Category Archives: transport

Diesel – 4.4 times more deaths than by road accidents

In Dec 2010, the UK government released a report estimating that air pollution causes a ‘mortality burden’ of 340,000 years of life spread over an affected population of 200,000, equivalent to about 29,000 deaths each year in the UK, or a drop in average life expectancy across the whole population of 6 months. It also costs the NHS £27B per year. See:

http://webarchive.nationalarchives.gov.uk/20140505104658/http://www.comeap.org.uk/images/stories/Documents/Reports/COMEAP_Mortality_Effects_Press_Release.pdf

There is no more recent report as yet, although the figures in it refer to 2008.

Particulate matter (PM) is the worst offender and diesel engines are one of the main sources of PM, but they also emit some of the other offenders. COMEAP estimates that a quarter of PM-related deaths are caused by diesel engines, 7250 lives per year. Some of the PM comes from private vehicles. To save regeneration costs, some diesel drivers apparently remove the diesel particulate filters from their cars, which is illegal, and doing so would mean failing an MOT. See:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/263018/diesel-particulate-filters-guidance.pdf

The government encouraged people to go diesel by offering significant tax advantages. Road tax and company car tax are lower for diesels, resulting in more than half of new cars now being diesels. (https://www.gov.uk/government/publications/vehicle-licensing-statistics-2013) Almost all public buses and taxis and still many trains are diesel.

7250 lives per year caused by diesel vehicles is a lot, and let’s remember that was an estimate based on 2008 particulates. There are many more diesels on our roads now than then (https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/301636/veh0203.xls shows the number of diesel cars licensed has increased from 7163 to 10,064), but fuel efficiency has also improved in that period so total fuel use hasn’t increased much, only from 8788 to 9197 thousand tons of diesel. So the result isn’t as bad as it could have been and the proportionately scaled figure for 2012 would be 7587 deaths from diesel emissions. In 2013 there were only 1730 road deaths so 4.4 times as many people were killed by diesel emissions than road accidents.

I thought it would be interesting to compare deaths from just buses to those in road accidents, since buses are thought of by many as some sort of panacea whereas some of us see them as filthy environmental monsters. The proportion of diesel used by buses has fallen from 17% to 13.7% between 2008 and 2012. (I couldn’t find figures for the numbers of taxis, also officially included in public transport, since the fuel usage stats lump all cars together, but then I’ve never understood why taxis should be listed as public transport anyway.)

17% of the 7250 figure for 2008 gives 1232 deaths from public transport diesel emissions compared to 2538 road deaths that year, roughly half as many. However, for 2012, 13.7% of 7587 is 1039 deaths from public transport diesel emissions compared to 1754 people killed in road accidents in 2012.  That ratio has grown from 48.5% to 59% in just 4 years. Buses may use less fuel than cars but they certainly aren’t saints.

So, headline result: 60% as many people are killed by diesel emissions from buses as in road accidents, but altogether, 4.4 times as many people die due to diesel. The government is very noisy when it comes to reducing road deaths, but it should look at the far bigger gains that would be made by reducing diesel use. Perhaps it is time that the deaths arising from diesel emissions should be added to the road deaths figures. At least then there might be some better action against it.

As I wrote in a recent blog

(http://timeguide.wordpress.com/2014/07/18/road-deaths-v-hospital-hygiene/)

more still could be saved by just slightly improving the NHS. The £27B per year health costs saved by getting rid of diesel might go some way to doing both.

As a final observation, diesel was encouraged so much because it should help to reduce CO2 emissions, seen as a major contributor to global warming. In the last year or two, the sensitivity to CO2 emissions has been observed to be lower than originally thought. However, another major contribution to warming is the black carbon PM, noted especially for its contribution to melting glaciers by making them darker, also arising in large part from diesel. The efforts to reduce one contributor have increased another. Diesel doesn’t even solve the problem it was aimed at, but still causes others.

Drone Delivery: Technical feasibility does not guarantee market success

One of my first ever futurology articles explained why Digital Compact Cassette wouldn’t succeed in the marketplace and I was proved right. It should have been obvious from the outset that it wouldn’t fly well, but it was still designed, manufactured and shipped to a few customers.

Decades on, I had a good laugh yesterday reading about the Amazon drone delivery service. Yes, you can buy drones; yes, they can carry packages, and yes, you can make them gently place a package on someone’s doorstep. No, it won’t work in the marketplace. I was asked by the BBC Radio 4 to explain on air, but the BBC is far more worried about audio quality than content quality and I could only do the interview from home, so they decided not to use me after all (not entirely fair – I didn’t check who they actually used and it might have been someone far better).

Anyway, here’s what I would have said:

The benefits are obvious. Many of the dangers are also obvious, and Amazon isn’t a company I normally associate with stupidity, so they can’t really be planning to go all the way. Therefore, this must be a simple PR stunt, and the media shouldn’t be such easy prey for free advertising.

Very many packages are delivered to homes and offices every day. If even a small percentage were drone-delivered, the skies will be full of drones. Amazon would only control some of them. There would be mid-air collisions between drones, between drones and kites and balloons, with new wind turbines, model aeroplanes and helicopters, even with real emergency helicopters. Drones with spinning blades would be dropping out of the sky frequently, injuring people, damaging houses and gardens, onto roads, causing accidents. People would die.

