Category Archives: Society

The Future of IoT – virtual sensors for virtual worlds

I recently acquired a point-and-click thermometer for Futurizon, which gives an instant reading when you point it at something. I will soon know more about the world around me, but any personal discoveries I make are quite likely to be well known to science already. I don’t expect to win a Nobel prize by discovering breeches of the second law of thermodynamics, but that isn’t the point. The thermometer just measures the transmission from a particular point in a particular frequency band, which indicates what temperature it is. It cost about £20, a pretty cheap stimulation tool to help me think about the future by understanding new things about the present. I already discovered that my computer screen doubles as a heater, but I suspected that already. Soon, I’ll know how much my head warms when if think hard, and for the futurology bit, where the best locations are to put thermal IoT stuff.

Now that I am discovering the joys or remote sensing, I want to know so much more though. Sure, you can buy satellites for a billion pounds that will monitor anything anywhere, and for a few tens of thousands you can buy quite sophisticated lab equipment. For a few tens, not so much is available and I doubt the tax man will agree that Futurizon needs a high end oscilloscope or mass spectrometer so I have to set my sights low. The results of this blog justify the R&D tax offset for the thermometer. But the future will see drops in costs for most high technologies so I also expect to get far more interesting kit cheaply soon.

Even starting with the frequent assumption that in the future you can do anything, you still have to think what you want to do. I can get instant temperature readings now. In the future, I may also want a full absorption spectrum, color readings, texture and friction readings, hardness, flexibility, sound absorption characteristics, magnetic field strength, chemical composition, and a full range of biological measurements, just for fun. If Spock can have one, I want one too.

But that only covers reality, and reality will only account for a small proportion of our everyday life in the future. I may also want to check on virtual stuff, and that needs a different kind of sensor. I want to be able to point at things that only exist in virtual worlds. It needs to be able to see virtual worlds that are (at least partly) mapped onto real physical locations, and those that are totally independent and separate from the real world. I guess that is augmented reality ones and virtual reality ones. Then it starts getting tricky because augmented reality and virtual reality are just two members of a cyberspace variants set that runs to more than ten trillion members. I might do another blog soon on what they are, too big a topic to detail here.

People will be most interested in sensors to pick up geographically linked cyberspace. Much of the imaginary stuff is virtual worlds in computer games or similar, and many of those have built-in sensors designed for their spaces. So, my character can detect caves or forts or shrines from about 500m away in the virtual world of Oblivion (yes, it is from ages ago but it is still enjoyable). Most games have some sort of sensors built-in to show you what is nearby and some of its properties.

Geographically linked cyberspace won’t all be augmented reality because some will be there for machines, not people, but you might want to make sensors for it all the same, for many reasons, most likely for navigating it, debugging, or for tracking and identifying digital trespass. The last one is interesting. A rival company might well construct an augmented reality presence that allows you to see their products alongside ones in a physical shop. It doesn’t have to be in a properly virtual environment, a web page is still a location in cyberspace and when loaded, that instance takes on a geographic mapping via that display so it is part of that same trespass. That is legal today, and it started many years ago when people started using Amazon to check for better prices while in a book shop. Today it is pretty ubiquitous. We need sensors that can detect that. It may be accepted today as fair competition, but it might one day be judged as unfair competition by regulators for various reasons, and if so, they’ll need some mechanism to police it. They’ll need to be able to detect it. Not easy if it is just a web page that only exists at that location for a few seconds. Rather easier if it is a fixed augmented reality and you can download a map.

If for some reason a court does rule that digital trespass is illegal, one way of easy(though expensive) way of solving it would be to demand that all packets carry a geographic location, which of course the site would know when the person clicks on that link. To police that, turning off location would need to be blocked, or if it is turned off, sites would not be permitted to send you certain material that might not be permitted at that location. I feel certain there would be better and cheaper and more effective solutions.

I don’t intend to spend any longer exploring details here, but it is abundantly clear from just inspecting a few trees that making detectors for virtual worlds will be a very large and diverse forest full of dangers. Who should be able to get hold of the sensors? Will they only work in certain ‘dimensions’ of cyberspace? How should the watchers be watched?

The most interesting thing I can find though is that being able to detect cyberspace would allow new kinds of adventures and apps. You could walk through a doorway and it also happens to double as a portal between many virtual universes. And you might not be able to make that jump in any other physical location. You might see future high street outlets that are nothing more than teleport chambers for cyberspace worlds. They might be stuffed with virtual internet of things things and not one one of them physical. Now that’s fun.


The future of prying

Prying is one side of the privacy coin, hiding being the other side.

Today, lots of snap-chat photos have been released, and no doubt some people are checking to see if there are any of people they know, and it is a pretty safe bet that some will send links to compromising pics of colleagues (or teachers) to others who know them. It’s a sort of push prying isn’t it?

