Category Archives: environment

I’m not a green futurist. I’d rather be right.

Since 1998 I have written and lectured occasionally on environmentalism and often criticise its green, pseudo-religious sub-community. I care about the environment just as greens are supposed to, but I see dogmatic, poorly thought through green policies as a big part of the problem facing the environment. With the greens as its friends, the Earth needs no enemies. Today, I read that solar companies are leaving Spain, where it is usually sunny, to come to the UK, where it usually isn’t, because our previous and existing governments were very keen to demonstrate their green credentials by subsidising solar power. Clarification: they are increasing installation in the UK instead of Spain. This is obviously counter-productive, as are many other policies thought up by the green community. 

So while many other futurists and futurologists advertise themselves as green, I am very proud to be on the other side, that of clear-thinking, full life cycle, system-wide analysis. I am certainly not a ‘green futurist’. I am an engineer and a proper futurist, looking at the future objectively and logically to try to work out what is likely to happen, not caring whether the news is popular or not. I’d rather be right. Of course I want to do my best to help ensure to a sustainable world and where a practice makes good sense I follow it. Greens are meant to do that but they often end up doing the opposite. Many greens think of science and technology as the problem. They want to go back to the dark ages, reduce standard of living, even reduce population. They advocate policies that disadvantage many of the world’s poor and prevent many from being born. I couldn’t ever live with such an ideology. I see advanced technology as the main foundation for living sustainably. As my own contribution to environmentalism and sustainability, as well as inventing quite a few things that can help, I also wrote a book last year on system-wide sustainability, where I contrasted the application of green dogma against the far better approach of positively applying science, engineering and logical systems thinking instead of negatively trying to undo progress. The book is called Total Sustainability.

Nor am I an AGW (human-caused global warming) catastrophist, also in contrast to many other futurists. I am not taken in by the poor quality spun science that suggests imminent AGW-based catastrophe. There is far too much deception in the ‘climate science’ and politics community which then recommends diverting trillions onto ineffective or counter-productive policies that could be spent far better elsewhere. The most important skill a futurist can have is the ability to distinguish between sense and nonsense. 

The climate has always changed, and always will. Humans have some impact, but not so far or likely to be a catastrophic impact. CO2 is a greenhouse gas, a warming contributor, but the CO2-centric climate models that have predicted catastrophe have almost all greatly overestimated warming to date, and none predicted the 17.5 years of no warming that we have now seen, so they are wrong. Much is made of arctic melting, but little is mentioned about the record ice in the antarctic. The theories about why this or that happens seem to change every month. In the UK, seasonal predictions using the same theoretical base have got it wrong almost every time for years. We are meant to listen to a group who tell us a very distorted picture of what is going on, who claim competence and understanding far beyond what they demonstrate. As any real scientist understands, if a theory disagrees with observation, the theory is wrong. We need a new theory. The fact the ‘climate science’ community conspicuously ignores that fact, and spends an enormous effort to make excuses for poor models, or even changing the data, rather than admit that they simply don’t know what is happening puts them in opposition to the most basic principle of good science. While a lot of good science is undoubtedly done, many others disqualify themselves by that principle, and that pollutes the entire field, bringing science itself into disrepute, and damaging the ability of future science and technology to help protect and improve the environment. So I am skeptical when they say the sky is falling. It doesn’t look like it to me.

Other scientists often suggest reasons why the models may be wrong – the full influence of various-term ocean cycles and the full effects on cloud seeding from sunspots via galactic cosmic radiation deflection. These are better correlated through history than the outputs of the models. Many factors that can influence climate such as agricultural practices and socieconomic reactions to trends or subsidies are not included in the models. Much of the warming we have seen can be explained mostly by natural cycles overlaid on the continued warming as we recover from the last mini ice age. Some, but we don’t know how much, can be explained by a wide range of natural effects that are poorly understood and quantified - soil chemistry; forestry emissions; biological, chemical and physical environmental feedbacks and buffers. Some of it, but we don’t know how much, can be explained by changes in human originated CO2, changes in high atmosphere water vapour from aviation and space missions, CFCs, black carbon, and dozens of other human contributory factors, which are still not fully understood or quantified. Now, as we head into a likely prolonged solar minimum, some scientists are suggesting that a lengthy cooling period now looks to be as likely a short to medium term trend as further warming. I don’t pretend to understand all the science, but I don’t believe the AGW catastrophe people do either. I am a skeptic. I don’t deny that CO2 is a problem, nor that we have had warming, nor even that humans may account for some of that warming, but I sure as hell am not convinced we’re all about to cook if we don’t do something really big really fast.

I am quite pleased with my track record on environmentalism and green stuff. In my 2006 report Carbon, I laid out some of my views and I still stand by them. In it I said that increasing CO2 is an important issue but not a reason to panic, mainly because it will eventually take care of itself. We are not faced with imminent AGW catastrophe. The default future migration to other energy sources as they become cheaper will limit CO2 emissions in the long term, so we will be absolutely fine, provided that the proven ongoing damage from green policies can be limited. I analysed a lot of policies advocated by greens and found them likely to be counterproductive. I have sadly been proved right on many of those, but thankfully, some of the engineering solutions I recommended have since gained traction. I was blocked from publishing my 2006 report since it was seen as too controversial at the time. I published it almost unchanged when I went freelance at the end of 2007. I later used much of it in my book.

You can read it here: http://www.futurizon.com/wp-content/uploads/2013/05/carbonfeb08.pdf

Unlike catastrophic global warming advocates, I haven’t had to change my story every month. I first lectured at the World Futures Society conference on the pseudo-religious nature of green environmentalism way back in 1998 , and I am still saying the same now.

