Category Archives: investments

The future of rubbish quality art

Exhibit A: Tracey Emin – anything at all from her portfolio will do.

Exhibit B: What I just knocked up in 5 minutes:

Exploration of the real-time gravitational interaction of some copper atoms

Exploration of the real-time gravitational interaction of some copper atoms

A recent work, I can Cu Now

As my obvious  artistic genius quickly became apparent to me, I had a huge flash of inspiration and produced this:

Investigating the fundamental essence of futurology and whether the process of looking into the future can be fully contained within a finite cultural bottle.

Investigating the fundamental essence of futurology and whether the process of looking into the future can be fully contained within a finite cultural bottle.

Trying to bottle the future

I have to confess that I didn’t make the beautiful bottle, but even Emin only has a little personal  input into some of the works she produces and it is surely obvious that my talent in arranging this so beautifully is vastly greater than that of the mere sculptor who produced the vase, or bottle, or whatever. Then, I produced my magnum opus, well so far, towards the end of my five minutes of exploration of the art world. I think you’ll agree I ought immediately to be assigned Professor of Unified Arts in the Royal Academy. Here it is, if I can see well enough to upload it through my tears of joy at having produced such insight.

Can we measure the artistic potential of a rose?

Can we measure the artistic potential of a rose?

This work needs no further explanation. I rest my case.

Time – The final frontier. Maybe

It is very risky naming the final frontier. A frontier is just the far edge of where we’ve got to.

Technology has a habit of opening new doors to new frontiers so it is a fast way of losing face. When Star Trek named space as the final frontier, it was thought to be so. We’d go off into space and keep discovering new worlds, new civilizations, long after we’ve mapped the ocean floor. Space will keep us busy for a while. In thousands of years we may have gone beyond even our own galaxy if we’ve developed faster than light travel somehow, but that just takes us to more space. It’s big, and maybe we’ll never ever get to explore all of it, but it is just a physical space with physical things in it. We can imagine more than just physical things. That means there is stuff to explore beyond space, so space isn’t the final frontier.

So… not space. Not black holes or other galaxies.

Certainly not the ocean floor, however fashionable that might be to claim. We’ll have mapped that in details long before the rest of space. Not the centre of the Earth, for the same reason.

How about cyberspace? Cyberspace physically includes all the memory in all our computers, but also the imaginary spaces that are represented in it. The entire physical universe could be simulated as just a tiny bit of cyberspace, since it only needs to be rendered when someone looks at it. All the computer game environments and virtual shops are part of it too. The cyberspace tree doesn’t have to make a sound unless someone is there to hear it, but it could. The memory in computers is limited, but the cyberspace limits come from imagination of those building or exploring it. It is sort of infinite, but really its outer limits are just a function of our minds.

Games? Dreams? Human Imagination? Love? All very new agey and sickly sweet, but no. Just like cyberspace, these are also all just different products of the human mind, so all of these can be replaced by ‘the human mind’ as a frontier. I’m still not convinced that is the final one though. Even if we extend that to greatly AI-enhanced future human mind, it still won’t be the final frontier. When we AI-enhance ourselves, and connect to the smart AIs too, we have a sort of global consciousness, linking everyone’s minds together as far as each allows. That’s a bigger frontier, since the individual minds and AIs add up to more cooperative capability than they can achieve individually. The frontier is getting bigger and more interesting. You could explore other people directly, share and meld with them. Fun, but still not the final frontier.

Time adds another dimension. We can’t do physical time travel, and even if we can do so in physics labs with tiny particles for tiny time periods, that won’t necessarily translate into a practical time machine to travel in the physical world. We can time travel in cyberspace though, as I explained in

http://timeguide.wordpress.com/2012/10/25/the-future-of-time-travel-cheat/

and when our minds are fully networked and everything is recorded, you’ll be able to travel back in time and genuinely interact with people in the past, back to the point where the recording started. You would also be able to travel forwards in time as far as the recording stops and future laws allow (I didn’t fully realise that when I wrote my time travel blog, so I ought to update it, soon). You’d be able to inhabit other peoples’ bodies, share their minds, share consciousness and feelings and emotions and thoughts. The frontier suddenly jumps out a lot once we start that recording, because you can go into the future as far as is continuously permitted. Going into that future allows you to get hold of all the future technologies and bring them back home, short circuiting the future, as long as time police don’t stop you. No, I’m not nuts – if you record everyone’s minds continuously, you can time travel into the future using cyberspace, and the effects extend beyond cyberspace into the real world you inhabit, so although it is certainly a cheat, it is effectively real time travel, backwards and forwards. It needs some security sorted out on warfare, banking and investments, procreation, gambling and so on, as well as lot of other causality issues, but to quote from Back to the Future: ‘What the hell?’ [IMPORTANT EDIT: in my following blog, I revise this a bit and conclude that although time travel to the future in this system lets you do pretty much what you want outside the system, time travel to the past only lets you interact with people and other things supported within the system platform, not the physical universe outside it. This does limit the scope for mischief.]

So, time travel in fully networked fully AI-enhanced cosmically-connected cyberspace/dream-space/imagination/love/games would be a bigger and later frontier. It lets you travel far into the future and so it notionally includes any frontiers invented and included by then. Is it the final one though? Well, there could be some frontiers discovered after the time travel windows are closed. They’d be even finaller, so I won’t bet on it.

 

 

Drones, balloons and high speed banking

High speed  or high frequency banking is a fact of life now and I am glad to say I predicted it and some of its associated issues in the mid 1990s. Technology has moved on rather though, so it’s long past time for an update.

Getting the distance between computing elements as small as possible has been one of the key factors in making chips faster, but the distances between chips and between computers are enormous by comparison. Now that trading computers execute many billions of instructions per second, even tiny extra transmission times can make a significant difference in the precise time at which data that will influence a trade instruction is received by a bank computer, and a consequent trade initiated. That can make a big difference in price and hence profits.

We are about to see the first exaflop computers. A light signal can only travel a third of a nanometre in free space in the time it take for an instruction to execute on such a machine.

Some data delivery to banks is synchronised to give a degree of fairness, but not all data is included in that, useful data doesn’t all come from a single source, and analyst software isn’t necessarily in the same location as a trading device, so signals holding data or instructions have to travel relatively large distances and that gives a degree of competitive advantage to those banks that pick the best locations and optimise their networks best. Sometimes important signals travel between cities or between buildings in a city. Banks already make free space optical links, send signals over laser beams through the air; point to point links with minimum distance. However, that isn’t feasible between cities. Very straight optical cables have also been laid to solve longer distance comms without incurring any extra delays due to bends.

But the trend won’t peak any time soon. Light travels faster in air than it does in fibre. 3 microseconds per kilometre is a lot faster than 5, so those banks with fibre links would be at a disadvantage compared to those with free space links. If the distance is too high to send a laser beam directly between buildings  due to atmospheric absorption, the earth’s curvature or air safety considerations, then there is another solution coming soon. Even sending free space light through the fibre ducts could be faster in latency terms than actually using the fibre, though the practicalities of doing so might well make it near impossible.

Balloons and drones are already being used or considered for many purposes and communications is just another one. Making a network of balloons or drones to divide the journey into manageable hops would speed signals along. There is a trade-off between altitude and distance. Going too high adds too much extra distance, though the air is clearer so fewer hops are needs and the speed of light very slightly faster. There will be an optimum curve that takes the signals reasonably high for most of the journey, but that keeps the total distance low. Drones and balloons can stay afloat for long periods.

It doesn’t stop with just comm-links. Given that there are preferred locations for different industries as far as data sources go, we may well see aerial computing too, doing the processing in situ and relaying a trade instruction to minimise the total time involved. Regulation lags such ideas so that enables the faster more agile banks to use high altitude balloons or drones for long periods before legal challenges force their removal. Even then, using helicopters and planes, hiring office building rooftops and many other strategies will enable banks to shave microseconds or even milliseconds off the time they need to analyse data and instruct trades.

High frequency trading has already introduced instabilities into trading systems and these new potentials will increase instability further still. The extra mathematical and business complexity of using divers parallel networks introduces new kinds of wave interference and emergent behavioural risks that will be as hard to spot as the financial derivative risks that caused the last crash.

While risks are underwritten by taxpayers and banks can keep the rewards, they have little incentive to play safe and every incentive to gamble more and faster, using every new gearing technology they can source. Future crashes could be even more spectacular, and may happen order of magnitude faster than the last big crash.

I spotted some other new banking toys, but they are even more dangerous and I will save those for another blog.

 

 

The future of mining

I did an interview recently on future mining, so I thought I’d blog my thoughts on the subject while they’re all stuck together coherently.

Very briefly, increasing population and wealth will generate higher resource need until the resources needed per person starts to fall at a higher rate, and it will. That almost certainly means a few decades of increasing demand for many resources, with a few exceptions where substitution will impact at a higher rate. Eventually, demand will peak and fall for most resources. Meanwhile, the mining industry can prosper.

Robotics

Robots are already used a lot in mining, but their uses will evolve. Robots have a greater potential range of senses than humans, able to detect whatever sensors are equipped for. That means they can see into rock and analyse composition better than our eyes. AI will improve their decisions. Of course, we’ll still have the self drive vehicles, diggers and the other automation we already expect to see.

If a mine can be fully automated, it may reduce deaths and costs significantly. Robots can also have a rapid speed of reaction as well as AI and advanced sensing, and could detect accidents before they happen. Apart from saving on wages, robots also don’t need expensive health and safety, so that may see lower costs, but at the expense of greater risks with occasional flat robots in an automated mine. The costs of robots can be kept low if most of their intelligence is remote rather than on board. Saving human lives is a benefit that can’t easily be costed. Far better to buy a new machine than to comfort a bereaved family.

Robots in many other mixed mines will need to be maintained, so maybe people’s main role will often be just looking after the machines, and we would still need to ensure safety in that case. That creates a big incentive to make machines that can be maintained by other machines so that full automation can be achieved.