There is more innocent prying too. Checking out Zoopla to see how much your neighbour got for their house is a little bit nosy but not too bad, or at the extremely innocent end of the line, reading someone’s web page is the sort of prying they actually want some people to do, even if not necessarily you.

The new security software I just installed lets parents check out on their kids online activity. Protecting your kids is good but monitoring every aspect of their activity just isn’t, it doesn’t give them the privacy they deserve and probably makes them used to being snooped on so that they accept state snooping more easily later in life. Every parent has to draw their own line, but kids do need to feel trusted as well as protected.

When adults install tracking apps on their partner’s phones, so they can see every location they’ve visited and every call or message they’ve made, I think most of us would agree that is going too far.

State surveillance is increasing rapidly. We often don’t even think of it as such, For example, when speed cameras are linked ‘so that the authorities can make our roads safer’, the incidental monitoring and recording of our comings and goings collected without the social debate. Add that to the replacement of tax discs by number plate recognition systems linked to databases, and even more data is collected. Also ‘to reduce crime’, video from millions of CCTV cameras is also stored and some is high enough quality to be analysed by machine to identify people’s movements and social connectivity. Then there’s our phone calls, text messages, all the web and internet accesses, all these need to be stored, either in full or at least the metadata, so that ‘we can tackle terrorism’. The state already has a very full picture of your life, and it is getting fuller by the day. When it is a benign government, it doesn’t matter so much, but if the date is not erased after a short period, then you need also to worry about future governments and whether they will also be benign, or whether you will be one of the people they want to start oppressing. You also need to worry that increasing access is being granted to your data to a wider variety of a growing number of public sector workers for a widening range of reasons, with seemingly lower security competence, meaning that a good number of people around you will be able to find out rather more about you than they really ought. State prying is always sold to the electorate via assurances that it is to make us safer and more secure and reduce crime, but the state is staffed by your neighbors, and in the end, that means that your neighbors can pry on you.

Tracking cookies are a fact of everyday browsing but mostly they are just trying to get data to market to us more effectively. Reading every email to get data for marketing may be stretching the relationship with the customer to the limits, but many of us gmail users still trust Google not to abuse our data too much and certainly not to sell on our business dealings to potential competitors. It is still prying though, however automated it is, and a wider range of services are being linked all the time. The internet of things will provide data collection devices all over homes and offices too. We should ask how much we really trust global companies to hold so much data, much of it very personal, which we’ve seen several times this year may be made available to anyone via hackers or forced to be handed over to the authorities. Almost certainly, bits of your entire collected and processed electronic activity history could get you higher insurance costs, in trouble with family or friends or neighbors or the boss or the tax-man or the police. Surveillance doesn’t have to be real time. Databases can be linked, mashed up, analysed with far future software or AI too. In the ongoing search for crimes and taxes, who knows what future governments will authorize? If you wouldn’t make a comment in front of a police officer or tax-man, it isn’t safe to make it online or in a text.

Allowing email processing to get free email is a similar trade-off to using a supermarket loyalty card. You sell personal data for free services or vouchers. You have a choice to use that service or another supermarket or not use the card, so as long as you are fully aware of the deal, it is your lifestyle choice. The lack of good competition does reduce that choice though. There are not many good products or suppliers out there for some services, and in a few there is a de-facto monopoly. There can also be a huge inconvenience and time loss or social investment cost in moving if terms and conditions change and you don’t want to accept the deal any more.

On top of that state and global company surveillance, we now have everyone’s smartphones and visors potentially recording anything and everything we do and say in public and rarely a say in what happens to that data and whether it is uploaded and tagged in some social media.

Some companies offer detective-style services where they will do thorough investigations of someone for a fee, picking up all they can learn from a wide range of websites they might use. Again, there are variable degrees that we consider acceptable according to context. If I apply for a job, I would think it is reasonable for the company to check that I don’t have a criminal record, and maybe look at a few of the things I write or tweet to see what sort of character I might be. I wouldn’t think it appropriate to go much further than that.

Some say that if you have done nothing wrong, you have nothing to fear, but none of them has a 3 digit IQ. The excellent film ‘Brazil’ showed how one man’s life was utterly destroyed by a single letter typo in a system scarily similar to what we are busily building.

Even if you are a saint, do you really want the pervert down the road checking out hacked databases for personal data on you or your family, or using their public sector access to see all your online activity?

The global population is increasing, and every day a higher proportion can afford IT and know how to use it. Networks are becoming better and AI is improving so they will have greater access and greater processing potential. Cyber-attacks will increase, and security leaks will become more common. More of your personal data will become available to more people with better tools, and quite a lot of them wish you harm. Prying will increase geometrically, according to Metcalfe’s Law I think.