Drones are not silent. A lot of drones would make a lot of extra ambient noise in an environment where noise pollution is already too high. They are also visible, creating another nuisance visual disturbance.

Kids are mischievous. Some adults are mischievous, some criminal, some nosey, some terrorists. I can’t help wonder what the life expectancy of a drone would be if it is delivering to a housing estate full of kids like the one I was. If I was still a kid, I’d be donning a mask (don’t want Amazon giving my photo to the police) and catching them, making nets to bring them down and stringing wires between buildings on their normal routes, throwing stones at them, shooting them with bows and arrows, Nerf guns, water pistols, flying other toy drones into their paths. I’d be tying all sorts of other things onto them for their ongoing journey. I’d be having a lot of fun on the black market with all the intercepted goods too.

If I were a terrorist, and if drones were becoming common delivery tools, I’d buy some and put Amazon labels on them, or if I’m short of cash, I’d hijack a few, pay kids pocket money to capture them, and after suitable mods, start using them to deliver very nasty packages precisely onto doorsteps or spray lethal concoctions into the air above specific locations.

If I were just criminal, I’d make use of the abundance of drones to make my own less conspicuous, so that I could case homes for burglaries, spy on businesses with cameras and intercept their wireless signals, check that an area is free of police, or get interesting videos for my voyeur websites. Maybe I’d add a blinding laser into them to attack any police coming into the scene of my crime, giving valuable extra time without giving my location away.

There are also social implications: jobs in Amazon, delivery and logistics companies would trade against drone manufacturing and management. Neighbours might fall out if a house frequently gets noisy deliveries from a drone while people are entering and leaving an adjacent door or relaxing in the garden, or their kids are playing innocently in the front garden as a drone lands very close by. Drone delivery would be especially problematic when doorways are close together, as they often are in cities.

Drones are good fun as toys and for hobbies, in low numbers. They are also useful for some utility and emergency service tasks, under supervision. They are really not a good solution for home delivery, even if technically it can be done. Amazon knows that as well as I do, and this whole thing can only be a publicity stunt. And if it is, well, I don’t mind, I had a lot of fun with it anyway.

And another new book: You Tomorrow, 2nd Edition

I wrote You Tomorrow two years ago. It was my first ebook, and pulled together a lot of material I’d written on the general future of life, with some gaps then filled in. I was quite happy with it as a book, but I could see I’d allowed quite a few typos to get into the final work, and a few other errors too.

However, two years is a long time, and I’ve thought about a lot of new areas in that time. So I decided a few months ago to do a second edition. I deleted a bit, rearranged it, and then added quite a lot. I also wrote the partner book, Total Sustainability. It includes a lot of my ideas on future business and capitalism, politics and society that don’t really belong in You Tomorrow.

So, now it’s out on sale on Amazon

http://www.amazon.co.uk/You-Tomorrow-humanity-belongings-surroundings/dp/1491278269/ in paper, at £9.00 and

http://www.amazon.co.uk/You-Tomorrow-Ian-Pearson-ebook/dp/B00G8DLB24 in ebook form at £3.81 (guessing the right price to get a round number after VAT is added is beyond me. Did you know that paper books don’t have VAT added but ebooks do?)

And here’s a pretty picture:

You_Tomorrow_Cover_for_Kindle

Could wind farms and HS2 destroy the environment?

Remember when chaos theory arrived. We were bombarded with analogies to help us understand it, such as the butterfly effect, whereby a butterfly flapping its wings in a distant rain forest creates micro-turbulence that minutely affects some tiny variable in a very non-linear system, resulting in a hurricane forming somewhere later.

Imagine sticking up a wind turbine, and compare that to a butterfly. It is a fair bit bigger. A big turbine extracts up to 3MW of power from the passing wind, and a large wind farm may have hundreds of them. If weather is so chaotic in its nature that a butterfly can affect it, a massive deployment of numerous large wind farms certainly can.

Aerial wind farms are being explored a lot now too, using kites. I’ve proposed a few novel designs for wind energy extractors myself during idle time. It is very easy. In my sci-fi book Space Anchor I even described a feasible solution for harvesting energy from tornadoes and hurricanes, reducing their damage and getting lots of free energy.

But it isn’t free if the cost is such great interference with wind strength that the paths of the winds are affected, their ability to transfer water vapour from one region to another. We are already having an impact and it will increase as deployment volume grows. We don’t have the means to estimate the effects of siphoning of such energy. As has recently been shown, 99% of climate models have greatly overestimated the warming due to CO2. They simply don’t work. They don’t model the environment accurately, or even quite accurately.

In the arctic, last year the ice declined enormously, this year it grew back. Researchers found that heat added to river systems by mineral and oil exploration could have been important contributor to the excessive melt. It is human-originated but nothing to do with CO2, and it doesn’t appear in any of the climate models. If they’re right, it’s a good example of how we can interfere with local climate unintentionally, and also how we won’t usually get any warning from climate modelling community who seem obsessed with ignoring any variable that doesn’t link to CO2. The climate is certainly changing, just not at all in the ways they keep telling us it will, because the models leave out many of the important factors and the equations are wrong.