Green usually means wrong and usually means harming the environment by doing something that hasn’t been thought through properly but is based on dogma. I’d rather be someone who helps the environment and helps sustainability by doing proper engineering. I’d rather not have to make excuses in a few years when the historians analyse what was going on today and ask why so many people were taken in by predictions of AGW catastrophe, and why they advocated wasting so much money and impoverishing so many, damaging so many economies and so many lives to make so little impact on a problem that has in any case been exaggerated greatly.

I’m not a green futurist. I’d much rather be right.

The future of mining

I did an interview recently on future mining, so I thought I’d blog my thoughts on the subject while they’re all stuck together coherently.

Very briefly, increasing population and wealth will generate higher resource need until the resources needed per person starts to fall at a higher rate, and it will. That almost certainly means a few decades of increasing demand for many resources, with a few exceptions where substitution will impact at a higher rate. Eventually, demand will peak and fall for most resources. Meanwhile, the mining industry can prosper.

Robotics

Robots are already used a lot in mining, but their uses will evolve. Robots have a greater potential range of senses than humans, able to detect whatever sensors are equipped for. That means they can see into rock and analyse composition better than our eyes. AI will improve their decisions. Of course, we’ll still have the self drive vehicles, diggers and the other automation we already expect to see.

If a mine can be fully automated, it may reduce deaths and costs significantly. Robots can also have a rapid speed of reaction as well as AI and advanced sensing, and could detect accidents before they happen. Apart from saving on wages, robots also don’t need expensive health and safety, so that may see lower costs, but at the expense of greater risks with occasional flat robots in an automated mine. The costs of robots can be kept low if most of their intelligence is remote rather than on board. Saving human lives is a benefit that can’t easily be costed. Far better to buy a new machine than to comfort a bereaved family.

Robots in many other mixed mines will need to be maintained, so maybe people’s main role will often be just looking after the machines, and we would still need to ensure safety in that case. That creates a big incentive to make machines that can be maintained by other machines so that full automation can be achieved.

With use of penetrating positioning systems, specialist wanderer bots could tunnel around at will, following a seam, extracting and concentrating useful materials and leave markers for collector bots to gather the concentrates.

NBIC

With ongoing convergence of biotech, nanotech and IT, we should expect a lot of development of various types of bacterial or mechanical microbots, that can get into new places and reduce the costs of recovery, maybe even reopening some otherwise uneconomic mines. Development of bacteria that can transmute materials has already begun, and we should expect that some future mines will depend mainly on a few bucketfuls of bacterial soup to convert and concentrate resources into more easily extracted reserves. Such advanced technology will greatly increase the reserves of material that can economically be extracted. Obviously the higher the price, the more that can be justified on extraction, so advanced technologies will develop faster when we need them, as any shortages start to appear.

Deep Sea

Deep sea mines would provide access to far greater resource pools, limited mainly by the market price for the material. Re-opening other mines as technology improves recovery potential will also help.

Asteroid Mining

Moving away from the Earth, a lot of hype has appeared about asteroid mining and some analyses seem to think that it will impact enormously on the price of scarce materials here on Earth. I think that is oversold as a possibility.  Yes, it will be possible to bring stuff back to Earth, but the costs of landing materials safely would be high and only justified for those with extreme prices.  For traditionally expensive gold or diamonds, actual uses are relatively low and generally have good cheaper substitutes, so if large quantities were shipped back to Earth, prices would still be managed as they already are, with slow trickling onto the market to avoid price collapse. That greatly limits the potential wealth from doing so.

I think it is far more likely that asteroid mining will be focused on producing stuff for needed for construction, travel and living in space, such as space stations, ships, energy collection, habitation, outposts etc. In that case, many of the things mined from asteroids would be things that are cheap here, such as water and iron and other everyday materials. Their value in space might be far higher simply because of the expense of moving them. This last factor suggests that there may be a lot of interest in technologies to move asteroids or change their orbits so the resources end up closer to where they are needed. An asteroid could be mined at great length, with the materials extracted and left on its surface, then waiting until the asteroid is close to the required destination before the materials are collected and dispatched. The alternative that we routinely see in sci-fi, with vast mining ships, is possible, and there will undoubtedly be times they are needed, but surely can’t compete on cost with steering an entire asteroid so it delivers the materials itself.

Population growth and resource need

As human population increases, we’ll eventually also see robot and android population increase, and they might also need resources for their activities. We should certainly factor that into future demand estimates. However, there are also future factors that will reduce the resources needed.

Smarter Construction

More advanced construction techniques, development of smarter materials and use of reactive architecture all mean that less resource is needed for a given amount of building. Exotic materials such as graphene  and carbon nanotubes, boron derivatives, and possibly even plasma in some applications, will all impact on construction and other industries and reduce demand for lots of resources. The carbon derivatives are a double win, since carbon can usefully be extracted from the products of fossil fuel energy production, making cleaner energy at the same time as providing building and fabrication materials. The new carbon materials are a lot stronger than steel, so we may build much higher buildings, making a lower environmental footprint for cities. They are also perfect for making self-driving cars as well as their energy storage, power supply and supporting infrastructure.

IT efficiency v the Greens

Miniaturisation of electronics and IT will continue for decades more. A few cubic millimetres of electronics could easily replace all the electronics owned by a typical family today. Perversely, Greens are trying hard to force a slower obsolescence cycle, not understanding that the faster we get to minimal resource use, the lower the overall environmental impact will be. By prolonging high-resource-use gadgets, even as people get wealthier and can afford to buy more, the demands will increase far beyond what is really necessary of they hadn’t interfered. It is far better for 10 billion people to use a few cubic millimetres each than a few litres. Greens also often want to introduce restrictions on development of other advanced technology, greatly overusing the precautionary principle. Their distrust of science and technology is amazing considering how much it can obviously benefit the environment.

