Category Archives: science

Switching people off

A very interesting development has been reported in the discovery of how consciousness works, where neuroscientists stimulating a particular brain region were able to switch a woman’s state of awareness on and off. They said: “We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness…”

http://www.newscientist.com/article/mg22329762.700-consciousness-onoff-switch-discovered-deep-in-brain.html.

The region of the brain concerned was the claustrum, and apparently nobody had tried stimulating it before, although Francis Crick and Christof Koch had suggested the region would likely be important in achieving consciousness. Apparently, the woman involved in this discovery was also missing some of her hippocampus, and that may be a key factor, but they don’t know for sure yet.

Mohamed Koubeissi and his the team at the George Washington university in Washington DC were investigating her epilepsy and stimulated her claustrum area with high frequency electrical impulses. When they did so, the woman lost consciousness, no longer responding to any audio or visual stimuli, just staring blankly into space. They verified that she was not having any epileptic activity signs at the time, and repeated the experiment with similar results over two days.

The team urges caution and recommends not jumping to too many conclusions. They did observe the obvious potential advantages as an anesthesia substitute if it can be made generally usable.

As a futurologist, it is my job to look as far down the road as I can see, and imagine as much as I can. Then I filter out all the stuff that is nonsensical, or doesn’t have a decent potential social or business case or as in this case, where research teams suggest that it is too early to draw conclusions. I make exceptions where it seems that researchers are being over-cautious or covering their asses or being PC or unimaginative, but I have no evidence of that in this case. However, the other good case for making exceptions is where it is good fun to jump to conclusions. Anyway, it is Saturday, I’m off work, so in the great words of Dr Emmett Brown in ‘Back to the future':  “Well, I figured, what the hell.”

OK, IF it works for everyone without removing parts of the brain, what will we do with it and how?

First, it is reasonable to assume that we can produce electrical stimulation at specific points in the brain by using external kit. Trans-cranial magnetic stimulation might work, or perhaps implants may be possible using injection of tiny particles that migrate to the right place rather than needing significant surgery. Failing those, a tiny implant or two via a fine needle into the right place ought to do the trick. Powering via induction should work. So we will be able to produce the stimulation, once the sucker victim subject has the device implanted.

I guess that could happen voluntarily, or via a court ordered protective device, as a condition of employment or immigration, or conditional release from prison, or a supervision order, or as a violent act or in war.

Imagine if government demands a legal right to access it, for security purposes and to ensure your comfort and safety, of course.

If you think 1984 has already gone too far, imagine a government or police officer that can switch you off if you are saying or thinking the wrong thing. Automated censorship devices could ensure that nobody discusses prohibited topics.

Imagine if people on the street were routinely switched off as a VIP passes to avoid any trouble for them.

Imagine a future carbon-reduction law where people are immobilized for an hour or two each day during certain periods. There might be a quota for how long you are allowed to be conscious each week to limit your environmental footprint.

In war, captives could have devices implanted to make them easy to control, simply turned off for packing and transport to a prison camp. A perimeter fence could be replaced by a line in the sand. If a prisoner tries to cross it, they are rendered unconscious automatically and put back where they belong.

Imagine a higher class of mugger that doesn’t like violence much and prefers to switch victims off before stealing their valuables.

Imagine being able to switch off for a few hours to pass the time on a long haul flight. Airlines could give discounts to passengers willing to be disabled and therefore less demanding of attention.

Imagine  a couple or a group of friends, or a fetish club, where people can turn each other off at will. Once off, other people can do anything they please with them – use them as dolls, as living statues or as mannequins, posing them, dressing them up. This is not an adult blog so just use your imagination – it’s pretty obvious what people will do and what sorts of clubs will emerge if an off-switch is feasible, making people into temporary toys.

Imagine if you got an illegal hacking app and could freeze the other people in your vicinity. What would you do?

Imagine if your off-switch is networked and someone else has a remote control or hacks into it.

Imagine if an AI manages to get control of such a system.

Having an off-switch installed could open a new world of fun, but it could also open up a whole new world for control by the authorities, crime control, censorship or abuse by terrorists and thieves and even pranksters.

 

 

Future human evolution

I’ve done patches of work on this topic frequently over the last 20 years. It usually features in my books at some point too, but it’s always good to look afresh at anything. Sometimes you see something you didn’t see last time.

Some of the potential future is pretty obvious. I use the word potential, because there are usually choices to be made, regulations that may or may not get in the way, or many other reasons we could divert from the main road or even get blocked completely.

We’ve been learning genetics now for a long time, with a few key breakthroughs. It is certain that our understanding will increase, less certain how far people will be permitted to exploit the potential here in any given time frame. But let’s take a good example to learn a key message first. In IVF, we can filter out embryos that have the ‘wrong’ genes, and use their sibling embryos instead. Few people have a problem with that. At the same time, pregnant women may choose an abortion if they don’t want a child when they discover it is the wrong gender, but in the UK at least, that is illegal. The moral and ethical values of our society are on a random walk though, changing direction frequently. The social assignment of right and wrong can reverse completely in just 30 years. In this example, we saw a complete reversal of attitudes to abortion itself within 30 years, so who is to say we won’t see reversal on the attitude to abortion due to gender? It is unwise to expect that future generations will have the same value sets. In fact, it is highly unlikely that they will.

That lesson likely applies to many technology developments and quite a lot of social ones – such as euthanasia and assisted suicide, both already well into their attitude reversal. At some point, even if something is distasteful to current attitudes, it is pretty likely to be legalized eventually, and hard to ban once the door is opened. There will always be another special case that opens the door a little further. So we should assume that we may eventually use genetics to its full capability, even if it is temporarily blocked for a few decades along the way. The same goes for other biotech, nanotech, IT, AI and any other transhuman enhancements that might come down the road.

So, where can we go in the future? What sorts of splits can we expect in the future human evolution path? It certainly won’t remain as just plain old homo sapiens.

I drew this evolution path a long time ago in the mid 1990s:

human evolution 1

It was clear even then that we could connect external IT to the nervous system, eventually the brain, and this would lead to IT-enhanced senses, memory, processing, higher intelligence, hence homo cyberneticus. (No point in having had to suffer Latin at school if you aren’t allowed to get your own back on it later). Meanwhile, genetic enhancement and optimization of selected features would lead to homo optimus. Converging these two – why should you have to choose, why not have a perfect body and an enhanced mind? – you get homo hybridus. Meanwhile, in the robots and AI world, machine intelligence is increasing and we eventually we get the first self-aware AI/robot (it makes little sense to separate the two since networked AI can easily be connected to a machine such as a robot) and this has its own evolution path towards a rich diversity of different kinds of AI and robots, robotus multitudinus. Since both the AI world and the human world could be networked to the same network, it is then easy to see how they could converge, to give homo machinus. This future transhuman would have any of the abilities of humans and machines at its disposal. and eventually the ability to network minds into a shared consciousness. A lot of ordinary conventional humans would remain, but with safe upgrades available, I called them homo sapiens ludditus. As they watch their neighbors getting all the best jobs, winning at all the sports, buying everything, and getting the hottest dates too, many would be tempted to accept the upgrades and homo sapiens might gradually fizzle out.

