Category Archives: technology

The future of biometric identification and authentication

If you work in IT security, the first part of this will not be news to you, skip to the section on the future. Otherwise, the first sections look at the current state of biometrics and some of what we already know about their security limitations.

Introduction

I just read an article on fingerprint recognition. Biometrics has been hailed by some as a wonderful way of determining someone’s identity, and by others as a security mechanism that is far too easy to spoof. I generally fall in the second category. I don’t mind using it for simple unimportant things like turning on my tablet, on which I keep nothing sensitive, but so far I would never trust it as part of any system that gives access to my money or sensitive files.

My own history is that voice recognition still doesn’t work for me, fingerprints don’t work for me, and face recognition doesn’t work for me. Iris scan recognition does, but I don’t trust that either. Let’s take a quick look at conventional biometrics today and the near future.

Conventional biometrics

Fingerprint recognition.

I use a Google Nexus, made by Samsung. Samsung is in the news today because their Galaxy S5 fingerprint sensor was hacked by SRLabs minutes after release, not the most promising endorsement of their security competence.

http://www.telegraph.co.uk/technology/samsung/10769478/Galaxy-S5-fingerprint-scanner-hacked.html

This article says the sensor is used in the user authentication to access Paypal. That is really not good. I expect quite a few engineers at Samsung are working very hard indeed today. I expect they thought they had tested it thoroughly, and their engineers know a thing or two about security. Every engineer knows you can photograph a fingerprint and print a replica in silicone or glue or whatever. It’s the first topic of discussion at any Biometrics 101 meeting. I would assume they tested for that. I assume they would not release something they expected to bring instant embarrassment on their company, especially something failing by that classic mechanism. Yet according to this article, that seems to be the case. Given that Samsung is one of the most advanced technology companies out there, and that they can be assumed to have made reasonable effort to get it right, that doesn’t offer much hope for fingerprint recognition. If they don’t do it right, who will?

My own experience with fingerprint recognition history is having to join a special queue every day at Universal Studios because their fingerprint recognition entry system never once recognised me or my child. So I have never liked it because of false negatives. For those people for whom it does work, their fingerprints are all over the place, some in high quality, and can easily be obtained and replicated.

As just one token in multi-factor authentication, it may yet have some potential, but as a primary access key, not a chance. It will probably remain be a weak authenticator.

Face recognition

There are many ways of recognizing faces – visible light, infrared or UV, bone structure, face shapes, skin texture patterns, lip-prints, facial gesture sequences… These could be combined in simultaneous multi-factor authentication. The technology isn’t there yet, but it offers more hope than fingerprint recognition. Using the face alone is no good though. You can make masks from high-resolution photographs of people, and photos could be made using the same spectrum known to be used in recognition systems. Adding gestures is a nice idea, but in a world where cameras are becoming ubiquitous, it wouldn’t be too hard to capture the sequence you use. Pretending that a mask is alive by adding sensing and then using video to detect any inspection for pulse or blood flows or gesture requests and then to provide appropriate response is entirely feasible, though it would deter casual entry. So I am not encouraged to believe it would be secure unless and until some cleverer innovation occurs.

What I do know is that I set my tablet up to recognize me and it works about one time in five. The rest of the time I have to wait till it fails and then type in a PIN. So on average, it actually slows entry down. False negative again. Giving lots of false negatives without the reward of avoiding false positives is not a good combination.

Iris scans

I was a subject in one of the early trials for iris recognition. It seemed very promising. It always recognized me and never confused me with someone else. That was a very small scale trial though so I’d need a lot more convincing before I let it near my bank account. I saw the problem of replication an iris using a high quality printer and was assured that that couldn’t work because the system checks for the eye being alive by watching for jitter and shining a light and watching for pupil contraction. Call me too suspicious but I didn’t and don’t find that at all reassuring. It won’t be too long before we can make a thin sheet high-res polymer display layered onto a polymer gel underlayer that contracts under electric field, with light sensors built in and some software analysis for real time response. You could even do it as part of a mask with the rest of the face also faithfully mimicking all the textures, real-time responses, blood flow mimicking, gesture sequences and so on. If the prize is valuable enough to justify the effort, every aspect of the eyes, face and fingerprints could be mimicked. It may be more Mission Impossible than casual high street robbery but I can’t yet have any confidence that any part of the face or gestures would offer good security.

DNA

We hear frequently that DNA is a superbly secure authenticator. Every one of your cells can identify you. You almost certainly leave a few cells at the scene of a crime so can be caught, and because your DNA is unique, it must have been you that did it. Perfect, yes? And because it is such a perfect authenticator, it could be used confidently to police entry to secure systems.

No! First, even for a criminal trial, only a few parts of your DNA are checked, they don’t do an entire genome match. That already brings the chances of a match down to millions rather than billions. A chance of millions to one sounds impressive to a jury until you look at the figure from the other direction. If you have 1 in 70 million chance of a match, a prosecution barrister might try to present that as a 70 million to 1 chance that you’re guilty and a juror may well be taken in. The other side of that is that 100 people of the 7 billion would have that same 1 in 70 million match. So your competent defense barrister should  present that as only a 1 in 100 chance that it was you. Not quite so impressive.

I doubt a DNA system used commercially for security systems would be as sophisticated as one used in forensic labs. It will be many years before an instant response using large parts of your genome could be made economic. But what then? Still no. You leave DNA everywhere you go, all day, every day. I find it amazing that it is permitted as evidence in trials, because it is so easy to get hold of someone’s hairs or skin flakes. You could gather hairs or skin flakes from any bus seat or hotel bathroom or bed. Any maid in a big hotel or any airline cabin attendant could gather packets of tissue and hair samples and in many cases could even attach a name to them.  Your DNA could be found at the scene of any crime having been planted there by someone who simply wanted to deflect attention from themselves and get someone else convicted instead of them. They don’t even need to know who you are. And the police can tick the crime solved box as long as someone gets convicted. It doesn’t have to be the culprit. Think you have nothing to fear if you have done nothing wrong? Think again.

If someone wants to get access to an account, but doesn’t mind whose, perhaps a DNA-based entry system would offer good potential, because people perceive it as secure, whereas it simply isn’t. So it might not be paired with other secure factors. Going back to the maid or cabin attendant. Both are low paid. A few might welcome some black market bonuses if they can collect good quality samples with a name attached, especially a name of someone staying in a posh suite, probably with a nice account or two, or privy to valuable information. Especially if they also gather their fingerprints at the same time. Knowing who they are, getting a high res pic of their face and eyes off the net, along with some voice samples from videos, then making a mask, iris replica, fingerprint and if you’re lucky also buying video of their gesture patterns from the black market, you could make an almost perfect multi-factor biometric spoof.

It also becomes quickly obvious that the people who are the most valuable or important are also the people who are most vulnerable to such high quality spoofing.

So I am not impressed with biometric authentication. It sounds good at first, but biometrics are too easy to access and mimic. Other security vulnerabilities apply in sequence too. If your biometric is being measured and sent across a network for authentication, all the other usual IT vulnerabilities still apply. The signal could be intercepted and stored, replicated another time, and you can’t change your body much, so once your iris has been photographed or your fingerprint stored and hacked, it is useless for ever. The same goes for the other biometrics.

Dynamic biometrics

Signatures, gestures and facial expressions offer at least the chance to change them. If you signature has been used, you could start using a new one. You could sign different phrases each time, as a personal one-time key. You could invent new gesture sequences. These are really just an equivalent to passwords. You have to remember them and which one you use for which system. You don’t want a street seller using your signature to verify a tiny transaction and then risk the seller using the same signature to get right into your account.

Summary of status quo

This all brings us back to the most basic of security practice. You can only use static biometrics safely as a small part of a multi-factor system, and you have to use different dynamic biometrics such as gestures or signatures on a one time basis for each system, just as you do with passwords. At best, they provide a simple alternative to a simple password. At worst, they pair low actual security with the illusion of high security, and that is a very bad combination indeed.

So without major progress, biometrics in its conventional meaning doesn’t seem to have much of a future. If it is not much more than a novelty or a toy, and can only be used safely in conjunction with some proper security system, why bother at all?

The future

You can’t easily change your eyes or your DNA or you skin, but you can add things to your body that are similar to biometrics or interact with it but offer the flexibility and replaceability of electronics.

I have written frequently about active skin, using the skin as a platform for electronics, and I believe the various layers of it offer the best potential for security technology.

Long ago, RFID chips implants became commonplace in pets and some people even had them inserted too. RFID variants could easily be printed on a membrane and stuck onto the skin surface. They could be used for one time keys too, changing each time they are used. Adding accelerometers, magnetometers, pressure sensors or even location sensors could all offer ways of enhancing security options. Active skin allows easy combination of fingerprints with other factors.

 

Ultra-thin and uninvasive security patches could be stuck onto the skin, and could not be removed without damaging them, so would offer a potentially valuable platform. Pretty much any kinds and combinations of electronics could be used in them. They could easily be made to have a certain lifetime. Very thin ones could wash off after a few days so could be useful for theme park entry during holidays or for short term contractors. Banks could offer stick on electronic patches that change fundamentally how they work every month, making it very hard to hack them.

Active skin can go inside the skin too, not just on the surface. You could for example have an electronic circuit or an array of micro-scale magnets embedded among the skin cells in your fingertip. Your fingerprint alone could easily be copied and spoofed, but not the accompanying electronic interactivity from the active skin that can be interrogated at the same time. Active skin could measure all sorts of properties of the body too, so personal body chemistry at a particular time could be used. In fact, medical monitoring is the first key development area for active skin, so we’re likely to have a lot of body data available that could make new biometrics. The key advantage here is that skin cells are very large compared to electronic feature sizes. A decent processor or memory can be made around the size of one skin cell and many could be combined using infrared optics within the skin. Temperature or chemical gradients between inner and outer skin layers could be used to power devices too.

If you are signing something, the signature could be accompanied by a signal from the fingertip, sufficiently close to the surface being signed to be useful. A ring on a finger could also offer a voluminous security electronics platform to house any number of sensors, memory and processors.