A lot of things can be done virtually too, with no resource use at all, especially displays and interfaces, all of which could share a single common display such as a 0.2 gram active contact lens. A lot of IT can be centralised with greater utilisation, while some can achieve better efficiency by decentralising. We need to apply intelligence to the problem, looking at each bit as part of an overall system instead of in isolation, and looking at the full life cycle as well as the full system.

Substitution will reduce demand for copper, neodymium, lithium

Recycling of some elements will provide more than is needed by a future market because of material substitution, so prices of some could fall, such as copper. Copper in plumbing is already being substituted heavily by plastic. In communications, fibre and mobile are already heavily replacing it. In power cables, it will eventually be substituted by graphene. Similar substitution is likely in many other materials. The primary use of neodymium is in wind turbines and high speed motors. As wind turbines are abandoned and recycled in favour of better energy production techniques, as future wind power can even be based on plastic capacitors that need hardly any metal at all, and as permanent magnets in motors are substituted by superconducting magnets, there may not be much demand for neodymium. Similarly, lithium is in great demand for batteries, but super-capacitors, again possibly using carbon derivatives such as graphene, will substitute greatly for them. Inductive power coupling from inductive mats in a road surface could easily replace most of the required capacity for a car battery, especially as self driving cars will be lighter and closer together, reducing energy demand. Self-driving cars even reduce the number of cars needed as they deter private ownership. So it is a win-win-win for everyone except the mining industry. A small battery or super-cap bank might have little need for lithium. Recycled lithium could be all we need. Recycling will continue to improve through better practice and better tech, and also some rubbish tips could even be mined if we’re desperate. With fewer cars needed, and plastic instead of steel, that also impacts on steel need.

The Greens are the best friends of the mining industry

So provided we can limit Green interference and get on with developing advanced technology quickly, the fall in demand per person (or android) may offset resource need at a higher rate than the population increases. We could use less material in the far future than we do today, even with a far higher average standard of living. After population peaks and starts falling, there could be a rapid price fall as a glut of recycled material appears. That would be a bleak outcome for the mining sector of course. In that case, by delaying that to the best of their ability, it turns out that the Greens are the mining industry’s best friends, useful idiots, ensuring that the markets remain as large as possible for as long as possible, with the maximum environmental impact.

It certainly takes a special restriction of mind to let someone do so much harm to the environment while still believing they occupy the moral high ground!

Carbon industry

Meanwhile, carbon sequestration could easily evolve into a carbon materials industry, in direct competition with the traditional resources sector, with carbon building materials, cables, wires, batteries, capacitors, inductors, electronics, fabrics…..a million uses. Plastics will improve in parallel, often incorporating particles of electronics, sensors, and electronic muscles, making a huge variety of potential smart materials for any kind of building, furniture of gadget. The requirement for concrete, steel, aluminium, copper, and many other materials will eventually drop, even as population and wealth grows.

To conclude, although population increase and wealth increase will generate increasing demand in the short to medium term, and mining will develop rapidly along many avenues, in the longer term, the future will rely far more on recycling and advanced manufacturing techniques, so the demand for raw materials will eventually peak and fall.

I wrote at far greater length about achieving a system-wide sustainable future in my book Total Sustainability, which avoids the usual socialist baggage.

The internet of things will soon be history

I’ve been a full time futurologist since 1991, and an engineer working on far future R&D stuff since I left uni in 1981. It is great seeing a lot of the 1980s dreams about connecting everything together finally starting to become real, although as I’ve blogged a bit recently, some of the grander claims we’re seeing for future home automation are rather unlikely. Yes you can, but you probably won’t, though some people will certainly adopt some stuff. Now that most people are starting to get the idea that you can connect things and add intelligence to them, we’re seeing a lot of overshoot too on the importance of the internet of things, which is the generalised form of the same thing.

It’s my job as a futurologist not only to understand that trend (and I’ve been yacking about putting chips in everything for decades) but then to look past it to see what is coming next. Or if it is here to stay, then that would also be an important conclusion too, but you know what, it just isn’t. The internet of things will be about as long lived as most other generations of technology, such as the mobile phone. Do you still have one? I don’t, well I do but they are all in a box in the garage somewhere. I have a general purpose mobile computer that happens to do be a phone as well as dozens of other things. So do you probably. The only reason you might still call it a smartphone or an iPhone is because it has to be called something and nobody in the IT marketing industry has any imagination. PDA was a rubbish name and that was the choice.

You can stick chips in everything, and you can connect them all together via the net. But that capability will disappear quickly into the background and the IT zeitgeist will move on. It really won’t be very long before a lot of the things we interact with are virtual, imaginary. To all intents and purposes they will be there, and will do wonderful things, but they won’t physically exist. So they won’t have chips in them. You can’t put a chip into a figment of imagination, even though you can make it appear in front of your eyes and interact with it. A good topical example of this is the smart watch, all set to make an imminent grand entrance. Smart watches are struggling to solve battery problems, they’ll be expensive too. They don’t need batteries if they are just images and a fully interactive image of a hugely sophisticated smart watch could also be made free, as one of a million things done by a free app. The smart watch’s demise is already inevitable. The energy it takes to produce an image on the retina is a great deal less than the energy needed to power a smart watch on your wrist and the cost of a few seconds of your time to explain to an AI how you’d like your wrist to be accessorised is a few seconds of your time, rather fewer seconds than you’d have spent on choosing something that costs a lot. In fact, the energy needed for direct retinal projection and associated comms is far less than can be harvested easily from your body or the environment, so there is no battery problem to solve.