So how can we expect to be told the likely effects of wind farms? The simple answer is that we can’t. At best, we can hope to get some estimates of change in a few specific wind zones. Furthermore, due to extreme politicization of the whole field of energy production and climate change, any models that suggest harmful effects are highly likely to be blocked from reporting, or their results tweaked and airbrushed and generally sanitized beyond recognition. The Scottish wind farms have already been shown to increase CO2 emissions due to the effects they have on the peat bogs on which most of them are built but we still see push for more of the same, even knowing that on the only issue they are meant to help with, CO2 emissions, they make things worse.

The UK government seems to enjoy throwing money away just when we need it most. The HS2 rail link will waste between £50Bn and £75Bn depending who you believe. Wind farms are already adding hundreds per year to the energy bills of the poor, pushing them deeper into poverty. The Green Deal fiasco has wasted a tiny amount by comparison, but is another example of extreme government incompetence when it comes to protecting the environment. As part of EU environmental policies, blocking and delaying shale gas development across Europe has led to massive imports of coal from the USA, increasing EU CO2 emissions while USA emissions have tumbled. You just couldn’t do a worse job of protecting the environment.

So far it seems, almost all government attempts to protect the environment have made it worse. Building even more wind farms will likely add to the problems even further.

Looking at HS2, it is very hard indeed not to compare this enormously expensive project to build a fairly high speed conventional railway between two cities to the Hyperloop system in California recently proposed by Elon Musk. That would deliver a 600mph rail system at a tiny fraction of the cost of HS2. Sure, there are some engineering problems with the systems as initially proposed, but nothing that can’t be solved as far as I can see. If we have £50Bn to spend, we could build links between most of our major cities, instead of diverting even more into London. Instead of a few thousand rich people benefiting a little bit, everyone could. We could build a 21st century rail system instead of just building more of a 20th century one. A system like that would have high capacity between all the major places, diverting many cars off the roads, reducing congestion, acting as a core of a proper self-driven pod based system, reaping enormous environmental benefits as well as improvement of lives. HS2 is totally pants by comparison with what we could get with the same outlay, for the economy, the environment and for quality of life. Siphoning off 50 to 75Bn from the economy for HS2 will delay development of far better and more environmentally friendly means of mass transport. Compared to the right solution, HS2 will damage the economy and the environment enormously.

Wind farms and HS2 will become monuments to the magnitude of stupidity of people in power when they are driven to leave a personal legacy at other people’s expense without having the systems engineering skills to understand what they’re doing.

 

 

The future is magnetic

‘It works by using magnets’ has been a description of many a perpetual motion machine. Magnets bring out the nutter in people. But they are incredibly useful, and I say that as someone who thinks ‘incredibly’ is used far too often these days.

Magnets are very good fun as toys but you need to be a bit careful with them. I have had a few accidents with them, the most recent playing with magnetic ferro-fluid, which I can vouch makes a real mess of your hands for several days. I also have some levitation toys that are extremely good fun.

http://www.telegraph.co.uk/technology/news/10235261/Inside-the-Hyperloop-the-pneumatic-travel-system-faster-than-the-speed-of-sound.html describes a futuristic high speed rail system. Well, it isn’t all that futuristic, the idea is 100 years old. But it hasn’t been built yet so it is still in the future, and is at least 10 times better than the UK’s pathetic high speed rail proposal which only floats at all if you use extremely misleading figures about costs and benefits. That is worth a small fraction if what is claimed and like all government projects will cost three times as much as claimed.

I am a big believer in magnetic train propulsion, and levitation, not least because they are proven tech. Putting the system in a tube and using rail gun tech will reduce drag enormously and allow far higher speeds. Remember, in free air, drag goes with the square of velocity and power is drag x velocity. In a tube, air can move at the same speed as the train, so drag can be reduced to almost nothing. So with low friction thanks to levitation and low drag thanks to the tube, supersonic speeds are doable. Other groups have suggested vacuum tubes, but that is not as sensible thanks to increased engineering difficulty, with big cost and safety issues.

I proposed a linear induction bike lane several years back which of course is a sort of magnetic propulsion. Nobody has built that yet.  The Car in my recent sci-fi book levitates magnetically on a plasma cushion. That sounds futuristic but it was proven in principle in 1964 and is easily feasible with 2092 technology. The lift to the heroes’ base is magnetic, some of their weapons are magnetic, their pet drone orb thing and their holographic disks all rely on magnetic levitation based on plasma. I even invented magnetic carbon muscles for my heroes’ suits. They would use tiny graphene coils in a folded structure in the material to achieve strong contraction and super strength at low cost. One of the social problems they had to contend with was use of smart electronic drugs in conjunction with deep brain magnetic stimulation.

There is a lot of pseudo science that gives magnets a bad name though. Stuff like magnetic bracelets that some people wear who really ought to know better, that allegedly align the iron in your blood, and somehow it doesn’t immediately go back to random as soon as it has passed by, or magnetic descalers that align the water molecules or something, or the fuel treatment magnets that magically add lots of extra energy to your petrol. These are the stuff of nonsense. So are all things that claim perpetual motion.

But cars, trains and bikes, yep, they can all be made magnetic very usefully indeed. And carbon muscle fabric. And all sort of levitation systems. The future is magnetic, even if a lot of nutters say the same thing.