My defense against prying is having an ordinary life and not being famous or a major criminal, not being rich and being reasonably careful on security. So there are lots of easier and more lucrative targets. But there are hundreds of millions of busybodies and jobsworths and nosy parkers and hackers and blackmailers out there with unlimited energy to pry, as well as anyone who doesn’t like my views on a topic so wants to throw some mud, and their future computers may be able to access and translate and process pretty much anything I type, as well as much of what I say and do anywhere outside my home.

I find myself self-censoring hundreds of times a day. I’m not paranoid. There are some people out to get me, and you, and they’re multiplying fast.




Alcohol-free beer goggles

You remember that person you danced with and thought was wonderful, and then you met them the next day and your opinion was less favorable? That’s what people call beer goggles. Alcohol impairs judgment. It makes people chattier and improves their self confidence, but also makes them think others are more physically attractive and more interesting too. That’s why people get drunk apparently, because it upgrades otherwise dull people into tolerable company, breaking the ice and making people sociable and fun.

Augmented reality visors could double as alcohol-free beer goggles. When you look at someone  while wearing the visor, you wouldn’t have to see them warts and all. You could filter the warts. You could overlay their face with an upgraded version, or indeed replace it with someone else’s face. They wouldn’t even have to know.

The arms of the visor could house circuits to generate high intensity oscillating magnetic fields – trans-cranial magnetic stimulation. This has been demonstrated as a means of temporarily switching off certain areas of the brain, or at least reducing their effects. Among areas concerned are those involved in inhibitions. Alcohol does that normally, but you can’t drink tonight, so your visor can achieve the same effect for you.

So the nominated driver could be more included in drunken behavior on nights out. The visor could make people more attractive and reduce your inhibitions, basically replicating at least some of what alcohol does. I am not suggesting for a second that this is a good thing, only that it is technologically feasible. At least the wearer can set alerts so that they don’t declare their undying love to someone without at least being warned of the reality first.

The future of karma

This isn’t about Hinduism or Buddhism, just in case you’re worried. It is just about the cultural principle borrowed from them that your intent and actions now can influence what happens to you in future, or your luck or fate, if you believe in such things. It is borrowed in some computer games, such as Fallout.

We see it every day now on Twitter. A company or individual almost immediately suffers the full social consequences of their words or actions. Many of us are occasionally tempted to shame companies that have wronged us by tweeting our side of the story, or writing a bad review on tripadvisor. One big thing is so missing, but I suspect not for much longer: Who’s keeping score?

Where is the karma being tracked? When you do shame a company or write a bad review, was it an honest write-up of a genuine grievance, or way over the top compared to the magnitude of the offense, or just pure malice? If you could have written a review and didn’t, should your forgiving attitude be rewarded or punished, because now others might suffer similar bad service? I haven’t checked but I expect there are already a few minor apps that do bits of this. But we need the Google and Facebook of Karma.

So, we need another 17 year old in a bedroom to bring out the next blockbuster mash site linking the review sites, the tweets and blogs, doing an overall assessment not just of the companies being commented on, but on those doing the commenting. One that gives people and companies a karma score. As the machine-readable web continues to improve, it will even be possible to get some clues on average rates of poor service and therefore identify those of us who are probably more forgiving, those of us who deserve a little more tolerance when it’s our own mistake. (I am allegedly closer to the grumpy old man end of the scale).

I just did a conference talk on corporate credit assessment and have previously done others on private credit assessment. Financial trustworthiness is important, but when you do business, you also want to know whether it’s a nice company or one that walks all over people. That’s karma.

So, are you someone who presents a sweet and cheerful face, only to say nasty things about someone as soon as their face is turned. Do you always see the good side of everyone, or go to great effort to point out their bad points to everyone on the web? Well, it won’t be all that long before your augmented reality visor shows a karma score floating above people’s heads when you chat to them.

The future of Fridays

F now. Done fairies, food, fashion, never done Fridays, so here we go.

TFIF is a common sentiment for wage slaves. Some of us are very fortunate and manage to earn sufficient income from things we love doing, but most people have to make do with jobs instead. If you don’t enjoy your work, then the weekend often promises a welcome break and Friday is a long emotional run-up or run-down.

Many companies have discovered that staff work better when they are happy, and that people can be very creative when they are having fun. Some of them have introduced formal contractual agreements or at least informal managerial tolerance of their staff working a proportion of their time on their own projects, typically 10%.

Few bother to coordinate or manage such activities, leaving that to the staff themselves. I believe that is a mistake. With a few minor tweaks, this could really become a good source of employee fulfillment and corporate revenue.

Self-managing should be an option for sure, but it should be permitted and even encouraged to rope other people into your interesting projects, consensually of course. An engineer might have some great ideas, but some other staff might have other skills appropriate to bring it through to realization. Lots of staff might welcome being involved in other people’s pet projects if they sound more fun than their own ideas.

Companies should also make the full company resources available in the same proportion. A project probably still needs some expenditure, even if it is for fun.