Skin itself offers a reasonable communications route, able to carry a few Mbit’s of data stream, so touching something could allow a lot of data transfer very quickly. A smart watch or any other piece of digital jewelry or active skin security patch could use your fingertip to send an authentication sequence. The watch would know who you are by constant proximity and via its own authentication tools. It could easily be unauthorized instantly when detached or via a remote command.

Active makeup offer a novel mechanism too. Makeup will soon exist that uses particles that can change color or alignment under electronic control, potentially allowing video rate pattern changes. While that makes for fun makeup, it also allows for sophisticated visual authentication sequences using one-time keys. Makeup doesn’t have to be confined only to the face of course, and security makeup could maybe be used on the forearm or hands. Combining with static biometrics, many-factor authentication could be implemented.

I believe active skin, using membranes added or printed onto and even within the skin, together with the use of capsules, electronic jewelry, and even active makeup offers the future potential to implement extremely secure personal authentication systems. This pseudo-biometric authentication offers infinitely more flexibility and changeability than the body itself, but because it is attached to the body, offers much the same ease of use and constant presence as other biometrics.

Biometrics may be pretty useless as it is, but the field does certainly have a future. We just need to add some bits. The endless potential variety of those bits and their combinations makes the available creativity space vast.

 

 

The future of ‘authenticity’

I recently watched an interesting documentary on the evolution of the British coffee shop market. I then had an idea for a new chain that is so sharp it would scratch your display if I wrote it here, so I’ll keep that secret. The documentary left me with another thought: what’s so special about authentic?

I’ll blog as I think and see where I get to, if anywhere.

Starbucks and Costa sell coffee (for my American readers, Costa is a British version of Starbucks that sells better coffee but seems to agree they should pay tax just like the rest of us - yes I know Starbucks has since reformed a bit, but Costa didn’t have to). Cafe Nero (or is it just Nero?) sells coffee with the ‘Authentic Italian’ experience. I never knew that until I watched the documentary. Such things fly way over my head. If Nero is closest when I want a coffee, I’ll go in, and I know the coffee is nice, just like Costa is nice, but authentic Italian? Why the hell would I care about my coffee being authentic Italian? I don’t go anywhere to get an authentic Danish pastry or an authentic Australian beer, or an authentic Swiss cheese, or an authentic Coke. What has coffee got to do with Italy anyway? It’s a drink. I don’t care how they treat it in any particular country, even if they used to make it nicer there. The basic recipes and techniques for making a decent coffee were spread worldwide decades ago, and it’s the coffee I want. Anyway, we use a Swiss coffee machine with Swiss coffee at home, not Italian, because the Swiss learned from their Italian sub-population and then added their usual high precision materials and engineering and science, they didn’t just take it as gospel that Mama somehow knew best. And because my wife is Swiss. My razor sharp idea isn’t a Swiss coffee chain by the way.

I therefore wonder how many other people who go into Cafe Nero care tuppence whether they are getting an authentic Italian experience, or whether like me they just want a decent coffee and it seems a nice enough place. I can understand the need to get the best atmosphere, ambiance, feel, whatever you want to call it. I can certainly understand that people might want a cake or snack to go with their coffee. I just don’t understand the desire to associate with another country. Italy is fine for a visit; I have nothing against Italians, but neither do I aspire in any way to be or behave Italian.

Let’s think it through a bit. An overall experience is made up of a large number of components: quality and taste of the coffee and snacks, natural or synthetic, healthy or naughty, the staff and the nature of the service, exterior and interior decor and color scheme, mixture of aromas, range of foods, size of cake portion, ages groups and tribal ranges of other customers, comfort of furnishings, lighting levels, wireless LAN access….. There are hundreds of factors. The potential range of combinations  is massive. People can’t handle all that information when they want a coffee, so they need an easy way to decide quickly. ‘Italian’ is really just a brand, reducing the choice stress and Cafe Nero is just adopting a set of typical brand values evolved by an entire nation over centuries. I guess that makes some sense.

But not all that much sense. The Italian bit is a nice shortcut, but once it’s taken out of Italy, whatever it might be, it isn’t in Italy any more. The customers are not expected to order in Italian apart beyond a few silly words to describe the size of the coffee. The customers mostly aren’t Italian, don’t look Italian, don’t chat in Italian and don’t behave Italian. The weather isn’t Italian. The views outside aren’t Italian. The architecture isn’t Italian. So only a few bits of the overall experience can be Italian, the overall experience just isn’t. If only a few bits are authentic, why bother? Why not just extract some insights of what things about ‘Italian’ customers find desirable and then adapt them to the local market? Perhaps what they have done, so if they just drop the pretense, everything would be fine. They can’t honestly say they offer an authentic Italian experience, just a few components of such. I never noticed their supposed Italianness anyway but I hate pretentiousness so now that I understand their offering, it adds up to a slight negative for me. Now that I know they are pretending to be Italian, I will think twice before using them again, but still will if it’s more than a few metres further to another coffee shop. Really, I just want a coffee and possibly a slice of cake, in a reasonably warm and welcoming coffee shop.

Given that it is impossible to provide an ‘authentic Italian experience’ outside of Italy without also simulating every aspect of being in Italy, how authentic could they be in the future? What is the future of authenticity? Could Cafe Nero offer a genuinely Italian experience if that’s what they really wanted? Bring on VR, AR, direct brain links, sensory recording and replay. Total Recall.  Yes they could, sort of. With a full sensory full immersion system, you could deliver an experience that is real and authentic in every sense except that it isn’t real. In 2050, you could sell a seemingly genuinely authentic Italian coffee and cake in a genuinely Italian atmosphere, anywhere. But when they do that, I’ll download that onto my home coffee machine or my digital jewelry. Come to think about it, I could just drink water and eat bread and do all the rest virtually. Full authenticity, zero cost.

This Total Recall style virtual holiday or virtual coffee is fine as far as it goes, but a key problem is knowing that it isn’t real. If you disable that by hypnosis or drugs or surgery or implants or Zombie tech, then your Matrix style world will have some other issues to worry about that are more important. If you don’t, and I’m pretty sure we won’t, then knowing the difference between real and virtual will be all-important. If you know it isn’t real, it pushes a different set of buttons in your brain.

In parallel, as AI gets more and more powerful, a lot of things will be taken over by machines. That adds to the total work pool of man + machine so the economy expands and we’re all better off, if we do it right. We can even restore and improve the environment at the same time. In that world, some roles will still be occupied by humans. People will focus more on human skills, human interaction, crafts, experiences, care, arts and entertainment, sports, and especially offering love and attention. I call it the Care Economy. If you take two absolutely identical items, one provided by a machine and one by another person, the one offered by the person will be more valued, and therefore more valuable – apart from a tiny geek market that specifically wants machines. Don’t believe me? Think of the high price glassware you keep for special occasions and dinner parties. Cut by hand by an expert with years of training. Each glass is slightly different from every other. In one sense it is shoddy workmanship compared to the mass-produced glass, precision made, all identical, that costs 1% as much. The human involvement is absolutely critical. The key human involvement is that you know you couldn’t possibly do it, that it took a highly skilled craftsman. You aren’t buying just the glass, but the skills and attention and dedication and time of the craftsman. In just the same way, you will happily pay a bigger proportion of your bigger future income for other people’s time. Virtual is fine and cheap, but you’ll happily pay far more for the real thing. That will greatly offset the forces pushing towards a totally virtual experience.

This won’t happen overnight, and that brings us to another force that plays out over the same time. When we use a phrase like ‘authentic Italian’, we don’t normally put a date on it. Do we mean contemporary Italy, 1960 Italy, or what? If 1960, then we’d have to use a lot of virtual tech to simulate it. If we mean contemporary, then that includes all the virtual stuff that goes on in Italy too, which is likely pretty much what happens virtually elsewhere. A large proportion of our everyday will be virtual. How can you have authentic virtual? When half of what everyone sees every day isn’t real, you could no more have an authentic Italian coffee bar than an authentic hobbit hole in Middle Earth.

Authenticity is a term that can already only be applied to a subset of properties of a particular component. A food item or a drink could be authentic in terms of its recipe and taste, origin and means of production of the ingredients, perhaps even served by an Italian, but the authenticity of the surrounding context is doomed to be more and more limited. Does it matter though? I don’t think so.

The more I think about it, the less I care if it is in any way authentic. I want a pleasing product served by pleasant human staff in a pleasant atmosphere. I care about the various properties and attributes in an absolute sense, and I also care whether they are provided by human or machine, but the degree to which they mimic some particular tradition really doesn’t add any value for me. I am very happy to set culture free to explore the infinite potential of imagination and make an experience as enjoyable as possible.  Authenticity is just a labelled cage, and we’re better if it is unlocked. I want real pleasure, not pretend pleasure, but authenticity is increasingly becoming a pretense.

Oh, my razor sharp idea? As I said, it’s secret.

 

 

WMDs for mad AIs

We think sometimes about mad scientists and what they might do. It’s fun, makes nice films occasionally, and highlights threats years before they become feasible. That then allows scientists and engineers to think through how they might defend against such scenarios, hopefully making sure they don’t happen.

You’ll be aware that a lot more talk of AI is going on again now. It does seem to be picking up progress finally. If it succeeds well enough, a lot more future science and engineering will be done by AI than by people. If genuinely conscious, self-aware AI, with proper emotions etc becomes feasible, as I think it will, then we really ought to think about what happens when it goes wrong. (Sci-fi computer games producers already do think that stuff through sometimes – my personal favorite is Mass Effect). We will one day have some insane AIs. In Mass Effect, the concept of AI being shackled is embedded in the culture, thereby attempting to limit the damage it could presumably do. On the other hand, we have had Asimov’s laws of robotics for decades, but they are sometimes being ignored when it comes to making autonomous defense systems. That doesn’t bode well. So, assuming that Mass Effect’s writers don’t get to be in charge of the world, and instead we have ideological descendants of our current leaders, what sort of things could an advanced AI do in terms of its chosen weaponry?

Advanced AI

An ultra-powerful AI is a potential threat in itself. There is no reason to expect that an advanced AI will be malign, but there is also no reason to assume it won’t be. High level AI could have at least the range of personality that we associate with people, with a potentially greater  range of emotions or motivations, so we’d have the super-helpful smart scientist type AIs but also perhaps the evil super-villain and terrorist ones.

