Future air travel

Now and then I get asked about future air travel, sometimes about planes, sometimes about the travel and tourism industry, sometimes climate change or luxury. There is already lots in the media about the future of the industry, such as NASA’s supersonic aircraft, e.g. https://t.co/PWpd2yVN0y or the latest business class space design concepts to cram in even more luxury, e.g. http://www.airlinereporter.com/2016/03/business-class-reimagined-etihad-airways-a380-business-studio-review/ so I won’t waste time repeating stuff you can find on Google. Here are some things I haven’t seen yet instead:

Aircraft skin design – video panels

Aircraft skins are generally painted in carrier colors and logos, but a new development in luxury yachts might hint at aircraft skins that behave as video screens instead. The designs in

http://www.dailymail.co.uk/travel/travel_news/article-3475039/Moonstone-superyacht-LED-triangles-light-display.html

are meant to mimic reflections of the sea, since it is a yacht skin, but obviously higher resolution polymer displays on an aircraft could display anything at all. It is surprising give aircraft prices that this hasn’t already been done, at least for large panels. One possible reason is that the outer skin heats up a lot during flight. That might bar some types of panel being used, but some LEDs can function perfectly well at the sort of temperatures expected for civil aircraft.

Integration with self-driving cars – terminal-free flying

A decade or more ago, I suggested integrating self driving cars systems into rail, so that a long chain of self driving cars could form a train. Obviously Euro-tunnel already has actual trains carry cars, but what I meant was that the cars can tether to each other electronically and drive themselves, behaving as a train as a half way evolution point to fully replacing trains later with self driving pod systems. As each car reaches its local station, it would peel off and carry on the roads to the final destination. The other pods would close together to fill the gap, or expand gaps to allow other pods to join from that station. Previous blogs have detailed how such systems can be powered for city or countrywide use.

Stage 1

Such end-to-end self driving could work all the way to the aircraft too. To avoid crime and terrorism abuses, self-driving cars owned by large fleet management companies – which will be almost all of them in due course – will have to impose security checks on passengers. Think about it. If that were not so, any terrorist would be able to order a car with an app on an anonymous phone, fill it full of explosives, tell it where to go, and then watch as it does the suicide bombing run all by itself. Or a drug gang could use them for deliveries. If security is already imposed with proper identity checks, then it would be easy to arrange a safe area in the airport for a simple security check for explosives, guns etc, before the car resumes its trip all the way to an aircraft departure gate. System restrictions could prevent passengers leaving the car during the airport part of the journey except at authorized locations. The rest of the terminal would be superfluous.

Stage 2

Then it starts to get interesting. My guess is that the optimal design for these self-driving pods would be uniform sized cuboids. Then, congestion and air resistance can be minimized and passenger comfort optimized. It would then be possible to link lots of these pods together with their passengers and luggage still in them, and drive the whole lot into a large aircraft. They could be stacked in layers of course too (my own design of pods doesn’t even use wheels) to maximize cabin use. Aisles could be made to allow passengers out to visit loos or exercise.

Many people of my age will think of Thunderbird 2 at this point. And why not? Not such a bad idea. A huge box acting as a departure gate for dozens of small pods, ready for the aircraft to land, drop off its existing pod, refuel, pick up the new box of pods, and take off again. Even the refuel could be box-implemented, part of the box structure or a pod.

Stage 3

Naturally, airlines might decide that they know best how to provide best comfort to their passengers. So they might design their own fleets of special pods to pick up passengers from their homes and bring them all the way onto the aircraft, then all the way to final destination at the other end. That gives them a huge opportunity for adding luxury and branding or other market differentiation. Their fleets would mix on the roads with fleets from other companies.

Stage 4

However, it is hard to think of any other sector that is as adept by necessity at making the very most of the smallest spaces as airlines. Having started to use these advantages for self driving pods for their own air passengers, many of those passengers would be very happy to also buy the use of those same pods even when they are not flying anywhere, others would learn too, and very soon airlines could become a major fleet manager company for self-driving cars.

