Category Archives: technology

The future of bacteria

Bacteria have already taken the prize for the first synthetic organism. Craig Venter’s team claimed the first synthetic bacterium in 2010.

Bacteria are being genetically modified for a range of roles, such as converting materials for easier extraction (e.g. coal to gas, or concentrating elements in landfill sites to make extraction easier), making new food sources (alongside algae), carbon fixation, pollutant detection and other sensory roles, decorative, clothing or cosmetic roles based on color changing, special surface treatments, biodegradable construction or packing materials, self-organizing printing… There are many others, even ignoring all the military ones.

I have written many times on smart yogurt now and it has to be the highlight of the bacterial future, one of the greatest hopes as well as potential danger to human survival. Here is an extract from a previous blog:

Progress is continuing to harness bacteria to make components of electronic circuits (after which the bacteria are dissolved to leave the electronics). Bacteria can also have genes added to emit light or electrical signals. They could later be enhanced so that as well as being able to fabricate electronic components, they could power them too. We might add various other features too, but eventually, we’re likely to end up with bacteria that contain electronics and can connect to other bacteria nearby that contain other electronics to make sophisticated circuits. We could obviously harness self-assembly and self-organisation, which are also progressing nicely. The result is that we will get smart bacteria, collectively making sophisticated, intelligent, conscious entities of a wide variety, with lots of sensory capability distributed over a wide range. Bacteria Sapiens.

I often talk about smart yogurt using such an approach as a key future computing solution. If it were to stay in a yogurt pot, it would be easy to control. But it won’t. A collective bacterial intelligence such as this could gain a global presence, and could exist in land, sea and air, maybe even in space. Allowing lots of different biological properties could allow colonization of every niche. In fact, the first few generations of bacteria sapiens might be smart enough to design their own offspring. They could probably buy or gain access to equipment to fabricate them and release them to multiply. It might be impossible for humans to stop this once it gets to a certain point. Accidents happen, as do rogue regimes, terrorism and general mad-scientist type mischief.

Transhumanists seem to think their goal is the default path for humanity, that transhumanism is inevitable. Well, it can’t easily happen without going first through transbacteria research stages, and that implies that we might well have to ask transbacteria for their consent before we can develop true transhumans.

Self-organizing printing is a likely future enhancement for 3D printing. If a 3D printer can print bacteria (onto the surface of another material being laid down, or as an ingredient in a suspension as the extrusion material itself, or even a bacterial paste, and the bacteria can then generate or modify other materials, or use self-organisation principles to form special structures or patterns, then the range of objects that can be printed will extend. In some cases, the bacteria may be involved in the construction and then die or be dissolved away.

Estimating IoT value? Count ALL the beans!

In this morning’s news:

http://www.telegraph.co.uk/technology/news/11043549/UK-funds-development-of-world-wide-web-for-machines.html

£1.6M investment by UK Technology Strategy Board in Internet-of-Things HyperCat standard, which the article says will add £100Bn to the UK economy by 2020.

Garnter says that IoT has reached the hype peak of their adoption curve and I agree. Connecting machines together, and especially adding networked sensors will certainly increase technology capability across many areas of our lives, but the appeal is often overstated and the dangers often overlooked. Value should not be measured in purely financial terms either. If you value health, wealth and happiness, don’t just measure the wealth. We value other things too of course. It is too tempting just to count the most conspicuous beans. For IoT, which really just adds a layer of extra functionality onto an already technology-rich environment, that is rather like estimating the value of a chili con carne by counting the kidney beans in it.

The headline negatives of privacy and security have often been addressed so I don’t need to explore them much more here, but let’s look at a couple of typical examples from the news article. Allowing remotely controlled washing machines will obviously impact on your personal choice on laundry scheduling. The many similar shifts of control of your life to other agencies will all add up. Another one: ‘motorists could benefit from cheaper insurance if their vehicles were constantly transmitting positioning data’. Really? Insurance companies won’t want to earn less, so motorists on average will give them at least as much profit as before. What will happen is that insurance companies will enforce driving styles and car maintenance regimes that reduce your likelihood of a claim, or use that data to avoid paying out in some cases. If you have to rigidly obey lots of rules all of the time then driving will become far less enjoyable. Having to remember to check the tyre pressures and oil level every two weeks on pain of having your insurance voided is not one of the beans listed in the article, but is entirely analogous the typical home insurance rule that all your windows must have locks and they must all be locked and the keys hidden out of sight before they will pay up on a burglary.