An AI doesn’t have to intend harm to be harmful. If it wants to do something and we are in the way, even if it has no malicious intent, we could still become casualties, like ants on a building site.

I have often blogged about achieving conscious computers using techniques such as gel computing and how we could end up in a terminator scenario, favored by sci-fi. This could be deliberate act of innocent research, military development or terrorism.

Terminator scenarios are diverse but often rely on AI taking control of human weapons systems. I won’t major on that here because that threat has already been analysed in-depth by many people.

Conscious botnets could arrive by accident too – a student prank harnessing millions of bots even with an inefficient algorithm might gain enough power to achieve high level of AI. 

Smart bacteriaBacterial DNA could be modified so that bacteria can make electronics inside their cell, and power it. Linking to other bacteria, massive AI could be achieved.

Zombies

Adding the ability to enter a human nervous system or disrupt or capture control of a human brain could enable enslavement, giving us zombies. Having been enslaved, zombies could easily be linked across the net. The zombie films we watch tend to miss this feature. Zombies in films and games tend to move in herds, but not generally under control or in a much coordinated way. We should assume that real ones will be full networked, liable to remote control, and able to share sensory systems. They’d be rather smarter and more capable than what we’re generally used to. Shooting them in the head might not work so well as people expect either, as their nervous systems don’t really need a local controller, and could just as easily be controlled by a collective intelligence, though blood loss would eventually cause them to die. To stop a herd of real zombies, you’d basically have to dismember them. More Dead Space than Dawn of the Dead.

Zombie viruses could be made other ways too. It isn’t necessary to use smart bacteria. Genetic modification of viruses, or a suspension of nanoparticles are traditional favorites because they could work. Sadly, we are likely to see zombies result from deliberate human acts, likely this century.

From Zombies, it is a short hop to full evolution of the Borg from Star Trek, along with emergence of characters from computer games to take over the zombified bodies.

Terraforming

Using strong external AI to make collective adaptability so that smart bacteria can colonize many niches, bacterial-based AI or AI using bacteria could engage in terraforming. Attacking many niches that are important to humans or other life would be very destructive. Terraforming a planet you live on is not generally a good idea, but if an organism can inhabit land, sea or air and even space, there is plenty of scope to avoid self destruction. Fighting bacteria engaged on such a pursuit might be hard. Smart bacteria could spread immunity to toxins or biological threats almost instantly through a population.

Correlated traffic

Information waves and other correlated traffic, network resonance attacks are another way of using networks to collapse economies by taking advantage of the physical properties of the links and protocols rather than using more traditional viruses or denial or service attacks. AIs using smart dust or bacteria could launch signals in perfect coordination from any points on any networks simultaneously. This could push any network into resonant overloads that would likely crash them, and certainly act to deprive other traffic of bandwidth.

Decryption

Conscious botnets could be used to make decryption engines to wreck security and finance systems. Imagine how much more so a worldwide collection of trillions of AI-harnessed organisms or devices. Invisibly small smart dust and networked bacteria could also pick up most signals well before they are encrypted anyway, since they could be resident on keyboards or the components and wires within. They could even pick up electrical signals from a person’s scalp and engage in thought recognition, intercepting passwords well before a person’s fingers even move to type them.

Space guns

Solar wind deflector guns are feasible, ionizing some of the ionosphere to make a reflective surface to deflect some of the incoming solar wind to make an even bigger reflector, then again, thus ending up with an ionospheric lens or reflector that can steer perhaps 1% of the solar wind onto a city. That could generate a high enough energy density to ignite and even melt a large area of city within minutes.

This wouldn’t be as easy as using space based solar farms, and using energy direction from them. Space solar is being seriously considered but it presents an extremely attractive target for capture because of its potential as a directed energy weapon. Their intended use is to use microwave beams directed to rectenna arrays on the ground, but it would take good design to prevent a takeover possibility.

Drone armies

Drones are already becoming common at an alarming rate, and the sizes of drones are increasing in range from large insects to medium sized planes. The next generation is likely to include permanently airborne drones and swarms of insect-sized drones. The swarms offer interesting potential for WMDs. They can be dispersed and come together on command, making them hard to attack most of the time.

Individual insect-sized drones could build up an electrical charge by a wide variety of means, and could collectively attack individuals, electrocuting or disabling them, as well as overload or short-circuit electrical appliances.

Larger drones such as the ones I discussed in

http://carbonweapons.com/2013/06/27/free-floating-combat-drones/ would be capable of much greater damage, and collectively, virtually indestructible since each can be broken to pieces by an attack and automatically reassembled without losing capability using self organisation principles. A mixture of large and small drones, possibly also using bacteria and smart dust, could present an extremely formidable coordinated attack.

I also recently blogged about the storm router

http://carbonweapons.com/2014/03/17/stormrouter-making-wmds-from-hurricanes-or-thunderstorms/ that would harness hurricanes, tornados or electrical storms and divert their energy onto chosen targets.

In my Space Anchor novel, my superheroes have to fight against a formidable AI army that appears as just a global collection of tiny clouds. They do some of the things I highlighted above and come close to threatening human existence. It’s a fun story but it is based on potential engineering.

Well, I think that’s enough threats to worry about for today. Maybe given the timing of release, you’re expecting me to hint that this is an April Fool blog. Not this time. All these threats are feasible.

Virtual reality. Will it stick this time?

My first job was in missile design and for a year, the lab I worked in was a giant bra-shaped building, two massive domes joined by a short link-way that had been taken out of use years earlier. The domes had been used by soldiers to fire simulated missiles at simulated planes, and were built in the 1960s. One dome had a hydraulic moving platform to simulate firing from a ship. The entire dome surface was used as a screen to show the plane and missile. The missile canisters held by the soldier were counterweighted with a release mechanism coordinated to the fire instruction and the soldier’s headphones would produce a corresponding loud blast to accompany the physical weight change at launch so that they would feel as full a range of sensation experienced by a real soldier on a real battlefield as possible. The missile trajectory and control interface was simulated by analog computers. So virtual reality may have hit the civilian world around 1990 but it was in use several decades earlier in military world. In 1984, we even considered using our advancing computers to create what we called waking dreaming, simulating any chosen experience for leisure. Jaron Lanier has somehow been credited with inventing VR, and he contributed to its naming, but the fact is he ‘invented’ it several decades after it was already in common use and after the concepts were already pretty well established.

I wrote a paper in 1991 based on BT’s VR research in which I made my biggest ever futurology mistake. I worked out the number crunching requirements and pronounced that VR would overtake TV as an entertainment medium around 2000. I need hardly point out that I was wrong. I have often considered why it didn’t happen the way I thought it would. On one front, we did get the entertainment of messing around in 3D worlds, and it is the basis of almost all computer gaming now. So that happened just fine, it just didn’t use stereo vision to convey immersion. It turned out that the immersion is good enough on a TV or PC screen.

Also, in the early 1990s, just as IT companies may have been considering making VR headsets, the class action law suit became very popular, and some of those were based on very tenuous connections to real cause and effect, and meanwhile some VR headset users were reporting eye strain or disorientation. I imagine that the lawyers in those IT companies would be thinking of every teenager that develops any eye problem suing them just in case it might have been caused in part by use of their headset. Those issues plus the engineering difficulties of commercialising manufacture of good quality displays probably were enough to kill VR.

However, I later enjoyed many a simulator ride at Disney and Universal. One such ride allowed me to design my own roller coaster with twists and loops and then ride it in a simulator. It was especially enjoyable. The pull of simulator rides remains powerful.  Playing a game on an xbox is fun, but doesn’t compare with a simulator ride.

I think much of the future of VR lies in simulators where it already thrives. They can go further still. Tethered simulators can throw you around a bit but can’t manage the same range of experience that you can get on a roller coaster. Imagine using a roller coaster where you see the path ahead via a screen. As your cart reaches the top of a hill, the track apparently collapses and you see yourself hurtling towards certain death. That would scare the hell out of me. Combining the g-forces that you can get on a roller coaster with imaginative visual effects delivered via a headset would provide the ultimate experience.

Compare that with using a nice visor on its own. Sure, you can walk around an interesting object like a space station, or enjoy more immersive gaming, or you can co-design molecules. That sort of app has been used for many years in research labs anyway. Or you can train people in health and safety without exposing them to real danger. But where’s the fun? Where’s the big advantage over TV-based gaming? 3D has pretty much failed yet again for TV and movies, and hasn’t made much impact in gaming yet. Do we really think that adding a VR headset will change it all, even though 3D glasses didn’t?

I was a great believer in VR. With the active contact lens, it can be ultra-light-weight and minimally invasive while ultra-realistic. Adding active skin interfacing to the nervous system to convey physical sensation will eventually help too. But unless plain old VR it is accompanied by stimulation of the other senses, just as a simulator does, I fear the current batch of VR enthusiasts are just repeating the same mistakes I made over twenty years ago. I always knew what you could do with it and that the displays would get near perfect one day and I got carried away with excitement over the potential. That’s what caused my error. Beware you don’t make the same one. This could well be just another big flop. I hope it isn’t though.

Drones

Drones (unmanned flying vehicles), are becoming very routine equipment in warfare. They are also making market impacts in policing and sports. I first encountered them in 1981 when I started work in missile design. It was obvious even back then that we couldn’t go on using planes with people on board, if only because they are so easy to shoot down. People can’t withstand very high g forces so planes can’t be as agile as missiles. However, most of the drones used in war so far are not especially agile. This is mainly possible because the enemies they are used against are technologically relatively primitive. Against an enemy with a decent defence system, such as Russians or Chinese, or in another European war, they wouldn’t last so long.

Drones come in many shapes and sizes – large insects, model airplanes, and full size planes. Large ones can carry big missiles and lots of sensors. Small ones can evade detection more easily but can still carry cameras. Some quadcopter variants are being trialled for delivery (e.g. Amazon), and already are popular as toys or for hobbies.