Balloon trips and cruises

Large balloons and airships are coming back into business. e.g. http://news.sky.com/story/1654409/worlds-largest-aircraft-set-for-uk-test-flight

Solid balloons will be likely too. I suggested using carbon foam in my sci-fi book Space Anchor, and my superheroes travel around at high speed in their huge carbon balloon, the Carballoon, rescuing people from burning buildings or other disasters, or dumping foam to capture escaping criminals. Since then, Google have also been playing with making lighter than air foams and presumably they will use them for Project Loon.

Lighter than air cities have been explored in the computer game Bioshock Infinite, floating islands in the films Avatar and Buck Rogers. There is certainly no shortage of imagination when it comes to making fun destinations floating in the air. So I think that once the materials become cheap enough, we will start to see this balloon industry really evolve into a major tourism sector where people spend days or weeks in the air. Even conventional balloon experiences such as safaris would be better if the burners and their noise scaring the animals are not needed. A solid balloon could manage fine with just a quiet fan.

Whatever the type of floating destination, or duration of short trip or cruise, of course you need to get to them, so that presents an obvious opportunity for the airline industry, but designing them, providing services, holiday packages, bookings and logistics are also territories where the airline industry might be in pole position, especially since space might still be at a premium.

Air fuel

Although there have already been various demonstrations of hydrogen planes and solar powered planes, I really do not think these are likely to become mainstream. One of the main objections to using conventional fuel is the CO2 emissions, but my readers will know I don’t believe we face a short term threat from CO2-induced climate change and in the mid term, ground use of fossil fuels will gradually decline or move towards shale gas, which produces far less CO2. With all the CO2 savings from ground use decline, there will be far less pressure on airlines to also reduce. Since it is too hard to economically deliver suitable energy density for aircraft use, it will be recognized as a special case that the overall CO2 budgets can easily sustain. The future airline industry will use air fuel not unlike today’s. Let’s consider the alternatives.

Solar is fine for the gossamer-light high altitude aircraft for surveillance of communications, but little use for passenger flight. Covering a plane upper with panels will simply not yield enough power. Large batteries could store enough energy for very short flights, but again not much use since planes can’t compete in short trips. Energy density isn’t good enough. Fuel cells are still the technology of the future and are unlikely to be suited to planes. It is easier to simply use the fuel direct to create thrust. Another red herring is hydrogen. Yes it can be done, but there is little advantage and lots of disadvantages. The output is water vapor, which sounds safe, but is actually a stronger greenhouse effect than CO2 and since aircraft fly high, it will stay in the atmosphere doing its warming far longer (for trans-polar flights it may even become stratospheric water vapor). So hydrogen is no panacea.

So, no change here then.

Threats

There have already been many instances of near collisions with drones. Many drones are very small, but some can carry significant payloads. If a drone carries a lump of solid metal, or an explosive device, it could easily do enough harm to a fast-flying aircraft to cause a crash. That makes drones a strong terrorist threat to aircraft. Even without the intent to harm, any village idiot could fly a drone near to a plane to get pictures and still cause problems.

Another threat that is becoming serious is lasers. Shone from the ground, a high powered hand-held laser could blind a pilot.

http://www.wickedlasers.com/arctic shows the sort of thing you can already buy. $400 buys you 3.5W of blue light. Really cool stuff in the right hands, and the sort of gadget I’d love to own if I could trust myself to be responsible with it, (I did look straight into a laser beam at university, as you do when you’re a student) but not the sort of thing you want used deliberately against pilots.

These two threats are already very apparent, but put them together, and you have a modest drone bought anonymously fitted with a high powered laser (I don’t know whether identity checks are needed for the laser purchase, but I suspect plenty enough are already in circulation). A simple camera linked to a basic pattern recognition system would easily allow the drone to move to an optimal location and then target the laser into the aircraft cockpit and likely into the pilots’ eyes. This is not something that should be possible to build without lots of strict identity checks, but especially for the drones bit, the law is years behind where it ought to be. Lasers of this power also need to be classed as lethal weapons.

New business models

The latest startup fashions suggest someone will soon build a crowd-flying company. A bunch of people in one area wanting to fly to another zone could link electronically via such a company app, and hire a plane/self-driving pods/departure gate/pilot/crew and fly with very little inter-mediation. The main barrier is the strong regulation in the airline industry which is there for all sorts of good reasons, but that is not an impenetrable barrier, just a large one.

 

 

 

 

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s