Free-floating AI battle drone orbs (or making Glyph from Mass Effect)

I have spent many hours playing various editions of Mass Effect, from EA Games. It is one of my favourites and has clearly benefited from some highly creative minds. They had to invent a wide range of fictional technology along with technical explanations in the detail for how they are meant to work. Some is just artistic redesign of very common sci-fi ideas, but they have added a huge amount of their own too. Sci-fi and real engineering have always had a strong mutual cross-fertilisation. I have lectured sometimes on science fact v sci-fi, to show that what we eventually achieve is sometimes far better than the sci-fi version (Exhibit A – the rubbish voice synthesisers and storage devices use on Star Trek, TOS).

Glyph

Liara talking to her assistant Glyph.Picture Credit: social.bioware.com

In Mass Effect, lots of floating holographic style orbs float around all over the place for various military or assistant purposes. They aren’t confined to a fixed holographic projection system. Disruptor and battle drones are common, and  a few home/lab/office assistants such as Glyph, who is Liara’s friendly PA, not a battle drone. These aren’t just dumb holograms, they can carry small devices and do stuff. The idea of a floating sphere may have been inspired by Halo’s, but the Mass Effect ones look more holographic and generally nicer. (Think Apple v Microsoft). Battle drones are highly topical now, but current technology uses wings and helicopters. The drones in sci-fi like Mass Effect and Halo are just free-floating ethereal orbs. That’s what I am talking about now. They aren’t in the distant future. They will be here quite soon.

I recently wrote on how to make force field and floating cars or hover-boards.

http://timeguide.wordpress.com/2013/06/21/how-to-actually-make-a-star-wars-landspeeder-or-a-back-to-the-future-hoverboard/

Briefly, they work by creating a thick cushion of magnetically confined plasma under the vehicle that can be used to keep it well off the ground, a bit like a hovercraft without a skirt or fans. Using layers of confined plasma could also be used to make relatively weak force fields. A key claim of the idea is that you can coat a firm surface with a packed array of steerable electron pipes to make the plasma, and a potentially reconfigurable and self organising circuit to produce the confinement field. No moving parts, and the coating would simply produce a lifting or propulsion force according to its area.

This is all very easy to imagine for objects with a relatively flat base like cars and hover-boards, but I later realised that the force field bit could be used to suspend additional components, and if they also have a power source, they can add locally to that field. The ability to sense their exact relative positions and instantaneously adjust the local fields to maintain or achieve their desired position so dynamic self-organisation would allow just about any shape  and dynamics to be achieved and maintained. So basically, if you break the levitation bit up, each piece could still work fine. I love self organisation, and biomimetics generally. I wrote my first paper on hormonal self-organisation over 20 years ago to show how networks or telephone exchanges could self organise, and have used it in many designs since. With a few pieces generating external air flow, the objects could wander around. Cunning design using multiple components could therefore be used to make orbs that float and wander around too, even with the inspired moving plates that Mass Effect uses for its drones. It could also be very lightweight and translucent, just like Glyph. Regular readers will not be surprised if I recommend some of these components should be made of graphene, because it can be used to make wonderful things. It is light, strong, an excellent electrical and thermal conductor, a perfect platform for electronics, can be used to make super-capacitors and so on. Glyph could use a combination of moving physical plates, and use some to add some holographic projection – to make it look pretty. So, part physical and part hologram then.

Plates used in the structure can dynamically attract or repel each other and use tethers, or use confined plasma cushions. They can create air jets in any direction. They would have a small load-bearing capability. Since graphene foam is potentially lighter than helium

http://timeguide.wordpress.com/2013/01/05/could-graphene-foam-be-a-future-helium-substitute/

it could be added into structures to reduce forces needed. So, we’re not looking at orbs that can carry heavy equipment here, but carrying processing, sensing, storage and comms would be easy. Obviously they could therefore include whatever state of the art artificial intelligence has got to, either on-board, distributed, or via the cloud. Beyond that, it is hard to imagine a small orb carrying more than a few hundred grammes. Nevertheless, it could carry enough equipment to make it very useful indeed for very many purposes. These drones could work pretty much anywhere. Space would be tricky but not that tricky, the drones would just have to carry a little fuel.

But let’s get right to the point. The primary market for this isn’t the home or lab or office, it is the battlefield. Battle drones are being regulated as I type, but that doesn’t mean they won’t be developed. My generation grew up with the nuclear arms race. Millennials will grow up with the drone arms race. And that if anything is a lot scarier. The battle drones on Mass Effect are fairly easy to kill. Real ones won’t.

a Mass Effect combat droneMass Effect combat drone, picture credit: masseffect.wikia.com

If these cute little floating drone things are taken out of the office and converted to military uses they could do pretty much all the stuff they do in sci-fi. They could have lots of local energy storage using super-caps, so they could easily carry self-organising lightweight  lasers or electrical shock weaponry too, or carry steerable mirrors to direct beams from remote lasers, and high definition 3D cameras and other sensing for reconnaissance. The interesting thing here is that self organisation of potentially redundant components would allow a free roaming battle drone that would be highly resistant to attack. You could shoot it for ages with laser or bullets and it would keep coming. Disruption of its fields by electrical weapons would make it collapse temporarily, but it would just get up and reassemble as soon as you stop firing. With its intelligence potentially local cloud based, you could make a small battalion of these that could only be properly killed by totally frazzling them all. They would be potentially lethal individually but almost irresistible as a team. Super-capacitors could be recharged frequently using companion drones to relay power from the rear line. A mist of spare components could make ready replacements for any that are destroyed. Self-orientation and use of free-space optics for comms make wiring and circuit boards redundant, and sub-millimetre chips 100m away would be quite hard to hit.