If you can do that with a smart watch, making it just an imaginary item, you can do it to any kind of IT interface. You only need to see the interface, the rest can be put anywhere, on your belt, in your bag or in the IT ether that will evolve from today’s cloud. My pad, smartphone, TV and watch can all be recycled.

I can also do loads of things with imagination that I can’t do for real. I can have an imaginary wand. I can point it at you and turn you into a frog. Then in my eyes, the images of you change to those of a frog. Sure, it’s not real, you aren’t really a frog, but you are to me. I can wave it again and make the building walls vanish, so I can see the stuff on sale inside. A few of those images could be very real and come from cameras all over the place, the chips-in-everything stuff, but actually, I don’t have much interest in most of what the shop actually has, I am not interested in most of the local physical reality of a shop; what I am far more interested in is what I can buy, and I’ll be shown those things, in ways that appeal to me, whether they’re physically there or on Amazon Virtual. So 1% is chips-in-everything, 99% is imaginary, virtual, some sort of visual manifestation of my profile, Amazon Virtual’s AI systems, how my own AI knows I like to see things, and a fair bit of other people’s imagination to design the virtual decor, the nice presentation options, the virtual fauna and flora making it more fun, and countless other intermediaries and extramediaries, or whatever you call all those others that add value and fun to an experience without actually getting in the way. All just images directly projected onto my retinas. Not so much chips-in-everything as no chips at all except a few sensors, comms and an infinitesimal timeshare of a processor and storage somewhere.

A lot of people dismiss augmented reality as irrelevant passing fad. They say video visors and active contact lenses won’t catch on because of privacy concerns (and I’d agree that is a big issue that needs to be discussed and sorted, but it will be discussed and sorted). But when you realise that what we’re going to get isn’t just an internet of things, but a total convergence of physical and virtual, a coming together of real and imaginary, an explosion of human creativity,  a new renaissance, a realisation of yours and everyone else’s wildest dreams as part of your everyday reality; when you realise that, then the internet of things suddenly starts to look more than just a little bit boring, part of the old days when we actually had to make stuff and you had to have the same as everyone else and it all cost a fortune and needed charged up all the time.

The internet of things is only starting to arrive. But it won’t stay for long before it hides in the cupboard and disappears from memory. A far, far more exciting future is coming up close behind. The world of creativity and imagination. Bring it on!

Will population grow again after 2050? To 15Bn?

We’ve been told for decades now that population will level off, probably around 2050, and population after that will likely decline. The world population will peak around 2050 at about 9.5 Billion. That’s pretty much the accepted wisdom at the moment.

The reasoning is pretty straight forward and seems sound, and the evidence follows it closely. People are becoming wealthier. Wealthier people have fewer kids. If you don’t expect your kids to die from disease or starvation before they’re grown up, you don’t need to make as many.

But what if it’s based on fallacy? What if it is just plain wrong? What if the foundations of that reasoning change dramatically by 2050 and it no longer holds true? Indeed. What if?

Before I continue, let me say that my book ‘Total Sustainability’, and my various optimistic writings and blogs about population growth all agree with the view that population will level off around 2050 and then slowly decline, while food supply and resource use will improve thanks to better technologies, thereby helping us to restore the environment. If population may increase again, I and many others will have to rethink.

The reason I am concerned now is that I just made another cross-link with the trend of rising wealth, which will allow even the most basic level of welfare to be set at a high level. It is like the citizen payment that the Swiss voted on recently. I suggested it a couple of years ago myself and in my books, and am in favour of it. Everyone would receive the same monthly payment from the state whether they work or not. The taxes due would then be calculated on the total income, regardless of how you get it, and I would use a flat tax for that too. Quite simple and fair. Only wealthier people pay any tax and then according to how wealthy they are. My calculations say that by 2050, everyone in the UK could get £30,000 a year each (in today’s money) based on the typical level of growth we’ve seen in recent decades (ignoring the recession years). In some countries it would be even higher, in some less, but the cost of living is also less in many countries. In many countries welfare could be as generous as average wages are today.

So by 2050, people in many countries could have an income that allows them to survive reasonably comfortably, even without having a job. That won’t stop everyone working, but it will make it much easier for people who want to raise a family to do so without economic concerns or having to go out to work. It will become possible to live comfortably without working and raise a family.

We know that people tend to have fewer kids as they become wealthier, but there are a number of possible reasons for that. One is the better survival chances for children. That may still have an effect in the developing world, but has little effect in richer countries, so it probably won’t have any impact on future population levels in those countries. Another is the need to work to sustain the higher standard of living one has become used to, to maintain a social status and position, and the parallel reluctance to have kids that will make that more difficult. While a small number of people have kids as a means to solicit state support, but that must be tiny compared to the numbers who have fewer so that they can self sustain. Another reason is that having kids impedes personal freedom, impacts on social life and sex life and adds perhaps unwelcome responsibility. These reasons are all vulnerable to the changes caused by increasing welfare and consequential attitudes. There are probably many other reasons too. 

Working and having fewer kids allows a higher standard of living than having kids and staying at home to look after them, but most people are prepared to compromise on material quality of life to some degree to get the obvious emotional rewards of having kids. Perhaps people are having fewer kids as they get wealthier because the drop of standard of living is too high, or the risks too high. If the guaranteed basic level of survival is comfortable, there is little risk. If a lot of people choose not to work and just live on that, there will also be less social stigma in not working, and more social opportunities from having more people in the same boat. So perhaps we may reasonably deduce that making it less uncomfortable to stop work and have more kids will create a virtuous circle of more and more people having more kids.

I won’t go as far as saying that will happen, just that it might. I don’t know enough about the relative forces that make someone decide whether to have another child. It is hard to predetermine the social attitudes that will prevail in 2050 and beyond, whether people will feel encouraged or deterred from having more kids.