Overall, IoT will add functionality, but it certainly will not always be used to improve our lives. Look at the way the web developed. Think about the cookies and the pop-ups and the tracking and the incessant virus protection updates needed because of the extra functions built into browsers. You didn’t want those, they were added to increase capability and revenue for the paying site owners, not for the non-paying browsers. IoT will be the same. Some things will make minor aspects of your life easier, but the price of that will that you will be far more controlled, you will have far less freedom, less privacy, less security. Most of the data collected for business use or to enhance your life will also be available to government and police. We see every day the nonsense of the statement that if you have done nothing wrong, then you have nothing to fear. If you buy all that home kit with energy monitoring etc, how long before the data is hacked and you get put on militant environmentalist blacklists because you leave devices on standby? For every area where IoT will save you time or money or improve your control, there will be many others where it does the opposite, forcing you to do more security checks, spend more money on car and home and IoT maintenance, spend more time following administrative procedures and even follow health regimes enforced by government or insurance companies. IoT promises milk and honey, but will deliver it only as part of a much bigger and unwelcome lifestyle change. Sure you can have a little more control, but only if you relinquish much more control elsewhere.

As IoT starts rolling out, these and many more issues will hit the press, and people will start to realise the downside. That will reduce the attractiveness of owning or installing such stuff, or subscribing to services that use it. There will be a very significant drop in the economic value from the hype. Yes, we could do it all and get the headline economic benefit, but the cost of greatly reduced quality of life is too high, so we won’t.

Counting the kidney beans in your chili is fine, but it won’t tell you how hot it is, and when you start eating it you may decide the beans just aren’t worth the pain.

I still agree that IoT can be a good thing, but the evidence of web implementation suggests we’re more likely to go through decades of abuse and grief before we get the promised benefits. Being honest at the outset about the true costs and lifestyle trade-offs will help people decide, and maybe we can get to the good times faster if that process leads to better controls and better implementation.

Ultra-simple computing: Part 4

Gel processing

One problem with making computers with a lot of cores is the wiring. Another is the distribution of tasks among the cores. Both of these can be solved with relatively simple architecture. Processing chips usually have a lot of connectors, letting them get data in parallel. But a beam of light can contain rays of millions of wavelengths, far more parallelism than is possible with wiring. If chips communicated using light with high density wavelength division multiplexing, it will solve some wiring issues. Taking another simple step, processors that are freed from wiring don’t have to be on a circuit board, but could be suspended in some sort of gel. Then they could use free space interconnection to connect to many nearby chips. Line of sight availability will be much easier than on a circuit board. Gel can also be used to cool chips.

Simpler chips with very few wired connections also means less internal wiring too. This reduces size still further and permits higher density of suspension without compromising line of sight.

Ripple scheduler

Process scheduling can also be done more simply with many processors. Complex software algorithms are not needed. In an array of many processors, some would be idle while some are already engaged on tasks. When a job needs processed, a task request (this could be as simple as a short pulse of a certain frequency) would be broadcast and would propagate through the array. On encountering an idle processor, the idle processor would respond with an accept response (again this could be a single pulse of another frequency. This would also propagate out as a wave through the array. These two waves may arrive at a given processor in quick succession.

Other processors could stand down automatically once one has accepted the job (i.e. when they detect the acceptance wave). That would be appropriate when all processors are equally able. Alternatively, if processors have different capabilities, the requesting agent would pick a suitable one from the returning acceptances, send a point to point message to it, and send out a cancel broadcast wave to stand others down. It would exchange details about the task with this processor on a point to point link, avoiding swamping the system with unnecessary broadcast messages.  An idle processor in the array would thus see a request wave, followed by a number of accept waves. It may then receive a personalized point to point message with task information, or if it hasn’t been chosen, it would just see the cancel wave of . Busy processors would ignore all communications except those directed specifically to them.

I’m not saying the ripple scheduling is necessarily the best approach, just an example of a very simple system for process scheduling that doesn’t need sophisticated algorithms and code.

Activator Pastes

It is obvious that this kind of simple protocol can be used with a gel processing medium populated with a suitable mixture of different kinds of processors, sensors, storage, transmission and power devices to provide a fully scalable self-organizing array that can perform a high task load with very little administrative overhead. To make your smart gel, you might just choose the volume of weight ratios of components you want and stir them into a gel rather like mixing a cocktail. A paste made up in this way could be used to add sensing, processing and storage to any surface just by painting some of the paste onto it.