My future evolution timeline stayed like that for several years. Then in the early 2000s I updated it to include later ideas:

human evolution 2

I realized that we could still add AI into computer games long after it becomes comparable with human intelligence, so games like EA’s The Sims might evolve to allow entire civilizations living within a computer game, each aware of their existence, each running just as real a life as you and I. It is perhaps unlikely that we would allow children any time soon to control fully sentient people within a computer game, acting as some sort of a god to them, but who knows, future people will argue that they’re not really real people so it’s OK. Anyway, you could employ them in the game to do real knowledge work, and make money, like slaves. But since you’re nice, you might do an incentive program for them that lets them buy their freedom if they do well, letting them migrate into an android. They could even carry on living in their Sims home and still wander round in our world too.

Emigration from computer games into our world could be high, but the reverse is also possible. If the mind is connected well enough, and enhanced so far by external IT that almost all of it runs on the IT instead of in the brain, then when your body dies, your mind would carry on living. It could live in any world, real or fantasy, or move freely between them. (As I explained in my last blog, it would also be able to travel in time, subject to certain very expensive infrastructural requirements.) As well as migrants coming via electronic immortality route, it would be likely that some people that are unhappy in the real world might prefer to end it all and migrate their minds into a virtual world where they might be happy. As an alternative to suicide, I can imagine that would be a popular route. If they feel better later, they could even come back, using an android.  So we’d have an interesting future with lots of variants of people, AI and computer game and fantasy characters migrating among various real and imaginary worlds.

But it doesn’t stop there. Meanwhile, back in the biotech labs, progress is continuing to harness bacteria to make components of electronic circuits (after which the bacteria are dissolved to leave the electronics). Bacteria can also have genes added to emit light or electrical signals. They could later be enhanced so that as well as being able to fabricate electronic components, they could power them too. We might add various other features too, but eventually, we’re likely to end up with bacteria that contain electronics and can connect to other bacteria nearby that contain other electronics to make sophisticated circuits. We could obviously harness self-assembly and self-organisation, which are also progressing nicely. The result is that we will get smart bacteria, collectively making sophisticated, intelligent, conscious entities of a wide variety, with lots of sensory capability distributed over a wide range. Bacteria Sapiens.

I often talk about smart yogurt using such an approach as a key future computing solution. If it were to stay in a yogurt pot, it would be easy to control. But it won’t. A collective bacterial intelligence such as this could gain a global presence, and could exist in land, sea and air, maybe even in space. Allowing lots of different biological properties could allow colonization of every niche. In fact, the first few generations of bacteria sapiens might be smart enough to design their own offspring. They could probably buy or gain access to equipment to fabricate them and release them to multiply. It might be impossible for humans to stop this once it gets to a certain point. Accidents happen, as do rogue regimes, terrorism and general mad-scientist type mischief.

And meanwhile, we’ll also be modifying nature. We’ll be genetically enhancing a wide range of organisms, bringing some back from extinction, creating new ones, adding new features, changing even some of the basic mechanism by which nature works in some cases. We might even create new kinds of DNA or develop substitutes with enhanced capability. We may change nature’s evolution hugely. With a mix of old and new and modified, nature evolves nicely into Gaia Sapiens.

We’re not finished with the evolution chart though. Here is the next one:

human evolution 3

Just one thing is added. Homo zombius. I realized eventually that the sci-fi ideas of zombies being created by viruses could be entirely feasible. A few viruses, bacteria and other parasites can affect the brains of the victims and change their behaviour to harness them for their own life cycle.

See http://io9.com/12-real-parasites-that-control-the-lives-of-their-hosts-461313366 for fun.

Bacteria sapiens could be highly versatile. It could make virus variants if need be. It could evolve itself to be able to live in our bodies, maybe penetrate our brains. Bacteria sapiens could make tiny components that connect to brain cells and intercept signals within our brains, or put signals back in. It could read our thoughts, and then control our thoughts. It could essentially convert people into remote controlled robots, or zombies as we usually call them. They could even control muscles directly to a point, so even if the zombie is decapitated, it could carry on for a short while. I used that as part of my storyline in Space Anchor. If future humans have widespread availability of cordless electricity, as they might, then it is far fetched but possible that headless zombies could wander around for ages, using the bacterial sensors to navigate. Homo zombius would be mankind enslaved by bacteria. Hopefully just a few people, but it could be everyone if we lose the battle. Think how difficult a war against bacteria would be, especially if they can penetrate anyone’s brain and intercept thoughts. The Terminator films looks a lot less scary when you compare the Terminator with the real potential of smart yogurt.

Bacteria sapiens might also need to be consulted when humans plan any transhuman upgrades. If they don’t consent, we might not be able to do other transhuman stuff. Transhumans might only be possible if transbacteria allow it.

Not done yet. I wrote a couple of weeks ago about fairies. I suggested fairies are entirely feasible future variants that would be ideally suited to space travel.

http://timeguide.wordpress.com/2014/06/06/fairies-will-dominate-space-travel/

They’d also have lots of environmental advantages as well as most other things from the transhuman library. So I think they’re inevitable. So we should add fairies to the future timeline. We need a revised timeline and they certainly deserve their own branch. But I haven’t drawn it yet, hence this blog as an excuse. Before I do and finish this, what else needs to go on it?

Well, time travel in cyberspace is feasible and attractive beyond 2075. It’s not the proper real world time travel that isn’t permitted by physics, but it could feel just like that to those involved, and it could go further than you might think. It certainly will have some effects in the real world, because some of the active members of the society beyond 2075 might be involved in it. It certainly changes the future evolution timeline if people can essentially migrate from one era to another (there are some very strong caveats applicable here that I tried to explain in the blog, so please don’t misquote me as a nutter – I haven’t forgotten basic physics and logic, I’m just suggesting a feasible implementation of cyberspace that would allow time travel within it. It is really a cyberspace bubble that intersects with the real world at the real time front so doesn’t cause any physics problems, but at that intersection, its users can interact fully with the real world and their cultural experiences of time travel are therefore significant to others outside it.)

What else? OK, well there is a very significant community (many millions of people) that engages in all sorts of fantasy in shared on-line worlds, chat rooms and other forums. Fairies, elves, assorted spirits, assorted gods, dwarves, vampires, werewolves, assorted furry animals, assorted aliens, dolls,  living statues, mannequins, remote controlled people, assorted inanimate but living objects, plants and of course assorted robot/android variants are just some of those that already exist in principle; I’m sure I’ve forgotten some here and anyway, many more are invented every year so an exhaustive list would quickly become out of date. In most cases, many people already role play these with a great deal of conviction and imagination, not just in standalone games, but in communities, with rich cultures, back-stories and story-lines. So we know there is a strong demand, so we’re only waiting for their implementation once technology catches up, and it certainly will.