They should also allow people to join up with appropriate people from other companies where it will provide a benefit. Obviously, there needs to be some reasonable restriction on that, but it is certainly feasible and potentially valuable.

Why? Surely the company employs accountants and strategists and planners and directors to decide what to do and where to allocate funds? Actually, the staff sometimes know better. Senior staff may be marginally better at some things than those below them and therefore managed to get through a few promotion interviews, but that doesn’t make them infallible or omniscient. Every employee probably knows better what they are really good at than their boss’s boss’s boss’s boss. Many will have a pretty good idea how they can make things better, or have an idea for a new technique or product or service. Some might not work, but letting them try will bring in a few valuable wins, and even when it doesn’t, it will still maker the staff happier, more self-fulfilled, and importantly, more loyal and productive. If your staff love you and your company because you let them enjoy themselves, you will find them easier to manage and more productive, so you’ll get rewarded too.

When this is all informal and uncoordinated, it doesn’t achieve full potential. Making Friday, or Friday afternoon at least, a time when everyone plays at their own projects would allow the project team-building and managing to work well. If lots of companies adopt it, there would be a large pool of people from lots of companies to add value to their companies, their own lives, and their communities. It would be fun, it would make everyone happier and we’d all benefit from the results.As part of the ongoing evolution of capitalism into a warmer, more human-centered care economy, it is a natural next step.

So, fun-friday. Not because the weekend is coming, but because Friday’s themselves are fun.


The future of euthanasia and suicide

Another extract from You Tomorrow, one that is very much in debate at the moment, it is an area that needs wise legislation, but I don’t have much confidence that we’ll get it. I’ll highlight some of the questions here, but since I don’t have many answers, I’ll illustrate why: they are hard questions.

Sadly, some people feel the need to end their own lives and an increasing number are asking for the legal right to assisted suicide. Euthanasia is increasingly in debate now too, with some health service practices bordering on it, some would say even crossing the boundary. Suicide and euthanasia are inextricably linked, mainly because it is impossible to know for certain what is in someone’s mind, and that is the basis of the well-known slippery slope from assisted suicide to euthanasia.

The stages of progress are reasonably clear. Is the suicide request a genuine personal decision, originating from that person’s free thoughts, based solely on their own interests? Or is it a personal decision influenced by the interests of others, real or imagined? Or is it a personal decision made after pressure from friends and relatives who want the person to die peacefully rather than suffer, with the best possible interests of the person in mind? In which case, who first raised the possibility of suicide as a potential way out? Or is it a personal decision made after pressure applied because relatives want rid of the person, perhaps over-eager to inherit or wanting to end their efforts to care for them? Guilt can be a powerful force and can be applied very subtly indeed over a period of time.

If the person is losing their ability to communicate a little, perhaps a friend or relative may help interpret their wishes to a doctor. From here, it is a matter of degree of communication skill loss and gradual increase of the part relatives play in guiding the doctor’s opinion of whether the person genuinely wants to die. Eventually, the person might not be directly consulted because their relatives can persuade a doctor that they really want to die but can’t say so effectively. Not much further along the path, people make their minds up what is in the best interests of another person as far as living or dying goes. It is a smooth path between these many small steps from genuine suicide to euthanasia. And that all ignores all the impact of possible alternatives such as pain relief, welfare, special care etc. Interestingly, the health services seem to be moving down the euthanasia route far faster than the above steps would suggest, skipping some of them and going straight to the ‘doctor knows best’ step.

Once the state starts to get involved in deciding cases, even by abdicating it to doctors, it is a long but easy road to Logan’s run, where death is compulsory at a certain age, or a certain care cost, or you’ve used up your lifetime carbon credit allocation.

There are sometimes very clear cases where someone obviously able to make up their own mind has made a thoroughly thought-through decision to end their life because of ongoing pain, poor quality of life and no hope of any cure or recovery, the only prospect being worsening condition leading to an undignified death. Some people would argue with their decision to die, others would consider that they should be permitted to do so in such clear circumstances, without any fear for their friends or relatives being prosecuted.

There are rarely razor-sharp lines between cases; situations can get blurred sometimes because of the complexity of individual lives, and because judges have their own personalities and differ slightly in their judgements. There is inevitably another case slightly further down the line that seems reasonable to a particular judge in the circumstances, and once that point is passed, and accepted by the courts, other cases with slightly less-defined circumstances can use it to help argue theirs. This is the path by which most laws evolve. They start in parliament and then after implementation, case law and a gradually changing public mind-set or even the additive effects of judges’ ideologies gradually evolve them into something quite different.

It seems likely given current trends and pressures that one day, we will accept suicide, and then we may facilitate it. Then, if we are not careful, it may evolve into euthanasia by a hundred small but apparently reasonable steps, and if we don’t stop it in time, one day we might even have a system like the one in the film ‘Logan’s Run’.