With use of penetrating positioning systems, specialist wanderer bots could tunnel around at will, following a seam, extracting and concentrating useful materials and leave markers for collector bots to gather the concentrates.

NBIC

With ongoing convergence of biotech, nanotech and IT, we should expect a lot of development of various types of bacterial or mechanical microbots, that can get into new places and reduce the costs of recovery, maybe even reopening some otherwise uneconomic mines. Development of bacteria that can transmute materials has already begun, and we should expect that some future mines will depend mainly on a few bucketfuls of bacterial soup to convert and concentrate resources into more easily extracted reserves. Such advanced technology will greatly increase the reserves of material that can economically be extracted. Obviously the higher the price, the more that can be justified on extraction, so advanced technologies will develop faster when we need them, as any shortages start to appear.

Deep Sea

Deep sea mines would provide access to far greater resource pools, limited mainly by the market price for the material. Re-opening other mines as technology improves recovery potential will also help.

Asteroid Mining

Moving away from the Earth, a lot of hype has appeared about asteroid mining and some analyses seem to think that it will impact enormously on the price of scarce materials here on Earth. I think that is oversold as a possibility.  Yes, it will be possible to bring stuff back to Earth, but the costs of landing materials safely would be high and only justified for those with extreme prices.  For traditionally expensive gold or diamonds, actual uses are relatively low and generally have good cheaper substitutes, so if large quantities were shipped back to Earth, prices would still be managed as they already are, with slow trickling onto the market to avoid price collapse. That greatly limits the potential wealth from doing so.

I think it is far more likely that asteroid mining will be focused on producing stuff for needed for construction, travel and living in space, such as space stations, ships, energy collection, habitation, outposts etc. In that case, many of the things mined from asteroids would be things that are cheap here, such as water and iron and other everyday materials. Their value in space might be far higher simply because of the expense of moving them. This last factor suggests that there may be a lot of interest in technologies to move asteroids or change their orbits so the resources end up closer to where they are needed. An asteroid could be mined at great length, with the materials extracted and left on its surface, then waiting until the asteroid is close to the required destination before the materials are collected and dispatched. The alternative that we routinely see in sci-fi, with vast mining ships, is possible, and there will undoubtedly be times they are needed, but surely can’t compete on cost with steering an entire asteroid so it delivers the materials itself.

Population growth and resource need

As human population increases, we’ll eventually also see robot and android population increase, and they might also need resources for their activities. We should certainly factor that into future demand estimates. However, there are also future factors that will reduce the resources needed.

Smarter Construction

More advanced construction techniques, development of smarter materials and use of reactive architecture all mean that less resource is needed for a given amount of building. Exotic materials such as graphene  and carbon nanotubes, boron derivatives, and possibly even plasma in some applications, will all impact on construction and other industries and reduce demand for lots of resources. The carbon derivatives are a double win, since carbon can usefully be extracted from the products of fossil fuel energy production, making cleaner energy at the same time as providing building and fabrication materials. The new carbon materials are a lot stronger than steel, so we may build much higher buildings, making a lower environmental footprint for cities. They are also perfect for making self-driving cars as well as their energy storage, power supply and supporting infrastructure.

IT efficiency v the Greens

Miniaturisation of electronics and IT will continue for decades more. A few cubic millimetres of electronics could easily replace all the electronics owned by a typical family today. Perversely, Greens are trying hard to force a slower obsolescence cycle, not understanding that the faster we get to minimal resource use, the lower the overall environmental impact will be. By prolonging high-resource-use gadgets, even as people get wealthier and can afford to buy more, the demands will increase far beyond what is really necessary of they hadn’t interfered. It is far better for 10 billion people to use a few cubic millimetres each than a few litres. Greens also often want to introduce restrictions on development of other advanced technology, greatly overusing the precautionary principle. Their distrust of science and technology is amazing considering how much it can obviously benefit the environment.

A lot of things can be done virtually too, with no resource use at all, especially displays and interfaces, all of which could share a single common display such as a 0.2 gram active contact lens. A lot of IT can be centralised with greater utilisation, while some can achieve better efficiency by decentralising. We need to apply intelligence to the problem, looking at each bit as part of an overall system instead of in isolation, and looking at the full life cycle as well as the full system.

Substitution will reduce demand for copper, neodymium, lithium

Recycling of some elements will provide more than is needed by a future market because of material substitution, so prices of some could fall, such as copper. Copper in plumbing is already being substituted heavily by plastic. In communications, fibre and mobile are already heavily replacing it. In power cables, it will eventually be substituted by graphene. Similar substitution is likely in many other materials. The primary use of neodymium is in wind turbines and high speed motors. As wind turbines are abandoned and recycled in favour of better energy production techniques, as future wind power can even be based on plastic capacitors that need hardly any metal at all, and as permanent magnets in motors are substituted by superconducting magnets, there may not be much demand for neodymium. Similarly, lithium is in great demand for batteries, but super-capacitors, again possibly using carbon derivatives such as graphene, will substitute greatly for them. Inductive power coupling from inductive mats in a road surface could easily replace most of the required capacity for a car battery, especially as self driving cars will be lighter and closer together, reducing energy demand. Self-driving cars even reduce the number of cars needed as they deter private ownership. So it is a win-win-win for everyone except the mining industry. A small battery or super-cap bank might have little need for lithium. Recycled lithium could be all we need. Recycling will continue to improve through better practice and better tech, and also some rubbish tips could even be mined if we’re desperate. With fewer cars needed, and plastic instead of steel, that also impacts on steel need.

The Greens are the best friends of the mining industry

So provided we can limit Green interference and get on with developing advanced technology quickly, the fall in demand per person (or android) may offset resource need at a higher rate than the population increases. We could use less material in the far future than we do today, even with a far higher average standard of living. After population peaks and starts falling, there could be a rapid price fall as a glut of recycled material appears. That would be a bleak outcome for the mining sector of course. In that case, by delaying that to the best of their ability, it turns out that the Greens are the mining industry’s best friends, useful idiots, ensuring that the markets remain as large as possible for as long as possible, with the maximum environmental impact.

It certainly takes a special restriction of mind to let someone do so much harm to the environment while still believing they occupy the moral high ground!

Carbon industry

Meanwhile, carbon sequestration could easily evolve into a carbon materials industry, in direct competition with the traditional resources sector, with carbon building materials, cables, wires, batteries, capacitors, inductors, electronics, fabrics…..a million uses. Plastics will improve in parallel, often incorporating particles of electronics, sensors, and electronic muscles, making a huge variety of potential smart materials for any kind of building, furniture of gadget. The requirement for concrete, steel, aluminium, copper, and many other materials will eventually drop, even as population and wealth grows.

To conclude, although population increase and wealth increase will generate increasing demand in the short to medium term, and mining will develop rapidly along many avenues, in the longer term, the future will rely far more on recycling and advanced manufacturing techniques, so the demand for raw materials will eventually peak and fall.

I wrote at far greater length about achieving a system-wide sustainable future in my book Total Sustainability, which avoids the usual socialist baggage.

Active Skin part 3 – key fields and inventions

This entry only makes sense if you read the previous two parts!

http://timeguide.wordpress.com/2014/01/08/active-skin-an-old-idea-whose-time-is-coming/

and

http://timeguide.wordpress.com/2014/01/09/active-skin-part-2-initial-applications/

if you have looked at them, time to read this one. Remember, this is onl;y a list of the ideas we had way back in 2001, I haven’t listed any we invented since.

Key active skin technology fields

Many of our original ideas had similarities, so I analysed them and produced a set of basic platforms that could be developed. The following platform components are obvious:

  1. A multilevel device architecture with some of the layers in or on the body, working in conjunction.

Tattoo layer

  1. Sub-surface imprints that monitor various body state parameters, such as chemical, electrical, temperature, and signal this information to higher layer devices.
  2. Permanently imprinted ID circuitry or patterns
  3. Permanently imprinted display components
  4. Permanently imprinted circuitry to link to nerves
  5. Imprinted devices that use chemical energy from the body to power external devices, e.g. ATP

Mid-term layer

  1. Similar technology to tattoo layer but higher in skin so therefore degradable over time
  2. Soluble or body-degradable circuitry
  3. photodegradable circuitry
  4. transparent circuitry using transparent conducting polymers
  5. inconspicuous positioning systems
  6. devices that transfer body material such as DNA or body fluids to external devices
  7. imprinted data storage devices with I/O, or permanent dumb storage
  8. imprinted sensors and recorders for radiation, magnetic fields, electrical or mechanical variation
  9. imprinted signalling devices for communication between body devices and external world
  10. smart monitoring and alarm technology that integrates body or surface events or position to external behaviours such as control systems, or surveillance systems
  11. synthetic sense systems based on synthetic sensing and translation to biological sense and possibly direct nerve stimuli
  12. smart teeth with sampling and analysis functions with signalling and storage capability
  13. imprinted actuators using piezoelectric, memory metal or ‘muscle wire’ technology, interacting with external monitoring to use as interface or feedback devices
  14. infection monitor and control devices
  15. devices that make electrical or magnetic stimuli to assist wound healing or control pain
  16. semi-permanent tags for visitors, contractors, criminals and babies, location and context dependent
  17. medical tags that directly interact with hospital equipment to control errors, hold medical records etc
  18. links to nervous system by connecting to nerves in the skin and to outside by radio

Mid-term & Transfer Layers – Smart cosmetics

  1. semi-permanent self organising displays for applications such as smart nail varnish and smart cosmetics
  2. context sensitive cosmetics, reacting to time, location, person, emotions, temperature
  3. electrically sensitive chemicals that interact with imprinted electronic circuits
  4. semi-permanent underlay for smart overlays to assist self-organisation
  5. smart sunscreens with sensors and electro-active filters
  6. colour sensitive or exposure sensitive sun-blocks
  7. cosmetics with actuators in suspension controlled by embedded electronics
  8. Active jewellery, active Bindies etc , e.g. Led optical control linked to thought recognition system
  9. Smart perfumes that respond to context, temperature, location etc

Transfer Layer

This layer has by far the most opportunities since it is not restricted to materials that can be tolerated in the body, and can also use a factory pre-printed membrane that can be transferred onto the skin. It can encompass a wide range of devices that can be miniaturised sufficiently to fit in a thin flexible package. Many currently wearable devices such as phones and computers could end up in this layer in a few years.