As miniaturisation continues, we will see some that take the shape of clouds too. A swarm of tiny drones could use swarming algorithms to stay together and use very short range comms to act as a single autonomous entity. Rapid dispersal mechanisms could make clouds almost immune to current defence systems too. Tiny drones can’t carry large payloads, but they can carry detectors to identify potential targets, processors to analyse data and comms devices to communicate with remote controllers, and lasers that can mark out confirmed targets for larger drones or missiles so can still be part of a powerful weapon system. The ethics of using remote machines to wage war are finally being discussed at length and in some depth. Personally, I have fewer problems with that than many people. I see it as a natural progression from the first use of a bone or stick to hit someone. A drone isn’t so different from throwing stones. Nobody yet expects machines to be used up to the point of annihilation of an enemy. Once the machines have run their course, people will still end up in face to face combat with each other before surrender comes.

The large military drones carrying missiles may be purely battlefield technology, but we shouldn’t underestimate what could be done with tiny drones. Tiny drones can be very cheap, so there could be a lot of them. Think about it. We have all experienced barbecues ruined by wasps. Wasp sized drones that carry stings or other chemical or biological warfare delivery would be just as irritating and potentially much more lethal, and if they have cloud based image recognition and navigation, there is much that could be done using swarms of them. With self organisation, insect-sized drones could come at a target from lots of directions, making detection almost impossible until the last second. This could become a perfect technology for strategic assassination and terrorism, as well as gang warfare. Tiny drones could eventually be a more dangerous prospect than the large ones making headlines now.

In the UK, non-military drones are being licensed too. The emergency services, utilities and some sport clubs are among the first given licenses. There will be many more. Many companies will want to use them for all sort of reasons. Our skies will soon always have a drone somewhere in the field of view, probably lots eventually. If we were confident hat they would only ever be used for the purpose registered, and that the registration authorities would be supremely competent and informed about risks, then objections would be more about potential noise than invasiveness, but we can be certain that there will be gaping holes in registration competence and misuse of drones once registered. There will also inevitably be illegal use of unregistered drones

This raises strong concerns about privacy, corporate, local government and state surveillance, criminality, heavy handed policing and even state oppression. During the day, you could be being filmed or photographed by lots of airborne cameras and during the night by others using infrared cameras or millimetre wave imaging. Correlation of images with signals from mobile phones and tablets or often even face recognition could tell the viewers who is who, and the pictures could sometimes be cross referenced with those from ground based cameras to provide a full 3d view.

The potential use of drones in crime detection is obvious, but so is the potential for misuse. We recently heard disturbing figures from police chiefs about the levels of misuse of the police uniform, data and equipment, even links to criminal gangs. Amplifying the power available to police without cracking down on misuse would be unhelpful. The last thing we need is criminal gangs with under-the-table access to police quality surveillance drones! But even the drones owned by utilities will need good cameras, and some will have other kinds of sensors. Most will have more power than they need to fly so will be able to carry additional sensor equipment that may have been added without authority. Some abuses are inevitable. Privacy is being undermined from other directions already of course, so perhaps this doesn’t make much difference, just adding another layer of privacy erosion on several that are already established. But there is something about extra video surveillance from the sky that makes it more intrusive. It makes it much harder to hide, and the smaller the drones become, the harder it will get. The fly on the wall could be a spy. The argument that ‘if you have nothing to hide, you have nothing to fear’ holds no merit at all.

Drones are already making headlines, but so far we have only seen their very earliest manifestations. Future headlines will get far more scary.

The future of mining

I did an interview recently on future mining, so I thought I’d blog my thoughts on the subject while they’re all stuck together coherently.

Very briefly, increasing population and wealth will generate higher resource need until the resources needed per person starts to fall at a higher rate, and it will. That almost certainly means a few decades of increasing demand for many resources, with a few exceptions where substitution will impact at a higher rate. Eventually, demand will peak and fall for most resources. Meanwhile, the mining industry can prosper.

Robotics

Robots are already used a lot in mining, but their uses will evolve. Robots have a greater potential range of senses than humans, able to detect whatever sensors are equipped for. That means they can see into rock and analyse composition better than our eyes. AI will improve their decisions. Of course, we’ll still have the self drive vehicles, diggers and the other automation we already expect to see.

If a mine can be fully automated, it may reduce deaths and costs significantly. Robots can also have a rapid speed of reaction as well as AI and advanced sensing, and could detect accidents before they happen. Apart from saving on wages, robots also don’t need expensive health and safety, so that may see lower costs, but at the expense of greater risks with occasional flat robots in an automated mine. The costs of robots can be kept low if most of their intelligence is remote rather than on board. Saving human lives is a benefit that can’t easily be costed. Far better to buy a new machine than to comfort a bereaved family.

Robots in many other mixed mines will need to be maintained, so maybe people’s main role will often be just looking after the machines, and we would still need to ensure safety in that case. That creates a big incentive to make machines that can be maintained by other machines so that full automation can be achieved.

With use of penetrating positioning systems, specialist wanderer bots could tunnel around at will, following a seam, extracting and concentrating useful materials and leave markers for collector bots to gather the concentrates.

NBIC

With ongoing convergence of biotech, nanotech and IT, we should expect a lot of development of various types of bacterial or mechanical microbots, that can get into new places and reduce the costs of recovery, maybe even reopening some otherwise uneconomic mines. Development of bacteria that can transmute materials has already begun, and we should expect that some future mines will depend mainly on a few bucketfuls of bacterial soup to convert and concentrate resources into more easily extracted reserves. Such advanced technology will greatly increase the reserves of material that can economically be extracted. Obviously the higher the price, the more that can be justified on extraction, so advanced technologies will develop faster when we need them, as any shortages start to appear.

Deep Sea

Deep sea mines would provide access to far greater resource pools, limited mainly by the market price for the material. Re-opening other mines as technology improves recovery potential will also help.

Asteroid Mining

Moving away from the Earth, a lot of hype has appeared about asteroid mining and some analyses seem to think that it will impact enormously on the price of scarce materials here on Earth. I think that is oversold as a possibility.  Yes, it will be possible to bring stuff back to Earth, but the costs of landing materials safely would be high and only justified for those with extreme prices.  For traditionally expensive gold or diamonds, actual uses are relatively low and generally have good cheaper substitutes, so if large quantities were shipped back to Earth, prices would still be managed as they already are, with slow trickling onto the market to avoid price collapse. That greatly limits the potential wealth from doing so.

I think it is far more likely that asteroid mining will be focused on producing stuff for needed for construction, travel and living in space, such as space stations, ships, energy collection, habitation, outposts etc. In that case, many of the things mined from asteroids would be things that are cheap here, such as water and iron and other everyday materials. Their value in space might be far higher simply because of the expense of moving them. This last factor suggests that there may be a lot of interest in technologies to move asteroids or change their orbits so the resources end up closer to where they are needed. An asteroid could be mined at great length, with the materials extracted and left on its surface, then waiting until the asteroid is close to the required destination before the materials are collected and dispatched. The alternative that we routinely see in sci-fi, with vast mining ships, is possible, and there will undoubtedly be times they are needed, but surely can’t compete on cost with steering an entire asteroid so it delivers the materials itself.

Population growth and resource need

As human population increases, we’ll eventually also see robot and android population increase, and they might also need resources for their activities. We should certainly factor that into future demand estimates. However, there are also future factors that will reduce the resources needed.

Smarter Construction

More advanced construction techniques, development of smarter materials and use of reactive architecture all mean that less resource is needed for a given amount of building. Exotic materials such as graphene  and carbon nanotubes, boron derivatives, and possibly even plasma in some applications, will all impact on construction and other industries and reduce demand for lots of resources. The carbon derivatives are a double win, since carbon can usefully be extracted from the products of fossil fuel energy production, making cleaner energy at the same time as providing building and fabrication materials. The new carbon materials are a lot stronger than steel, so we may build much higher buildings, making a lower environmental footprint for cities. They are also perfect for making self-driving cars as well as their energy storage, power supply and supporting infrastructure.

IT efficiency v the Greens

Miniaturisation of electronics and IT will continue for decades more. A few cubic millimetres of electronics could easily replace all the electronics owned by a typical family today. Perversely, Greens are trying hard to force a slower obsolescence cycle, not understanding that the faster we get to minimal resource use, the lower the overall environmental impact will be. By prolonging high-resource-use gadgets, even as people get wealthier and can afford to buy more, the demands will increase far beyond what is really necessary of they hadn’t interfered. It is far better for 10 billion people to use a few cubic millimetres each than a few litres. Greens also often want to introduce restrictions on development of other advanced technology, greatly overusing the precautionary principle. Their distrust of science and technology is amazing considering how much it can obviously benefit the environment.

A lot of things can be done virtually too, with no resource use at all, especially displays and interfaces, all of which could share a single common display such as a 0.2 gram active contact lens. A lot of IT can be centralised with greater utilisation, while some can achieve better efficiency by decentralising. We need to apply intelligence to the problem, looking at each bit as part of an overall system instead of in isolation, and looking at the full life cycle as well as the full system.

Substitution will reduce demand for copper, neodymium, lithium

Recycling of some elements will provide more than is needed by a future market because of material substitution, so prices of some could fall, such as copper. Copper in plumbing is already being substituted heavily by plastic. In communications, fibre and mobile are already heavily replacing it. In power cables, it will eventually be substituted by graphene. Similar substitution is likely in many other materials. The primary use of neodymium is in wind turbines and high speed motors. As wind turbines are abandoned and recycled in favour of better energy production techniques, as future wind power can even be based on plastic capacitors that need hardly any metal at all, and as permanent magnets in motors are substituted by superconducting magnets, there may not be much demand for neodymium. Similarly, lithium is in great demand for batteries, but super-capacitors, again possibly using carbon derivatives such as graphene, will substitute greatly for them. Inductive power coupling from inductive mats in a road surface could easily replace most of the required capacity for a car battery, especially as self driving cars will be lighter and closer together, reducing energy demand. Self-driving cars even reduce the number of cars needed as they deter private ownership. So it is a win-win-win for everyone except the mining industry. A small battery or super-cap bank might have little need for lithium. Recycled lithium could be all we need. Recycling will continue to improve through better practice and better tech, and also some rubbish tips could even be mined if we’re desperate. With fewer cars needed, and plastic instead of steel, that also impacts on steel need.