Biotech can do a lot, and nanotech and IT can add greatly to that. If you can design any kind of body with almost any kind of properties and constraints and abilities, and add any kind of IT and sensing and networking and sharing and external links for control and access and duplication, we will have an extremely rich diversity of future forms with an infinite variety of subcultures, cross-fertilization, migration and transformation. In fact, I can’t add just a few branches to my timeline. I need millions. So instead I will just lump all these extras into a huge collected category that allows almost anything, called Homo Whateverus.

So, here is the future of human (and associates) evolution, for the next 150 years. A few possible cross-links are omitted for clarity

evolution

I won’t be around to watch it all happen. But a lot of you will.

 

Time Travel: Cyberspace opens a rift in the virtual time-space continuum

Dr Who should have written this but he didn’t so I have to. We keep seeing those cute little tears in space-time in episodes of the BBC’s Dr Who, that let through Daleks and Cybermen and other nasties. (As an aside, how come feminists never seem to object to the term Cybermen, even though 50% of them are made from women?). Dr Who calls them rifts, and it allegedly needs the energy of entire star systems to open and close them. So, not much use as a weapon then, but still a security issue if our universe leaks.

Sci-fi authors have recognized the obvious dangers of time-space rifts for several decades. They cause problems with causality as well. I got a Physics degree a long time ago (well, Applied Mathematics and Theoretical Physics, but all the maths was EM theory, quantum mechanics and relativity, so it was really a physics degree), but I have never really understood fully why causality is such a big deal. Sure it needs a lot of explaining if it fails, but why would an occasional causal error cause such a huge problem? The Daleks are far more worrying. **Politically incorrect joke censored**

I just wrote about time travel again. All competent physicists rightly switch on their idiot filters automatically on hearing any of the terms ‘cold fusion’, ‘telekinetic’, ‘psychic’, ‘perpetual motion machine’, ‘time travel’ or ‘global warming catastrophe’. Sorry, that last one just sort of crept in there. Time travel is not really possible, unless you’re inside a black hole or you’re talking about a particle shifting atoseconds in a huge accelerator or GPS relativistic corrections or something. A Tardis isn’t going to be here any time soon and may be impossible and never ever come. However, there is a quite real cyberspace route to quite real time travel that will become feasible around 2075, a virtual rift if you like, but no need to activate idiot filters just yet, it’s only a virtual rift, a rift in a sandbox effectively, and it won’t cause the universe to collapse or violate any known laws of physics. So, hit the temporary override button on your idiot filter. It’s a fun thought experiment that gets more and more fun the more you look at it. (Einstein invented thought experiments to investigate relativity, because he couldn’t do any real experiments with the technology of his time. We can’t verify this sort of time travel experimentally yet so thought experiment is the only mechanism available. Sadly, I don’t have Einstein’s brain to hand, but some aspects at least are open to the rest of us to explore.) The hypothesis here is that if you can make a platform that stores the state of all the minds in a system continuously over a period from A to B, and that runs all those minds continuously using a single editable record, then you can travel in time freely between A and B.  Now we need to think it through a bit to test the hypothesis and see what virtual physics we can learn from it, see how real it would be and what it would need and lead to.

I recognized on my first look at it in

http://timeguide.wordpress.com/2012/10/25/the-future-of-time-travel-cheat/

that cyberspace offers a time travel cheat. The basic idea, to save you reading it now that it’s out of date, is that some time soon after 2050 – let’s take 2075 as the date that crowd-funding enables its implementation – we’ll all be able to connect our brains so well to the machine world that it will be possible to share thoughts and consciousness, sensations, effectively share bodies, live electronically until all the machines stop working, store your mind as a snapshot periodically in case you want to restore to an earlier backup and do all sorts of really fun things like swapping personalities. (You can see why it might attract the required funding so might well become real).  If that recording of your mind is complete enough, and it could be, then, you really could go back to an earlier state of yourself. More importantly, a future time tourist could access all the stored records and create an instance of your mind and chat to you and chat and interact with you from the future. This would allow future historians to do history better. Well, that’s the basic version. Our thought experiment version needs to go a bit further than that. Let’s call it the deluxe version.

If you implement the deluxe version, then minds run almost entirely on the machine world platform, and are hosted there with frequent restore points. The current state of the system is an interactive result of real-time running of all the minds held in cyberspace across the whole stored timeline. For those minds running on the deluxe version platform, there isn’t any other reality. That’s what makes up those future humans and AIs on it. Once you join the system, you can enjoy all of the benefits above and many more.

You could actually change old records and use the machines to ripple the full system-wide consequences all the way through the timeline to whenever your future today is. It would allow you to go back to visit your former self and do some editing, wouldn’t it? And in this deluxe version, the edits you make would ripple through into your later self. That’s what you get when you migrate the human mind from the Mk1 human brain platform into the machine world platform. It becomes endlessly replicable and editable. In this deluxe version, the future world really could be altered by editing the past. You may reasonably ask why we would allow any moron to allow that to be built, but that won’t affect the theoretical ability to travel in time through cyberspace.

It is very easy to see how such a system allows you to chat with someone in the past. What is less obvious, and what my excuse for a brain missed first time round, is that it also lets you travel forwards in time. How, you may reasonably ask, can you access and edit records that don’t exist yet? Well, think of it from the other direction. Someone in the future can restore any previous instance of you from any time point and talk to them, even edit them. They could do that all in some sort of time-play sandbox to save money and avoid quite a few social issues, or they could restore you fully to their time, and since the reality is just real-time emulation all rippled through nicely by the machine platform, you would suddenly appear in the future and become part of that future world. You could wander around in a future android body and do physical things in that future physical world just as if you’d always lived there. Your future self would feel they have travelled in time. But a key factor here is that it could be your future self that makes it happen. You could make a request in 2075 to your future self to bring you to the future in 2150. When 2150 arrives, you see (or might even remember) the request, you go into the archives, and you restore your old 2075 self to 2150, then you instruct deletion of all the records between 2075 and 2150 and then you push the big red button. The system runs all the changes and effects through the timeline, and the result is that you disappear in 2075, and suddenly reappear in 2150.