Most of the mid-term and some of the tattoo layer devices are also appropriate at this layer.

  1. Smart fingerprints encompass range of ID, pressure detection, interfacing and powering devices
  2. Use of vibrating membranes as signalling, e.g. ring tone, alarms, synthetic senses etc, allows personal signalling. Possible use for insect repellent if ultrasonic vibration
  3. Use of ultrasound to communicate with outside or to constantly monitor foetus
  4. Use of touch or proximity sensitive membranes to allow typing or drawing on body surface, use of skin as part of input device, may use in conjunction with smart fingerprints for keypad-free dialling etc
  5. Palm of hand can be used as computer in conjunction with smart fingerprints
  6. Use of strain gauges in smart skin allows force measurement for interfaces, force feedback, policing child abuse etc
  7. Actuators built into membrane, allows program interface and force feedback systems, drug dosing, skin tensioning etc, use for training and games, sports, immersive environments etc.
  8. Use of combinations of such devices that measure distance between them, allowing training and monitoring functions
  9. Transfer on eye allows retinal display, ultraviolet vision, eye tracking, visual interface
  10. Transfer based phones and computers
  11. Electronic jewellery
  12. Direct link between body and avatars based on variety of sensors around body and force feedback devices, connection to nervous system via midterm layer devices
  13. Thermal membranes that change conductivity on demand to control heating or cooling, also use as alarm and signalling
  14. Electronic muscles based on contracting gels, muscle wires etc, used as temporary training devices for people in recovery or physiotherapy, or for sports training
  15. Electronic stimulation devices allowing electro-acupuncture, electrolysis, itching control etc
  16. Printed aerials worn on body
  17. Permanent EEG patches for use in thought recognition and control systems
  18. Emotionally sensitive electronics, for badges, displays, context sensitivity etc
  19. Olfactory sensors for environmental monitoring linked to tongue to enhance sense of smell or taste, or for warning purposes. Olfactory data could be recorded as part of experience for memory assistance later
  20. Power supplies using induction
  21. Frequency translation in ear patch to allow supersonic hearing
  22. Devices for pets to assist in training and health monitoring, control nerves directly, police virtual electric fences for cats
  23. Fingertip mouse and 3d interface
  24. E-cash on the skin, use simply by touching a terminal

Smart drug delivery

  1. Allowing variable hole membranes for drug dosing. Body properties used with ID patch to control drug dose via smart membrane. May communicate with hospital. Off  the shelf drug containers can then be used
  2. Control of pain by linking measurement of nerve activity and emotional cues to dispensing device

Fully removable layer

This layer is occupied by relatively conventional devices. There are no obviously lucrative technologies suggested for this layer.

Key Specific inventions

Taking another angle of view, the above applications and platforms yield 28 very promising inventions. In most cases, although humans are assumed to be the users, other animals, plants, inorganic objects such as robots or other machines, and even simple dumb objects may be targets in some cases.

*Asterixes indicate reference to another area from this set.

1         Sub-skin-surface imprints and implants

Sub-skin-surface imprints and implants that monitor various body state parameters, such as chemical, electrical, temperature, and signal this information to higher layer devices.

  • Circuitry is imprinted into the skin using ink-jet technology or high pressure diffusion. e.g. a hand may be inserted into a print chamber, or a print device may be held in contact with the required area.
  • Passive components such as ink patterns may be imprinted, which may function as part of a system such as a positioning system
  • Other small encapsulated components such as skin capsules* may be injected using high pressure air bursts.
  • Some of the circuit components assembled in situ may require high temperatures for a short time, but this would cause only momentary pain.
  • Deeper implants may be injected directly into the required position using needles or intravenous injection, allowing later transport to the required location in the blood flow.
  • The implants may anchor themselves in position by mechanical or magnetic means, their positioning determined in co-operation with higher layer devices.
  • Components may be imprinted higher in the skin to be capable or wearing away, or lower in the skin to ensure relative permanence, or to give greater contact with the body
  • Circuitry may be designed to be transparent to visible light by using transparent polymers, but may be visible under UV or infrared
  • Patterns implanted may be used as part of an external system. An ink-based pattern could be used as an identifier, for holding data, or as a means of positioning. They may be used as part of a, which would effectively be enhanced biometric security system.
  • Other identifiers may be permanently imprinted, which may be active or passive such as inductive loops, bar-codes, digital paper, snowflakes etc. Intra-skin power supplies* may be used to power more sophisticated tags that can be imprinted or injected
  • Circuitry or patterns may be harmlessly biodegradable so that it would vanish over time, or may be permanent.
  • they may be made photo-degradable so that it breaks down under external light of appropriate intensity and frequency, e.g. UV
  • Inks may be used that are rewritable, e.g. they change their colour when exposed to UV or a magnetic field, so data may be modified, and these devices are therefore dynamic data storage devices. They need not operate in the visible spectrum, since external sensors are not limited by human characteristics.
  • Baby tags may be inserted to prevent babies from being abducted

2         Skin conduits

Devices may be implanted that are able to act as a conduit to lower skin layers.

  • This may facilitate drug delivery, monitoring or nerve connection.
  • Probes of various types may be inserted through the conduits for a variety of medical or interface reasons.
  • Even body fluids and DNA samples may be extracted via these conduits.
  • This may provide a means of blood transfer for transfusion or blood cleaning, and a replacement for drips
  • Conduits would be sealed to prevent bacterial or viral entry except when actively in use.
  • The conduits can be implemented in several ways: tubes may be implanted that have muscle wires arranged so that when they contract the holes flatten and thus close; the walls of the tube may be comprised of magnetic materials so can be closed magnetically; the default position may be closed and magnetic repulsion is used to stretch the holes open; similarly, muscle wire may be used to open the holes by rounding a previously flattened hole; the open or closed states can be provided by elongating or shortening a tube; heat may be used to cause expansion or contraction; synthesised muscle tissue may be used to stretch the area and make holes open; shape change and memory metals or plastics may be used. Other techniques may be possible.

3         Implanted or imprinted links to nerves

  • Permanently imprinted circuitry to link to nerves would comprise electrical connections to nerves nearby, by means of conducting wires between nerves and the devices.
  • The devices meanwhile would be in communication with the higher layers.
  • They would signal impulses to higher layers and capable of producing impulses in various patterns into the nerves.
  • The connections would be made using specialised skin capsules* or directly injected wires.
  • These devices would encapsulate very thin wires that propagate out from the device on request until they make electrical contact with a suitable nerve. They may be wound in a spiral pattern inside the capsules and unwound to form radiating wires.
  • These wires may be made of metal today or carbon fullerene ‘buckytubes’ in due course
  • They may be connected by wire, radio or optical links to the external world
  • Being able to stimulate nerves directly implies that body movement could be directly controlled by an external system
  • It would be possible to implant control devices in people or animals in order to remotely control them
  • Although primarily a military technology, this would enable pets to be sent on a predetermined walk, to prevent children from stepping out in front of a car, to prohibit many crimes that are detectable by electronic means and a wide range of other ethically dubious activities
  • Nerve stimulation can be linked extensively into other electronic systems
  • Email or other communications could include instructions that translate into nerve stimuli in the recipient. This may link to emotional stimulation too. A very rich form of intimate communication could thus be achieved.
  • It would be possible to send an orgasm by email
  • Filters can easily prevent abuse of such a system, since the user would be able to block unauthorised nerve stimulation
  • For some purposes, this choice to block stimuli could be removed by a suitable authority or similar, for policing, military and control purposes

4         Sensory enhancement and translation technique

A range of sensors may be implanted that are sensitive to various forms of radiation, EM, magnetic fields, electrical fields, nuclear radiation or heat. These would form part of an augmented sensory system.

  • Conventional technology based radiation monitors worn on a detachable layer may monitor cumulative radiation dose, or record intensity over time.
  • Other conventional technology sensors may also be worn at the detachable layer, some my be imprinted or implanted.
  • They may be connected systemically with the nervous system using implanted or imprinted nerve links* to create nerve stimuli related to sensor activity.
  • An array of synthetic senses may thus be created that would facilitate operation in a range of environments and applications. A primary market would be for sexual use, where sexual stimulation can be produced remotely directly into the nervous system.
  • Nerve stimuli could be amplified to increase sensory sensitivity.
  • Alternatively, stimuli could be translated into vibration, heat, pain, other tactile stimulus, or audio that would be picked up by the body more easily than the original form.
  • Such sensory enhancement may be used to link stimuli in different people, or to link people with real or virtual objects.
  • When connected to deep implants in the brain, this could perhaps eventually be used to implement crude telepathic communication via a network.
  • Remote control of robotics or other external machinery may be facilitated by means of linking sensory stimuli directly to machine operations or sensors. The communication would be via implanted or imprinted antennae.
  • Active teeth* may be used as part of such a system
  • Frequency shifters in the ear would permit hearing outside of normal human capability
  • Ditto visual spectrum
  • People would be able to interact fully with virtual objects using such virtual sensory stimulation

5         Alarm systems

  • Sensors in or on the skin may be used to initiate external alarms or to initiate corrective action. For example, an old person taking a shower may not realise the water temperature is too high, but the sensors could detect this and signal to the shower control system.
  • The most useful implementation of this would be one or more thermocouples or infrared sensors implanted in the skin at or near areas most likely to be exposed first to hot water such as hands or feet.
  • Thermal membranes that change conductivity according to temperature could be used as a transfer layer device.
  • Such membranes may form a part of an external alarm or control system of signal the body by other senses that a problem exists
  • As well as signalling to external systems, these sensors will use implanted or imprinted nerve links* to initiate direct local sensory stimulation by means of vibration* or pain enhancement, or produce audible warnings.
  • Alarms may also be triggered by the position of the person. A warning may be set up by interaction of the implant and external devices. A circuit in the skin can be detected by an external monitor, and warn that the person is moving into a particular area. This may be used to set off an alarm or alert either secretly or to the knowledge of the either only the person or only the external system. This can obviously be used to police criminals on parole in much the same way as existing tags, except that the technology would be less visible, and could potentially cause a sensation or even pain directly in the criminal. A virtual prison could be thus set up, with it being painful to leave the confines set by the authorities.
  • This would permit the creation of virtual electric fences for animal confinement
  • Sensors may measure force applied to the skin. This would enable policing of child care, preventing physical abuse for example. Alerts could be sent to authorities if the child is abused.