The Greens are the best friends of the mining industry

So provided we can limit Green interference and get on with developing advanced technology quickly, the fall in demand per person (or android) may offset resource need at a higher rate than the population increases. We could use less material in the far future than we do today, even with a far higher average standard of living. After population peaks and starts falling, there could be a rapid price fall as a glut of recycled material appears. That would be a bleak outcome for the mining sector of course. In that case, by delaying that to the best of their ability, it turns out that the Greens are the mining industry’s best friends, useful idiots, ensuring that the markets remain as large as possible for as long as possible, with the maximum environmental impact.

It certainly takes a special restriction of mind to let someone do so much harm to the environment while still believing they occupy the moral high ground!

Carbon industry

Meanwhile, carbon sequestration could easily evolve into a carbon materials industry, in direct competition with the traditional resources sector, with carbon building materials, cables, wires, batteries, capacitors, inductors, electronics, fabrics…..a million uses. Plastics will improve in parallel, often incorporating particles of electronics, sensors, and electronic muscles, making a huge variety of potential smart materials for any kind of building, furniture of gadget. The requirement for concrete, steel, aluminium, copper, and many other materials will eventually drop, even as population and wealth grows.

To conclude, although population increase and wealth increase will generate increasing demand in the short to medium term, and mining will develop rapidly along many avenues, in the longer term, the future will rely far more on recycling and advanced manufacturing techniques, so the demand for raw materials will eventually peak and fall.

I wrote at far greater length about achieving a system-wide sustainable future in my book Total Sustainability, which avoids the usual socialist baggage.

The internet of things will soon be history

I’ve been a full time futurologist since 1991, and an engineer working on far future R&D stuff since I left uni in 1981. It is great seeing a lot of the 1980s dreams about connecting everything together finally starting to become real, although as I’ve blogged a bit recently, some of the grander claims we’re seeing for future home automation are rather unlikely. Yes you can, but you probably won’t, though some people will certainly adopt some stuff. Now that most people are starting to get the idea that you can connect things and add intelligence to them, we’re seeing a lot of overshoot too on the importance of the internet of things, which is the generalised form of the same thing.

It’s my job as a futurologist not only to understand that trend (and I’ve been yacking about putting chips in everything for decades) but then to look past it to see what is coming next. Or if it is here to stay, then that would also be an important conclusion too, but you know what, it just isn’t. The internet of things will be about as long lived as most other generations of technology, such as the mobile phone. Do you still have one? I don’t, well I do but they are all in a box in the garage somewhere. I have a general purpose mobile computer that happens to do be a phone as well as dozens of other things. So do you probably. The only reason you might still call it a smartphone or an iPhone is because it has to be called something and nobody in the IT marketing industry has any imagination. PDA was a rubbish name and that was the choice.

You can stick chips in everything, and you can connect them all together via the net. But that capability will disappear quickly into the background and the IT zeitgeist will move on. It really won’t be very long before a lot of the things we interact with are virtual, imaginary. To all intents and purposes they will be there, and will do wonderful things, but they won’t physically exist. So they won’t have chips in them. You can’t put a chip into a figment of imagination, even though you can make it appear in front of your eyes and interact with it. A good topical example of this is the smart watch, all set to make an imminent grand entrance. Smart watches are struggling to solve battery problems, they’ll be expensive too. They don’t need batteries if they are just images and a fully interactive image of a hugely sophisticated smart watch could also be made free, as one of a million things done by a free app. The smart watch’s demise is already inevitable. The energy it takes to produce an image on the retina is a great deal less than the energy needed to power a smart watch on your wrist and the cost of a few seconds of your time to explain to an AI how you’d like your wrist to be accessorised is a few seconds of your time, rather fewer seconds than you’d have spent on choosing something that costs a lot. In fact, the energy needed for direct retinal projection and associated comms is far less than can be harvested easily from your body or the environment, so there is no battery problem to solve.

If you can do that with a smart watch, making it just an imaginary item, you can do it to any kind of IT interface. You only need to see the interface, the rest can be put anywhere, on your belt, in your bag or in the IT ether that will evolve from today’s cloud. My pad, smartphone, TV and watch can all be recycled.

I can also do loads of things with imagination that I can’t do for real. I can have an imaginary wand. I can point it at you and turn you into a frog. Then in my eyes, the images of you change to those of a frog. Sure, it’s not real, you aren’t really a frog, but you are to me. I can wave it again and make the building walls vanish, so I can see the stuff on sale inside. A few of those images could be very real and come from cameras all over the place, the chips-in-everything stuff, but actually, I don’t have much interest in most of what the shop actually has, I am not interested in most of the local physical reality of a shop; what I am far more interested in is what I can buy, and I’ll be shown those things, in ways that appeal to me, whether they’re physically there or on Amazon Virtual. So 1% is chips-in-everything, 99% is imaginary, virtual, some sort of visual manifestation of my profile, Amazon Virtual’s AI systems, how my own AI knows I like to see things, and a fair bit of other people’s imagination to design the virtual decor, the nice presentation options, the virtual fauna and flora making it more fun, and countless other intermediaries and extramediaries, or whatever you call all those others that add value and fun to an experience without actually getting in the way. All just images directly projected onto my retinas. Not so much chips-in-everything as no chips at all except a few sensors, comms and an infinitesimal timeshare of a processor and storage somewhere.

A lot of people dismiss augmented reality as irrelevant passing fad. They say video visors and active contact lenses won’t catch on because of privacy concerns (and I’d agree that is a big issue that needs to be discussed and sorted, but it will be discussed and sorted). But when you realise that what we’re going to get isn’t just an internet of things, but a total convergence of physical and virtual, a coming together of real and imaginary, an explosion of human creativity,  a new renaissance, a realisation of yours and everyone else’s wildest dreams as part of your everyday reality; when you realise that, then the internet of things suddenly starts to look more than just a little bit boring, part of the old days when we actually had to make stuff and you had to have the same as everyone else and it all cost a fortune and needed charged up all the time.

The internet of things is only starting to arrive. But it won’t stay for long before it hides in the cupboard and disappears from memory. A far, far more exciting future is coming up close behind. The world of creativity and imagination. Bring it on!

Deterring rape and sexual assault

Since writing this a new set of stats has come out (yes, I should have predicted that):

http://www.ons.gov.uk/ons/rel/crime-stats/crime-statistics/focus-on-violent-crime-and-sexual-offences–2012-13/rft-table-2.xls

New technology appears all the time, but it seemed to me that some very serious problems were being under-addressed, such as rape and sexual assault. Technology obviously won’t solve them alone, but I believe it could help to some degree. However, I wanted to understand the magnitude of the problem first, so sought out the official statistics. I found it intensely frustrating task that left me angry that government is so bad at collecting proper data. So although I started this as another technology blog, it evolved and I now also discuss the statistics too, since poor quality data collection and communication on such an important issue as rape is a huge problem in itself. That isn’t a technology issue, it is one of government competence.

Anyway, the headline stats are that:

1060 rapes of women and 522 rapes of girls under 16 resulted in court convictions. A third as many attempted rapes also resulted in convictions.

14767 reports of rapes or attempted rapes (typically 25%) of females were initially recorded by the police, of which 33% were against girls under 16.

The Crime Survey for England and Wales estimates that 69000 women claim to have been subjected to rape or attempted rape.

I will discuss the stats further after I have considered how technology could help to reduce rape, the original point of the blog.

This is a highly sensitive area, and people get very upset with any discussion of rape because of its huge emotional impact. I don’t want to upset anybody by misplacing blame so let me say very clearly:

Rape or sexual assault are never a victim’s fault. There are no circumstances under which it is acceptable to take part in any sexual act with anyone against their will. If someone does so, it is entirely their fault, not the victim’s. People should not have to protect themselves but should be free to do as they wish without fear of being raped or sexually assaulted. Some people clearly don’t respect that right and rapes and sexual assaults happen. The rest of us want fewer people to be raped or assaulted and want more guilty people to be convicted. Technology can’t stop rape, and I won’t suggest that it can, but if it can help reduce someone’s chances of becoming a victim or help convict a culprit, even in just some cases, that’s progress.  I just want to do my bit to help as an engineer. Please don’t just think up reasons why a particular solution is no use in a particular case, think instead how it might help in a few. There are lots of rapes and assaults where nothing I suggest will be of any help at all. Technology can only ever be a small part of our fight against sex crime.

Let’s start with something we could easily do tomorrow, using social networking technology to alert potential victims to some dangers, deter stranger rape or help catch culprits. People encounter strangers all the time – at work, on transport, in clubs, pubs, coffee bars, shops, as well as dark alleys and tow-paths. In many of these places, we expect IT infrastructure, communications, cameras, and people with smartphones. 

Social networks often use location and some apps know who some of the people near you are. Shops are starting to use face recognition to identify regular customers and known troublemakers. Videos from building cameras are already often used to try to identify potential suspects or track their movements. Suppose in the not-very-far future, a critical mass of people carried devices that recorded the data of who was near them, throughout the day, and sent it regularly into the cloud. That device could be a special purpose device or it could just be a smartphone with an app on it. Suppose a potential victim in a club has one. They might be able to glance at an app and see a social reputation for many of the people there. They’d see that some are universally considered to be fine upstanding members of the community, even by previous partners, who thought they were nice people, just not right for them. They might see that a few others have had relationships where one or more of their previous partners had left negative feedback, which may or may not be justified. The potential victim might reasonably be more careful with the ones that have dodgy reputations, whether they’re justified or not, and even a little wary of those who don’t carry such a device. Why don’t they carry one? Surely if they were OK, they would? That’s what critical mass does. Above a certain level of adoption, it would rapidly become the norm. Like any sort of reputation, giving someone a false or unjustified rating would carry its own penalty. If you try to get back at an ex by telling lies about them, you’d quickly be identified as a liar by others, or they might sue you for libel. Even at this level, social networking can help alert some people to potential danger some of the time.