My key point here is that the drop in fertility we see today due to increasing wealth might only hold true up to a certain point, beyond which it reverses. It may simply be that the welfare and social floor is too low to offer a sufficient safety net for those considering having kids, so they choose not to. If the floor is raised thanks to improving prosperity, as it might well be, then population could start to rise quickly again. The assumption that population will peak at 9 or 9.5 billion and then fall might be wrong. It could rise to up to 15 billion, at which point other factors will start to reassert themselves. If our assumptions on age of death are also underestimates, it could go even higher.

We should help the poor, but not via global warming compensation

At the Warsaw climate summit, some developing countries argued that the rich, developed world, should compensate poor countries for the effects of global warming such as the recent typhoon. That is a very bad path to tread indeed.

Like almost everyone reading this, I am all for helping poor people to the very best of our ability, wherever they live. But we should do so because we can help them and because we want to help them, for the best of human reasons, not because we’re being forced to via some perverse compensation scheme.

As I argued in my book Total Sustainability, if we want to live in a sustainable world, we need to fix not just those things that directly affect the environment such as pollution and resource use, but also things that indirectly affect the environment via human impacts. We need to look at economics, politics, society, business and cultural effects too, and deal with the problems therein that would eventually adversely affect the environment and human well-being such as exploitation and corruption.

Let’s ignore for the time being the fact that global warming has levelled off for 16 or 17 years now even while CO2 levels have skyrocketed. Let’s ignore the fact that environmental catastrophes have always happened, and that it isn’t possible to attribute any particular weather-related disaster to ‘climate change’ or ‘global warming’. There is no shred of evidence linking the recent typhoon to CO2 levels. Let’s ignore the fact that the number and severity of storms has declined, so the level of problem has actually gone down as CO2 level has increased. Let’s ignore those facts because the overwhelmingly important overall fact is that we don’t yet understand what is happening to our climate, nor how much of any changes we observe are natural and how much are due to human activity, still less the attribution to particular human activities. The only evidence I need cite for that assertion is that almost all of the climate models have grossly overstated the amount of warming we should have seen by now. If they are genuinely the result of the best understanding of climate we have and not scientific corruption or deliberate misrepresentation and tweaking to get the right answer, then we can be certain that some of the equations or factors in them are wrong, or still worse, missing. 

If we don’t even understand how climate works, if we don’t understand the effects of human activity on the climate, then it is utterly ridiculous to attribute particular environmental catastrophes to the behaviour of particular countries. A sensible demand for compensation would need to demonstrate a causal link between an act and a result. We are nowhere near the level of scientific understanding required for that. Even if we were, or if we eventually get to that point; even if future scientists could conclusively show that rich countries’ CO2 emissions caused a particular storm, we still would have no justification for compensation to developing countries. Let’s help them as much as we can, but let’s not use human-caused global warming or climate change as the reason.

Why not? Here’s why:

One of the chapters in my book was called  ‘the rich world owes no compensation to the poor world’. The world only has the technological capability to support a population over seven billion because of the activities of our ancestors. Without the industrial revolution, the energy it used, the pollution it generated, the CO2 it led to, very many of those alive today would not be. We owe no apology for that. It is only through that historic activity that we are where we are, with the technology that allows poor countries to develop. Developing countries are developing in a world that already has high CO2 levels and is still largely economically and technologically locked into CO2-intensive energy production. That is simply the price humanity overall has paid to get where we are. When a developing country builds a new power station or a road or a telecomms network, it uses today’s technology, not 16th century technology – the century where modern science and technology arguably really started. Without the rich world having used all that energy with its associated environmental impact, they’d have to use 16th century technology. There would be no rich world to sell to, and no means to develop. Developing is a far faster and easier process today than it was when we did it.

Our ancestors in the rich world had to suffer the pain hundreds of years ago – they were the giants on whose shoulders we now stand. It was mostly our ancestors in the rich world whose ingenuity and effort, whose blood, sweat and tears paid for a world that can support seven billion people. It was mostly they who invented and developed the electricity, telecoms, the web, pharmaceuticals and biotech, genetically superior crops, advanced manufacturing and farming technology that make it possible. That all cost environmental impacts as part of the price. The whole of humanity has benefitted from that investment, not just rich countries, and if any compensation or apology were due to the rest of the world for it, then it has already been paid many times over in lives saved and lives enabled, economic aid already enabled by that wealth, and the vastly better financial and economic well-being for the future developing world that resulted from that investment. The developing world is developing later, but that is not the fault of our ancestors for making our investment earlier.

Amount of compensation owed: zero. Amount we should give for other reasons: as much as we can reasonably afford. Let’s give through compassion and generosity and feeling of common humanity, because we can and because we want to, not because we are being forced.

New book: Total Sustainability

frontcover

I’m in the button pushing process of publication now on a new book, called Total Sustainability. The title is self explanatory, but to expand on it, I don’t just look at purely environmental concerns but humanity, including our approach to the environment and the many indirect ways we impact on it via our culture. I look at increasing population and the demands for resources. I consider politics, whether it might be time to consider dual democracy now in the light of the growing gulf between left and right ideology. I look at human culture, the nature of tribalism, erosion of privacy, the processes of political correctness, the pursuit of wisdom and the slide into a random walk for values. I look at the economy, how we can redesign it to make it work better, fixing taxation and welfare, flat taxes and citizen wages. In particular I look at the processes of exploitation and what we could do about that.