6         Skin based displays

  • Permanently imprinted display components may be developed that use the energy produced in this way to produce light or dark or even colours.
  • These may emit light but may be simply patches of colour beneath the skin surface, which would be clearly visible under normal lighting.
  • Small ink capsules that deform under pressure,
  • electrostatic or magnetic liquids, liquid crystals or light emitting or colour changing polymers would all be good candidates

7         Intra-skin power supply

  • Inductive loops and capacitors may be used to power active components that can be imprinted or injected. Inductive loops can pick up electromagnetic energy from an external transmitter that may be in the vicinity or even worn as a detachable device. Such energy can be stored in capacitors.
  • Detachable devices such as battery based power supplies may be worn that are electrically connected to devices at lower layers, either by thin wires or induction.
  • Optical power supply may be adequate and appropriate for some devices, and this again can be provided by a detachable supply via the skin, which is reasonable transparent across a wide frequency range
  • Devices that use chemical energy from the body to power external devices, e.g. ATP
  • Thermal energy may be obtained by using temperature difference between the body and the external environment. The temperature gradient within the skin itself may be insufficient for a thermocouple to produce enough voltage, so probes may be pushed further into body tissue to connect to tissue at the full body temperature. The probes would be thin wires inserted either directly through the surface, or by skin capsules*.
  • Mechanical energy may also be used, harnessing body movement using conventional kinetic power production such as used in digital watches. Devices on the feet may also be used, but may be less desirable than other conventional alternatives.
  • Thin batteries such as polymer batteries may be worn on the detachable layer
  • Solar cells may be worn on the detachable layer

8         Antennas and communicators in or on the skin

  • Some of the many devices in the layered active skin systems require communication with the outside world. Many of these require only very short distance communication, to a detachable device in contact with the skin, but others need to transmit some distance away from the body. Various implementations of communication device are possible for these purposes.
  • A vertical wire may be implemented by direct insertion into the skin, or it may be injected
  • It may be printed using conductive inks in a column through the skin
  • It may be simply inserted into a skin conduit
  • Skin capsules* may eject a length of wire
  • Wires from skin capsules may join together to make a larger aerial of variable architecture
  • This may be one, two or three dimensional
  • Skin capsules may co-operate and co-ordinate their wires so that they link together more easily in optimal designs
  • Self organising algorithms may be used to determine which of an array of skin capsules are used for this purpose.
  • Optical transmitters such as LEDs may be used to communicate in conjunction with photodiodes, CCDs or other optical signal detectors
  • Vibration may be used to communicate between devices
  • Ultrasonic transducers and detectors may be used
  • Printed aerials may be worn as transfers or detachable devices. They may be electrically connected to devices directly or via high frequency transmission across the skin, or by local radio to other smaller aerials.

9         Smart teeth & breast implants

·         Various sampling, analysis, monitoring, processing, storage, and communication facilities may be added to an artificial tooth that may be inserted in place of a crown, filling, or false tooth. Powering may be by piezoelectric means using normal chewing as a power source, or for some purposes, small batteries may be used.

·         Infection monitoring may be implemented by monitoring chemical composition locally.

·         Conventional olfactory sensing may be used

  • Breath may be monitored for chemical presence that may indicate a range of medical or hygiene conditions, including bad breath or diabetes
  • Data may be stored in the tooth that allows interaction with external devices and systems. This could be a discrete security component, or it may hold personal medical records or a personal profile for an external system.
  • Significant processing capability could be built into the volume of a tooth, so it could act as a processor for other personal electronics
  • Small cameras could be built into the tooth
  • Piezoelectric speakers could be used to make the tooth capable of audio-synthesis. This could allow some trivial novelty uses, but could later more usefully be used in conjunction with though recognition systems to allow people to talk who have lost their voice for medical reasons. Having the voice originate from the mouth would be a much more natural interface.
  • Some of these functions could be implemented in breast implants, especially data storage – mammary memory! Very significant processing capability could also be implanted easily in the volume of a breast implant. MP3 players that can be reprogrammed by radio such as bluetooth and communicate with headphones also via bluetooth. Power in batteries can be recharged using induction
  • the terms ‘mammary memory’, and ‘nipple nibbles’ (a nibble is half a byte, i.e. 4 bits) see appropriate
  • breast implant electronics may be the heart of a body IT centre
  • taste and smell sensors in the tooth may be used as part of a sensory stimulation system whereby a sense of taste or smell could be synthetically recreated in someone who has lost this sense An active skin implant in the tongue, nose or a deeper implant in the appropriate brain region may be required to recreate the sense
  • this could be used to augment the range of taste or smell for normally sensed people in order to give them a wider experience or allow them to detect potentially dangerous gases or other agents, which may be physical or virtual
  • smart teeth may also make use of light emission to enhance a smile

10     Healing assistance devices and medical tags

 

  • Medical tags or semi-permanent tags* such as inductive loops can be imprinted that allow identification and store medical records. They may interact directly with equipment. This could be used for example to prevent operation errors. More sophisticated tags could be installed using skin conduits*
  • Active skin components may be used to apply an electric field across a wound, which has been shown to accelerate healing. These would be imprinted or implanted at a health centre during treatment. Voltage can be produced by external battery or power supply, by solar cells at the detachable layer, or by thermocouples that have probes at different body depths as described above.
  • Infection monitors can be implemented using chemical analysis of the area and by measuring the electrical properties and temperature of the region
  • The infection may be controlled by emission of electrical impulses and by secreting drugs or antibiotics into the area. This may be in conjunction with a detachable drug storage device, which can inject the drugs through skin conduits*.
  • Pain can be controlled to a point by means of electrical impulses that can be provided by the implants
  • The monitors may be in communication with a health centre.
  • Electrical impulses can be used to alleviate itching, and these could be produced by active skin components
  • Electronic acupuncture can be easily implemented using active skin, with implants at various acupuncture points precisely located by a skilled practitioner, and later stimulated according to a programmed routine
  • Electrolysis to prevent hair growth may be achieved by the same means

11     Semi-permanent tags

  • Semi-permanent tags or ID patterns may be implanted in upper skin layers to allow short term electronically facilitated access to buildings. The tags are not easily removable in the short term, but will vanish over a period of time depending on the depth of penetration. They may photo-degrade, biodegrade or simply wear away with the skin over time.
  • They may communicate electronically or optically with external systems
  • They may interact as part of alarm systems*
  • They may be aware of their position by means of detecting electronic signals such as GPS, wireless LANs
  • They may be used to give accurate positioning of devices on the skin surface or deeper, thus assisting automatic operations of medical equipment, in surgery, irradiation or drug dispensing
  • Babies can be secured against mistaken identification in hospital and their tags can interact with security systems to prevent their abduction. Proximity alerts could be activated when an unauthorised person approached them.

12     Self-organising circuits and displays

  • Self-organisation of circuits has been demonstrated and is known widely.
  • Active skin components with generic re-programmable circuitry may be installed and self-organisation used to configure the devices into useful circuits.
  • Components may be printed, injected or deposited via skin conduits* and may be contained in skin capsules*
  • Organisation can be facilitated or directed by external devices that provide position and orientation information as well as instructions to the embedded components
  • Combinations of display components may be linked by wires radiating out from each component to several other components, for instance by using skin capsules*. A self-organisation algorithm can be used to determine which connections are redundant and they can be withdrawn or severed. The remaining circuitry can be used as part of a control system to convert these individual display components into a co-ordinated display.
  • These display components may alternatively be painted onto skin, lip, eyelid or nail surfaces for example, to provide a multimedia display capability in place of conventional makeup and nail varnish. These displays would be less permanent than implanted circuitry
  • This body adornment could be more functional, with informative displays built in for some medical purpose perhaps. Text warnings and alerts could indicate problems.
  • Varnish would provide a high degree of protection for the components. Varnishes could also be fabricated to chemically assist in the self-organisation, by for example, providing a crystal matrix