There would be backups of the alternative timeline, but the official and effective system reality would be that you travelled from 2075 to 2150. That will be the reality running on the deluxe system. Any other realities are just backups and records on a database. Now,so far it’s a one way trip, far better if you can have a quick trip to the future and come back. So, you’re in 2150, suppose you want to go back again. You’ve been around a while and don’t like the new music or the food or something. So before you go, you do the usual time mischief. You collect lots of really useful data about how all the latest tech works, buy the almanacs of who wins what, just like in Back to the Future, just in case the system has bugs that let you use them, and you tweak the dials again. You set the destination to 2075 and hit the big red button. The system writes your new future-wise self over your original 2075 entry, keeping a suitable backup of course. The entry used by the deluxe system is whatever is written in its working record, and that is the you that went to 2150 and back. Any other realities are just backups. So, the system ripples it all through the timeline. You start the day in 2075, have a quick trip for a week’s holiday in 2150, and then return a few minutes later. Your 2075 self will have experienced a trip to 2150 and come back, complete with all the useful data about the 2150 world. If you don’t mess with anything else, you will remember that trip until 2150, at which time you’ll grab a few friends and chat about the first time you ever did time travel.

All of the above is feasible theoretically, and none of it violates any known physics. The universe won’t collapse in a causality paradox bubble rift if you do it, no need to send for Dr Who. That doesn’t mean it isn’t without issues. It still creates a lot of the time travel issues we are so familiar with from sci-fi. But this one isn’t sci-fi – we could build it, and we could get the crowd-funding to make it real by 2075. Don’t get too excited yet though.

You could have gone further into the future than 2150 too, but there is a limit. You can only go as far as there exists a continuous record from where you are. You basically need a road that goes all the way there. If some future authority bans time travel or changes to an incompatible system, that represents a wall you can’t pass through. An even later authority could only remove that wall under certain circumstances, and only if they have the complete records, and the earlier authority might have stopped storing them or even deleted earlier ones and that would ruin any chances of doing it properly.

So, having established that it is possible, we have to ask the more serious question: how real is this time travel? Is it just a cyberspace trick with no impact on the real world? Well, in this scenario, your 2075 mind runs on the deluxe system using its 2075 record. But which one, the old one or the edited one? The edited one of course. The old version is overwritten and ceases to exist except as a backup. There remains no reality except the one you did your time travel trip in. Your time trip is real. But let’s ask a few choice questions, because reality can turn out to be just an illusion sometimes.

So, when you get home to 2075, you can print off your 2150 almanac and brag about all the new technologies you just invented from 2150. Yes?

Yes… if you implement the deluxe version.

Is there a causality paradox?

No.

Will the world end?

No.

But you just short-circuited technology development from 2075 to 2150?

Yes.

So you can do real time travel from 2075? You’ll suddenly vanish from 2075, spend some time in 2150, and later reappear in 2075?

Yes, if you implement the deluxe version.

Well, what happens in 2150?

You’ll do all the pushing red button stuff and have a party with your friends to remember your first time trip. If you set the times right, you could even invite your old self from 2075 as a guest and wave goodbye as you* goes back to 2075.

Or you* could stay in 2150 and there’d be two of you from then on?

Yes

OK, this sounds great fun.  So when can we build this super-duper deluxe version that let’s you time travel from 2075 to 2150 and go back again.

2150

And what happens to me between 2075 and 2150 while I wait for it to be built?

Well, you invest in the deluxe version, connect into the system, and it starts recording all its subscribers’ minds from then on, and you carry on enjoying life until 2150 arrives. Then you can travel from 2075 to 2150, retrospectively.

Retrospectively?

Well, you can travel from 2075 to whatever date in the future the deluxe system still exists. And your 2075 self will fully experience it as time travel. It won’t feel retrospective.

But you have to wait till that date before you can go there?

Yes. But you won’t remember having to wait, all the records of that will be wiped, you’ll just vanish in 2075 and reappear in 2150 or whenever.

What *insert string of chosen expletives here* use is that?

Erm…. Well…. You will still have enjoyed a nice life from 2075 to 2150 before it’s deleted and replaced.

But I won’t remember that will I?

No. But you won’t remember it when you’re dead either.

So I can only do this sort of time travel by having myself wiped off the system for all the years in between after I’ve done it? So the best way of doing that is not to bother with all the effort of living through all those years since they’re going to be deleted anyway and save all the memory and processing by just hibernation in the archives till that date arrives? So I’ll really vanish in 2075 and be restored in 2150 and feel it as time travel? And there won’t be any messy database records to clean up in between, and it will all be nice and environmentally friendly? And not having to run all those people years that would later be deleted will reduce storage and processing costs and system implementation costs dramatically?

Exactly!

OK, sounds a bit better again. But it’s still a fancy cyberspace hibernation scheme really isn’t it?

Well, you can travel back and forth through time as much as you like and socialize with anyone from any time zone and live in any time period. Some people from 2150 might prefer to live in 2075 and some from 2075 prefer to live in 2150. Everyone can choose when they live or just roam freely through the entire time period. A bit like that episode of Star Trek TOS where they all got sent through a portal to different places and times and mixed with societies made of others who had come the same way. You could do that. A bit like a glorified highly immersive computer game.

But what about gambling and using almanacs from the future? And inventing stuff in 2075 that isn’t really invented till 2150?

All the knowledge and data from 2150 will be there in the 2075 system so you won’t have anything new and gambling won’t be a viable industry. But it won’t be actually there until 2150. So the 2075 database will be a retrospective singularity where all of the future knowledge suddenly appears.

Isn’t that a rift in the time-space continuum, letting all the future weapons and political activists and terrorists and their plans through from 2150 to 2075? And Daleks? Some idiot will build one just for the hell of it. They’ll come through the rift too won’t they. And Cyberpersons?

It will not be without technical difficulties. And anyway, they can’t do any actual damage outside the system.

But these minds running in the system will be connected to android bodies or humans outside it. Their minds can time travel through cyberspace. Can’t they do anything nasty?

No, they can only send their minds back and connect to stuff within the system. Any androids and bodies could only be inhabited by first generation minds that belong to that physical time. They can only make use of androids or other body sharing stuff when they travel forwards through time, because it is their chosen future date where the android lives and they can arrange that. On a journey backwards, they can only change stuff running in the system.

 And that’s what stops it violating physics?

Yes

So let’s get this straight. This whole thing is great for extending your mind into cyberspace, sharing bodies, swapping personalities, changing gender or age, sharing consciousness and  some other things. But time travel is only possible for your mind that is supported exclusively in the system. And only that bit in the system can time travel. And your actual 2075 body can’t feel the effect at all or do anything about it? So it’s really another you that this all happens to and you start diverging from your other cyber-self the moment you connect. A replica of you enjoys all the benefits but it thinks it is you and feels like you and essentially is you, but not in the real world. And the original you carries on in parallel.

Correct. It is a big cyberspace bubble created over time with continuous timeline emulation, that only lets you time travel and interact within the bubble. Like an alternative universe, and you can travel in time in it. But it can only interact with the physical universe in real time at the furthermost frontier of the bubble. A frontier that moves into the future at the same speed as the rest of the local space-time continuum and doesn’t cause any physics problems or real time paradoxes outside of the system.

So it’s not REAL time travel. It’s just a sort of cyber-sandbox, albeit one that will be good fun and still worth building.