It is now available via Amazon, both as paper, using print-on-demand and as an ebook.

http://www.amazon.co.uk/Total-Sustainability-Political-Environmental-Economic/dp/1492969443/ref=sr_1_2?ie=UTF8&qid=1382434243&sr=8-2&keywords=total+sustainability

http://www.amazon.co.uk/Total-Sustainability-Ian-Pearson-ebook/dp/B00FWMW194/ref=sr_1_3?ie=UTF8&qid=1382434102&sr=8-3&keywords=total+sustainability

Could wind farms and HS2 destroy the environment?

Remember when chaos theory arrived. We were bombarded with analogies to help us understand it, such as the butterfly effect, whereby a butterfly flapping its wings in a distant rain forest creates micro-turbulence that minutely affects some tiny variable in a very non-linear system, resulting in a hurricane forming somewhere later.

Imagine sticking up a wind turbine, and compare that to a butterfly. It is a fair bit bigger. A big turbine extracts up to 3MW of power from the passing wind, and a large wind farm may have hundreds of them. If weather is so chaotic in its nature that a butterfly can affect it, a massive deployment of numerous large wind farms certainly can.

Aerial wind farms are being explored a lot now too, using kites. I’ve proposed a few novel designs for wind energy extractors myself during idle time. It is very easy. In my sci-fi book Space Anchor I even described a feasible solution for harvesting energy from tornadoes and hurricanes, reducing their damage and getting lots of free energy.

But it isn’t free if the cost is such great interference with wind strength that the paths of the winds are affected, their ability to transfer water vapour from one region to another. We are already having an impact and it will increase as deployment volume grows. We don’t have the means to estimate the effects of siphoning of such energy. As has recently been shown, 99% of climate models have greatly overestimated the warming due to CO2. They simply don’t work. They don’t model the environment accurately, or even quite accurately.

In the arctic, last year the ice declined enormously, this year it grew back. Researchers found that heat added to river systems by mineral and oil exploration could have been important contributor to the excessive melt. It is human-originated but nothing to do with CO2, and it doesn’t appear in any of the climate models. If they’re right, it’s a good example of how we can interfere with local climate unintentionally, and also how we won’t usually get any warning from climate modelling community who seem obsessed with ignoring any variable that doesn’t link to CO2. The climate is certainly changing, just not at all in the ways they keep telling us it will, because the models leave out many of the important factors and the equations are wrong.

So how can we expect to be told the likely effects of wind farms? The simple answer is that we can’t. At best, we can hope to get some estimates of change in a few specific wind zones. Furthermore, due to extreme politicization of the whole field of energy production and climate change, any models that suggest harmful effects are highly likely to be blocked from reporting, or their results tweaked and airbrushed and generally sanitized beyond recognition. The Scottish wind farms have already been shown to increase CO2 emissions due to the effects they have on the peat bogs on which most of them are built but we still see push for more of the same, even knowing that on the only issue they are meant to help with, CO2 emissions, they make things worse.

The UK government seems to enjoy throwing money away just when we need it most. The HS2 rail link will waste between £50Bn and £75Bn depending who you believe. Wind farms are already adding hundreds per year to the energy bills of the poor, pushing them deeper into poverty. The Green Deal fiasco has wasted a tiny amount by comparison, but is another example of extreme government incompetence when it comes to protecting the environment. As part of EU environmental policies, blocking and delaying shale gas development across Europe has led to massive imports of coal from the USA, increasing EU CO2 emissions while USA emissions have tumbled. You just couldn’t do a worse job of protecting the environment.

So far it seems, almost all government attempts to protect the environment have made it worse. Building even more wind farms will likely add to the problems even further.

Looking at HS2, it is very hard indeed not to compare this enormously expensive project to build a fairly high speed conventional railway between two cities to the Hyperloop system in California recently proposed by Elon Musk. That would deliver a 600mph rail system at a tiny fraction of the cost of HS2. Sure, there are some engineering problems with the systems as initially proposed, but nothing that can’t be solved as far as I can see. If we have £50Bn to spend, we could build links between most of our major cities, instead of diverting even more into London. Instead of a few thousand rich people benefiting a little bit, everyone could. We could build a 21st century rail system instead of just building more of a 20th century one. A system like that would have high capacity between all the major places, diverting many cars off the roads, reducing congestion, acting as a core of a proper self-driven pod based system, reaping enormous environmental benefits as well as improvement of lives. HS2 is totally pants by comparison with what we could get with the same outlay, for the economy, the environment and for quality of life. Siphoning off 50 to 75Bn from the economy for HS2 will delay development of far better and more environmentally friendly means of mass transport. Compared to the right solution, HS2 will damage the economy and the environment enormously.

Wind farms and HS2 will become monuments to the magnitude of stupidity of people in power when they are driven to leave a personal legacy at other people’s expense without having the systems engineering skills to understand what they’re doing.

 

 

Getting estuary tidal power without damaging an estuary

Once in a while, people suggest using the Severn Estuary to generate tidal power. Many other countries with coastlines also have estuaries with sufficient tidal range to make them attractive candidates too. Tidal range is the vertical difference between the water depth at high and low tide, and when the shape of the estuary is factored in, this obviously represents the potential energy available to be harvested. The placing of the barrage determines most of the cost.

A good US overview is at

http://www.oceanenergycouncil.com/index.php/Tidal-Energy/Tidal-Energy.html

Building a dam is established technology, as is hydroelectric generation. The environmental problem is that estuaries are also valuable ecosystems, and it would be nice if we could get power that way without needing the estuary. Putting the enclosures, or impoundments off shore solves that. One option is to build a tidal lagoon. A nice UK site describes the idea:

http://www.tidalelectric.com/technology-lagoons.shtml

As a diversion, you could also just float a lagoon one and tether it, but that probably isn’t a great idea. This is why: A huge man-made enclosure with high walls in a high tidal range area off shore could open its gates to let water flood in via generators as the tide comes in and/or hold it to be released via generators as the tide goes out. But if we make it from plastic, it wouldn’t be able to withstand much pressure and wouldn’t last long. If we make it from steel, it would be stronger, but would take a lot of steel to make a worthwhile enclosure. Then once we’ve made it, how would it be anchored to the sea floor to stop it just rising with the tide or to stop it falling as the tide goes out. Remember, tidal generators only become useful when there is a significant pressure difference. It would need very strong anchors and very strong cables to prevent it from floating up as the tide rises. The base for the enclosure would have to be very strong with strong supports to hold up the enormous weight as the tide goes out, or it would have to sit on a huge base of concrete (assuming it can’t just sit on the sea floor because it is at sea, which is after all the whole point).