13     Active Context-sensitive cosmetics and medicines

  • Cosmetics today are stand-alone combinations of chemicals, dies and aromatic agents. The addition of electronically active components either to the cosmetics themselves or into the underlying skin will permit them to be made intelligent
  • Cosmetics containing active skin components that interact with other layers and the outside world
  • Electrically sensitive chemicals would be useful components for such cosmetics. Many chemicals respond to electric fields and currents by changing their chemical bonding and hence optical properties. Some magnetic fluids are known that can be manipulated by magnetic fields. Active components may also be included that can change shape and hence their appearance, that are known in the field of digital ink.
  • Such chemicals may interact with underlying active skin circuits or components, and may respond to signals from external systems or active skin components or both
  • Cosmetics may use underlying active skin to facilitate precision location and some self-organisation
  • Active actuator components may be able to physically move cosmetics around on the skin surface
  • Characteristics of the appearance may depend on time of day, or location, or on the presence or properties of other environmental characteristics.
  • Sensors detecting UV may activate sunscreen components, releasing them from containers as required
  • Sensors detecting the presence of other cosmetics allow combination effects to be co-ordinated
  • Colours may change according to context, e.g. colour change lipstick and eye shadow
  • Kaleidoscopic or chameleon makeup, that changes colour in patterns regularly
  • Perfumes may be emitted according to context or temperature. This circumvents the problem where little perfume is given off when skin is cool, and much is lost outside in wind or when it is hot. Electronic control would allow more sophisticated evaporation for more consistent effect
  • Perfumes may be constructed with variable display properties that can be put on in variable quantities, with their precise effect controlled automatically by intelligence in the makeup or active skin
  • Make-up effects may be remotely controlled
  • Make-up may include light-emitting chemicals or electronics that are co-ordinated using active skin
  • Medicines may be administered on detection of allergenic agents such as pollen or chemicals
  • Active cosmetics may include actuators to contract the skin. The actuators would be based in small skin capsules* that would send thin wires into the skin to anchor themselves, and other wires to connect to other capsules
  • Intelligence in the cosmetics might be in constant or occasional communication with the manufacturer. This permits control of the effects by the manufacturer, and the capability to offer usage based licenses, making makeup into an ongoing service rather than a single product. This is implemented by adding active skin components that together communicate with nearby network connections
  • Cosmetics may adapt in appearance depending on the presence of signals. These signals may originate from other people’s active skin or from environmental systems. People wearing such cosmetics could thus look different to different people. Also, corporate styles could be implemented , controlled by building signalling systems.
  • Cosmetics may adjust automatically to ambient light conditions and local colours, allowing automated co-ordination with clothing and furnishing
  • Cosmetics may adjust their properties as part of an emotion detection and display system. This can be used to enhance emotional conveyance or to dampen emotional signals. They may also act as part of a psychological feedback loop that permits some emotional control

14     Digital mirror

  • A digital mirror, as described on my web site, has a combination of a camera and display that can show an image that may be the true image as the user, or a modified version of the user’s image. This disclosed concept is part of a wider non-disclosed system
  • Smart cosmetics may be used in conjunction with such a digital mirror
  • The cosmetic manufacturer or a service provider may use such a digital mirror to provide the customer with an enhanced view of themselves with various options, co-ordinating the application of smart make-up by means of ‘make-up by numbers’, and controlling its precise properties after application. Active skin components that are clinic installed could be used to provide the positioning systems and intelligence for the upper layers of removable cosmetics.
  • The customer would apply a quantity of makeup and then watch as various potential makeup effects are illustrated. On selection, that effect would be implemented, though several additional effects and contexts could be selected and assigned, and appropriate context effects implemented during the day. The effects could include the mechanical removal of wrinkles by means of actuators included in smart cosmetics*. Skin-based displays* may also form part of the overall effect.
  • Medicines may be applied in a similar way under control by a clinic.
  • Cosmetics may be controlled under license so that customers do not have unlimited freedom of appearance while wearing them. They may only be seen in a limited range of appearance combinations.

15     Active and emotional jewellery

  • Active Bindies, nose studs or other facial jewellery could be used as relatively deep implants to pick up reasonably good nerve signals from the brain as part of an EEG patch system*. These may be used to control apparatus via a signal recognition system.
  • Bindi would be top layer over active skin sub-layers and could contain much more complex chip than could be implanted in active skin
  • May contain battery and be used as power supply for sub-layers
  • Sub layers pick up clean signals from around scalp and send them to bindi for processing
  • Communication between devices may be radio or at high frequency via scalp
  • Infrared or ultrasound transmitter built into bindi relays the signals directly to external apparatus
  • Processing may recognise and process in-situ, transmitting control signals or data to external apparatus
  • Bindi may change appearance or include a display that reacts according to the signals detected
  • May act as emotion conveyance device
  • Signals from sensors in or on the skin can be used to pick up emotional cues, that are often manifested in changes in blood pressure, pulse rate, blood chemistry, skin resistivity and various muscular activity, some of which is subconsciously activated.
  • Collecting and analysing such data permits a range of electronics that responds to emotional activity. The active bind is just one piece of jewellery that may be useful in this regard, and is limited by culture.
  • Other forms of emotional jewellery may use displays or LEDs to indicate the wearer’s emotional state. Almost any form of jewellery could be used as part of this system, since active skin components that collect the data do not have to be in physical contact with the display devices
  • Active skin displays* may form part of this emotional display system
  • Active jewellery may also display data from other systems such as external computers or communication devices. This communication may be via active skin communication systems
  • Displays around the body may co-ordinate their overall effect via active skin devices
  • Emotions in groups of people may be linked together forming ‘emotilinks’ across the network, linking sensors, actuators, drug delivery systems and nerve stimulation together in emotion management systems. Drug delivery systems may instead dispense hormones
  • These systems may be linked into other electronic systems
  • Emotional messages may be sent that electronically trigger emotions in the recipient according to the intentions or emotions of the sender. Emotional email or voice messaging results. This enhances the capability and reach of communications dramatically.
  • Active jewellery such as a smart signet ring could be used as part of an authentication or security system, that may involve biometrics at any active skin layer as well as conventional electronic components and data that may also be housed in active skin

16     Active fingerprints

  • Active skin in the finger tip would greatly enhance interfacing to security systems and also to computer system interfaces, which can be made much more tactile
  • Smart fingerprints may include chips, passive ID, pressure indication, pressure transducers, vibration devices, interface and powering devices
  • Patterns and circuits built into the fingertips can link directly with external equipment by touch
  • Inductive loop in finger tip makes for simple ID system
  • Electronic signals can be conveyed in each direction for identification or programming or data transfer via contacts in the skin
  • A persons personal profile may be downloaded to an external system from data in the skin via such contacts. A computer can thus adapt instantly to the person using it
  • Data may be similarly ‘sucked up’ into body based storage via such contacts
  • Other devices elsewhere on the skin may be temporarily connected via high frequency transmission through the skin to the external system
  • Patterns visible in infrared or UV regions may be used
  • Ultrasonic vibrations may be used
  • Synthetic textures may be produced by keys by means of producing different vibration patterns than material would normally produce. This would assist greatly in the use of virtual environments to create synthetic objects
  • Actuators based on for example muscle wire can be used to stretch the skin in various directions, which conveys much information to the body on texture and other feedback. This can be by means of a rectangular wire with muscle wire between two opposite corners
  • Heat and cold can be produced as a feedback mechanism
  • Positioning systems incorporating the fingertips by means of inductive loop tracking, motion detectors and dead reckoning systems, allow interaction with virtual objects.
  • People could type in air, and feel physical feedback on interaction with objects, particularly useful in surgery using robotic tools.
  • Active skin with muscle wires implanted or imprinted at finger joints give a force feedback mechanism
  • Links between people may be formed by linking sensors in one person’s joints to actuators in another person’s. This would be useful for training purposes.
  • Vibrating membranes may be used as a signalling device. Vibration can be implemented via muscle wires or piezoelectric crystals in the detachable layer. These would allow personal signalling systems, ringing vibration, and development of synthetic senses*.
  • They may have some use in insect repellence if vibrations are ultrasonic
  • Micro-electro-mechanical systems (MEMs) implanted in the fingertips would allow a fingertip to be used as a mouse for a computer, by tracking movement accurately
  • Fingertip sensors could similarly be used to capture textures for re-use in virtual environment applications
  • Textures can be recreated in the fingertips by means of vibration devices
  • Electronic cash could be transferred through active fingerprints which also contain the authentication mechanisms as well as the means to transfer the cash
  • Short term software licenses could be implemented in this way, with the fingertip effectively holding a dongle

17     Ultrasonic monitors

  • An array of active skin devices may be arranged around the abdominal region of a pregnant woman, that would allow easy periodic ultrasonic monitoring of the baby during pregnancy.
  • Some patches of active skin would house ultrasound generators, and others would house ultrasound receivers. The system is therefore capable of bathing the baby in a well defined ultrasound field for monitoring purposes.
  • The patterns of reflections can be analysed by either processors in active skin or by a remote device, either worn or via the network, e.g. at a clinic. This produces images of the baby that can determine whether there is a problem. For instance, heartbeat and baby movements can easily be monitored.
  • Growth of cancers may be monitored in much the same way, with alerts automatically sent to hospital via the network if tumour size or growth rate exceeds a defined limit
  • A simple microphone may be sufficient for just heartbeat monitoring if that is all that is needed.
  • Ultrasonic communication to an external systems or another active skin device nearby.

18     Touch and proximity sensitive membranes

  • A region of active skin on the arm may be used as a data entry device such as a keyboard by means of adding positioning information such as digital paper patterns or other indication of location.
  • A simple circuit completion would suffice that could be implemented by contacts in close proximity that are connected when pressed, or by a sudden change in resistance or capacitance
  • Arm-embedded components can interact with active fingerprint components to enable easy data entry. Data may be transferred between arm and finger components
  • Different components in different fingers increase dramatically the range of combinations available. Different fingers may represent different tools in a drawing package for example
  • Visible patterns on the arm could indicate where the letters or other keys are. This indication could be a simple ink pattern.
  • Alternatively, display components in the skin may be used to create a dynamic keyboard or interface with different inputs according to application
  • Alternatively, a virtual display in a head-up display worn by the user could indicate the position of the appropriate keys without any visible pattern on the skin. Positioning may be by means of image analysis or by means of processing of the inputs from various inbuilt strain gauges
  • With a virtual display, no components at all are actually required in the arm to implement the minimal system (similar systems already exist with purely virtual keyboards).
  • Deeper ink patterns could enable a longer term keyboard
  • Data from the interface can be stored locally in memory implants or relayed at high frequency across the skin to other active skin system components
  • This could be used as a dialling keypad for cellphones
  • It may be used to enter security identification codes
  • A keyboard may be implanted in the palm of the hand as an alternative to the forearm to allow a computer to be effectively a ‘palm computer’, a ‘digital computer’, calculator or
  • interface to any electronic device carried on the person or across the network
  • signals from the interface may be relayed by a radio device elsewhere on the body