A highly sophisticated distributed cloud sensor network for example could be made just by painting dabs of paste onto lamp posts. Solar power or energy harvesting devices in the paste would power the sensors to make occasional readings, pre-process them, and send them off to the net. This approach would work well for environmental or structural monitoring, surveillance, even for everyday functions like adding parking meters to lines marking the spaces on the road where they interact with ID devices in the car or an app on the driver’s smartphone.

Special inks could contain a suspension of such particles and add a highly secure electronic signature onto one signed by pen and ink.

The tacky putty stuff that we use to stick paper to walls could use activator paste as the electronic storage and processing medium to let you manage  content an e-paper calendar or notice on a wall.

I can think of lots of ways of using smart pastes in health monitoring, packaging, smart makeup and so on. The basic principle stays the same though. It would be very cheap and yet very powerful, with many potential uses. Self-organising, and needs no set up beyond giving it a job to do, which could come from any of your devices. You’d probably buy it by the litre, keep some in the jar as your computer, and paste the rest of it all over the place to make your skin, your clothes, your work-spaces and your world smart. Works for me.

 

Ultra-simple computing: Part 2

Chip technology

My everyday PC uses an Intel Core-I7 3770 processor running at 3.4GHz. It has 4 cores running 8 threads on 1.4 billion 22nm transistors on just 160mm^2 of chip. It has an NVIDIA GeForce GTX660 graphics card, and has 16GB of main memory. It is OK most of the time, but although the processor and memory utilisation rarely gets above 30%, its response is often far from instant.

Let me compare it briefly with my (subjectively at time of ownership) best ever computer, my Macintosh 2Fx, RIP, which I got in 1991, the computer on which I first documented both the active contact lens and text messaging and on which I suppose I also started this project. The Mac 2Fx ran a 68030 processor at 40MHz, with 273,000 transistors and 4MB of RAM, and an 80MB hard drive. Every computer I’ve used since then has given me extra function at the expense of lower performance, wasted time and frustration.

Although its OS is stored on a 128GB solid state disk, my current PC takes several seconds longer to boot than my Macintosh Fx did – it went from cold to fully operational in 14 seconds – yes, I timed it. On my PC today, clicking a browser icon to first page usually takes a few seconds. Clicking on a word document back then took a couple of seconds to open. It still does now. Both computers gave real time response to typing and both featured occasional unexplained delays. I didn’t have any need for a firewall or virus checkers back then, but now I run tedious maintenance routines a few times every week. (The only virus I had before 2000 was nVir, which came on the Mac2 system disks). I still don’t get many viruses, but the significant time I spend avoiding them has to be counted too.

Going back further still, to my first ever computer in 1981, it was an Apple 2, and only had 9000 transistors running at 2.5MHz, with a piddling 32kB of memory. The OS was tiny. Nevertheless, on it I wrote my own spreadsheet, graphics programs, lens design programs, and an assortment of missile, aerodynamic and electromagnetic simulations. Using the same transistors as the I7, you could make 1000 of these in a single square millimetre!

Of course some things are better now. My PC has amazing graphics and image processing capabilities, though I rarely make full use of them. My PC allows me to browse the net (and see video ads). If I don’t mind telling Google who I am I can also watch videos on YouTube, or I could tell the BBC or some other video provider who I am and watch theirs. I could theoretically play quite sophisticated computer games, but it is my work machine, so I don’t. I do use it as a music player or to show photos. But mostly, I use it to write, just like my Apple 2 and my Mac Fx. Subjectively, it is about the same speed for those tasks. Graphics and video are the main things that differ.

I’m not suggesting going back to an Apple 2 or even an Fx. However, using I7 chip tech, a 9000 transistor processor running 1360 times faster and taking up 1/1000th of a square millimetre would still let me write documents and simulations, but would be blazingly fast compared to my old Apple 2. I could fit another 150,000 of them on the same chip space as the I7. Or I could have 5128 Mac Fxs running at 85 times normal speed. Or you could have something like a Mac FX running 85 times faster than the original for a tiny fraction of the price. There are certainly a few promising trees in the forest that nobody seems to have barked up. As an interesting aside, that 22nm tech Apple 2 chip would only be ten times bigger than a skin cell, probably less now, since my PC is already several months old

At the very least, that really begs the question what all this extra processing is needed for and why there is still ever any noticeable delay doing anything in spite of it. Each of those earlier machines was perfectly adequate for everyday tasks such as typing or spreadsheeting. All the extra speed has an impact only on some things and most is being wasted by poor code. Some of the delays we had 20 and 30 years ago still affect us just as badly today.