 Suicide and euthanasia are certainly gradually becoming less shocking to people, and we should expect that in the far future both will become more accepted. If you doubt that society can change its attitudes quickly, it actually only takes about 30 years to get a full reversal. Think of how long it took for homosexuality to change from condemned to fashionable, or how long abortion took from being something a woman would often be condemned for to something that is now a woman’s right to choose. Each of these took only 3 decades for a full 180 degree turnaround. Attitudes to the environment switched from mad panic about a coming ice age to mad panic about global warming in just 3 decades too, and are already switching back again towards ice age panic. If the turn in attitudes to suicide started 10 years ago, then we may have about 20 years left before it is widely accepted as a basic right that is only questioned by bigots. But social change aside, the technology will make the whole are much more interesting.

As I argued earlier, the very long term (2050 and beyond) will bring technology that allows people to link their brains to the machine world, perhaps using nanotech implants connected to each synapse to relay brain activity to a high speed neural replica hosted by a computer. This will have profound implications for suicide too. When this technology has matured, it will allow people to do wonderful things such as using machine sensors as extensions to their own capabilities. They will be able to use android bodies to move around and experience distant places and activities as if they were there in person. For people who feel compelled to end it all because of disability, pain or suffering, an alternative where they could effectively upload their mind into an android might be attractive. Their quality of life could improve dramatically at least in terms of capability. We might expect that pain and suffering could be dealt with much more effectively too if we have a direct link into the brain to control the way sensations are dealt with. So if that technology does progress as I expect, then we might see a big drop in the number of people who want to die.

But the technology options don’t stop there. If a person has a highly enhanced replica of their own brain/mind, in the machine world, people will begin to ask why they need the original. The machine world could give them greater sensory ability, greater physical ability, and greater mental ability. Smarter, with better memory, more and better senses, connected to all the world’s knowledge via the net, able effectively to wander around the world at the speed of light, and being connected directly to other people’s minds when you want, and doing so without fear of ageing, ill health of pain, this would seem a very attractive lifestyle. And it will become possible this century, at low enough cost for anyone to afford.

What of suicide then? It might not seem so important to keep the original body, especially if it is worn out or defective, so even without any pain and suffering, some people might decide to dispose of their body and carry on their lives without it. Partial suicide might become possible. Aside from any religious issues, this would be a hugely significant secular ethical issue. Updating the debate today, should people be permitted to opt out of physical existence, only keeping an electronic copy of their mind, timesharing android bodies when they need to enter the physical world? Should their families and friends be able to rebuild their loved ones electronically if they die accidentally? If so, should people be able to rebuild several versions, each representing the deceased’s different life stages, or just the final version, which may have been ill or in decline?

And then the ethical questions get even trickier. If it is possible to replicate the brain’s structure and so capture the mind, will people start to build ‘restore points’, where they make a permanent record of the state of their self at a given moment? If they get older and decide they could have run their lives better, they might be able to start again from any restore point. If the person exists in cyberspace and has disposed of their physical body, what about ownership of their estate? What about working and living in cyberspace? Will people get jobs? Will they live in virtual towns like the Sims? Indeed, in the same time frame, AI will have caught up and superseded humans in ability. Maybe Sims will get bored in their virtual worlds and want to end it all by migrating to the real world. Maybe they could swap bodies with someone coming the other way?

What will the State do when it is possible to reduce costs and environmental impact by migrating people into the virtual universe? Will it then become socially and politically acceptable, even compulsory when someone reaches a given age or costs too much for health care?

So perhaps suicide has an interesting future. It might eventually decline, and then later increase again, but in many very different forms, becoming a whole range of partial suicide options. But the scariest possibility is that people may not be able to die completely. If their body is an irrelevance, and there are many restore points from which they can be recovered, friends, family, or even the state might keep them ‘alive’ as long as they are useful. And depending on the law, they might even become a form of slave labour, their minds used for information processing or creativity whether they wish it or not. It has often truly been noted that there are worse fates than death.

The future of death

This one is a cut and paste from my book You Tomorrow.

Although age-related decline can be postponed significantly, it will eventually come. But that is just biological decline. In a few decades, people will have their brains linked to the machine world and much of their mind will be online, and that opens up the strong likelihood that death is not inevitable, and in fact anyone who expects to live past 2070 biologically (and rich people who can get past 2050) shouldn’t need to face death of their mind. Their bodies will eventually die, but their minds can live on, and an android body will replace the biological one they’ve lost.

Death used to be one of the great certainties of life, along with taxes. But unless someone under 35 now is unfortunate enough to die early from accident or disease, they have a good chance of not dying at all. Let’s explore that.