So it’s obvious once you think about it for a few minutes why people want to use estuaries or lagoons to hold the water. Only the wall is needed, not the base. The difficult half of the problem and most of the cost goes away.

We are already building off shore wind farms. They sit in regions where the sea is shallower, but since they already present an obstacle to shipping, that obstacle wouldn’t be much worse if the whole farm were to be surrounded by a sea wall. Then tidal generators could be fitted in those walls. Wind farms therefore ought to be perfect candidates for tidal lagoons. It would produce an impoundment without further damaging shipping channels or fish migration paths, while making a less hostile environment for the wind turbines and making their maintenance easier and safer.

A steel wall would be theoretically workable, but would be expensive and resource intensive. A concrete sea wall would be less expensive, but making concrete generates relatively large amounts of CO2. Stone could be used but leaves an ugly mine behind. So, the best solution for tidal lagoons is using a conventional rubble mound breakwater. 

This isn’t a new idea. It was thought through ages ago by others. One proposal for the UK that gathered support:

http://www.publications.parliament.uk/pa/cm200506/cmselect/cmenvaud/584/584we78.htm describes almost exactly this solution, identifies promising UK sites, and even does all the appropriate surveys and calculations, showing costs compare reasonably with onshore wind turbines. It is still expensive, but not as bad as off shore wind or even a tidal barrage (because the depth of water on the path the wall follows is low, keeping construction costs down). Worth a read.

It is a sound idea already. I like it, though it is still far more expensive than developing shale gas. But instead of using just rubble, why not also use the opportunity to dispose of other waste such as plastic by using it as breakwater filler? Maybe even other kinds of landfill might work as filler. A lot of waste plastic is shipped to far-away lands for disposal. Mixed with rubble, the density would be OK to make it sink and stop it being washed away. It would get rid of waste, while providing some of the substance of the breakwater, hopefully even bringing the price down further. It is unlikely to make a huge dent in costs, but it would reduce the madness of sending plastic to China for disposal and take pressure of landfill. 

Is secular substitution of religion a threat to western civilisation?

In 1997 I delivered a presentation to the World Futures Society conference titled: The future of sex, politics and religion. In it, I used a few slides outlining secular substitutes for religion that constitute what I called ’21st century piety’. I’ve repeated my analysis many times since and still hold firmly by it, virtually unchanged since then. A lot of evidence since has backed it up, and lots of other people now agree.

My theory was that as people move away from traditional religion, the powerful inner drive remains to feel ‘holy’, that you are a good person, doing the right thing, on some moral high ground. It is a powerful force built into human nature, similar to the desire to feel social approval and status. When it is no longer satisfied by holding to religious rules, it may crystallise around other behaviours, that can mostly be summarised by ‘isms’. Vegetarianism and pacifism were the oldest ones to be conspicuous, often accompanied by New Ageism, followed soon by anti-capitalism, then environmentalism, now evolved into the even more religious warmism. Some behaviours don’t end in ism, but are just as obviously religion substitutes, such as subscribing strongly to political correctness or being an animal rights activist. Even hard-line atheism can be a religion substitute. It pushes exactly the same behavioural buttons.

I fully support protecting the environment, looking after animals, defending the poor, the powerless, the oppressed. I don’t mind vegetarians unless they start getting sanctimonious about it. I am not for a second suggesting there is anything bad about these. It is only when they become a religion substitute that they become problematic, but unfortunately that happens far too often. When something is internalised like a religious faith, it becomes almost immune to outside challenge, a faith unaffected by exposure to hard reality. But like religious faith, it remains a powerful driver of behaviour, and if the person involved is in power, potentially a powerful driver of policy. It can drive similar oppression of those with other world views, in much the same way as the Spanish Inquisition, but with a somewhat updated means of punishing the heretics. In short, the religion substitutes show many of the same problems we used to associate with the extremes of religion.

That’s the problem. The western world has managed pretty well over centuries to eventually separate religion from front line politics, so that politicians might pay lip service to some god or other to get elected, but would successfully put their religion aside once elected and the western state has been effectively secular for many years.  Even though they have gained acceptance in much of the wider population, because these religion substitutes are newer, they are not yet actively filtered from the official decision processes, and in many cases have even gained the power levels that religion once held at its peak. They feature much more heavily in government policies, but since they are faith based rather than reality based, the policies based on them are often illogical and can even be counter-productive, achieving the opposite of what they intend. Wishful thinking does not unfortunately rank highly among the natural forces understood by physicists, chemists or biologists. It doesn’t even rank highly as a social force.  Random policies seemingly pulled out of thin air don’t necessarily work just because they have been sprinkled with words such as equality, fairness and sustainability. Nature also requires that they meet other criteria – they have to follow basic laws of nature. They also have to be compatible with human social, economic, cultural and political forces. But having those sprinkles added is all that is needed to see them pass into legislation. 