The main point though is that if you can make thousands of processors on a standard sized chip, you don’t have to run multitasking. Each task could have a processor all to itself.

The operating system currently runs programs to check all the processes that need attention, determine their priorities, schedule processing for them, and copy their data in and out of memory. That is not needed if each process can have its own dedicated processor and memory all the time. There are lots of ways of using basic physics to allocate processes to processors, relying on basic statistics to ensure that collisions rarely occur. No code is needed at all.

An ultra-simple computer could therefore have a large pool of powerful, free processors, each with their own memory, allocated on demand using simple physical processes. (I will describe a few options for the basic physics processes later). With no competition for memory or processing, a lot of delays would be eliminated too.

More future fashion fun

A nice light hearted shorty again. It started as one on smart makeup, but I deleted that and will do it soon. This one is easier and in line with today’s news.

I am the best dressed and most fashion conscious futurologist in my office. Mind you, the population is 1. I liked an article in the papers this morning about Amazon starting to offer 3D printed bobble-heads that look like you.

See: http://t.co/iFBtEaRfBd.

I am especially pleased since I suggested it over 2 years ago  in a paper I wrote on 3D printing.

http://timeguide.wordpress.com/2012/04/30/more-uses-for-3d-printing/

In the news article, you see the chappy with a bobble-head of him wearing the same shirt. It is obvious that since Amazon sells shirts too, that it won’t be long at all before they send you cute little avatars of you wearing the outfits you buy from them. It starts with bobble-heads but all the doll manufacturers will bring out versions based on their dolls, as well as character merchandise from films, games, TV shows. Kids will populate doll houses with minis of them and their friends.

You could even give one of a friend to them for a birthday present instead of a gift voucher, so that they can see the outfit you are offering them before they decide whether they want that or something different. Over time, you’d have a collection of minis of you and your friends in various outfits.

3D cameras are coming to phones too, so you’ll be able to immortalize embarrassing office party antics in 3D office ornaments. When you can’t afford to buy an outfit or accessory sported by your favorite celeb, you could get a miniature wearing it. Clothing manufacturers may well appreciate the extra revenue from selling miniatures of their best kit.

Sports manufacturers will make replicas of you wearing their kit, doing sporting activities. Car manufacturers will have ones of you driving the car they want you to buy, or you could buy a fleet of miniatures. Holiday companies could put you in a resort hotspot. Or in a bedroom ….with your chosen celeb.

OK, enough.

 

 

Future materials: Variable grip

variable grip

 

Another simple idea for the future. Variable grip under electronic control.

Shape changing materials are springing up regularly now. There are shape memory metal alloys, proteins, polymer gel muscle fibers and even string (changes shape when it gets wet or dries again). It occurred to me that if you make a triangle out of carbon fibre or indeed anything hard, with a polymer gel base, and pull the base together, either the base moves down or the tip will move up. If tiny components this shape are embedded throughout a 3D structure such as a tire (tyre is the English spelling, the rest of this text just uses tire because most of the blog readers are Americans), then tiny spikes could be made to poke through the surface by contracting the polymer gel that forms the base. All you have to do is apply an electric field across it, and that makes the tire surface just another part of the car electronics along with the engine management system and suspension.

Tires that can vary their grip and wear according to road surface conditions might be attractive, especially in car racing, but also on the street. Emergency braking improvement would save lives, as would reduce skidding in rain or ice, and allowing the components to retract when not in use would greatly reduce their rate of wear. In racing, grip could be optimized for cornering and braking and wear could be optimized for the straights.

Fashion

Although I haven’t bothered yet to draw pretty pictures to illustrate, clothes could use variable grip too. Shoes and gloves would both benefit. Since both can have easy contact with skin (shoes can use socks as a relay), the active components could pick up electrical signals associated with muscle control or even thinking. Even stress is detectable via skin resistance measurement. Having gloves or shoes that change grip just by you thinking it would be like a cat with claws that push out when it wants to climb a fence or attack something. You could even be a micro-scale version of Wolverine. Climbers might want to vary the grip for different kinds of rock, extruding different spikes for different conditions.