Well I’m scared. If you’re not, I didn’t explain it properly.

How to actually make a Star Wars Landspeeder or a Back to the future hoverboard.

Star Wars (all trademarks acknowledged, but I’ll immediately remove them on request from the studios) made me a bit annoyed in the first opening seconds, when I heard the spaceship coming through space, but I did quite like their land-speeder though and I’d like to have one. Like most futurists, I get asked about flying cars every week.

Let’s dispose of pedantry first. Flying cars do exist. Some are basically vertical take off planes without the wings, using directed air jets to stay afloat and move. I guess you could use a derivative of that to make a kind of land-speeder. The hovercraft is also a bit Landspeedery, but works differently. Hovercraft are OK, but a Landspeeder floats higher off the ground and without the skirt so it it’s no hovercraft. Well, we’ll see.

This morning, well, in the middle of the night, I had an idea, as you do. Usually, ideas I have in bed tend to be total rubbish when inspected in the hard light of day. But this morning I had 3, two great, one not so great, so I can write about that one for free – the others I’ll keep for now. The less great idea is how to make a Star Wars Landspeeder or Marty McFly’s hover board from Back to the Future. Both would be almost silent, with no need for messy skirts, fans, or noisy ducted air jet engines, and could looks like the ones in the films. Or you could employ a designer and make one that looks nice.

Patrick Kiger reliably informs me that you can’t do that.

http://blogs.discovery.com/inscider/2013/04/a-real-version-of-marty-mcflys-hoverboard.html

Nice article, good fun, and states more or less the current line on tech. I just beg to differ with its conclusions.

Conventional wisdom says that if it isn’t using noisy ducted air jets or hovercraft skirts, it probably has to be magnetic, as the landspeeder is meant to be anyway, so needs a special metal track. It couldn’t work on a pavement or side-walk. The article above nicely points out that you can’t use magnetic effects to levitate above concrete or asphalt. Or else it has to use anti-gravity and we don’t know how to do that yet.

Well, I pointed out a good while ago with my linear induction bicycle lane idea that you could use a McFly style hoverboard on it. My daughter’s friends were teasing me about futurists and hoverboards – that’s why.

http://timeguide.wordpress.com/2013/01/30/hover-boards/

That would work. It would be totally silent. However, the landspeeder didn’t stay on a linear induction mat laid just under the entire desert surface, did it? That would just be silly. If you had a linear induction mat laid under the entire desert surface, you’d put some sort of horse shoes on your camel and it could just glide everywhere at high speed. You wouldn’t need the landspeeder. (Getting off the track a bit here.)

So, time to explain my idea, and it isn’t anti-gravity:

You can use magnetic levitation to produce a landspeeder or hoverboard that would work on a sidewalk, pavement, road, or even a desert surface. Not water, not the way McFly did anyway. You could also make the hover tanks and everything else that silently hovers near the ground in sci-fi films. And force fields.

But… sand, asphalt and concrete aren’t made of metal.

Graphene is a really good conductor. Expensive still, but give it a few years and it’ll be everywhere. It is a superb material. With graphene, you can make thin tubes, bigger than carbon nanotubes but still small bore. You could use those to make coils around electron pipes, maybe even the pipes themselves. Electron pipes are particle guides along which you can send any kind of charged particles at high speed, keeping them confined using strong magnetic fields, produced by the coils around the pipe, a mini particle accelerator. I originally invented electron pipes as a high bandwidth (at least 10^22bit/s) upgrade for optical fibre, but they have other uses too such as on-chip interconnect, 3d biomimetic microprinting for things like graphene tubes, space elevator rope and others. In this case, they have two uses.

First you’d use a covering of the pipes on the vehicle underside to inject a strong charge flux into the air beneath the hoverboard (if you’re a sci-fi nut, you could store the energy to do this in a supercapacitor and if you’re really twisted you might even call it a flux capacitor, since it will be used in the system to make this electron flux). The result is a highly charged mass of air. Plasma. So what?

Well, you’d also use some rings of these tubes around the periphery of the vehicle to create a very strong wall of magnetic field beneath the vehicle edge. This would keep the charged air from just diffusing. In addition, you’d direct some of them downwards to create a flow of charged air that would act to repel the air inside, further keeping it confined to a higher depth, or altitude, so you could hover quite a distance off the ground.

As a quick but important aside, you should be able to use it for making layered force fields too, (using layers of separated and repelling layers of charged air. They should resist small forces trying to bend them and would certainly disrupt any currents trying to get through. But maybe they would not be mechanically strong ones. So, not strong enough to stop bullets, but enough to stop or severely disrupt charges from basic plasma weaponry, but there aren’t many of them yet so that isn’t much of a benefit. Anyway… back to the future.

Having done this, you’ll hopefully have a cushion of highly charged air under your vehicle, confined within its circumference, and some basic vents could make up for any small losses. I am guessing this air is probably highly conductive, so it could be used to generate both magnetic and electrostatic forces with the fields produced by al those coils and pipes in the vehicle.

So now, you’d basically have a high-tech, silent electromagnetic hovercraft without a skirt to hold the air in, floating above pretty much any reasonably solid surface, that doesn’t even have to be smooth. It wouldn’t even make very much draft so you wouldn’t be sitting in a dust cloud.