You can time travel in the parallel universe that you make in cyberspace. But it will be real within that universe. Forwards physical time travel is additionally possible in the physical universe if you migrate your mind totally into cyberspace, e.g. when you die, so you can live electronically, and even then it is really just a fancy form of hibernation. And if you travel back in time in the system, you won’t be able to interact with the physical stuff in the past, only what is running on the system. As long as you accept those limitations, you can travel in time after 2075 and live in any period supported after that.

Why do all the good things only ever happen in another universe?

I don’t know.

No physics or mathematics has knowingly been harmed during this thought experiment. No responsibility is accepted for any time-space rifts created as a result of analytical error.

 

 

Time – The final frontier. Maybe

It is very risky naming the final frontier. A frontier is just the far edge of where we’ve got to.

Technology has a habit of opening new doors to new frontiers so it is a fast way of losing face. When Star Trek named space as the final frontier, it was thought to be so. We’d go off into space and keep discovering new worlds, new civilizations, long after we’ve mapped the ocean floor. Space will keep us busy for a while. In thousands of years we may have gone beyond even our own galaxy if we’ve developed faster than light travel somehow, but that just takes us to more space. It’s big, and maybe we’ll never ever get to explore all of it, but it is just a physical space with physical things in it. We can imagine more than just physical things. That means there is stuff to explore beyond space, so space isn’t the final frontier.

So… not space. Not black holes or other galaxies.

Certainly not the ocean floor, however fashionable that might be to claim. We’ll have mapped that in details long before the rest of space. Not the centre of the Earth, for the same reason.

How about cyberspace? Cyberspace physically includes all the memory in all our computers, but also the imaginary spaces that are represented in it. The entire physical universe could be simulated as just a tiny bit of cyberspace, since it only needs to be rendered when someone looks at it. All the computer game environments and virtual shops are part of it too. The cyberspace tree doesn’t have to make a sound unless someone is there to hear it, but it could. The memory in computers is limited, but the cyberspace limits come from imagination of those building or exploring it. It is sort of infinite, but really its outer limits are just a function of our minds.

Games? Dreams? Human Imagination? Love? All very new agey and sickly sweet, but no. Just like cyberspace, these are also all just different products of the human mind, so all of these can be replaced by ‘the human mind’ as a frontier. I’m still not convinced that is the final one though. Even if we extend that to greatly AI-enhanced future human mind, it still won’t be the final frontier. When we AI-enhance ourselves, and connect to the smart AIs too, we have a sort of global consciousness, linking everyone’s minds together as far as each allows. That’s a bigger frontier, since the individual minds and AIs add up to more cooperative capability than they can achieve individually. The frontier is getting bigger and more interesting. You could explore other people directly, share and meld with them. Fun, but still not the final frontier.

Time adds another dimension. We can’t do physical time travel, and even if we can do so in physics labs with tiny particles for tiny time periods, that won’t necessarily translate into a practical time machine to travel in the physical world. We can time travel in cyberspace though, as I explained in

http://timeguide.wordpress.com/2012/10/25/the-future-of-time-travel-cheat/

and when our minds are fully networked and everything is recorded, you’ll be able to travel back in time and genuinely interact with people in the past, back to the point where the recording started. You would also be able to travel forwards in time as far as the recording stops and future laws allow (I didn’t fully realise that when I wrote my time travel blog, so I ought to update it, soon). You’d be able to inhabit other peoples’ bodies, share their minds, share consciousness and feelings and emotions and thoughts. The frontier suddenly jumps out a lot once we start that recording, because you can go into the future as far as is continuously permitted. Going into that future allows you to get hold of all the future technologies and bring them back home, short circuiting the future, as long as time police don’t stop you. No, I’m not nuts – if you record everyone’s minds continuously, you can time travel into the future using cyberspace, and the effects extend beyond cyberspace into the real world you inhabit, so although it is certainly a cheat, it is effectively real time travel, backwards and forwards. It needs some security sorted out on warfare, banking and investments, procreation, gambling and so on, as well as lot of other causality issues, but to quote from Back to the Future: ‘What the hell?’ [IMPORTANT EDIT: in my following blog, I revise this a bit and conclude that although time travel to the future in this system lets you do pretty much what you want outside the system, time travel to the past only lets you interact with people and other things supported within the system platform, not the physical universe outside it. This does limit the scope for mischief.]

So, time travel in fully networked fully AI-enhanced cosmically-connected cyberspace/dream-space/imagination/love/games would be a bigger and later frontier. It lets you travel far into the future and so it notionally includes any frontiers invented and included by then. Is it the final one though? Well, there could be some frontiers discovered after the time travel windows are closed. They’d be even finaller, so I won’t bet on it.

 

 

How the Space Anchor works

This is just an extract from my sci-fi book Space Anchor, about the adventures of Carbon Girl and her boyfriend Carbon Man. However, the Space Anchor itself is based on the Kasimir effect and warped space time, so has some similarities with NASA’s warp drive, but will be a lot easier to make and require very little energy. If their’s works, so will this. The space anchor will arrive first, and the most likely route to NASA getting their warp drive is using my space anchor to find another civilisation that already has a warp drive and buy one. Anyway, both remain scifi for a few decades. Just as well really. The Warp drive NASA are playing with will be used first as a weapon system to make ultra-high-lethality kinetic weapons. Let’s hope it doesn’t work. Looks pretty though, I’ll give them that.

From Space Anchor:

It was just a routine chat. G’din debriefed the General on the last trip, mapping out space currents. That often took him near planets and moons, and often meant he’d had to dodge asteroids. This one had been an unusually bad trip with several near misses.

Unfortunately, it was moving mass that created the ripples and currents in the space time fabric that the space anchor used. Without it, they’d have no means of ever getting much further than the solar system. Other techniques such as warp drives were still just science fiction. Nobody had any serious means of getting the speed without carrying massive engines and huge quantities of fuel. The space anchor cheated. The C14 didn’t use much fuel at all, and had fairly basic engines for local travel near Earth. The anchor locked on to the local space time fabric itself. There was no matter there, but it used stacked graphene Kasimir combs, each couple of combs interleaved to create a chamber where virtual particles could appear as the slats separated and be immediately separated from one another as the slats interleaved. High speed waves travelling along the combs opened and closed the gaps rapidly. The combs essentially harnessed the virtual particles’ fundamental need to annihilate by trying to physically prevent them from doing so. Creating a temporary barrier between them simply delayed their annihilation, creating a quantum annihilation pressure. Each frustrated annihilation only caused a tiny force measured at macro scales, but there were a lot of layers in the graphene stacks, and it added up nicely. Even though their lives were short, the strong forces the quantum annihilation pressures generated effectively locked the anchor onto that piece of space. Nature may abhor a vacuum, but it absolutely won’t let you steal it away. That would make holes in space time. Nature doesn’t allow holes in space time any more than it allows a tree in a forest to be replaced by an error message saying “tree not found”.