Other clothes could use different materials for the components and still use the same basic techniques to push them out, creating a wide variety of electronically controllable fabric textures. Anything from smooth and shiny through to soft and fluffy could be made with a single adaptable fabric garment. Shoes, hosiery, underwear and outerwear can all benefit. Fun!

Switching people off

A very interesting development has been reported in the discovery of how consciousness works, where neuroscientists stimulating a particular brain region were able to switch a woman’s state of awareness on and off. They said: “We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness…”

http://www.newscientist.com/article/mg22329762.700-consciousness-onoff-switch-discovered-deep-in-brain.html.

The region of the brain concerned was the claustrum, and apparently nobody had tried stimulating it before, although Francis Crick and Christof Koch had suggested the region would likely be important in achieving consciousness. Apparently, the woman involved in this discovery was also missing some of her hippocampus, and that may be a key factor, but they don’t know for sure yet.

Mohamed Koubeissi and his the team at the George Washington university in Washington DC were investigating her epilepsy and stimulated her claustrum area with high frequency electrical impulses. When they did so, the woman lost consciousness, no longer responding to any audio or visual stimuli, just staring blankly into space. They verified that she was not having any epileptic activity signs at the time, and repeated the experiment with similar results over two days.

The team urges caution and recommends not jumping to too many conclusions. They did observe the obvious potential advantages as an anesthesia substitute if it can be made generally usable.

As a futurologist, it is my job to look as far down the road as I can see, and imagine as much as I can. Then I filter out all the stuff that is nonsensical, or doesn’t have a decent potential social or business case or as in this case, where research teams suggest that it is too early to draw conclusions. I make exceptions where it seems that researchers are being over-cautious or covering their asses or being PC or unimaginative, but I have no evidence of that in this case. However, the other good case for making exceptions is where it is good fun to jump to conclusions. Anyway, it is Saturday, I’m off work, so in the great words of Dr Emmett Brown in ‘Back to the future':  “Well, I figured, what the hell.”

OK, IF it works for everyone without removing parts of the brain, what will we do with it and how?

First, it is reasonable to assume that we can produce electrical stimulation at specific points in the brain by using external kit. Trans-cranial magnetic stimulation might work, or perhaps implants may be possible using injection of tiny particles that migrate to the right place rather than needing significant surgery. Failing those, a tiny implant or two via a fine needle into the right place ought to do the trick. Powering via induction should work. So we will be able to produce the stimulation, once the sucker victim subject has the device implanted.

I guess that could happen voluntarily, or via a court ordered protective device, as a condition of employment or immigration, or conditional release from prison, or a supervision order, or as a violent act or in war.

Imagine if government demands a legal right to access it, for security purposes and to ensure your comfort and safety, of course.

If you think 1984 has already gone too far, imagine a government or police officer that can switch you off if you are saying or thinking the wrong thing. Automated censorship devices could ensure that nobody discusses prohibited topics.

Imagine if people on the street were routinely switched off as a VIP passes to avoid any trouble for them.

Imagine a future carbon-reduction law where people are immobilized for an hour or two each day during certain periods. There might be a quota for how long you are allowed to be conscious each week to limit your environmental footprint.

In war, captives could have devices implanted to make them easy to control, simply turned off for packing and transport to a prison camp. A perimeter fence could be replaced by a line in the sand. If a prisoner tries to cross it, they are rendered unconscious automatically and put back where they belong.

Imagine a higher class of mugger that doesn’t like violence much and prefers to switch victims off before stealing their valuables.

Imagine being able to switch off for a few hours to pass the time on a long haul flight. Airlines could give discounts to passengers willing to be disabled and therefore less demanding of attention.

Imagine  a couple or a group of friends, or a fetish club, where people can turn each other off at will. Once off, other people can do anything they please with them – use them as dolls, as living statues or as mannequins, posing them, dressing them up. This is not an adult blog so just use your imagination – it’s pretty obvious what people will do and what sorts of clubs will emerge if an off-switch is feasible, making people into temporary toys.

Imagine if you got an illegal hacking app and could freeze the other people in your vicinity. What would you do?

Imagine if your off-switch is networked and someone else has a remote control or hacks into it.

Imagine if an AI manages to get control of such a system.

Having an off-switch installed could open a new world of fun, but it could also open up a whole new world for control by the authorities, crime control, censorship or abuse by terrorists and thieves and even pranksters.