Propulsion would be by using a layer of electron pipes around the edge of the vehicle to thrust particles in any direction, so providing an impulse, reaction and hence movement. The forward-facing and side facing pipes would suck in air to strip the charge off with which to feed the charged air underneath. Remember that little air would be escaping so this would still be silent. Think of the surface as a flat sheet that pushes ionised air through quite fast using purely electromagnetic force.

Plan B would be to use the cover of electron pipes on the underside to create a strong downward air flow that would be smoothed and diffused by pipes doing the side cushion bit. Neither would be visible and spoil the appearance, and smooth flow could still be pretty quiet. I prefer plan A. It’s just neater.

There would be a little noise from the air turbulence created as the air flow for propulsion mixes with other air, but with a totally silent source of the air flow. So basically you’d hear some wind but not much else.

Production of the electron pipes is nicely biomimetic. Packing them closely together in the right pattern (basically the pattern they’d assume naturally if you just picked them up) and feeding carbon atoms with the right charge through them at the right intervals could let you 3D print a continuous sheet of graphene or carbon nanotube. Biomimetic since the tube would grow from the base continuously just like grass. You could even produce an extremely tall skyscraper that way. (I used to say 30km as the limit for this, but more recent figures for graphene strength suggest that might be far too conservative and structures up to 600km may be theoretically possible, but that would need a lot cleverer engineering and certainly couldn’t grow the same way).

Could it work. Yes, I think so. I haven’t built a prototype but intuitively it should be feasible. Back to the Future Part 1 takes Marty to Oct 21, 2015. If we really wanted, a really good lab could just about make most and maybe all of this capability by then. On the other hand, Star Wars is set very far away and very long ago, so we’re a bit late for that one.

 

The bright potential future for BT

I left BT in 2007 after 22 years. (For my US readers, BT is Britain’s version of AT&T). Like most employees of most companies, I had a few gripes over the years, but overall, BT was a good company to work for – humane to its staff, while trying to do a good job for both shareholders and customers in a difficult political climate, with pretty sound ethics. It wasn’t perfect, but what company is?

I currently have BT broadband problems, as you do, again, but I still like BT and still keep all my shares, hoping one day they might get back up to what I paid for them. BT holds a unique place in my investments, being the only one I have ever lost money on (well, if I actually sold my shares now I’d lose). But it is a good company, and entirely fixable. My perhaps unjustifiably high regard for the company in spite of any evidence to the contrary doesn’t extend to the board. BT has a lot of excellent and devoted staff, and they are the reason for its survival, I would say very much in spite of it a long history of rubbish CEOs, including Livingstone. (I would exclude Vallance from my rubbish CEO list, I thought he actually did a pretty good job in the circumstances he faced.) As an engineer who could see the vast potential profits from relatively small investments that were open to a decent sized IT company, they all seemed incompetent to me, determined to ignore those potential markets and investing stupidly in others but focusing mainly on cost cutting as the only tool they could really understand. I don’t think any BT CEO since 1985 has deserved their grade or pay. BT gives its staff appraisals, and if I was his boss, I’d have given Livingstone 3 out of 10. At least now he’s in government, he will just be one incompetent among many so he will blend in just fine.

I won’t bother with the details of mistakes made. They are history. The future could still be bright if the new CEO is any good. Sadly, I don’t know Patterson. He joined the board after I left and I had no contact with him beforehand so I know nothing about him. I wish him the very best of success, for everyone’s sakes and if he does well, I’ll very happily sing his praises.

(I know it’s easy to say I could have done a far better job than most BT CEOs. I am certain that I could, and I certainly wouldn’t have made most of the huge errors that I saw, but anyone could say that and of course it is unprovable , and in any case,  I knew lots of other employees that would still have done much better than me. I guess it is a bit like US presidents. With 300 million people to pick from, you really have to wonder how the hell some of them ever got elected.)

So, what should BT do now? I declare my financial interests. I have a few shares, and one day if I am still alive they’ll give me a pension, and I remain a customer, so I do really want them to flourish, but otherwise I have had no financial exchanges with BT since I left in 2007.

A lot of the potential for BT has existed for a long time, and it is proof of previous CEO incompetence that it remains mostly untapped. Other areas are quite new.

There are a few valuable assets that BT makes too little use of to date. One is trust. BT has always achieved a very high trust rating from customers. Sure, they might whine about occasional lousy customer service or call centre delays, but mostly they still trust BT. Technically, customers assume their kit will work pretty reliably and they will eventually fix it with only modest annoyance when it fails. That’s better than it sounds compared to a lot of companies (Hotpoint, British Gas and O2 to name three at the very top of my most recent customer service hate list). They also trust BT on security, again an advantage not to be sniffed at. More importantly, customers trust it morally. It is quite a nice company. It pays its taxes. It has good old fashioned values and doesn’t do services that are morally questionable except where required to by law. It leans towards the customer’s side on questions of privacy v state surveillance. Again, a whole lot better on several important topical points than many big IT and web companies right now. A decent CEO would make his marketing departments do wonders with those advantages.

BT’s main physical asset is a very widespread network, much of which is fibre. But is has seriously floundered on decent speed broadband roll-out for badly miscalculated economic reasons and has ended up losing large numbers of customers onto mobile and other broadband providers. Firstly, it has to fix that by greatly accelerating its roll-out of fibre to cover the entire population within towns and suburbs. Further than that, it can plead poverty to government to extract subsidies for uneconomic roll-outs in some country areas, and fob others off with custom solutions. How close the fibre actually gets to the end customer is not important and there are many feasible architectural solutions. The data rate the customer gets is important.