Genetics and other biotechnology will work with advanced materials technology and nanotechnology to limit and even undo damage caused by disease and age, keeping us young for longer, eventually perhaps forever. It remains to be seen how far we get with that vision in the next century, but we can certainly expect some progress in that area. We won’t get biological immortality for a good while, but if you can move into a high quality android body, who cares?

With this combination of technologies locked together with IT in a positive feedback loop, we will certainly eventually develop the technology to enable a direct link between the human brain and the machine, i.e. the descendants of today’s computers. On the computer side, neural networks are already the routine approach to many problems and are based on many of the same principles that neurons in the brain use. As this field develops, we will be able to make a good emulation of biological neurons. As it develops further, it ought to be possible on a sufficiently sophisticated computer to make a full emulation of a whole brain. Progress is already happening in this direction.

Meanwhile, on the human side, nanotechnology and biotechnology will also converge so that we will have the capability to link synthetic technology directly to individual neurons in the brain. We don’t know for certain that this is possible, but it may be possible to measure the behaviour of each individual neuron using this technology and to signal this behaviour to the brain emulation running in the computer, which could then emulate it. Other sensors could similarly measure and allow emulation of the many chemical signalling mechanisms that are used in the brain. The computer could thus produce an almost perfect electronic equivalent of the person’s brain, neuron by neuron. This gives us two things.

Firstly, by doing this, we would have a ‘backup’ copy of the person’s brain, so that in principle, they can carry on thinking, and effectively living, long after their biological body and brain has died. At this point we could claim effective immortality. Secondly, we have a two way link between the brain and the computer which allows thought to be executed on either platform and to be signalled between them.

There is an important difference between the brain and computer already that we may be able to capitalise on. In the brain’s neurons, signals travel at hundreds of metres per second. In a free space optical connection, they travel at hundreds of millions of metres per second, millions of times faster. Switching speeds are similarly faster in electronics. In the brain, cells are also very large compared to the electronic components of the future, so we may be able to reduce the distances over which the signals have to travel by another factor of 100 or more. But this assumes we take an almost exact representation of brain layout. We might be able to do much better than this. In the brain, we don’t appear to use all the neurons, (some are either redundant or have an unknown purpose) and those that we do use in a particular process are often in groups that are far apart. Reconfigurable hardware will be the norm in the 21st century and we may be able to optimize the structure for each type of thought process. Rearranging the useful neurons into more optimal structures should give another huge gain.

This means that our electronic emulation of the brain should behave in a similar way but much faster – maybe billions of times faster! It may be able to process an entire lifetime’s thoughts in a second or two. But even there are several opportunities for vast improvement. The brain is limited in size by a variety of biological constraints. Even if there were more space available, it could not be made much more efficient by making it larger, because of the need for cooling, energy and oxygen supply taking up ever more space and making distances between processors larger. In the computer, these constraints are much more easily addressable, so we could add large numbers of additional neurons to give more intelligence. In the brain, many learning processes stop soon after birth or in childhood. There need be no such constraints in computer emulations, so we could learn new skills as easily as in our infancy. And best of all, the computer is not limited by the memory of a single brain – it has access to all the world’s information and knowledge, and huge amounts of processing outside the brain emulation. Our electronic brain could be literally the size of the planet – the whole internet and all the processing and storage connected to it.

With all these advances, the computer emulation of the brain could be many orders of magnitude superior to its organic equivalent, and yet it might be connected in real time to the original. We would have an effective brain extension in cyberspace, one that gives us immeasurably improved performance and intelligence. Most of our thoughts might happen in the machine world, and because of the direct link, we might experience them as if they had occurred inside our head.

Our brains are in some ways equivalent in nature to how computers were before the age of the internet. They are certainly useful, but communication between them is slow and inefficient. However, when our brains are directly connected to machines, and those machines are networked, then everyone else’s brains are also part of that network, so we have a global network of people’s brains, all connected together, with all the computers too.

So we may soon eradicate death. By the time today’s children are due to die, they will have been using brain extensions for many years, and backups will be taken for granted. Death need not be traumatic for our relatives. They will soon get used to us walking around in an android body. Funerals will be much more fun as the key participant makes a speech about what they are expecting from their new life. Biological death might still be unpleasant, but it need no longer be a career barrier.

In terms of timescales, rich people might have this capability by 2050 and the rest of us some time before 2070. Your life expectancy biologically is increasing every year, so even if you are over 35, you have a pretty good chance of surviving long enough to gain. Half the people alive today are under 35 and will almost certainly not die fully. Many more are under 50 and some of them will live on electronically too. If you are over 50, the chances are that you will be the last generation of your family ever to have a full death.