 

 

Smart fuse

This maybe exists now but I couldn’t find it right away on Google. It is an idea I had a very long time ago, but with all the stuff coming from Apple and Google now, this would make an easier and cheaper way to make most appliances smart without adding huge cost or locking owners in to a corporate ecosystem.

Most mains powered appliances come with plugs that have fuses in them. Here is a UK plug, pic courtesy of BBC.

fuse

If the fuse in the plug is replaced by a smart fuse that has an internet address, then this presents a means to switch things on and off automatically. A signal could be sent over the mains from a plug-in controller somewhere in the house, or via radio, wireless LAN, even voice command. The appliance therefore becomes capable of being turned on and off remotely at minimal cost.

At slightly higher expense, with today’s miniaturisation levels, smart fuses would be a cheap way of adding other functions. They could contain ROM loaded with software for the appliance, giving security via an easy upgrade that can’t be tampered with. They could also contain timers, sensors, usage meters, and talk to other devices, such as a phone or PC, or enable appliances for cheaper electricity by letting power companies turn them on and off remotely.

There really is no need to add heavily to appliance cost to make it smart. A smart fuse could cost pennies and still do the job.

Future fashion fun – digital eyebrows

I woke in the middle of the night with another idea not worth patenting, and I’m too lazy to do it, so any entrepreneur who’s too lazy to think of ideas can have it, unless someone already has.

If you make an app that puts a picture of an eyebrow on a phone screen and moves it according to some input (e.g voice, touch, or networked control by your friends or venue), you could use phones to do fun eyebrowy type things at parties, concerts, night clubs etc. You need two phones or a midi-sized tablet unless your eyes are very close together. The phones have accelerometers that know which way up they are and can therefore balance the eyebrows in the right positions. So you can make lots of funny expression on people’s faces using your phones.

Not a Facebook-level idea you’ll agree, but I can imagine some people doing it at parties, especially if they are all controlled by a single app, so that everyone’s eyebrows make the same expression.

You could do it for the whole eye/eyebrow, but then of course you can’t see the your friends laughing, since you’re holding a screen in front of your eyes.

You could have actual physical eyebrows that attach to the tops of your glasses, also controlled remotely.

You could use e-ink/e-paper and make small patches to stick on the skin that do the same function, or a headband. Since they don’t need much power, you won’t need big batteries.

You could do the same for your nose or mouth, so that you have a digitally modifiable face controlled by your friends.

I’m already bored.

Future human evolution

I’ve done patches of work on this topic frequently over the last 20 years. It usually features in my books at some point too, but it’s always good to look afresh at anything. Sometimes you see something you didn’t see last time.

Some of the potential future is pretty obvious. I use the word potential, because there are usually choices to be made, regulations that may or may not get in the way, or many other reasons we could divert from the main road or even get blocked completely.

We’ve been learning genetics now for a long time, with a few key breakthroughs. It is certain that our understanding will increase, less certain how far people will be permitted to exploit the potential here in any given time frame. But let’s take a good example to learn a key message first. In IVF, we can filter out embryos that have the ‘wrong’ genes, and use their sibling embryos instead. Few people have a problem with that. At the same time, pregnant women may choose an abortion if they don’t want a child when they discover it is the wrong gender, but in the UK at least, that is illegal. The moral and ethical values of our society are on a random walk though, changing direction frequently. The social assignment of right and wrong can reverse completely in just 30 years. In this example, we saw a complete reversal of attitudes to abortion itself within 30 years, so who is to say we won’t see reversal on the attitude to abortion due to gender? It is unwise to expect that future generations will have the same value sets. In fact, it is highly unlikely that they will.

That lesson likely applies to many technology developments and quite a lot of social ones – such as euthanasia and assisted suicide, both already well into their attitude reversal. At some point, even if something is distasteful to current attitudes, it is pretty likely to be legalized eventually, and hard to ban once the door is opened. There will always be another special case that opens the door a little further. So we should assume that we may eventually use genetics to its full capability, even if it is temporarily blocked for a few decades along the way. The same goes for other biotech, nanotech, IT, AI and any other transhuman enhancements that might come down the road.

So, where can we go in the future? What sorts of splits can we expect in the future human evolution path? It certainly won’t remain as just plain old homo sapiens.