The data rates it needs to provide via that fibre must be at least 50Mbit/s, which I calculated a long time ago is the latent demand of an average household today. It must be ready to increase those basic rates quickly through 100Mbit/s in 2015 into Gbits/s soon after.

It should by default provide high speed wireless from all of those homes into the nearby area. This will allow serious competition with mobile companies, especially since many customers carry tablets with only wireless LAN access. Those tablets and many smartphones rely on cloud provision for many services such as photo, video and music storage, as well as download services such as TV on demand. Decent wireless rates in the vicinity of most homes and business properties would make fairly ubiquitous broadband a reality, with none of the tiny date rate limits and poor connections offered by mobile operators. (As an aside, not doing that ages ago instead of crippling the company with the costs of unnecessary 3G licenses was one of the big errors I mentioned).

With high speed ubiquitous access, and still loads of building space to place storage and servers, BT could be a first class cloud provider (as Bonfield should have understood, coming from a computing company in the days when the cloud was still called distributed computing and computing on demand). Its engineers have understood cloud technology principles since the 80s, but it has never really invested in it properly. Now that other companies are threatening to put in their own access to their own clouds, BT is vulnerable to attack if it doesn’t quickly seize the opportunity by the throat. This may well become another missed opportunity for BT.

Another one (that CEO Heiffer should have understood, coming as he did from the finance world) is banking. BT manages to charge profitably on calls that cost just a few pence. Micro-payments is resurfacing once again as a valuable service. So far, no company has succeeded in delivering an acceptable micro-payments service but BT has the geographic coverage and technical skill to pull it off. It could go further and do proper full-service community banking. Again, a huge advantage has fallen into its lap thanks to the demise of trust in conventional banks. If any company could make community based banking work, BT could. The political climate is very favourable to get appropriate regulatory consent, society is ready and even eager, and the technology is available and proven with which to make it. Trust is the magic extra ingredient that BT has more of than other players.

Cloud financing, buying and other community based enterprises are all up-and-coming now, drawing from social and business versions of cloud thinking. Again, the core ideas go back decades. BT has been involved in their debates since over 20 years ago and holds a good hand of cards. It still could help a great deal to stimulate economic redevelopment of the UK by implementing just some of its ideas in this space. It is ironic that Livinsgtone failed to understand this enormous opportunity while he was CEO of BT, yet has now been made Minister of State for Trade and Investment. Why would anyone think he will suddenly understand now?

BT could also develop some of its many inventions made at its research labs. In many cases, small development costs are all that should be needed to generate large incomes. BT’s policy for ages has been to starve any forward looking R&D and only feed proven markets. That is no way to grow. Serious R&D investment could reap many times over in rewards. AI, convergence of IT with biotech, sponge nets, augmented reality, novel interfaces, 3D comms, digital bubbles, biomimetics and many others offer potential. Even the railways are open to attack. Conventional rail is still only equivalent to BT’s old circuit-switched lines that it used until the 1970s. A company that has been in front runners for 40 years of packet switching developments ought to be able to apply equivalent thinking to rail and road to gain rich rewards, converging time-wise as it does now with self driving cars, electrics, self organisation, high speed wireless, super-capacitor development and a host of other technologies BT understands well. Here again, rich pickings are available, and BT has one of the best positions to capitalise.

I could go on, but that is enough examples for now. BT has been offered a fresh start with a fresh CEO. If he is even a bit brave he could easily achieve things very far beyond any of his predecessors. As I said, I don’t know him so have no idea if he will be good or bad. Let’s hope he is up to the job and not just another huge disappointment.

Weapons on planes are everyday normality. We can’t ban them all.

I noted earlier that you can make a pretty dangerous Gauss rifle using a few easily available and legal components, and you could make a 3D-printed jig to arrange them for maximum effect. So I suggested that maybe magnets should be banned too.

(Incidentally, the toy ones you see on YouTube etc. typically just use a few magnets and some regular steel balls. Using large Nd magnets throughout with the positions and polarities optimally set would make it much more powerful). 

Now I learn that a US senator (Leland Yee of San Francisco), HT Dave Evans for the link http://t.co/REt2o9nF4t, wants 3D printers to be regulated somehow, in case they are used to make guns. That won’t reduce violence if you can easily acquire or make lethal weapons that are perfectly legal without one. On the ground, even highly lethal kitchen knives and many sharp tools aren’t licensed. Even narrowing it down to planes, there is quite a long list of potentially dangerous things you are still very welcome to take on board and are totally legal, some of which would be very hard to ban, so perhaps we should concentrate more on defence and catching those who wish us harm.

Here are some perfectly legal weapons that people carry frequently with many perfectly benign uses:

Your fingers. Fingernails particularly can inflict pain and give a deep scratch, but some people can blind or even kill others with their bare hands;

Sharp pencils or pencils and a sharpener; pens are harder still and can be pretty sharp too;

Hard plastic drink stirrers, 15cm long, that can be sharpened using a pencil sharpener; they often give you these on the flight so you don’t even have to bring them; hard plastics can be almost as dangerous as metals, so it is hard to see why nail files are banned and drinks stirrers and plastic knives aren’t;

CDs or DVDs, which can be easily broken to make sharp blades; I met a Swedish ex-captain once who said he always took one on board in his jacket pocket, just in case he needed to tackle a terrorist.