Suppose someone ends up being raped. Thanks to the collection of that data by their device (and those of others) of who was where, when, with whom, the police would more easily be able to identify some of the people the victim had encountered and some of them would be able to identify some of the others who didn’t carry such a device. The data would also help eliminate a lot of potential suspects too. Unless a rapist had planned in advance to rape, they may even have such a device with them. That might itself be a deterrent from later raping someone they’d met, because  they’d know the police would be able to find them easier. Some clubs and pubs might make it compulsory to carry one, to capitalise on the market from being known as relatively safe hangouts. Other clubs and pubs might be forced to follow suit. We could end up with a society where most of the time, potential rapists would know that their proximity to their potential victim would be known most of the time. So they might behave.

So even social networking such as we have today or could easily produce tomorrow is capable of acting as a deterrent to some people considering raping a stranger. It increases their chances of being caught, and provides some circumstantial evidence at least of their relevant movements when they are.

Smartphones are very underused as a tool to deter rape. Frequent use of social nets such as uploading photos or adding a diary entry into Facebook helps to make a picture of events leading up to a crime that may later help in inquiries. Again, that automatically creates a small deterrence by increasing the chances of being investigated. It could go a lot further though. Life-logging may use a microphone that records a continuous audio all day and a camera that records pictures when the scene changes. This already exists but is not in common use yet – frequent Facebook updates are as far as most people currently get to life-logging. Almost any phone is capable of recording audio, and can easily do so from a pocket or bag, but if a camera is to record frequent images, it really needs to be worn. That may be OK in several years if we’re all wearing video visors with built-in cameras, but in practice and for the short-term, we’re realistically stuck with just the audio.

So life-logging technology could record a lot of the events, audio and pictures leading up to an offense, and any smartphone could do at least some of this. A rapist might forcefully search and remove such devices from a victim or their bag, but by then they might already have transmitted a lot of data into the cloud, possibly even evidence of a struggle that may be used later to help convict. If not removed, it could even record audio throughout the offence, providing a good source of evidence. Smartphones also have accelerometers in them, so they could even act as a sort of black box, showing when a victim was still, walking, running, or struggling. Further, phones often have tracking apps on them, so if a rapist did steal a phone, it may show their later movements up to the point where they dumped it. Phones can also be used to issue distress calls. An emergency distress button would be easy to implement, and could transmit exact location stream audio  to the emergency services. An app could also be set up to issue a distress call automatically under specific circumstances, such at it detecting a struggle or a scream or a call for help. Finally, a lot of phones are equipped for ID purposes, and that will generally increase the proportion of people in a building whose identity is known. Someone who habitually uses their phone for such purposes could be asked to justify disabling ID or tracking services when later interviewed in connection with an offense. All of these developments will make it just a little bit harder to escape justice and that knowledge would act as a deterrent.

Overall, a smart phone, with its accelerometer, positioning, audio, image and video recording and its ability to record and transmit any such data on to cloud storage makes it into a potentially very useful black box and that surely must be a significant deterrent. From the point of view of someone falsely accused, it also could act as a valuable proof of innocence if they can show that the whole time they were together was amicable, or if indeed they were somewhere else altogether at the time. So actually, both sides of a date have an interest in using such black box smartphone technology and on a date with someone new, a sensible precautionary habit could be encouraged to enable continuous black box logging throughout a date. People might reasonably object to having a continuous recording happening during a legitimate date if they thought there was a danger it could be used by the other person to entertain their friends or uploaded on to the web later, but it could easily be implemented to protect privacy and avoiding the risk of misuse. That could be achieved by using an app that keeps the record on a database but gives nobody access to it without a court order. It would be hard to find a good reason to object to the other person protecting themselves by using such an app. With such protection and extra protection, perhaps it could become as much part of safe sex as using a condom. Imagine if women’s groups were to encourage a trend to make this sort of recording on dates the norm – no app, no fun!

These technologies would be useful primarily in deterring stranger rape or date rape. I doubt if they would help as much with rapes that are by someone the victim knows. There are a number of reasons. It’s reasonable to assume that when the victim knows the rapist, and especially if they are partners and have regular sex, it is far less likely that either would have a recording going. For example, a woman may change her mind during sex that started off consensually. If the man forces her to continue, it is very unlikely that there would be anything recorded to prove rape occurred. In an abusive or violent relationship, an abused partner might use an audio recording via a hidden device when they are concerned – an app could initiate a recording on detection of a secret keyword, or when voices are raised, even when the phone is put in a particular location or orientation. So it might be easy to hide the fact that a recording is going and it could be useful in some cases. However, the fear of being caught doing so by a violent partner might be a strong deterrent, and an abuser may well have full access to or even control of their partner’s phone, and most of all, a victim generally doesn’t know they are going to be raped. So the phone probably isn’t a very useful factor when the victim and rapist are partners or are often together in that kind of situation. However, when it is two colleagues or friends in a new kind of situation, which also accounts for a significant proportion of rapes, perhaps it is more appropriate and normal dating protocols for black box app use may more often apply. Companies could help protect employees by insisting that such a black box recording is in force when any employees are together, in or out of office hours. They could even automate it by detecting proximity of their employees’ phones.

The smartphone is already ubiquitous and everyone is familiar with installing and using apps, so any of this could be done right away. A good campaign supported by the right groups could ensure good uptake of such apps very quickly. And it needn’t be all phone-centric. A new class of device would be useful for those who feel threatened in abusive relationships. Thanks to miniaturisation, recording and transmission devices can easily be concealed in just about any everyday object, many that would be common in a handbag or bedroom drawer or on a bedside table. If abuse isn’t just a one-off event, they may offer a valuable means of providing evidence to deal with an abusive partner.

Obviously, black boxes or audio recording can’t stop someone from using force or threats, but it can provide good quality evidence, and the deterrent effect of likely being caught is a strong defence against any kind of crime. I think that is probably as far as technology can go. Self-defense weapons such as pepper sprays and rape alarms already exist, but we don’t allow use of tasers or knives or guns and similar restrictions would apply to future defence technologies. Automatically raising an alarm and getting help to the scene quickly is the only way we can reasonably expect technology to help deal with a rape that is occurring, but that makes the use of deterrence via probably detection all the more valuable. Since the technologies also help protect the innocent against false accusations, that would help in getting their social adoption.

So much for what we could do with existing technology. In a few years, we will become accustomed to having patches of electronics stuck on our skin. Active skin and even active makeup will have a lot of medical functions, but it could also include accelerometers, recording devices, pressure sensors and just about anything that uses electronics. Any part of the body can be printed with active skin or active makeup, which is then potentially part of this black box system. Invisibly small sensors in makeup, on thin membranes or even embedded among skin cells could notionally detect, measure and record any kiss, caress, squeeze or impact, even record the physical sensations experiences by recording the nerve signals. It could record pain or discomfort, along with precise timing, location, and measure many properties of the skin touching or kissing it too. It might be possible for a victim to prove exactly when a rape happened, exactly what it involved, and who was responsible. Such technology is already being researched around the world. It will take a while to develop and become widespread, but it will come.

I don’t want this to sound frivolous, but I suggested many years ago that when women get breast implants, they really ought to have at least some of the space used for useful electronics, and electronics can actually be made using silicone. A potential rapist can’t steal or deactivate a smart breast implant as easily as a phone. If a woman is going to get implants anyway, why not get ones that increase her safety by having some sort of built-in black box? We don’t have to wait a decade for the technology to do that.

The statistics show that many rapes and sexual assaults that are reported don’t result in a conviction. Some accusations may be false, and I couldn’t find any figures for that number, but lack of good evidence is one of the biggest reasons why many genuine rapes don’t result in conviction. Technology can’t stop rapes, but it can certainly help a lot to provide good quality evidence to make convictions more likely when rapes and assaults do occur.

By making people more aware of potentially risky dates, and by gathering continuous data streams when they are with someone, technology can provide an extra level of safety and a good deterrent against rape and sexual assault. That in no way implies that rape is anyone’s fault except the rapist, but with high social support, it could help make a significant drop in rape incidence and a large rise in conviction rates. I am aware that in the biggest category, the technology I suggest has the smallest benefit to offer, so we will still need to tackle rape by other means. It is only a start, but better some reduction than none.

The rest of this blog is about rape statistics, not about technology or the future. It may be of interest to some readers. Its overwhelming conclusion is that official stats are a mess and nobody has a clue how many rapes actually take place.

Summary Statistics

We hear politicians and special interest groups citing and sometimes misrepresenting wildly varying statistics all the time, and now I know why. It’s hard to know the true scale of the problem, and very easy indeed to be confused by  poor presentation of poor quality government statistics in the sexual offenses category. That is a huge issue and source of problems in itself. Although it is very much on the furthest edge of my normal brief, I spent three days trawling through the whole sexual offenses field, looking at the crime survey questionnaires, the gaping holes and inconsistencies in collected data, and the evolution of offense categories over the last decade. It is no wonder government policies and public debate are so confused when the data available is so poor. It very badly needs fixed. 

There are several stages at which some data is available outside and within the justice system. The level of credibility of a claim obviously varies at each stage as the level of evidence increases.

Outside of the justice system, someone may claim to have been raped in a self-completion module of The Crime Survey for England and Wales (CSEW), knowing that it is anonymous, nobody will query their response, no further verification will be required and there will be no consequences for anyone. There are strong personal and political reasons why people may be motivated to give false information in a survey designed to measure crime levels (in either direction), especially in those sections not done by face to face interview, and these reasons are magnified when people filling it in know that their answers will be scaled up to represent the whole population, so that already introduces a large motivational error source. However, even for a person fully intending to tell the truth in the survey, some questions are ambiguous or biased, and some are highly specific while others leave far too much scope for interpretation, leaving gaps in some areas while obsessing with others. In my view, the CSEW is badly conceived and badly implemented. In spite of unfounded government and police assurances that it gives a more accurate picture of crime than other sources, having read it, I have little more confidence in the Crime Survey for England and Wales (CSEW)  as an indicator of actual crime levels than a casual conversation in a pub. We can be sure that some people don’t report some rapes for a variety of reasons and that in itself is a cause for concern. We don’t know how many go unreported, and the CSEW is not a reasonable indicator. We need a more reliable source.