19     Use of strain gauges for touch sensitivity

  • A high degree of touch sensitivity is afforded by the body’s own sensory system, so this could act as a very high precision interface for some applications. The amount of pressure, or characteristics of strokes may be easily detected by the wearer to accurately control their input. Detection of this input can be by means of strain or relative position sensors
  • Alternatively, in later generations of the devices, signals may be directly picked up from the nervous system and appropriate analysis used to determine the precise input.
  • Touch or proximity sensors such as capacitors, inductors, piezoelectric strain gauges, movement detectors, or other devices in the arm can detect key-presses or drawing movements and could act as a mousepad
  • Relative movement between active skin components in touch sensitive membranes indicates not only what has been pressed but also by how much
  • Movement may be measured by change of capacitance between components, or change of resistance in conductive polymers attached to the skin, by induction changes, change of skin resistance itself, accumulated mechanical stress measurement or by other means
  • A system comprised of a range of such gauges and position sensors in various parts of the body may be used to gather a great deal of data about the movement of the body.
  • This may be used extensively in training and correction applications by means of force feedback or sensory amplification.
  • Force feedback or other actuator components* would give a signal or apply a force back to the body on detection of various parameter values. Movements may be precisely recorded and recreated via force feedback.
  • An expert recording the correct procedure can use such recording and force feedback to ‘play back’ a correct movement into the student. Repeated practice of the correct movement would enable rapid training
  • Computer games may also make use of this system in a ‘training mode’, where users learn to behave appropriately, thus improving the quality of game play
  • Highly specialised interfaces may be developed using a collection of appropriately configured gauges or sensors, with appropriate force of signal feedback devices
  • Such systems may be used to record the behaviour of people or animals for research, monitoring or policing purposes
  • Signal feedback systems may allow direct correction of such behaviours. See alarm systems.
  • The means to directly associate a movement or behaviour with pain would be a valuable means of training and controlling animals or criminals. Such feedback may also be linked to emotional states to control aggression for example. A combination of movements, position or emotional state may be used to prohibit certain behaviours in certain locations.
  • Strain gauges would be an important component of avatar based communication systems to allow the direct physical interaction of people across a network, whether a handshake or a hug or something more.

20     Force feedback and other actuators in skin

 

  • A range of actuators may be implanted or injected for various purposes
  • Muscle wires may be used as simple actuators
  • Some polymer gels may be made to respond mechanically to various stimuli. These may be used as synthetic muscles in some systems and membranes composed of these may be key active skin components
  • Membranes with arrays of holes may be used to control drug delivery as part of an active skin system. Such membranes may be dumb, or may contract in response to electronic or thermal stimuli from other components. Obviously holes will contract as the membrane contracts, thereby giving a means of controlling drug dosing
  • Such membranes may provide a convenient means of allowing blood exchange for blood cleaning and processing (e.g. for dialysis)
  • Ultrasonic actuators may be used or signalling between devices
  • Lower frequency may be used to create sensation of texture
  • Stretching, compression and torsion may be used in force feedback and signalling
  • Actuators may be used to open or close holes in the skin or activate skin conduits*
  • These holes may be used usefully as part of drug delivery systems or as a means of implanting devices or other materials
  • They may be used extensively as part of force feedback and interface devices as described above for training, communication, monitoring or corrective purposes
  • Systems using combinations of such force feedback and actuators may be used for medical purposes
  • Holes with actuators mounted across them may be opened or closed on command
  • These work in conjunction with higher layers to allow smart and precise drug delivery in a feedback loop with monitoring systems. Health or nerve signal monitors may allow direct control of such holes and actuators in drug dispensers
  • Actuators may respond directly to skin temperature
  • Actuators may form part of alarm systems
  • Exoskeletal structures based on actuators may be implemented to give physical assistance or support, especially for disabled or frail people. This would require large areas of such actuator membranes
  • Physical appearance may be controlled to a degree by such membranes or implants, that would shape the body, reduce wrinkles, reduce the impact of fat, tone muscles etc
  • They may work in conjunction with electrical stimuli for muscle toning, which currently needs external pads and power supplies

21     Active contact lens

  • Active contact lens has been wholly disclosed in the form of a removable contact lens that acts as a dumb display
  • It could however be differently realised by using active skin instead of a detachable contact lens
  • Active contact lens may include actuator components that stretch or compress the eye to correct vision for all distances
  • Lens components could be implanted in eye surface using above techniques
  • Signals displayed may originate in other active skin components elsewhere on body
  • Processing may be embedded in nearby skin outside the eye
  • Powering could be inductive or ultrasonic
  • Tracking of the eyeball can be in conjunction with other nearby components such as proximity and position detectors
  • Light may be produced externally (e.g. by lasers adjacent to the eyeball) and the lens merely reflects it to its proper destination by means of micromirrors
  • Lens film may contain identification circuitry or data that can be conveyed to an external system by passive recognition or active transmission
  • Images seen by the eye may be processed and recorded by nearby active skin components and relayed to storage or transmitted on a network
  • Appropriate implanted dyes could facilitate ultraviolet vision
  • Appropriate infrared detectors and lasers may be used to enable infrared vision
  • Other sensory data from sensors elsewhere on the skin or fully externally, may be projected in the image produced by the active skin implant

22     Skin-based processing, memory, and consumer electronics

 

  • Miniaturised circuitry will soon allow very small versions of many popular devices.
  • These circuits may fit in a single skin capsule or be distributed across several capsules.
  • These capsules contain means to connect with others and with the outside as well as housing some electronics capability
  • They will be able to produce phones, calculators, computers, storage devices, MP3 players, identifiers, electronic cash, text readers, scanners
  • Some of these would benefit from being implemented in active fingerprint systems
  • Capsules may be directly injected or inserted into a skin conduit, perhaps facilitated by various actuators for positioning and connection
  • They may be easily ejected by the skin conduits if necessary
  • Ingestion or ejection may be by means of peristaltic motion of the skin conduit, facilitated by means of contractible rings
  • A wide range of sensors are now available in watches and other small wearable devices, to monitor parameters such as air and skin temperature, air pressure, direction, blood pressure, pulse, heart beat, walking distance, GPS location and navigation, paging, infrared controls, voice recording and others. Many of these can be sufficiently miniaturised to be embedded in or on one or more active skin layers. The performance of some of the sensors would be improved
  • Membrane based transfers implementing these devices may be easily attached to the skin and easily removed if required. They may co-operate with other permanent or temporary active skin devices
  • Transfer based electronic jewellery* may interact with smart cosmetics* and other inbuilt processing or memory

23     Body-avatar link

  • Avatars will be an important communication tool in the near future. Avatars may be controlled manually or via video image interpretation, which is complex and invasive. Active skin presents an efficient means of accurately controlling avatars.
  • Sensors in skin at key parts of the body, e.g. finger joints, hands, wrists, elbows and face can be used to detect body movement and position.
  • They may also detect emotional state and audio
  • Data from the sensors may be transmitted to a central body transmitter for collation, pre-processing or simply transmission
  • This information is relayed via active skin or other transmitters to a computer, phone or other conferencing device. The phone may itself be an active skin component
  • The body position and movement information is transmitted across the link, and used to control the avatar movements directly
  • Interactions between avatars in virtual space are relayed back to the people involved via force feedback membranes, pressure transducers, smart fingerprints to convey texture, and direct nerve stimulation using nerve links.
  • A highly sensory realistic communications link is thus established between the inhabitants of the virtual environment which is potentially far richer than that which may be obtained without the use of active skin or a full body suit.
  • Inhabitants need not be real people, but may be synthetic entities such as computer game characters or interactive TV avatars
  • Almost all functions of body suits may be replaced by active skin components, which do not interfere with normal clothing and are therefore much less invasive
  • If all the above components are implemented in active skin, it is possible that avatars may be controlled without the knowledge of anyone else present, making a very discrete interface
  • Instead of controlling avatars, the link may be used to directly control a robot. Sensors in the robot could be linked to senses in the human, allowing a high quality implementation of telepresence and teleaction. This would be very useful for surgery or for maintenance in hostile environments. It would also be useful for police or military use to control robots or androids in hostile environments.
  • Surgical applications could be enhanced by filtering and pre-processing the body movements and possible translating them into a appropriate actions for robotic surgical apparatus. For example, large jerky hand movements may be converted into small smoother scalpel movements.
  • Again, such systems may be used extensively for training or correction purposes, or for interaction with computer games
  • Interactive TV may use such avatar links to permit greater participation of remote audience members
  • Visual systems may be linked to such active skin avatar links so that people can interact with avatars on the move rather than just when confined to a conferencing suite or in front of a computer monitor
  • This permits people to interact fully with virtual objects and characters overlaid in the real environment

24     EEG patches

 

  • An array of smart skin patches on the scalp could be arranged to collect electrical signals from the brain.
  • Such devices could make it less invasive for EEG patients who need repeated investigation
  • Devices would signal using high frequency electrical signals or by ultrasound to other sensors or collectors or processors.
  • Signals could be relayed to external apparatus by a single contact point or by means of radio aerials, LEDs or an active bindi.
  • Such signals may be used for conventional medical analysis purposes,
  • or may be used for thought recognition purposes, whereby pattern recognition technology is applied to analysis of the signals from the various sensors.
  • Sensors need not only be on the scalp, but could be anywhere on the body, such as fingertips.
  • Lie detection may be implemented using a combination of data regarding such brain signals and other data regarding emotional state, blood hormone or other chemical content, skin conductivity, temperature, pulse etc All of these data types are liable to address by active skin variants
  • Signals from the scalp may be used to control medical prostheses to assist disabled people. The intention to move an arm could result in the arm moving for example. Nerve signals for such applications may be detected on the scalp, or nearer to the prosthesis.
  • Active skin in the stump could be used for this purpose and also to inject synthetic senses back into the nervous system by way of feedback from the prosthesis
  • Such patches may be used as a component of a policing system for criminals, whereupon certain types of thought pattern result in the creation of pain

25     Use with or in place of active clothing

 

Many of the applications discussed above would work well in harmony with active clothing, most of which is known technology. Active clothing already houses consumer electronics, reacts thermally and optically to the environment, monitors body activity, reports on injuries and casualty location, injects antibiotics, antiseptics and anaesthetics in case of battlefield injury. A wide variety of other ‘smart’ capabilities is also available off the shelf or in prototype.