Your glasses. You can even take extra pairs if the ones you’re wearing are needed for you to see properly. Nobody checks the lenses to make sure the glass isn’t etched for custom breaking patterns, or whether the lenses can be popped out, with razor-sharp edges. They also don’t check that the ends of the arms don’t slide off. I’m sure Q could do a lot with a pair of glasses.

Rubber bands, can be used to make catapults or power other projectile weapons, and many can be combined to scale up the force;

Paperclips, some of which are pretty large and thick wire;

Nylon cord, which can be used dangerously in many ways. Nylon paracord can support half a ton but be woven into nice little bracelets, or shoelaces for that matter. Thin nylon cord is an excellent cutting tool.

Plastic zip ties (cable ties), the longer ones especially can be lethally used.

Plastic bags too can be used lethally.

All of these are perfectly legal but can be dangerous in the wrong hands. I am sure you can think of many others.

Amusingly, given the Senator’s proposed legislation, you could currently probably take on board a compact 3d printer to print any sharps you want, or a Liberator if you have one of the templates, and I rather expect many terrorist groups have a copy – and sometimes business class seats helpfully have an electrical power supply. I expect you might draw attention if you used one though.

There are lots of ways of storing energy to be released suddenly, a key requirement in many weapons. Springs are pretty good at that job. Many devices we use everyday like staple guns rely on springs that are compressed and then suddenly release all their force and energy when the mechanism passes a trigger point. Springs are allowed on board. It is very easy to design weapons based on accumulating potential energy across many springs that can then all simultaneously release them. If I can dream some up easily, so can a criminal. It’s also easy to invent mechanisms for self assembly of projectiles during flight, so parts of a projectile can be separately accelerated.

Banned devices that you could smuggle through detectors are also numerous.  High pressure gas reservoirs could easily be made using plastics or resins and could be used for a wide variety of pneumatic projectile weapons and contact or impact based stun weapons. Again, precision release mechanism could be designed for 3D printing at home, but a 3D printer isn’t essential, there are lots of ways of solving the engineering problems.

I don’t see how regulating printers would make us safer. After hundreds of thousands of years, we ought to know by now that if someone is intent on harming someone else, there is a huge variety of  ways of doing so, using objects or tools that are essential in everyday life and some that don’t need any tools at all, just trained hands.

Technology comes and goes, but nutters, criminals, terrorists and fanatics are here to stay. Only the innocent suffer the inconvenience of following the rules. It’s surely better to make less vulnerable systems.

Technology Convergence – What’s your Plan? Guest post by Rohit Talwar

Rohit is CEO of Fastfuture and a long-standing friend as well as an excellent futurist. He and I used to do a joint newsletter, and we have started again. Rohit sends it out to his mailing list as a proper newletter and because I don’t use mailing lists, I guest post it here. I’ll post my bit immediately after this one. I’m especially impressed since his bit ticks almost as many filing category boxes as it uses words.

Here is Rohit’s piece:

Technology Convergence – What’s your Plan?

I have just returned from South Korea where I was delivering a keynote speech to a cross-industry forum on how to prepare for and benefit from the opportunities arising from industry convergence. South Korea has made a major strategic commitment starting with government and running through the economy to be a leader in exploiting the potential opportunities arising from the convergence of industries made possible by advances in a range of disciplines. These include information and communications technology, biological and genetic sciences, energy and environmental sciences, cognitive science, materials science and nanotechnology.  From environmental monitoring, smart cars, and intelligent grids through to adaptive bioengineered materials and clothing-embedded wearable sensor device that monitor our health on a continuous basis – the potential is vast.

What struck me about the situation in Korea was how the opportunity is being viewed as a central component of the long-term future of Korea’s economy and how this is manifested in practice. Alongside a national plan, a government sponsored association has been established to drive and facilitate cross-industry collaboration to achieve convergence. In addition to various government-led support initiatives, a range of conferences are being created to help every major sector of the economy understand, explore, act on and realise the potential arising out of convergence.

I am fortunate to get the opportunity to visit 20-25 countries a year across all six continents and get to study and see a lot of what is happening to create tomorrow’s economy. Whilst my perspective is by no means complete, I am not aware of any country where such a systematic and rigorous approach is being taken to driving industry convergence. Those who study Korea know that this approach is nothing new for them – long term research and strategic planning are acknowledged to have played a major role in the evolution of its knowledge economy and rise of Korea and its technology brands on the global stage. Coming from the UK, where it seems that long term thinking and national policy are now long lost relatives, I wonder why it is that so few countries are willing to or capable of taking such a strategic approach.

Rohit on the Road

In the next few months Rohit will delivering speeches in Oslo, Paris, Vilnius, Warsaw, Frankfurt, Helsinki, Denver, Las Vegas, Oman, Leeds and London. Topics to be covered include human enhancement, the future of professional services, the future of HR, transformational forces in business, global drivers of change, how smart businesses create the future, the future technology timeline, the future of travel and tourism, the future of airlines and airports and the future of education. If you would like to arrange a meeting with Rohit in one of these cities or are interested in arranging a presentation or workshop for your organisation, please contact rohit@fastfuture.com