I drew this evolution path a long time ago in the mid 1990s:

human evolution 1

It was clear even then that we could connect external IT to the nervous system, eventually the brain, and this would lead to IT-enhanced senses, memory, processing, higher intelligence, hence homo cyberneticus. (No point in having had to suffer Latin at school if you aren’t allowed to get your own back on it later). Meanwhile, genetic enhancement and optimization of selected features would lead to homo optimus. Converging these two – why should you have to choose, why not have a perfect body and an enhanced mind? – you get homo hybridus. Meanwhile, in the robots and AI world, machine intelligence is increasing and we eventually we get the first self-aware AI/robot (it makes little sense to separate the two since networked AI can easily be connected to a machine such as a robot) and this has its own evolution path towards a rich diversity of different kinds of AI and robots, robotus multitudinus. Since both the AI world and the human world could be networked to the same network, it is then easy to see how they could converge, to give homo machinus. This future transhuman would have any of the abilities of humans and machines at its disposal. and eventually the ability to network minds into a shared consciousness. A lot of ordinary conventional humans would remain, but with safe upgrades available, I called them homo sapiens ludditus. As they watch their neighbors getting all the best jobs, winning at all the sports, buying everything, and getting the hottest dates too, many would be tempted to accept the upgrades and homo sapiens might gradually fizzle out.

My future evolution timeline stayed like that for several years. Then in the early 2000s I updated it to include later ideas:

human evolution 2

I realized that we could still add AI into computer games long after it becomes comparable with human intelligence, so games like EA’s The Sims might evolve to allow entire civilizations living within a computer game, each aware of their existence, each running just as real a life as you and I. It is perhaps unlikely that we would allow children any time soon to control fully sentient people within a computer game, acting as some sort of a god to them, but who knows, future people will argue that they’re not really real people so it’s OK. Anyway, you could employ them in the game to do real knowledge work, and make money, like slaves. But since you’re nice, you might do an incentive program for them that lets them buy their freedom if they do well, letting them migrate into an android. They could even carry on living in their Sims home and still wander round in our world too.

Emigration from computer games into our world could be high, but the reverse is also possible. If the mind is connected well enough, and enhanced so far by external IT that almost all of it runs on the IT instead of in the brain, then when your body dies, your mind would carry on living. It could live in any world, real or fantasy, or move freely between them. (As I explained in my last blog, it would also be able to travel in time, subject to certain very expensive infrastructural requirements.) As well as migrants coming via electronic immortality route, it would be likely that some people that are unhappy in the real world might prefer to end it all and migrate their minds into a virtual world where they might be happy. As an alternative to suicide, I can imagine that would be a popular route. If they feel better later, they could even come back, using an android.  So we’d have an interesting future with lots of variants of people, AI and computer game and fantasy characters migrating among various real and imaginary worlds.

But it doesn’t stop there. Meanwhile, back in the biotech labs, progress is continuing to harness bacteria to make components of electronic circuits (after which the bacteria are dissolved to leave the electronics). Bacteria can also have genes added to emit light or electrical signals. They could later be enhanced so that as well as being able to fabricate electronic components, they could power them too. We might add various other features too, but eventually, we’re likely to end up with bacteria that contain electronics and can connect to other bacteria nearby that contain other electronics to make sophisticated circuits. We could obviously harness self-assembly and self-organisation, which are also progressing nicely. The result is that we will get smart bacteria, collectively making sophisticated, intelligent, conscious entities of a wide variety, with lots of sensory capability distributed over a wide range. Bacteria Sapiens.

I often talk about smart yogurt using such an approach as a key future computing solution. If it were to stay in a yogurt pot, it would be easy to control. But it won’t. A collective bacterial intelligence such as this could gain a global presence, and could exist in land, sea and air, maybe even in space. Allowing lots of different biological properties could allow colonization of every niche. In fact, the first few generations of bacteria sapiens might be smart enough to design their own offspring. They could probably buy or gain access to equipment to fabricate them and release them to multiply. It might be impossible for humans to stop this once it gets to a certain point. Accidents happen, as do rogue regimes, terrorism and general mad-scientist type mischief.

And meanwhile, we’ll also be modifying nature. We’ll be genetically enhancing a wide range of organisms, bringing some back from extinction, creating new ones, adding new features, changing even some of the basic mechanism by which nature works in some cases. We might even create new kinds of DNA or develop substitutes with enhanced capability. We may change nature’s evolution hugely. With a mix of old and new and modified, nature evolves nicely into Gaia Sapiens.