Some of these clothes require data that can best be obtained by active skin. For example:

  • Active skin can house the identity and personal profile for use by active clothing
  • Active clothing may provide the power supply or communications for active skin
  • Active clothing may contain medical apparatus that is controlled in conjunction with active skin and a remote clinic
  • Active skin may actually replace some clothing in terms of thermal and chemical protection
  • Active skin may act as a final line of defence on a battlefield by filtering out hostile bacteria, viruses or chemicals and in due course act to protect against nanotechnology or micro-technology attack
  • Active skin may physically repair organic skin tissues or augment them with self-organising self-constructing membranes
  • Active skin may contain synthetic hairs that may be extended or contracted to provide variable thermal protection, and also to help filter out bacteria
  • With a high degree of such protection against nature, clothing may be more optional, especially if active inks and other display components are used to change the optical appearance of the body for cultural reasons
  • Key active skin components of this system are displays, actuators, sensors, reservoirs, membranes, processors, signalling and aerials

26     Skin capsules

  • A range of skin capsules for various purposes may be developed, which are capable of being injected into the skin by high pressure air, or inserted through skin conduits
  • Skin conduits themselves may be implanted as a special case of skin capsules. They may start off as a spherical device and then open up into a ‘pore’ once implanted
  • Skin capsules may contain drugs or other chemicals for various purposes
  • They may house substantial quantities of electronics for processing, memory, analysis or sensory purposes
  • They may house MEM devices that are capable of mechanical interaction with surrounding tissues
  • They may house a range of actuator devices or wires
  • They may house wires for the purpose of connection to nearby capsules or devices, for example to make antennas
  • They may house identification devices or data
  • These wires may be metallic, organic polymer, shape memory alloy, memory plastic, or buckminster fullerene tubes
  • Capsules may be made of any materials that is largely inert regarding body tissues. Titanium and its alloys, glass and ceramics, diamond film coated materials, gold, platinum and surgical steel and many plastics, as well as some biodegradable and soluble materials etc would be good for some purposes, but other materials may be better for some purposes

27     Drug delivery system

  • Drugs may be administered under control by means of active skin systems
  • Membranes may be contracted so that the holes shrink and drugs cannot permeate as quickly through the membrane
  • Blood chemistry may be analysed by active skin lower layers to detect the amount of drugs needed in order to control such membranes. They can also monitor the rate of diffusion of the drug into the bloodstream
  • Clinics can communicate via the network with such systems and active skin devices react to such communication to effect drug delivery under remote supervision, while sensors in the body transmit their information via aerials to the clinic
  • Membranes may be made to react to environmental conditions such as pollen content. These can then form part of the sensory array as well as permitting appropriate diffusion of anti-allergy drugs
  • Drugs may be contained in external reservoirs or in skin capsules* or in patches e.g. nicotine patches. The rates of diffusion may be altered by means of active membranes or via skin conduits.

28     Animal husbandry technology

  • Active skin drug delivery systems* may be used extensively on farm livestock to control drugs use on a wide scale
  • Captured wild animals may be tagged and fitted with such systems to control their reproduction or behaviours, or to protect them against diseases
  • Active skin tags may be used to track and monitor the behaviour of such animals
  • Sensory stimulation and translation devices may be used to train animals for certain tasks
  • This may also be used in conjunction with control systems to automatically steer or co-ordinate groups of animals
  • Sensory systems in individual animals may be linked together with others, not necessarily of the same species, to make super-sensory collections of animals with unusual properties
  • Robotic animals may be able to interface with real ones by manipulating their sensory inputs
  • Drug development may be enhanced by gaining extra feedback via active skin technology on the condition of animals being experimented upon

Phoenix-based business strategy will win in a fast-changing world

I am leaving for a conference in a few minutes, so this one will be brief. I hate working in airports and hotels.

Businesses worry how they will survive the next 5, 10, 15 years. They should perhaps stop worrying. The primary purpose of a business is to make money. So here is a better strategy than worrying and spending loads on long term planning:

Spot opportunity

Use cloud based thinking and virtuality to get business up and running explosively quickly.

Employ as few staff as possible as full employees, buy the rest in on short term consultancy contracts and freelancing. That keeps admin overheads minimal. Make them use their own kit and use cloud for IT support and provision. That makes IT staff, risks and costs minimal.

Develop quickly and make your money fast with no regard to longevity.

When competition or other market erosion forces start making an impact, cash in and close down while value is still good

Re-invest in next idea, rising like a phoenix using the cash from the last business

This approach is very light-weight. It needs far less administrative load and can be far more task focused, with higher profit margins.

Live fast, die young, resurrect.

OK, flight to catch.

 

Future gender equality – legally recognise everyone’s male and female sides

My writing on the future of gender and same-sex reproduction now forms a section of my new book You Tomorrow, Second Edition, on the future of humanity, gender, lifestyle and our surroundings. Available from Amazon as paper and ebook.

or

http://www.amazon.co.uk/You-Tomorrow-humanity-belongings-surroundings/dp/1491278269

Starbucks isn’t wrong to avoid tax, the law is wrong. A universal payment tax would fix it.

Tax avoidance is in the news a lot at the moment. Maybe that is partly because tax as it is now is seen to be unfair and unjust so people feel less bad about trying to avoid it.  In response, the idiots in charge of our taxing seem to think they should ask people and companies to pay taxes voluntarily.

Companies usually exist to make money, and it would be bad management to voluntarily pay more tax anywhere than is required by law. The world offers a wide range of tax regimes and of course a multinational corporation will do its best to exploit the different rates. But governments are meant to be in charge of law, that’s what they are for. It is their job to ensure that the law is fair and that everyone has to pay their share of taxes. But they aren’t doing that at all well. Governments are at fault, not companies or individuals that choose to pay the (creatively) legal minimum. The tax net may be full of holes, and companies are walking through them, but it is government that designed, made and maintains the net. 

Companies such as Starbucks can legally avoid paying UK tax by paying fees for licenses, use of the brand name and other intellectual property to overseas companies in low tax areas. The value and price of intellectual property can be set at pretty much any arbitrary level, and it can be moved around the world instantly so it is an especially useful tool for tax avoidance schemes. We have been in the information economy for decades now, and it is a reflection of competence and extreme sluggishness of the tax authorities that tax law hasn’t kept up. Starbucks have paid their due taxes, there is just a huge mismatch between what is due and what should be due in a competent tax regime.

It isn’t an impossible task to tax properly. There are lots of ways of taxing things so that all companies pay a fair contribution. The situation now is simply ridiculous and government should pick a mechanism and implement it quickly.

The most obvious perhaps is that the government could regulate that all companies must pay tax on the same proportion of their global profits as the proportion of their revenue that is earned in the UK. And that must include web sales and downloads, and most importantly, any intellectual property such as licenses. If Starbucks buys licenses to operate in their particular way, the license sellers would pay the appropriate taxes on the corresponding proportion of their global profits too.

Of course, that would get complicated if overseas suppliers could simply refuse to pay or even to surrender data on their accounts. But that can be solved by allowing accountants to offset purchases only from licensed companies. The responsibility to either pay the tax themselves, or buy from someone also paying tax here would then stay with Starbucks.

Another way of ensuring companies pay proper tax would be to demand payments based on an industry average cost pattern. This would be subject to arguments and would be more complex so would be more expensive to administer.

A third way is using a purchase tax in place of corporation tax. Every company would pay the purchase tax on everything they buy. If it appears as a cost on the UK balance sheet, purchase tax must be paid on it. What a company does overseas should be of no concern of the UK authorities, but if they want to put a UK operating license from a subsidiary or partner on their UK accounts, tax must be paid on it. If this tax is set at the right level so that the total government tax take stays the same overall, the economy should benefit through simplicity and administrative cost reduction.

It is possible to have different tax levels for different kinds of purchase, exceptions, special cases and so on, but each paragraph of extra regulation is another than can be interpreted and used by creative accountants and lawyers.

One of the implications of having a simple purchase tax is that there is a huge incentive to simplify the value chain into as few links as possible. If money is taxed each time it leaves a company, then having fewer company boundaries in the value chain would be cheaper. Keeping as much of the value chain in house as possible would reduce this, but there would be strong pressure to allow reclaiming of purchase taxes across boundaries in the value chain. Of course, that is getting quite close to what VAT is, and we are all familiar with that already. Companies collect VAT on their sales and claim back VAT on purchases. It therefore doesn’t discriminate against companies on the basis of value chain design. It just collects tax on the difference in value between the raw materials and finished products.

So, why not abolish corporation tax entirely and switch to a refined version of VAT, at a higher rate if need be? Why indeed. This refined VAT would be payable on all purchases, from anywhere, but we could modify it so it could still be reclaimed by businesses for purchase from other UK VAT paying suppliers. The important thing is notionally to seal the borders so that all purchases in the UK are taxed. I am not personally in favour of making this refined VAT reclaimable, I think that draws an unjustifiable distinction between companies and individuals that can then be exploited by company owners and is the source of much tax evasion even today. I think facilitating virtual companies and optimising end to end value chain design is the best approach.

Extending this approach, why not also replace income tax and national insurance by a sort of VAT on salary? That would amount to a flat tax, but people who get paid more would pay more tax too, and that in itself is already an improvement to today. If this VAT also was applied to payment of dividends, capital gains, bank interest, inheritance and all other forms of payments, then the person on the ordinary payroll would pay the same rate as the owner of the company, someone selling their shares, the shareholders, inheritors, everyone. What’s not to like? Rich people pay more, poor people pay less. Everything is simple, all loopholes removed. All outgoings from companies taxed at the same level, and all forms of income ditto. A single page of tax law to replace 18000 pages. People living off shore wouldn’t escape any more because their UK-sourced income is taxed at its UK point of payment. Their income from other countries is the affair of those other countries. Just like usually happens today, the money is taxed when coming into the company as a sale, and once when paid out to someone as wages or dividends. But twice would be a huge improvement on the hundreds of times money is taxed today via all the hidden taxes. This revised system would be far simpler and more transparent and if it is kept simple and transparent, with no added loopholes, people would see its fairness. The more secure net means that everyone would pay less tax except those who had previously been avoiding it.