As a side-note, there are more conventional ways of achieving immortality. Some Egyptian pharaohs are remembered because of their great pyramids. A few philosophers, artists, engineers and scientists have left such great works that they are remembered millennia later. And of course, on a small scale, for the rest of us, making an impression on those around us keeps your memory going a few generations. Writing a book immortalises your words. And you may have a multimedia headstone on your grave, or one that at least links into augmented reality to bring up your old web page of social networking site profile. But frankly, I am with Woody Allen on this one “I don’t want to achieve immortality through my work; I want to achieve immortality through not dying”. I just hope the technology arrives early enough.

The future of bacteria

Bacteria have already taken the prize for the first synthetic organism. Craig Venter’s team claimed the first synthetic bacterium in 2010.

Bacteria are being genetically modified for a range of roles, such as converting materials for easier extraction (e.g. coal to gas, or concentrating elements in landfill sites to make extraction easier), making new food sources (alongside algae), carbon fixation, pollutant detection and other sensory roles, decorative, clothing or cosmetic roles based on color changing, special surface treatments, biodegradable construction or packing materials, self-organizing printing… There are many others, even ignoring all the military ones.

I have written many times on smart yogurt now and it has to be the highlight of the bacterial future, one of the greatest hopes as well as potential danger to human survival. Here is an extract from a previous blog:

Progress is continuing to harness bacteria to make components of electronic circuits (after which the bacteria are dissolved to leave the electronics). Bacteria can also have genes added to emit light or electrical signals. They could later be enhanced so that as well as being able to fabricate electronic components, they could power them too. We might add various other features too, but eventually, we’re likely to end up with bacteria that contain electronics and can connect to other bacteria nearby that contain other electronics to make sophisticated circuits. We could obviously harness self-assembly and self-organisation, which are also progressing nicely. The result is that we will get smart bacteria, collectively making sophisticated, intelligent, conscious entities of a wide variety, with lots of sensory capability distributed over a wide range. Bacteria Sapiens.

I often talk about smart yogurt using such an approach as a key future computing solution. If it were to stay in a yogurt pot, it would be easy to control. But it won’t. A collective bacterial intelligence such as this could gain a global presence, and could exist in land, sea and air, maybe even in space. Allowing lots of different biological properties could allow colonization of every niche. In fact, the first few generations of bacteria sapiens might be smart enough to design their own offspring. They could probably buy or gain access to equipment to fabricate them and release them to multiply. It might be impossible for humans to stop this once it gets to a certain point. Accidents happen, as do rogue regimes, terrorism and general mad-scientist type mischief.

Transhumanists seem to think their goal is the default path for humanity, that transhumanism is inevitable. Well, it can’t easily happen without going first through transbacteria research stages, and that implies that we might well have to ask transbacteria for their consent before we can develop true transhumans.

Self-organizing printing is a likely future enhancement for 3D printing. If a 3D printer can print bacteria (onto the surface of another material being laid down, or as an ingredient in a suspension as the extrusion material itself, or even a bacterial paste, and the bacteria can then generate or modify other materials, or use self-organisation principles to form special structures or patterns, then the range of objects that can be printed will extend. In some cases, the bacteria may be involved in the construction and then die or be dissolved away.

Switching people off

A very interesting development has been reported in the discovery of how consciousness works, where neuroscientists stimulating a particular brain region were able to switch a woman’s state of awareness on and off. They said: “We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness…”

The region of the brain concerned was the claustrum, and apparently nobody had tried stimulating it before, although Francis Crick and Christof Koch had suggested the region would likely be important in achieving consciousness. Apparently, the woman involved in this discovery was also missing some of her hippocampus, and that may be a key factor, but they don’t know for sure yet.

Mohamed Koubeissi and his the team at the George Washington university in Washington DC were investigating her epilepsy and stimulated her claustrum area with high frequency electrical impulses. When they did so, the woman lost consciousness, no longer responding to any audio or visual stimuli, just staring blankly into space. They verified that she was not having any epileptic activity signs at the time, and repeated the experiment with similar results over two days.

The team urges caution and recommends not jumping to too many conclusions. They did observe the obvious potential advantages as an anesthesia substitute if it can be made generally usable.

As a futurologist, it is my job to look as far down the road as I can see, and imagine as much as I can. Then I filter out all the stuff that is nonsensical, or doesn’t have a decent potential social or business case or as in this case, where research teams suggest that it is too early to draw conclusions. I make exceptions where it seems that researchers are being over-cautious or covering their asses or being PC or unimaginative, but I have no evidence of that in this case. However, the other good case for making exceptions is where it is good fun to jump to conclusions. Anyway, it is Saturday, I’m off work, so in the great words of Dr Emmett Brown in ‘Back to the future':  “Well, I figured, what the hell.”

OK, IF it works for everyone without removing parts of the brain, what will we do with it and how?

First, it is reasonable to assume that we can produce electrical stimulation at specific points in the brain by using external kit. Trans-cranial magnetic stimulation might work, or perhaps implants may be possible using injection of tiny particles that migrate to the right place rather than needing significant surgery. Failing those, a tiny implant or two via a fine needle into the right place ought to do the trick. Powering via induction should work. So we will be able to produce the stimulation, once the sucker victim subject has the device implanted.