And that is what makes religion substitutes a threat to western civilisation. Passing nonsensical legislation just because it sounds nice is a fast way to cripple the economy, damage the environment, wreck education or degrade social cohesion, as we have already frequently seen. I don’t need to pick a particular country, this is almost universally true  across the Western world. Policy making everywhere often seems to be little more than stringing together a few platitudes about ensuring fairness, equality, sustainability, with no actual depth or substance or systems analysis that would show reliable mechanisms by which they actually would happen, while ignoring unfashionable or unpleasant known forces or facts of nature that might prevent them from happening. Turning a blind eye to reality, while laying the wishful thinking on thickly and adding loads of nice sounding marketing words to make the policy politically accepted, using the unspoken but obvious threat of the Inquisition to ensure little resistance. That seems to be the norm now. 

If it were global then the whole world would decline, but it isn’t. Some areas are even worse crippled by the extremes of religion itself. Others seem more logical. Many areas face joint problems of corruption and poverty. With different problems and different approaches to solving them, we will all fare differently.

But we know from history that empires don’t last for ever. The decline of the West is well under way, with secular religion substitution at the helm.  When reality takes a back seat to faith, there can be no other outcome. And it is just faith, in different clothes, and it won’t work any better than religion did.

Coal power is making a comeback – an own goal by greens

I tweeted recently that Europe has the stupidest greens in the world.  I meant it. Today I have time to explain.

The Greens of course are political party in many countries now, but the term green applies generally to left wing environmentalists where things only ever seem to benefit the environment if they simultaneous result in wealth redistribution. It is that entire group that I am talking about here. There are lots of environmentalists who aren’t socialist and lots that aren’t idiots, with a very strong overlap in those groups. Many are very smart and support policies or develop solutions that actually benefit or protect the environment. But the greens do seem mostly to fall into the idiot camp. Sorry, but that is a fact of life.

Thanks to green pressure and proselytising of their CO2 catastrophist religion, the EU has gone nuts implementing ludicrously expensive policies to reduce carbon emissions, but has demonstrated mainly negative effects after hundreds of billions investment, often achieving exactly the opposite of what was intended. The greens’ almost universal refusal to engage in proper science or logical reasoning has resulted in very clear demonstration that nature doesn’t care about political ideology or intent, only what is actually done. Some examples are called for:

Many people have been driven needlessly into fuel poverty, their energy bills rising dramatically to pay for wind farms that often actually increase CO2 emissions over their life because they are built on peat-lands. Solar panels on UK rooftops produce more CO2 than they save too, again the opposite of the intent, while managing to successfully divert cash from the poor to the rich, also presumably the opposite of the socialist greens driving it. Industries have been forced to close or relocate overseas due to rising subsidies for renewables, severely damaging the economy and destroying working class jobs, where the intention was to revitalise with a green economy and create jobs, while again pushing up CO2 emissions when the relocation is to countries that produce more CO2 for the same energy. Recession and economic misery has been far deeper and longer with slower recovery thanks to the huge costs resulting directly from green policies, with the poor taking much of the burden. Millions in far away countries have also been pushed into starvation by rising food prices or have been forcefully relocated to make room for palm oil plantations to meet the demand caused by European regulations that biofuels must account for 5% of the fuel in our cars. The peat bogs drained and the rainforests chopped down to make space again increase CO2 emissions.

You couldn’t make it up. The evidence now seems incontrovertible to all but the looniest of greens that CO2 doesn’t matter anywhere near as much as was suggested, and we are certainly not threatened by environmental catastrophe due to global warming. But if we were, all the activities of the European greens so far would have made a huge contribution to making catastrophe worse and much earlier. Green is rapidly becoming synonymous with stupid. Greens are repeatedly shown to be the worst enemy of both the poor and of the environment, both of which they aim to help. Stupid almost isn’t a strong enough word.

Meanwhile, in the USA, where they refused to sign up to the worst of the policies, simple capitalist market forces forced the development of shale gas, reducing energy prices dramatically and stimulating the economy, making people richer and creating jobs, while replacing dirty, CO2-producing coal with clean CO2-light gas. Many business are relocating from the EU to the US, the only successful but entirely unintended CO2 reduction resulting from EU policy so far.  Meanwhile, greens even there have managed to get the government to throw billions away on futile projects to create a mythical green economy, with remarkably few actual jobs to show for the huge investment. It is the diametrically opposite force that has created them in any numbers.

However, because the USA has made so much progress reducing CO2 via shale gas, and is benefiting from greatly reduced energy prices, even it that wasn’t intentional, the price of coal there has been forced down so far that Europe is buying it in. Germany is now reinvesting in coal fired power stations that will greatly increase CO2 emissions, hilarious considering how much cash they have so far wasted on renewables to supposedly reduce them. Meanwhile, although large reserves of shale gas have been found all over Europe, the greens have managed to prevent and delay development of this abundant resource that would revitalise the economy while reducing CO2 emission and reducing pollution. Only now are some mainstream politicians starting to realise the stupidity of such policy and encouraging development of shale gas. In a decade or two the greens might finally understand too.

Japan too is now making a dash for coal. Having closed their nuclear stations, they have to make up the power deficit and with coal being so cheap, is their new fuel of choice. Again, the indirect result of environmental policies have caused a rise in demand for the worst CO2 emitter of them all. But at least the Japanese can also demonstrate that they are exploiting methane clathrates, which would have a CO2-reducing effect while reducing energy costs.

It seems to be Europe where the policies are greenest and stupidest, with the most harm and the highest costs for the least benefit and the consequential wealth redistribution from poor to rich. The only good thing is that since it tuned out that CO2 doesn’t matter as much as they claimed after all, at least they haven’t yet managed to bring about environmental catastrophe. If the greens had been right about CO2, given the policies they’ve so far forced through, we’d really be in a mess.

I rest my case. Europe has the stupidest greens in the world.