We’re not finished with the evolution chart though. Here is the next one:

human evolution 3

Just one thing is added. Homo zombius. I realized eventually that the sci-fi ideas of zombies being created by viruses could be entirely feasible. A few viruses, bacteria and other parasites can affect the brains of the victims and change their behaviour to harness them for their own life cycle.

See http://io9.com/12-real-parasites-that-control-the-lives-of-their-hosts-461313366 for fun.

Bacteria sapiens could be highly versatile. It could make virus variants if need be. It could evolve itself to be able to live in our bodies, maybe penetrate our brains. Bacteria sapiens could make tiny components that connect to brain cells and intercept signals within our brains, or put signals back in. It could read our thoughts, and then control our thoughts. It could essentially convert people into remote controlled robots, or zombies as we usually call them. They could even control muscles directly to a point, so even if the zombie is decapitated, it could carry on for a short while. I used that as part of my storyline in Space Anchor. If future humans have widespread availability of cordless electricity, as they might, then it is far fetched but possible that headless zombies could wander around for ages, using the bacterial sensors to navigate. Homo zombius would be mankind enslaved by bacteria. Hopefully just a few people, but it could be everyone if we lose the battle. Think how difficult a war against bacteria would be, especially if they can penetrate anyone’s brain and intercept thoughts. The Terminator films looks a lot less scary when you compare the Terminator with the real potential of smart yogurt.

Bacteria sapiens might also need to be consulted when humans plan any transhuman upgrades. If they don’t consent, we might not be able to do other transhuman stuff. Transhumans might only be possible if transbacteria allow it.

Not done yet. I wrote a couple of weeks ago about fairies. I suggested fairies are entirely feasible future variants that would be ideally suited to space travel.

http://timeguide.wordpress.com/2014/06/06/fairies-will-dominate-space-travel/

They’d also have lots of environmental advantages as well as most other things from the transhuman library. So I think they’re inevitable. So we should add fairies to the future timeline. We need a revised timeline and they certainly deserve their own branch. But I haven’t drawn it yet, hence this blog as an excuse. Before I do and finish this, what else needs to go on it?

Well, time travel in cyberspace is feasible and attractive beyond 2075. It’s not the proper real world time travel that isn’t permitted by physics, but it could feel just like that to those involved, and it could go further than you might think. It certainly will have some effects in the real world, because some of the active members of the society beyond 2075 might be involved in it. It certainly changes the future evolution timeline if people can essentially migrate from one era to another (there are some very strong caveats applicable here that I tried to explain in the blog, so please don’t misquote me as a nutter – I haven’t forgotten basic physics and logic, I’m just suggesting a feasible implementation of cyberspace that would allow time travel within it. It is really a cyberspace bubble that intersects with the real world at the real time front so doesn’t cause any physics problems, but at that intersection, its users can interact fully with the real world and their cultural experiences of time travel are therefore significant to others outside it.)

What else? OK, well there is a very significant community (many millions of people) that engages in all sorts of fantasy in shared on-line worlds, chat rooms and other forums. Fairies, elves, assorted spirits, assorted gods, dwarves, vampires, werewolves, assorted furry animals, assorted aliens, dolls,  living statues, mannequins, remote controlled people, assorted inanimate but living objects, plants and of course assorted robot/android variants are just some of those that already exist in principle; I’m sure I’ve forgotten some here and anyway, many more are invented every year so an exhaustive list would quickly become out of date. In most cases, many people already role play these with a great deal of conviction and imagination, not just in standalone games, but in communities, with rich cultures, back-stories and story-lines. So we know there is a strong demand, so we’re only waiting for their implementation once technology catches up, and it certainly will.

Biotech can do a lot, and nanotech and IT can add greatly to that. If you can design any kind of body with almost any kind of properties and constraints and abilities, and add any kind of IT and sensing and networking and sharing and external links for control and access and duplication, we will have an extremely rich diversity of future forms with an infinite variety of subcultures, cross-fertilization, migration and transformation. In fact, I can’t add just a few branches to my timeline. I need millions. So instead I will just lump all these extras into a huge collected category that allows almost anything, called Homo Whateverus.

So, here is the future of human (and associates) evolution, for the next 150 years. A few possible cross-links are omitted for clarity

evolution

I won’t be around to watch it all happen. But a lot of you will.