A wannabe tax-avoiding ‘consultant’ might arrange to work for free in the UK, with no UK payments to be taxed, paid instead by an offshore company into an off-shore account, but to avoid tax, that money would need to have come from an overseas operation. If it came from UK profits, it would have been taxed when the money came into the company, and again when it was paid out to the overseas one. People paid by overseas companies out of overseas money are not the UK’s affair. As far as the UK is concerned, they are working for free.

Smarter people than I have calculated that we’d need to set the rate to take about 20% of each transaction. Just a bit more than VAT already is then (VAT adds 20% on so takes 20/120ths=16.67%). So, if that is right, and we seal all the holes and charge it on everything, we can all look forward to a country with no other taxes except a slightly refined form of VAT, that is paid on everything.

So it wouldn’t matter how you got your money. 20% would be paid when you are given it and on any interest the banks pay you on the remaining 80% from saving it. When you spend it, another 20% is gone, leaving 64% of actual value. This compares favourably with today where hundreds of taxes hide away unobserved. They should all go.

I am greatly in favour of the simplicity this offers, but it isn’t without problems. What about selling shares, or houses? If you have to pay 20% on the full cost every time you buy a new house that would greatly penalise people who move often. It also cripples the stock market if people pay 20% each time they swap shares. People would demand exceptions, but each time exceptions are created, new opportunities to avoid tax arise, that can be exploited by clever accountants. So any exceptions would have to be few and well designed with tax avoidance avoidance in mind.

Wind farm compensation claims undermine their investment potential.

I don’t make many recommendations on investments, but when something comes along that has clear effects, I sometimes do. I am not a financial adviser, and you aren’t paying for my advice, so I make my argument as a futurist and you make your own decision whether to take it on board or not. I take no responsibility for your financial decision, though please feel free to pass on any credit.

I have often advised against anything other than very short term investment in the green industry, and still do. It is volatile at best, with many bankruptcies already, and shows especially poor long term prospects as the poor quality science underpinning it is shown up for what it is – often worthless and counter-productive. This time it is even clearer to me. Avoid investing in wind farms, even more than yesterday.  Here’s why.

Finally there is a proper peer-reviewed scientific study proving what most people suspected already, that wind farms cause health problems and depression in people living near them. Easy-to-read summary of the key bits in the Telegraph: http://www.telegraph.co.uk/earth/energy/windpower/9653429/Wind-farm-noise-does-harm-sleep-and-health-say-scientists.html

The study’s finding were about sleep loss and increased depression, both of which were found to be much greater in communities close to wind turbines. However, these are both known to cause other serious health problems and reduce life expectancy. Suicide links with depression too, so there may also be a measurable impact on suicide rate near wind farms, another study waiting to be done. If as has been proven, wind farms cause loss of sleep and depression, it is therefore reasonable to expect a scientific study to prove a link between wind farms and serious health problems and even early death or suicide.

Separately, the industry has tried to bury and misrepresent the conclusions of a previous proper study that showed their negative effects on house prices. The results however remain valid, there is a proven effect. Erecting a wind farm lowers nearby property values.

Where people have their health or their financial state damaged by a company, and in this case often both, it surely can’t be long before class action suits follow for damages. Once the courts and claim companies get past dealing with the PPI mis-selling compensation claims, there will likely be another swathe based on loss of house value and damage to health attributed to proximity to wind farms.

What is less clear is whether the taxpayer will have to fork out instead. Since the proof of damage is recent, earlier ones could be except from reasonable blame. Since the farms have been commissioned by government, government might be considered to blame and the farm owners and manufacturers only liable for extras caused by specific circumstances or specific designs. Those who recommended, commissioned, housed, built and ran the farms, and who received all the financial benefits even in full knowledge of the harm they were causing, can be expected to deny any wrongdoing and to try to shift blame to avoid  facing the consequences. The taxpayer might well have to pick up much of the bill for damage done in spite of protesting loudly and being ignored all along. However, it will be a brave investor who ignores the risk that justice might actually work against the guilty parties. Justice happens sometimes.

My conclusion is simple: wind farms are now proven to cause damage to property value and health and large compensation claims are likely to follow sometime. Further scientific studies are likely to add weight to the evidence, making compensation payouts highly likely, and there is no provision for this in the tariff guarantees. In the extreme, farms could even be forced to close, eradicating future income (and related production-related tariffs) while leaving the up-front costs and there is no certainty that government will compensate farms for the loss. These prospects therefore obviously damage the value of investments in wind farms.

What do solar panels on your roof say about you?

I mostly work from home and since my office is just a short walk from the bedroom, lounge or kitchen, I have started going on short walks round the neighbourhood to avoid becoming fat. I noticed some of my neighbours have covered their south-facing roofs with solar panels.

What image did they convey? Here is a multiple choice:

a) I had some spare cash and wanted to get a big return on my investment and solar panels offer a fantastic return.

b) I had a guy come round promising me lots of cash if I let him put panels on my roof.

c) I hate paying big greedy companies for energy and paying too much taxes, so am very keen to take full advantage when there is a means to get my own back.

d) I really love technology and am keen to demonstrate it.

e) I want everyone to know what a nice person I am looking after the environment.

f) I want to do my bit for the environment and solar panels are a good way to reduce dependence on fossil fuels and reduce CO2 emissions.

g) I want my kids to live in a sustainable world and that is far more important than the appearance of my house.

I get the impression that each of the above would have some people ticking them. Some would tick several.

Well, I did have a guy come round offering me cash if he would let me stick panels on my roof too. I sent him away, mainly because I am a not an idiot. I had thought it through long before he came. Let me explain what image solar panels on a roof conjure up in my mind when I see them. And bear in mind that my full-time job is as a futurist and I think systemically about how people will behave over the longer term. Using the same tick list, with alternative answers:

a) I wanted a fantastic return on my investment and I don’t care at all that it is other people with less cash to invest who will pay that high return. So I am  greedy and selfish. As the recession lingers on, some people may be tempted to spray nasty messages on my door or run keys down my car doors or shame me on social networking sites, and maybe my family will live in fear or I will be forced to remove them. So I am an idiot too. I am a greedy selfish idiot.

b) I was fully taken in by a door to door salesman and didn’t understand that I could easily commission the panels myself so was happy to give most of the returns to a company who won’t have to suffer the drop in value of my home or the unsightliness, or the maintenance problems they will cause, or the hassle when I move or any other problems. So I am a first class idiot.

c) If energy companies can’t get as much from the energy they sell, they will try to increase the rental and maintenance and billing charges to maintain their revenue. And that means I will get less net profit from any energy I put back into the grid. So I probably won’t save much on what I buy and won’t make much on what I put back. And when I sell my house, even though I will get less for it because the panels make it look awful, I will probably lose heavily again in various admin fees to transfer the solar contracts over to the buyer, who probably won’t get the same deal, so won’t pay me much for it. So I am not as canny as I thought and my returns will be far less, so I am an idiot.

d) As long as I have the latest panels I will look cool and trendy. But they won’t be the latest panels for more than a few months, after which they will quickly start to look obsolete as well as unsightly, so I will have to either reinvest regularly or accept looking like a loser. So I am an idiot.

e) I care for the environment but not enough to do any basic reading and can’t think for myself anyway. I have been fully taken in by the anthropogenic global warming scam and as the global warming panic changes to global cooling panic I will increasingly be labelled as one of the idiots who went along with the AGW panic and just did what the environmentalists told me to do. I am a well-meaning idiot with little or no independent thought. Still an idiot though.

f) Solar panels will one day be an excellent way of reducing CO2 emissions, albeit in sunny countries. However, they are darker and absorb more of the sun’s energy than the roof did previously, so contribute directly to warming the earth, and manufacturing them creates loads of pollutants today, so it isn’t really quite as simple is it? And anyway, maybe we should have waited and put our panels in later, in the Sahara, and got far more energy for far lower costs, while helping poor African economies. And we now know for certain that the impact of CO2 has been greatly exaggerated and is fairly small compared to other impacts on global temperature. On the other hand, as global cooling sets in, we will welcome the extra heat absorption and I’ll be able to get my energy while helping warm the earth. But I didn’t expect it, so am a lucky idiot who landed in poo and came out smelling of roses.

g) I am holier than you are. You obviously don’t care about your kids and their future. I do, aren’t I wonderful? But I can’t think clearly so am happy to do make some ill-informed token gestures instead of things that actually help. So I am a sanctimonious idiot.

At the moment, public opinion hasn’t had time to catch up and many people are still influenced by AGW panic. But it will. Give it a while, and attitudes will migrate from the first list to the second.

I am all in favour of solar energy in the future in some sunny areas. It has an important role to play, but it isn’t as squeaky clean as it initially looks. It doesn’t need subsidised. When the technology is mature, it will be far cheaper than many other forms of energy, but it isn’t there yet. Since global warming has stopped for 15 years or more now, and it looks more and more like we are heading into a prolonged period of cooling, there is no economic or environmental justification for installing subsidised solar. If it indeed helps the environment overall, it will be far better to invest the same amount later, when we can buy more and help more. There is certainly no cause for panic based subsidies. In the short term they move money from the poor to the greedy, and in the longer term, even those people will lose out. Even the companies installing them can’t seem to survive because of the rapid technology evolution, making their investments in stock worthless and changes in subsidies undermining their business models. It really seems that there are no winners from early investment.

One day, in some places and circumstances, it may be a great idea, but for now, across the UK, rooftop solar power is for greedy, selfish, sanctimonious idiots.