The next stage for potential stats is that anyone may report any rape to the police, whether of themselves, a friend or colleague, witnessing a rape of a stranger, or even something they heard. The police will only record some of these initial reports as crimes, on a fairly common sense approach. According to the report, ‘the police record a crime if, on the balance of probability, the circumstances as reported amount to a crime defined by law and if there is no credible evidence to the contrary‘. 7% of these are later dropped for reasons such as errors in initial recording or retraction. However, it has recently been revealed that some forces record every crime reported whereas others record it only after it has passed the assessment above, damaging the quality of the data by mixing two different types of data together. In such an important area of crime, it is most unsatisfactory that proper statistics are not gathered in a consistent way for each stage of the criminal justice process, using the same criteria in every force.

Having recorded crimes, the police will proceed some of them through the criminal justice system.

Finally, the courts will find proven guilt in some of those cases.

I looked for the data for each of these stages, expecting to find vast numbers of table detailing everything. Perhaps they exist, and I certainly followed a number of promising routes, but most of the roads I followed ended up leading back to the CSEW and the same overview report. This joint overview report for the UK was produced by the  Ministry of Justice, Home Office and the Office for National Statistics in 2013, and it includes a range of tables with selected data from actual convictions through to results of the crime survey of England and Wales. While useful, it omits a lot of essential data that I couldn’t find anywhere else either.

The report and its tables can be accessed from:

http://www.ons.gov.uk/ons/rel/crime-stats/an-overview-of-sexual-offending-in-england—wales/december-2012/index.html

Another site gives a nice infographic on police recording, although for a different period. It is worth looking at if only to see the wonderful caveat: ‘the police figures exclude those offences which have not been reported to them’. Here it is:

http://www.ons.gov.uk/ons/rel/crime-stats/crime-statistics/period-ending-june-2013/info-sexual-offenses.html

In my view the ‘overview of sexual offending’ report mixes different qualities of data for different crimes and different victim groups in such a way as to invite confusion, distortion and misrepresentation. I’d encourage you to read it yourself if only to convince you of the need to pressure government to do it properly. Be warned, a great deal of care is required to work out exactly what and which victim group each refers to. Some figures include all people, some only females, some only women 16-59 years old. Some refer to different crime groups with similar sounding names such as sexual assault and sexual offence, some include attempts whereas others don’t. Worst of all, some very important statistics are missing, and it’s easy to assume another one refers to what you are looking for when on closer inspection, it doesn’t. However, there doesn’t appear to be a better official report available, so I had to use it. I’ve done my best to extract and qualify the headline statistics.

Taking rapes against both males and females, in 2011, 1153 people were convicted of carrying out 2294 rapes or attempted rapes, an average of 2 each. The conviction rate was 34.6% of 6630 proceeded against, from 16041 rapes or attempted rapes recorded by the police. Inexplicably, conviction figures are not broken down by victim gender, nor by rape or attempted rape. 

Police recording stats are broken down well. Of the 16041, 1274 (8%) of the rapes and attempted rapes recorded by the police were against males, while 14767 (92%) were against females. 33% of the female rapes recorded and 70% of male rapes recorded were against children (though far more girls were raped than boys). Figures are also broken down well against ethnicity and age, for offender and victim. Figures elsewhere suggested that 25% of rape attempts are unsuccessful, which combined with the 92% proportion that were rapes of females would indicate 1582 convictions for actual rape of a female, approximately 1060 women and 522 girls, but those figures only hold true if the proportions are similar through to conviction. 

Surely such a report should clearly state such an important figure as the number of rapes of a female that led to a conviction, and not leave it to readers to calculate their own estimate from pieces of data spread throughout the report. Government needs to do a lot better at gathering, categorising, analysing and reporting clear and accurate data. 

That 1582 figure for convictions is important, but it represents only the figure for rapes proven beyond reasonable doubt. Some females were raped and the culprit went unpunished. There has been a lot of recent effort to try to get a better conviction rate for rapes. Getting better evidence more frequently would certainly help get more convictions. A common perception is that many or even most rapes are unreported so the focus is often on trying to get more women to report it when they are raped. If someone knows they have good evidence, they are more likely to report a rape or assault, since one of the main reasons they don’t report it is lack of confidence that the police can do anything.

Although I don’t have much confidence in the figures from the CSEW, I’ll list them anyway. Perhaps you have greater confidence in them. The CSEW uses a sample of people, and then results are scaled up to a representation of the whole population. The CSEW (Crime Survey of England and Wales) estimates that 52000 (95% confidence level of between 39000 and 66000) women between 16 and 59 years old claim to have been victim of actual rape in the last 12 months, based on anonymous self-completion questionnaires, with 69000 (95% confidence level of between 54000 and 85000) women claiming to have been victim of attempted or actual rape in the last 12 months. 

In the same period, 22053 sexual assaults were recorded by the police. I couldn’t find any figures for convictions for sexual assaults, only for sexual offenses, which is a different, far larger category that includes indecent exposure and voyeurism. It isn’t clear why the report doesn’t include the figures for sexual assault convictions. Again, government should do better in their collection and presentation of important statistics.

The overview report also gives the stats for the number of women who said they reported a rape or attempted rape. 15% of women said they told the police, 57% said they told someone else but not the police, and 28% said they told nobody. The report does give the reasons commonly cited for not telling the police: “Based on the responses of female victims in the 2011/12 survey, the most frequently cited were that it would be ‘embarrassing’, they ‘didn’t think the police could do much to help’, that the incident was ‘too trivial/not worth reporting’, or that they saw it as a ‘private/family matter and not police business’.”

Whether you pick the 2110 convictions of rape or attempted rape against a female or the 69000 claimed in anonymous questionnaires, or anywhere in between, a lot of females are being subjected to actual and attempted rapes, and a lot victim of sexual assault. The high proportion of victims that are young children is especially alarming. Male rape is a big problem too, but the figures are a lot lower than for female rape.

Automation and the London tube strike

I was invited on the BBC’s Radio 4 Today Programme to discuss automation this morning, but on Radio 4, studio audio quality is a higher priority than content quality, while quality of life for me is a higher priority than radio exposure, and going into Ipswich greatly reduces my quality of life. We amicably agreed they should find someone else.

There will be more automation in the future. On one hand, if we could totally automate every single job right now, all the same work would be done, so the world would still have the same overall wealth, but then we’d all be idle so our newly free time could be used to improve quality of life, or lie on beaches enjoying ourselves. The problem with that isn’t the automation itself, it is mainly the deciding what else to do with our time and establishing a fair means of distributing the wealth so it doesn’t just stay with ‘the mill owners’. Automation will eventually require some tweaks of capitalism (I discuss this at length in my book Total Sustainability).

We can’t and shouldn’t automate every job. Some jobs are dull and boring or reduce the worker to too low a level of  dignity, and they should be automated as far as we can economically – that is, without creating a greater problem elsewhere. Some jobs provide people with a huge sense of fulfillment or pleasure, and we ought to keep them and create more like them. Most jobs are in between and their situation is rather more complex. Jobs give us something to do with our time. They provide us with social contact. They stop us hanging around on the streets picking fights, or finding ways to demean ourselves or others. They provide dignity, status, self-actualisation. They provide a convenient mechanism for wealth distribution. Some provide stimulation, or exercise, or supervision. All of these factors add to the value of jobs above the actual financial value add.

The London tube strike illustrates one key factor in the social decision on which jobs should be automated. The tube provides an essential service that affects a very large number of people and all their interests should be taken into account.

The impact of potential automation on individual workers in the tube system is certainly important and we shouldn’t ignore it. It would force many of them to find other jobs, albeit in an area with very low unemployment and generally high salaries. Others would have to change to another role within the tube system, perhaps giving assistance and advice to customers instead of pushing buttons on a ticket machine or moving a lever back and forward in a train cab. I find it hard to see how pushing buttons can offer the same dignity or human fulfillment as directly helping another person, so I would consider that sort of change positive, apart from any potential income drop and its onward consequences.

On the other hand, the cumulative impacts on all those other people affected are astronomically large. Many people would have struggled to get to work. Many wouldn’t have bothered. A few would suffer health consequences due to the extra struggle or stress. Perhaps a few small business on the edge of survival will have been killed. Some tourists won’t come back, a lot will spend less. A very large number of businesses and individuals will suffer significantly to let the tube staff make a not very valid protest.

The interests of a small number of people shouldn’t be ignored, but neither should the interests of a large number of people. If these jobs are automated, a few staff would suffer significantly, most would just move on to other jobs, but the future minor miseries caused to millions would be avoided.

Other jobs that should be automated are those where staff are give undue power or authority over others. Most of us will have had bad experiences of jobsworth staff, perhaps including ticketing staff, whose personal attitude is rather less than helpful and whose replacement by a machine would make the world a better place. A few people sadly seem to relish their power to make someone else’s life more difficult. I am pleased to see widespread automation of check-in at airports for that reason too. There were simply too many check-in assistants who gleefully stood in front of big notices saying that rudeness and abuse will not be tolerated from customers, while happily abusing their customers, creating maximum inconvenience and grief to their customers through a jobsworth attitude or couldn’t-care-less incompetence. Where people are in a position of power or authority, where a job offers the sort of opportunities for sadistic self-actualisation some people get by making other people’s lives worse, there is a strong case for automation to avoid the temptation to abuse that power or authority.

As artificial intelligence and robotics increase in scope and ability, many more jobs will be automated, but more often it will affect parts of jobs. Increasing productivity isn’t a bad thing, nor is up-skilling someone to do a more difficult and fulfilling job than they could otherwise manage. Some parts of any job are dull, and we won’t miss them, if they are replaced by more enjoyable activity. In many cases, simple mechanical or information processing tasks will be replaced by those involving people skills, emotional skills. By automating these bits where we are essentially doing machine work, high technology forces us to concentrate on being human. That is no bad thing.

While automation moves people away from repetitive,boring, dangerous, low dignity tasks, or those that give people too much opportunity to cause problems for others, I am all in favour. Those jobs together don’t add up to enough to cause major economic problems. We can find better work for those concerned.

We need to guard against automation going too far though. When jobs are automated faster than new equivalent or better jobs can be created, then we will have a problem. Not from the automation itself, but as a result of the unemployment, the unbalanced wealth distribution, and all the social problems that result from those. We need to automate sustainably.

Human + machine is better than human alone, but human alone is probably better than machine alone.

Will marketing evolve from fiend to friend?