So the space anchor behaved exactly like an anchor should. It stayed where it was put, relative to the local space time. In future space battles, it would undoubtedly be useful for fighters to make rapid turns without using all their fuel. For now, thankfully without those space battles yet, they were happy to use it to make trips faster and shorter.

If the region of space at the anchor was expanding differently from the region where the ship was, which of course was the general idea, the anchor would create a huge force to pull the ship. So, just like a yacht using differences in the winds, the space anchor allowed the C14 to accelerate and brake. Like wind, vacuum energy was free and didn’t need fuel to be carried. The tether was long, but that wasn’t a problem in space. The trouble was, just like wind, it isn’t easy to spot a space current from far away, it is much easier to detect it by being there. Astro-physicists knew where to look for the best chance of finding stronger currents of course but the mapping was still needed. The forces had to be measured, the streams plotted. They had to know where they were, how strong they were, how they behaved. It was very new science and technology. Space-time turbulence had been discovered that could cause very severe vibration when an anchor was being used, although if the anchor was switched off, it would instantly become smooth again and the ship would coast.

One day, space travel would all be easy, but just a few decades in to manned interplanetary travel, it was still anything but routine.  Only a few ships were equipped with space anchors, they were not easy to make and were expensive. The C14 had the first one, since G’din had invented it, and it was still be best equipped ship to do this kind of work. It had three anchors now, improving manoeuvrability – on a good day, G’din could swing it around like a gibbon in the woods.

Space research, tourism, asteroid mining companies and of course the military of many countries all wanted the technology too. But without the other stuff – the Higgs filters, Heisenberg resonators and carbon fur, the anchor was as dangerous as it was useful, and few organisations had ships made out of the materials that could resist even the minor impacts. Most would be riddled with holes on the first trip. So only G’din and the military had them so far, the rest could wait till it was safer.

Fairies will dominate space travel

The future sometimes looks ridiculous. I have occasionally written about smart yogurt and zombies and other things that sound silly but have a real place in the future. I am well used to being laughed at, ever since I invented text messaging and the active contact lens, but I am also well used to saying I told you so later. So: Fairies will play a big role in space travel, probably even dominate it. Yes, those little people with wings, and magic wands, that kind. Laugh all you like, but I am right.

To avoid misrepresentation and being accused of being away with the fairies, let’s be absolutely clear: I don’t believe fairies exist. They never have, except in fairy tales of course. Anyone who thinks they have seen one probably just has poor eyesight or an overactive imagination and maybe saw a dragonfly or was on drugs or was otherwise hallucinating, or whatever. But we will have fairies soon. In 50 or 60 years.

In the second half of this century, we will be able to link and extend our minds into the machine world so well that we will effectively have electronic immortality. You won’t have to die to benefit, you will easily do so while remaining fully alive, extending your mind into the machine world, into any enabled object. Some of those objects will be robots or androids, some might well be organic.

Think of the film Avatar, a story based on yesterday’s ideas. Real science and technology will be far more exciting. You could have an avatar like in the film, but that is just the tip of the iceberg when you consider the social networking implications once the mind-linking technology is commoditised and ubiquitous part of everyday life. There won’t be just one or two avatars used for military purposes like in the film, but millions of people doing that sort of thing all the time.

If an animal’s mind is networked, a human might be able to make some sort of link to it too, again like in Avatar, where the Navii link to their dragon-like creatures. You could have remote presence in the animal. That maybe won’t be as fulfilling as being in a human because the animal has limited functionality, but it might have some purpose. Now let’s leave Avatar behind.

You could link AI to an animal to make it comparable with humans so that your experience could be better, and the animal might have a more interesting life too. Imagine chatting to a pet cat or dog and it chatting back properly.

If your mind is networked as well as we think it could be, you could link your mind to other people’s minds, share consciousness, be a part-time Borg if you want. You could share someone else’s sensations, share their body. You could exchange bodies with someone, or rent yours out and live in the net for a while, or hire a different one. That sounds a lot of fun already. But it gets better.

In the same timeframe, we will have mastered genetics. We will be able to design new kinds of organisms with whatever properties chemistry and physics permits. We’ll have new proteins, new DNA bases, maybe some new bases that don’t use DNA. We’ll also have strong AI, conscious machines. We’ll also be able to link electronics routinely to our organic nervous systems, and we’ll also have a wide range of cybernetic implants to increase sensory capability, memory, IQ, networking and so on.

We will be able to make improved versions of the brain that work and feel pretty much the same as the original, but are far, far smaller. Using synthetic electronics instead of organic cells, signals will travel between neurons at light speed, instead of 200m/s, that’s more than a million times faster. But they won’t have to go so far, because we can also make neurons physically far smaller, hundreds of times smaller, so that’s a couple more zeros to play with. And we can use light to interconnect them, using millions of wavelengths, so they could have millions of connections instead of thousands and those connections will be a billion times faster. And the neurons will switch at terahertz speeds, not hundreds of hertz, that’s also billions of times faster. So even if we keep the same general architecture and feel as the Mk1 brain, we could make it a millimetre across and it could work billions of times faster than the original human brain. But with a lot more connectivity and sensory capability, greater memory, higher processing speed, it would actually be vastly superhuman, even as it retains broadly the same basic human nature.

And guess what? It will easily fit in a fairy.

So, around the time that space industry is really taking off, and we’re doing asteroid mining, and populating bases on Mars and Europa, and thinking of going further, and routinely designing new organisms, we will be able to make highly miniaturized people with brains vastly more capable than conventional humans. Since they are small, it will be quite easy to make them with fully functional wings, exactly the sort of advantage you want in a space ship where gravity is in short supply and you want to make full use of a 3D space. Exactly the sort of thing you want when size and mass is a big issue. Exactly the sort of thing you want when food is in short supply. A custom-designed electronic, fully networked brain is exactly the sort of thing you want when you need a custom-designed organism that can hibernate instantly. Fairies would be ideally suited to space travel. We could even design the brains with lots of circuit redundancy, so that radiation-induced faults can be error-corrected and repaired by newly designed proteins.

Wands are easy too. Linking the mind to a stick, and harnessing the millions of years of recent evolution that has taught us how to use sticks is a pretty good idea too. Waving a wand and just thinking what they want to happen at the target is all the interface a space-fairy needs.

This is a rich seam and I will explore it again some time. But for now, you get the idea.

Space-farers will mostly be space fairies.

 

 

 

 

The internet of things will soon be history

I’ve been a full time futurologist since 1991, and an engineer working on far future R&D stuff since I left uni in 1981. It is great seeing a lot of the 1980s dreams about connecting everything together finally starting to become real, although as I’ve blogged a bit recently, some of the grander claims we’re seeing for future home automation are rather unlikely. Yes you can, but you probably won’t, though some people will certainly adopt some stuff. Now that most people are starting to get the idea that you can connect things and add intelligence to them, we’re seeing a lot of overshoot too on the importance of the internet of things, which is the generalised form of the same thing.

