hiding, or health. Far too many options for H. Holes is a topic I have never written about, not even a bit, whereas the others would just be updates on previous thoughts. So here goes, the future of holes.

Holes come in various shapes and sizes. At one extreme, we have great big holes from deep mining, drilling, fracking, and natural holes such as meteor craters, rifts and volcanoes. Some look nice and make good documentaries, but I have nothing to say about them.

At the other we have long thin holes in optical fibers that increase bandwidth or holes through carbon nanotubes to make them into electron pipes. And short fat ones that make nice passages through semi-permeable smart membranes.

Electron pipes are an idea I invented in 1992 to increase internet capacity by several orders of magnitude. I’ve written about them in this blog before: https://timeguide.wordpress.com/2015/05/04/increasing-internet-capacity-electron-pipes/

Short fat holes are interesting. If you make a fabric using special polymers that can stretch when a voltage is applied across it, then round holes in it would become oval holes as long as you only stretch it in one direction.  Particles that may fit through round holes might be too thick to pass through them when they are elongated. If you can do that with a membrane on the skin surface, then you have an electronically controllable means of allowing the right mount of medication to be applied. A dispenser could hold medication and use the membrane to allow the right doses at the right time to be applied.

Long thin holes are interesting too. Hollow fiber polyester has served well as duvet and pillow filling for many years. Suppose more natural material fibers could be engineered to have holes, and those holes could be filled with chemicals that are highly distasteful to moths. As a moth larva starts to eat the fabric, it would very quickly be repelled, protecting the fabric from harm.

Conventional wisdom says when you are in a hole, stop digging. End.

More uses for 3d printing

3D printers are growing in popularity, with a wide range in price from domestic models to high-end industrial printers. The field is already over-hyped, but there is still room for even more, so here we go.

Restoration

3D printing is a good solution for production of items in one-off or small run quantity, so restoration is one field that will particularly benefit. If a component of a machine is damaged or missing, it can be replaced, if a piece has been broken off an ornament, a 3D scan of the remaining piece could be compared with how it should be and 3D patches designed and printed to restore the full object.

Creativity & Crafts

Creativity too will benefit. Especially with assistance from clever software, many people will find that what they thought was their small streak of creativity is actually not that small at all, and will be encouraged to create. The amateur art world can be expected to expand greatly, both in virtual art and physical sculpture. We will see a new renaissance, especially in sculpture and crafts, but also in imaginative hybrid virtual-physical arts. Physical objects may be printed or remain virtual, displayed in augmented reality perhaps. Some of these will be scalable, with tiny versions made on home 3D printers. People may use these test prints to refine their works, and possibly then have larger ones produced on more expensive printers owned by clubs or businesses. They could print it using the 3D printing firm down the road, or just upload the design to a web-based producer for printing and home delivery later in the week.

Fashion will benefit from 3D printing too, with accessories designed or downloaded and printed on demand. A customer may not want to design their own accessories fully, but may start with a choice of template of some sort that they customise to taste, so that their accessories are still personalised but don’t need to much involvement of time and effort.

Could printed miniatures become as important as photos?

People take a lot of photos and videos, and they are a key tool in social networking as well as capturing memories. If 3D scans or photos are taken, and miniature physical models printed, they might have a greater social and personal value even than photos.

Micro-robotics and espionage

3D printing is capable of making lots of intricate parts that would be hard to manufacture by any other means, so should be appropriate for some of the parts useful in making small robots, such as tiny insects that can fly into properties undetected.

Internal printing

Conventional 3D printers, if there can be such a thing so early in their development, use line of sight to make objects by building them in thin layers. Although this allows elaborate structures to be made, it doesn’t allow everything, and there are some structures or objects that would be more easily made if it were possible to print internally. Although lasers would be of little use in opaque objects, x-rays might work fine in some circumstances. This would allow retro-fitting too.

Cancer treatment

If x-ray or printing can be made to work, then it may be possible to build heating circuits inside cancers, and then inductive power supplies could burn away the tumours. Alternatively, smart circuits could be implanted to activate encapsulated drugs when they arrive at the scene.

This would require a one-off exposure to x-rays, but not necessarily similarly damaging levels to those used in radiotherapy.

Direct brain-machine links

Looking further ahead, internal printing of circuits or electronic components inside the brain will be a superb means to do interfacing between man and machine. X-rays can in principle be focused to 1nm, easily fine enough resolution to make contacts to specific brain regions. Obviously x-rays are not something that people would want to be exposed to frequently, but many people would volunteer  (e.g. I would) to have some circuits implanted at least for R&D purposes, since greater insights into how the brain does stuff will accelerate greatly the development of biomimetic AI. But if those circuits were able to link parts of the brain to the web for fast thought based access to search, processing, or sensory enhancement, I’d be fighting millions of transhumanists to get to the front of the long queue.