Let’s start with a possibly over-critical view of marketing today, to emphasise the problem that I think needs solved.

Marketing helps to make us aware of new products and services we might want to buy, and provides some well paid jobs. That’s the good side. But marketing saps a lot of money out of the system, skimming off money as it helps move it around – like banking, or car parking fees for shoppers, without giving much back to GDP. It helps companies sell things, but adds costs to the customer that could have been spent on other products and services. We basically pay companies to tell us to buy their products. Of that money, marketers spend far too high a proportion on advertising, which is basically the lazy marketing option. They waste our time as we watch TV, cold call us, send nuisance texts and automated calls, fill our data quotas with video ads, delay downloads, force installation of applications to block them, which all requires extra computer power and maintenance. In short, we pay them to waste a significant proportion of our precious lifetime as well as our money. In fact the financial cost added to every product is dwarfed by the costs of the extra time consumed. All the extra energy used to broadcast ads on TV or the net or the extra paper and bleach and ink to put them in magazines has an enormous environmental impact too. Advertising consumes a huge amount of resources but on a per-advert basis is very ineffective at making us buy. Google makes a fortune from UK companies for its adverts but by diverting the ad sales through Ireland, manages to avoid paying UK tax, therefore pulling off an excellent vampire impression, dressing stylish and looking cool while sucking the lifeblood from industry. By using up so much air time and online bandwidth advertising directly impedes productive uses. On current form, because of excessive reliance on the lazy option, marketers are more fiend than friend.

Marketing has almost become a one-tool profession, too willing to annoy a lot of people to get a few sales. Other components of marketing such as launch events and trade shows are effective and very effectively target those who are likely to be interested, but advertising dwarfs them. Surely there has to be a better way. How do we get marketing to go from fiend to friend?

There is. Pull marketing (if done properly) gives people what they ask for, in the right form, on the right platform, when they ask for it, not what they don’t want, in their faces, all the time. Marketing will evolve from push to pull. However much the marketing industry and advertisers don’t want it to go that way, the potential value for a given spend via pull marketing is so much higher that it is inevitable. Think about it. Only an idiot would employ someone to stand in a doorway blocking the entrance, jumping up and down screaming messages at customers that are actually trying to squeeze past into the store to spend money. That is the difference between push and pull. Unfortunately for marketers, pull needs different skills, so if they don’t have them, they need to retrain or they will eventually be made redundant. They can hide and massage performance figures for a while to hide the ineffectiveness of throwing money down the drain on advertising, but not forever.

People want to know what is available that might be of interest to them. They also want clues to help filter the vast number of potential products down to a manageable choice. They don’t want silence from suppliers, but appropriate and timely information. Branding is aimed at this of course. So is PR. Marketing should be better integrated into ongoing background brand management and public relations, with excellent web sites to provide information when people want it. In that way, people will think of them when they want something, and be able to find the most appropriate product easily.

The task of providing a good website is often allocated to other groups in the company. This is a mistake. The website needs to be extremely well integrated with marketing, PR and brand. In many companies, only the brand people get a strong influence. A potential customer coming to the site from any angle of approach should be faced with extremely easy navigation, immersed in the values and styles they already associate with that brand and assisted as far as possible in what they are trying to do. They should not be bombarded with waves of ads, popups and guano that prevents them from finding what they want. Even if a customer wants to cancel a service, it should be very easy to do so. They are far more likely to come back than if they had to spend ages finding their way through a maze and over barriers to do so.

One way of keeping customers aware without ramming branding message down their throats every day is to integrate into target communities as useful members rather than just seeing them as potential sales. People will always favour their friends, so actually being a friend is a good idea. That shouldn’t be any great revelation. Big companies recognise their relative inability to engage with local communities across their range and harness an army of resellers who can better achieve this local involvement. Social networking provides a good alternative channel to local resellers, but not by using the wasteful and annoying blanket broadcasting that we usually see. It needs to be focused. A reseller wouldn’t waste time cold calling every resident in an area just in case. They focus efforts on targets that are likely to buy. They do the customer’s work for them, identifying those for whom a product is suited and then making contact. Being friends also means giving genuine discounts or exclusive deals to regular customers. It doesn’t mean using them to palm off products that you can’t shift through normal channels.

Lifestyle is an easy route too. Everyone lives differently, but many people reveal their lifestyles via magazines or newspapers that they buy, the places they visit, the things they do, and indeed the products and services they buy. These are obviously high value marketing hooks. People like their existing opinions and attitudes to be reaffirmed. Letting them know they have made a good decision buying your product makes them feel better about the spend. It takes skill to package such affirming in a way that it doesn’t come across like the lazy ‘congratulations on buying this’. Providing favourable reviews, news links and ongoing support would soon become spam if used too much, but sparingly and with appropriate products, it can be useful.

Handled properly, excluding employees with deep staff discounts, the most likely person to buy is someone who has bought from you before, then in second place, someone who has bought equivalent products from a competitor, then someone who has a strong proven interest in that field. Much further away is someone with a casual unspecified interest in the area who just happens to have chosen a particular keyword in a search for any reason whatsoever, and in the very far distance, a total stranger. Yet those last two are where most advertising revenue is spent.

Magazines are an excellent platform to reach targeted groups, but they still need the right approach. An advert in a magazine is more likely to be read than one in a newspaper, but is still likely to be ignored. An article by a trusted writer will be read, and if it mentions your product favourably, the trust in the writer transfers to your product. If they already have it, it builds the feel-good factor. Strongly themed magazines form an important part of the self-selected lifestyle choice, especially since people can only buy a few each month, and this trust and identification with its writers can go far beyond the magazine itself, into their social media and blogs, and soon, into their augmented reality as they wander around. As social media continues to expand into the high street with location-based services, that relationship will grow and winning the favour and approval of writers will become a more important part of marketing. Care is needed of course. Writers will not want to appear partial since that would compromise their trust and their following, but providing exclusive information to them and being honest about defects wins support without threatening impartiality.

As we move into the era of augmented reality, companies are already discovering how to use precise location. Today, location doesn’t just rely on GPS or mobile signal strengths. Image recognition can identify a customer and also exactly where they are, what gestures they are making, even the expression on their face. From those and various other contributing factors is evolving the huge technology field called context. Context is very important in knowing whether to give marketing information at all and if so, how and what. It helps make sure that efforts are spent to make customers want to buy rather then to make them avoid you. A family might be interested in meal vouchers when lunchtime is creeping up. If they’ve just eaten (and paid), the same vouchers may be very unwelcome. If I have just bought a car, the last thing I want is proof that I could have got it or a better one cheaper or had some extras thrown in!

As context technology develops in parallel with positioning, image recognition and augmented reality technology, we will see the air around us essentially digitised, context-sensitive messages pinned to every cubic millimetre of the air. Digital air, or virtual air, will be a major new marketing platform that will offer hugely more potential and value than advertising, with far less cost and customer annoyance. It also offers the potential to bombard customers with unwelcome blanket ads too, so it will be easy for the industry to shoot itself in the foot. Not just easy, but probably inevitable in an industry with some players who think it is smart to deliberately offend people. If that happens, spam filters will block such ads and the potential will be damaged irreparably for everyone.

Word of mouth is one of the best forms of marketing. It is free and natural and goes to companies who provide good products or services. In its simplest form, it is like ebay’s  reputation score on Facebook’s ‘like’ button. At a higher detail level, companies such as Trip Advisor make good income by harnessing the desire people have to tell others about their experiences, good or bad. People will often take guidance from strangers when there is no better alternative, and even though everyone knows some reviews are by friends, competitors or by people who have never even had any experience of the supplier, if there are a lot of strangers giving reviews, the assumed probability is that most will be telling the truth and any bias will be reduced.

Even so, these sites don’t reach the same level of trust that people have in their friends and colleagues. We should expect that to be harnessed far more in the next few years. Innovative Amazon is among the leaders as always, trying to harness this with its ‘I just bought’ social network button. However, I’m not at all interested what my friends have bought. I am far more interested in whether it turned out to be a good or a bad buy, and then only if I am looking for something similar. I certainly don’t want spam every time anyone I know buys anything. A service that lets people review stuff and then allows people to see the reviews, sorted according to social proximity of the reviewer would be far better. If such a site already exists, as it may well do, I am not yet exposed to it, so it has its own marketing to do. So what is needed would be a site like Trip Advisor, but with a social proximity selector that strips away reviews from friends and competitors, restricts to those who have actually purchased, and then sorted according to social proximity with the reader. By linking to your other social network sites, and identifying your friends and colleagues, it would be able to show you any reviews from that group.

Unfortunately, we already see a rising barrier to this kind of development. Too often, companies want access to our social networks to do push marketing to a broader community of relevance, to make personalized ads, and essentially to use our contacts to abuse us even more efficiently. That is an industry destroying its own future prospects. By misusing the potential to do its push marketing today, it is destroying the potential to do far more effective pull marketing tomorrow. It gets a tiny benefit today at the expense of a huge one tomorrow. Most of us have already become wary of allowing access to our contacts lists because we already assume for good reason that they will be abused. Spam filters quickly remove any short-term benefit they may have won, and prevent future mutual benefit.

Most of these areas of future potential share the same threat of destruction by the very industry that can benefit most. Marketing will move from push to pull whether marketers want it to or not. By trying to force the worst practices from the push era onto the areas that offer the best potential in the pull era, they will only ensure that marketing will remain an underachiever. Sadly, a few players today can and probably will ruin it for many tomorrow. The result is that marketers will marginalize themselves, making themselves relatively powerless in a world where they could have been powerful.

People will find what they want, and what their friends think of things, but they will do so via sites and intermediary companies who respect them, respect their privacy, and give them what they want, not what they try hard to avoid getting, not via push marketers. Pull marketing done well will go to new players who have no time for the old practices and values, to people who want to improve the lives of others by helping them make the right purchasing decisions, not trying to make them buy the wrong ones.  The likely mechanism for this is use of social networking sites that have a different business model than selling adverts – perhaps even ones with the primary purpose of helping the community and improving quality of life rather than making money.

Marketing will evolve from fiend to friend. Hopefully it will be by the fiends reforming, rather than simply dying.