It’s my job as a futurologist not only to understand that trend (and I’ve been yacking about putting chips in everything for decades) but then to look past it to see what is coming next. Or if it is here to stay, then that would also be an important conclusion too, but you know what, it just isn’t. The internet of things will be about as long lived as most other generations of technology, such as the mobile phone. Do you still have one? I don’t, well I do but they are all in a box in the garage somewhere. I have a general purpose mobile computer that happens to do be a phone as well as dozens of other things. So do you probably. The only reason you might still call it a smartphone or an iPhone is because it has to be called something and nobody in the IT marketing industry has any imagination. PDA was a rubbish name and that was the choice.

You can stick chips in everything, and you can connect them all together via the net. But that capability will disappear quickly into the background and the IT zeitgeist will move on. It really won’t be very long before a lot of the things we interact with are virtual, imaginary. To all intents and purposes they will be there, and will do wonderful things, but they won’t physically exist. So they won’t have chips in them. You can’t put a chip into a figment of imagination, even though you can make it appear in front of your eyes and interact with it. A good topical example of this is the smart watch, all set to make an imminent grand entrance. Smart watches are struggling to solve battery problems, they’ll be expensive too. They don’t need batteries if they are just images and a fully interactive image of a hugely sophisticated smart watch could also be made free, as one of a million things done by a free app. The smart watch’s demise is already inevitable. The energy it takes to produce an image on the retina is a great deal less than the energy needed to power a smart watch on your wrist and the cost of a few seconds of your time to explain to an AI how you’d like your wrist to be accessorised is a few seconds of your time, rather fewer seconds than you’d have spent on choosing something that costs a lot. In fact, the energy needed for direct retinal projection and associated comms is far less than can be harvested easily from your body or the environment, so there is no battery problem to solve.

If you can do that with a smart watch, making it just an imaginary item, you can do it to any kind of IT interface. You only need to see the interface, the rest can be put anywhere, on your belt, in your bag or in the IT ether that will evolve from today’s cloud. My pad, smartphone, TV and watch can all be recycled.

I can also do loads of things with imagination that I can’t do for real. I can have an imaginary wand. I can point it at you and turn you into a frog. Then in my eyes, the images of you change to those of a frog. Sure, it’s not real, you aren’t really a frog, but you are to me. I can wave it again and make the building walls vanish, so I can see the stuff on sale inside. A few of those images could be very real and come from cameras all over the place, the chips-in-everything stuff, but actually, I don’t have much interest in most of what the shop actually has, I am not interested in most of the local physical reality of a shop; what I am far more interested in is what I can buy, and I’ll be shown those things, in ways that appeal to me, whether they’re physically there or on Amazon Virtual. So 1% is chips-in-everything, 99% is imaginary, virtual, some sort of visual manifestation of my profile, Amazon Virtual’s AI systems, how my own AI knows I like to see things, and a fair bit of other people’s imagination to design the virtual decor, the nice presentation options, the virtual fauna and flora making it more fun, and countless other intermediaries and extramediaries, or whatever you call all those others that add value and fun to an experience without actually getting in the way. All just images directly projected onto my retinas. Not so much chips-in-everything as no chips at all except a few sensors, comms and an infinitesimal timeshare of a processor and storage somewhere.

A lot of people dismiss augmented reality as irrelevant passing fad. They say video visors and active contact lenses won’t catch on because of privacy concerns (and I’d agree that is a big issue that needs to be discussed and sorted, but it will be discussed and sorted). But when you realise that what we’re going to get isn’t just an internet of things, but a total convergence of physical and virtual, a coming together of real and imaginary, an explosion of human creativity,  a new renaissance, a realisation of yours and everyone else’s wildest dreams as part of your everyday reality; when you realise that, then the internet of things suddenly starts to look more than just a little bit boring, part of the old days when we actually had to make stuff and you had to have the same as everyone else and it all cost a fortune and needed charged up all the time.

The internet of things is only starting to arrive. But it won’t stay for long before it hides in the cupboard and disappears from memory. A far, far more exciting future is coming up close behind. The world of creativity and imagination. Bring it on!

Active Skin – an old idea whose time is coming

Active Skin

In May 2001, while working in BT research, I had an idea – how we could use the skin surface as a new platform for electronics. I grabbed a few of my colleagues – Robin Mannings, Dennis Johnston, Ian Neild, and Paul Bowman, and we shut ourselves in a room for a few hours to brainstorm it. We originally intended to patent some of the ideas, but they weren’t core business for a telecoms company like BT so that never happened.

Now, 12.5 years on, it is too late to extract any value from a patent, but some of the technologies are starting to appear around the world as prototypes by various labs and companies, so it’s time is drawing near. We never did publish the ideas, though a few did make it out via various routes and I talk about active skin in my writings more generally. So I thought I’d serialise some of the ideas list now – there are lots. This one will just be the intro.

Introduction

Today we have implants in the body, and wearable devices such as watches and cell-phones in regular proximity to our bodies, with a much looser affiliation to other forms of electronics such as palmtops and other computers. With recent advances in miniaturisation, print technology and polymer based circuits, a new domain is now apparent but as yet unexploited, and offers enormous potential business for a nimble first-mover. The domain is the skin itself, where the body meets the rest of the world. We have called it active skin, and it has a wide range of potential applications.

Active skin layers

Stimulated by MIT work in late 1990s that has shown that the skin can be used as a communications medium, a logical progression is to consider what other uses it might be put to. What we proposed is a multi-layer range of devices.Slide2

(actually, this original pic wasn’t drawn quite right. The transfer layer sits just on the skin, not in it.)

The innermost ‘tattoo layer’ is used for smart tattoos, which are permanently imprinted into the lower layers of the skin. These layers do not wear or wash away.

The next ‘mid-term’ layer is the upper layers of the skin, which wear away gradually over time.

Above this we move just outside to the ‘transfer layer’. Children frequently wear ‘tattoos’ that are actually just transfers that stick onto the skin surface, frequently on a thin polymer base. They are fairly robust against casual contact, but can be removed fairly easily.

The final ‘detachable layer’ is occupied by fully removable devices that are only worn on a temporary basis, but which interact with the layers below.

Above this is the ‘wearable layer; the domain of the normal everyday gadget such as a watch.

A big advantage for this field is that space is not especially limited, so devices can be large in one or two dimensions. However, they must be flexible and very thin to be of use in this domain and be more comfortable than the useful alternatives.

Bubblewrap terrorism

I can happily spend ages bursting bubblewrap. It has a certain surprise value that never stops giving, you never quite know when the bubble will burst.

I saw some nice photos Rachel Armstrong (@livingarchitect and Senior Ted Fellow) has made playing with chemistry, using bubblewrap cells as mini-reaction chambers to great effect. She is a proper scientist, not a mad one, and does some interesting stuff and is worth following. She isn’t the problem.

