How the Space Anchor works

This is just an extract from my sci-fi book Space Anchor, about the adventures of Carbon Girl and her boyfriend Carbon Man. However, the Space Anchor itself is based on the Kasimir effect and warped space time, so has some similarities with NASA’s warp drive, but will be a lot easier to make and require very little energy. If their’s works, so will this. The space anchor will arrive first, and the most likely route to NASA getting their warp drive is using my space anchor to find another civilisation that already has a warp drive and buy one. Anyway, both remain scifi for a few decades. Just as well really. The Warp drive NASA are playing with will be used first as a weapon system to make ultra-high-lethality kinetic weapons. Let’s hope it doesn’t work. Looks pretty though, I’ll give them that.

From Space Anchor:

It was just a routine chat. G’din debriefed the General on the last trip, mapping out space currents. That often took him near planets and moons, and often meant he’d had to dodge asteroids. This one had been an unusually bad trip with several near misses.

Unfortunately, it was moving mass that created the ripples and currents in the space time fabric that the space anchor used. Without it, they’d have no means of ever getting much further than the solar system. Other techniques such as warp drives were still just science fiction. Nobody had any serious means of getting the speed without carrying massive engines and huge quantities of fuel. The space anchor cheated. The C14 didn’t use much fuel at all, and had fairly basic engines for local travel near Earth. The anchor locked on to the local space time fabric itself. There was no matter there, but it used stacked graphene Kasimir combs, each couple of combs interleaved to create a chamber where virtual particles could appear as the slats separated and be immediately separated from one another as the slats interleaved. High speed waves travelling along the combs opened and closed the gaps rapidly. The combs essentially harnessed the virtual particles’ fundamental need to annihilate by trying to physically prevent them from doing so. Creating a temporary barrier between them simply delayed their annihilation, creating a quantum annihilation pressure. Each frustrated annihilation only caused a tiny force measured at macro scales, but there were a lot of layers in the graphene stacks, and it added up nicely. Even though their lives were short, the strong forces the quantum annihilation pressures generated effectively locked the anchor onto that piece of space. Nature may abhor a vacuum, but it absolutely won’t let you steal it away. That would make holes in space time. Nature doesn’t allow holes in space time any more than it allows a tree in a forest to be replaced by an error message saying “tree not found”.

So the space anchor behaved exactly like an anchor should. It stayed where it was put, relative to the local space time. In future space battles, it would undoubtedly be useful for fighters to make rapid turns without using all their fuel. For now, thankfully without those space battles yet, they were happy to use it to make trips faster and shorter.

If the region of space at the anchor was expanding differently from the region where the ship was, which of course was the general idea, the anchor would create a huge force to pull the ship. So, just like a yacht using differences in the winds, the space anchor allowed the C14 to accelerate and brake. Like wind, vacuum energy was free and didn’t need fuel to be carried. The tether was long, but that wasn’t a problem in space. The trouble was, just like wind, it isn’t easy to spot a space current from far away, it is much easier to detect it by being there. Astro-physicists knew where to look for the best chance of finding stronger currents of course but the mapping was still needed. The forces had to be measured, the streams plotted. They had to know where they were, how strong they were, how they behaved. It was very new science and technology. Space-time turbulence had been discovered that could cause very severe vibration when an anchor was being used, although if the anchor was switched off, it would instantly become smooth again and the ship would coast.

One day, space travel would all be easy, but just a few decades in to manned interplanetary travel, it was still anything but routine.  Only a few ships were equipped with space anchors, they were not easy to make and were expensive. The C14 had the first one, since G’din had invented it, and it was still be best equipped ship to do this kind of work. It had three anchors now, improving manoeuvrability – on a good day, G’din could swing it around like a gibbon in the woods.

Space research, tourism, asteroid mining companies and of course the military of many countries all wanted the technology too. But without the other stuff – the Higgs filters, Heisenberg resonators and carbon fur, the anchor was as dangerous as it was useful, and few organisations had ships made out of the materials that could resist even the minor impacts. Most would be riddled with holes on the first trip. So only G’din and the military had them so far, the rest could wait till it was safer.

Advertisements

2 responses to “How the Space Anchor works

  1. Instead of space, why don’t we just explore nature and stop ruining it? We’ll kill the earth while we’re looking for a new one.

    Like

    • Space is natural too, not just stuff here. It is space exploration and its potential that is probably to credit for many people wanting to protect the Earth, because they more fully recognize its fragility. I’ve often thought that the excessive street lighting that stops people seeing the stars and being forced to think about the Earth’s place in the cosmos is to blame for the lack of wonder that otherwise strongly motivates people into exploring nature and protecting it. Also, space exploration pushes the boundaries of what we can do and environment benefits from technology development too. The worst thing you can do to the environment is to stop tech development.

      Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s