I guess that could happen voluntarily, or via a court ordered protective device, as a condition of employment or immigration, or conditional release from prison, or a supervision order, or as a violent act or in war.

Imagine if government demands a legal right to access it, for security purposes and to ensure your comfort and safety, of course.

If you think 1984 has already gone too far, imagine a government or police officer that can switch you off if you are saying or thinking the wrong thing. Automated censorship devices could ensure that nobody discusses prohibited topics.

Imagine if people on the street were routinely switched off as a VIP passes to avoid any trouble for them.

Imagine a future carbon-reduction law where people are immobilized for an hour or two each day during certain periods. There might be a quota for how long you are allowed to be conscious each week to limit your environmental footprint.

In war, captives could have devices implanted to make them easy to control, simply turned off for packing and transport to a prison camp. A perimeter fence could be replaced by a line in the sand. If a prisoner tries to cross it, they are rendered unconscious automatically and put back where they belong.

Imagine a higher class of mugger that doesn’t like violence much and prefers to switch victims off before stealing their valuables.

Imagine being able to switch off for a few hours to pass the time on a long haul flight. Airlines could give discounts to passengers willing to be disabled and therefore less demanding of attention.

Imagine  a couple or a group of friends, or a fetish club, where people can turn each other off at will. Once off, other people can do anything they please with them – use them as dolls, as living statues or as mannequins, posing them, dressing them up. This is not an adult blog so just use your imagination – it’s pretty obvious what people will do and what sorts of clubs will emerge if an off-switch is feasible, making people into temporary toys.

Imagine if you got an illegal hacking app and could freeze the other people in your vicinity. What would you do?

Imagine if your off-switch is networked and someone else has a remote control or hacks into it.

Imagine if an AI manages to get control of such a system.

Having an off-switch installed could open a new world of fun, but it could also open up a whole new world for control by the authorities, crime control, censorship or abuse by terrorists and thieves and even pranksters.



Solving compliment inequality

Decades ago, cough, I went on a summer camp with loads of other people. At the end of the week, we were each given a sheet of paper, told to write our name on the top and then pass it to the person on our right. Everyone had to write something nice about everyone else when their sheet arrived. When we got our own sheets back, we could read all the nice things the other people had said about you after hanging around you for a week. It felt rewarding and was a simple but effective demonstration that being nice makes you feel nice. (So does blowing zillions of zombies to bits in a computer game, but let’s ignore that for now.)

With the many social networking sites now, it’s easy to send someone a nice message. Most of us occasionally do. My first question is: since we all know we like to receive kind words and compliments, and we know that everyone else does too, why don’t we do it more?

Someone realised that you could make an app for that and out came Kindr. I understand some of the problems in doing that. Do you have a fixed set to pick from? Do you let people write their own? Should it be anonymous or true ID? How do you prevent bullying? How do you make it pay for itself? Should it be standalone or link into other social media as a plugin? Well, the Kindr people actually got on with it and did it. Maybe it is still early days but I only found Kindr when I did a search for its functionality on Google. It hasn’t yet become the next Facebook, but it was a good idea and I hope it succeeds and grows and gets noticed more and a nice warm waves of niceness floods over society now and then. We need more kindness and love.

On the other hand, maybe it just wasn’t needed. It was already easy to be nice in many ways via existing media. I think the answer lies in basic human nature. We like hearing nice things about us much the same way as we like eating chocolate or ice cream. At first it is wonderful, but it soon makes us sick if we keep doing it. If so, then it is like appetite. Once satisfied, more is less. It is great to receive an occasional pleasant comment. After a while the extra reward levels off and eventually it can even become embarrassing or irritating. Like being kissed – once is great, two is quite sufficient, three is getting continental, please stop. Stroke a cat and it purrs. Keep stroking it and your hand will be full of holes. It isn’t healthy for the recipient to be praised too much either. Look at the ego disaster areas that feature so often on reality TV that have been told they’re wonderful 24/7 and believe it in spite of being as plain as the Serengeti.

I think most people intuitively know just how much is right. We compliment each other when something really deserves it, and then it feels good to both the receiver and the giver. If we do it all the time, it doesn’t. A few people go too far, a few don’t go far enough. I suspect most people could cope with a little more before it is too much but I don’t think we are too far off overall.

Maybe, like wealth, it isn’t the total volume that’s a problem, the real problem is distribution. That’s my point in this blog. Some people get a lot of praise all the time, some rarely get a kind word from anyone. It doesn’t cost anything or take long to say something nice, so we each have it in our power to fix that.

So next time you see someone who doesn’t look like life has treated them very well recently, make sure to give them a generous dose of appreciation. If they smile, you’ll feel better too.