My first thought was, I need a chemistry lab, then I thought about Dexter and Stewie with their labs and realised that I have way too much in common with them, including mental age band, and remembered some of my childhood ‘events’ with my chemistry set, and basically I haven’t moved on so it wouldn’t be a good idea.

My second thought, a couple of seconds later, was that bubblewrap would make an excellent way to keep nasty chemicals separate and then to suddenly mix them, and that it could be easily wrapped around the body or in a briefcase lining, or as obviously innocent packing material for a fragile object being carried on a plane, with the top few rows of cells kept largely chemical-free to erase suspicion. Now I know I can’t be the first person to think of that, but I remember seeing warnings about all sorts of things I’m not allowed to take on planes or that must be put in the little plastic bag and I don’t recall seeing any mention of bubblewrap.

And if chemistry, why not biotech, mixing some sort of dispersal activator with a few cells of nasty viruses. Or in fact, why bother with the dispersion chemicals, bubblewrap makes a nice burst of compressed air when you pop it anyway so would be good for dispersing stuff just by popping cells.

Just a thought, but is bubblewrap already a known terrorist threat, or is it just about to become one?

Free-floating AI battle drone orbs (or making Glyph from Mass Effect)

I have spent many hours playing various editions of Mass Effect, from EA Games. It is one of my favourites and has clearly benefited from some highly creative minds. They had to invent a wide range of fictional technology along with technical explanations in the detail for how they are meant to work. Some is just artistic redesign of very common sci-fi ideas, but they have added a huge amount of their own too. Sci-fi and real engineering have always had a strong mutual cross-fertilisation. I have lectured sometimes on science fact v sci-fi, to show that what we eventually achieve is sometimes far better than the sci-fi version (Exhibit A – the rubbish voice synthesisers and storage devices use on Star Trek, TOS).

Glyph

Liara talking to her assistant Glyph.Picture Credit: social.bioware.com

In Mass Effect, lots of floating holographic style orbs float around all over the place for various military or assistant purposes. They aren’t confined to a fixed holographic projection system. Disruptor and battle drones are common, and  a few home/lab/office assistants such as Glyph, who is Liara’s friendly PA, not a battle drone. These aren’t just dumb holograms, they can carry small devices and do stuff. The idea of a floating sphere may have been inspired by Halo’s, but the Mass Effect ones look more holographic and generally nicer. (Think Apple v Microsoft). Battle drones are highly topical now, but current technology uses wings and helicopters. The drones in sci-fi like Mass Effect and Halo are just free-floating ethereal orbs. That’s what I am talking about now. They aren’t in the distant future. They will be here quite soon.

I recently wrote on how to make force field and floating cars or hover-boards.

http://timeguide.wordpress.com/2013/06/21/how-to-actually-make-a-star-wars-landspeeder-or-a-back-to-the-future-hoverboard/

Briefly, they work by creating a thick cushion of magnetically confined plasma under the vehicle that can be used to keep it well off the ground, a bit like a hovercraft without a skirt or fans. Using layers of confined plasma could also be used to make relatively weak force fields. A key claim of the idea is that you can coat a firm surface with a packed array of steerable electron pipes to make the plasma, and a potentially reconfigurable and self organising circuit to produce the confinement field. No moving parts, and the coating would simply produce a lifting or propulsion force according to its area.

This is all very easy to imagine for objects with a relatively flat base like cars and hover-boards, but I later realised that the force field bit could be used to suspend additional components, and if they also have a power source, they can add locally to that field. The ability to sense their exact relative positions and instantaneously adjust the local fields to maintain or achieve their desired position so dynamic self-organisation would allow just about any shape  and dynamics to be achieved and maintained. So basically, if you break the levitation bit up, each piece could still work fine. I love self organisation, and biomimetics generally. I wrote my first paper on hormonal self-organisation over 20 years ago to show how networks or telephone exchanges could self organise, and have used it in many designs since. With a few pieces generating external air flow, the objects could wander around. Cunning design using multiple components could therefore be used to make orbs that float and wander around too, even with the inspired moving plates that Mass Effect uses for its drones. It could also be very lightweight and translucent, just like Glyph. Regular readers will not be surprised if I recommend some of these components should be made of graphene, because it can be used to make wonderful things. It is light, strong, an excellent electrical and thermal conductor, a perfect platform for electronics, can be used to make super-capacitors and so on. Glyph could use a combination of moving physical plates, and use some to add some holographic projection – to make it look pretty. So, part physical and part hologram then.

Plates used in the structure can dynamically attract or repel each other and use tethers, or use confined plasma cushions. They can create air jets in any direction. They would have a small load-bearing capability. Since graphene foam is potentially lighter than helium

http://timeguide.wordpress.com/2013/01/05/could-graphene-foam-be-a-future-helium-substitute/

it could be added into structures to reduce forces needed. So, we’re not looking at orbs that can carry heavy equipment here, but carrying processing, sensing, storage and comms would be easy. Obviously they could therefore include whatever state of the art artificial intelligence has got to, either on-board, distributed, or via the cloud. Beyond that, it is hard to imagine a small orb carrying more than a few hundred grammes. Nevertheless, it could carry enough equipment to make it very useful indeed for very many purposes. These drones could work pretty much anywhere. Space would be tricky but not that tricky, the drones would just have to carry a little fuel.

But let’s get right to the point. The primary market for this isn’t the home or lab or office, it is the battlefield. Battle drones are being regulated as I type, but that doesn’t mean they won’t be developed. My generation grew up with the nuclear arms race. Millennials will grow up with the drone arms race. And that if anything is a lot scarier. The battle drones on Mass Effect are fairly easy to kill. Real ones won’t.

a Mass Effect combat droneMass Effect combat drone, picture credit: masseffect.wikia.com

If these cute little floating drone things are taken out of the office and converted to military uses they could do pretty much all the stuff they do in sci-fi. They could have lots of local energy storage using super-caps, so they could easily carry self-organising lightweight  lasers or electrical shock weaponry too, or carry steerable mirrors to direct beams from remote lasers, and high definition 3D cameras and other sensing for reconnaissance. The interesting thing here is that self organisation of potentially redundant components would allow a free roaming battle drone that would be highly resistant to attack. You could shoot it for ages with laser or bullets and it would keep coming. Disruption of its fields by electrical weapons would make it collapse temporarily, but it would just get up and reassemble as soon as you stop firing. With its intelligence potentially local cloud based, you could make a small battalion of these that could only be properly killed by totally frazzling them all. They would be potentially lethal individually but almost irresistible as a team. Super-capacitors could be recharged frequently using companion drones to relay power from the rear line. A mist of spare components could make ready replacements for any that are destroyed. Self-orientation and use of free-space optics for comms make wiring and circuit boards redundant, and sub-millimetre chips 100m away would be quite hard to hit.

Well I’m scared. If you’re not, I didn’t explain it properly.