Interstellar travel: quantum ratchet drive

Introductory waffle & background state of the art bit

My last blog included a note on my Mars commute system, which can propel spacecraft with people in up to 600km/s. Unfortunately, although 1000 times faster than a bullet, that is still only 0.2% of light speed and it would take about 2000 years to get to our nearest star at that speed, so we need a better solution. Star Trek uses warp drive to go faster than light, and NASA’s Alcubierre drive is the best approximation we have to that so far:

https://en.wikipedia.org/wiki/Alcubierre_drive

but smarter people than me say it probably won’t work, and almost certainly won’t work any time soon:

https://jalopnik.com/the-painful-truth-about-nasas-warp-drive-spaceship-from-1590330763

If it does work, it will need to use negative energy extracted via the Casimir effect, and if that works, so will my own invention, the Space Anchor:

https://timeguide.wordpress.com/2014/06/14/how-the-space-anchor-works/

The Space Anchor would also allow space dogfights like you see in Star Wars. Unless you’re a pedant like me, you probably never think about how space fighters turn in the vacuum of space when you’re watching movies, but wings obviously won’t work well with no atmosphere, and you’d need a lot of fuel to eject out the back at high thrust to turn otherwise, but the space anchor actually locks on to a point in space-time and you can pivot around it to reverse direction without using fuel, thanks to conservation of angular momentum. Otherwise, the anchor drifts with ‘local’ space time expansion and contraction, which essentially creates relativity based ‘currents’ that can pull a spacecraft along at high speed. But enough about Space Anchors. Read my novel Space Anchor to see how much fun they could be.

Space anchors might not work, being only semi-firm sci-fi based at least partly on hypothetical physics. If they don’t work, and warp drive won’t work without using massive amounts of dark energy that I don’t believe exists either, then we’re left with solar sails, laser sails, and assorted ion drives. Solar sails won’t work well too far from a star. Lasers that can power a spacecraft well outside a star system sound expensive and unworkable and the light sails that capture the light mean this could only get to about 10% light speed. Ion drives work OK for modest speeds if you have an on-board power source and some stuff to thrust out the back to get Newtonian reaction. Fancy shaped resonant cavity thrusters try to cheat maths and physics to get a reaction by using special shapes of microwave chambers,

https://en.wikipedia.org/wiki/RF_resonant_cavity_thruster

but I’d personally put these ‘Em-drives’ in the basket with cold fusion and perpetual motion machines. Sure, there have been experiments that supposedly show they work, but so do many experiments for cold fusion and perpetual motion machines, and we know those results are just experimental or interpretational errors. Of the existing techniques that don’t contradict known physics or rely on unverified and debatable hypotheses, the light sails are best and get 10% of light speed at high expense.

A few proposed thruster-based systems use particles collected from the not-quite-empty space as the fuel source and propellant. Again, if we stretch the Casimir effect theory to near breaking point, it may be possible to use virtual particles popping in and out of existence as propellant by allowing them to appear and thrusting them before they vanish, the quantum thruster drive. My own variant of this solution is to use Casimir combs with oscillating interleaving nano-teeth that separate virtual particles before they can annihilate to prolong that time enough to make it feasible. I frankly have no idea whether this would actually work.

Better still would be if we could use a form of propulsion that doesn’t need to throw matter backwards to get reactionary force forwards. If magical microwave chambers and warp drives are no use, how about this new idea of mine:

The Quantum Ratchet Drive

You can explore other theoretical interstellar drives via Google or Wikipedia, but you won’t find my latest idea there – the Quantum Ratchet Drive. I graduated in Theoretical Physics, but this drive is more in the Hypothetical Physics Department, along with my explanations for inflation, dark matter and novel states of matter. That doesn’t mean it is wrong or won’t work though, just that I can’t prove it will work yet. Anyway, faint heart ne’er won fair maid.

You have seen pics of trains that climb steep slopes using a rack and pinion system, effectively gear wheels on a toothed rail so that they don’t slip (not the ones that use a cable). I originally called my idea the quantum rack and pinion drive because it works in a similar way, but actually, the more I think about it, the more appropriate is the analogy with a ratchet, using a gear tooth as a sort of anchor to pull against to get the next little bit of progress. It relies on the fact that fields are quantized and any system will exist in one state and then move up or down to the next quantum state, it can’t stay in between. At this point I feel I need another 50 IQ points to grasp a very slippery idea, so be patient – this is an idea in early stages of development. I’m basically trying to harness the physics that causes particles to switch quantum states, looking at the process in which quantum states change, nature’s ‘snap to grid’ approach, to make a propulsion system out of it.

If we generate an external field that interacts with the field in a nearby microscopic region of space in front of our craft then as the total field approaches a particular quantum threshold, nature will drag that region to the closest quantum state, hopefully creating a tiny force that drags the system to that state. In essence, the local quantum structure becomes a grid onto which the craft can lock. At very tiny scales obviously, but if you add enough tiny distances you eventually get big ones.

But space doesn’t have a fixed grid does it? If we just generate any old field any which way in front of our craft, no progress will happen because nature will be quite happy to have those states in any location in space so no force of movement will be generated. HOWEVER… suppose space did have such a grid, and we could use interaction of the quantum states in the grid cells and our generated field. Then we could get what we want, a toothed rail with which our gearwheels can engage.

So we just need a system that assigns local quantum states to microscopic space regions and that is our rack, then we apply a field to our pinion that is not quite enough to become that state, but is closer than any other one. At some point, there will be a small thrust towards the next state so that it can reach a local minimum energy level. Those tiny thrusts would add up.

We could use any kind of field that our future tech can generate. Our craft would have two field emitters. One produces a nice tidy waveform that maps quantum states onto the space just in front of our craft. A second emitter produces a second field that creates an interaction so that the system wants to come to rest in a region set slightly ahead of the craft’s current position. It would be like a train laying a toothed track just in front of it as it goes along, always positioning the teeth so that the train will fall into the next location.

We could certainly produce EM fields, making a sort of stepper linear induction motor on a mat created by the ship itself. What about strong or weak nuclear forces? Even if stuck with EM, maybe we use rotating nuclei or rotating atoms or molecules, which would move like a microscopic stepper motors across our pre-quantized space grid. Tiny forces acting on individual protons or electrons adding up to macroscopic forces on our spacecraft. If we’re doing it with individual atoms or nuclear particles, the regions of space we impose the fields on would be just ahead of them, not  out in front of the spacecraft. If we’re using interacting EM fields,  then we’re relying on appropriate phasing and beam intensities to do the job.

As I said, early days. Needs work. Also needs a bigger brain. Intuitively this ought to work. It ought to be capable of up to light speed. The big question is where the energy comes from. It isn’t an impulse drive and doesn’t chuck matter out of a rocket nozzle, but it might collect small particles along the way to convert into energy. Or perhaps nature contributes the energy. If so, then this could get light speed travel without fuel and limited on-board energy supply. Just like gravity pulls a train down a hill, perhaps clever phase design could arrange the grid ahead to be always ‘downhill’ in which case this might turn out to be yet another vacuum energy drive. I honestly don’t know. I’m out of my depth, but intuition suggests this shows promise for someone smarter.

 

Advertisements

One response to “Interstellar travel: quantum ratchet drive

  1. Pingback: Futureseek Daily Link Review; 3 May 2018 | Futureseek Link Digest

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.