Category Archives: environment

The future of bacteria

Bacteria have already taken the prize for the first synthetic organism. Craig Venter’s team claimed the first synthetic bacterium in 2010.

Bacteria are being genetically modified for a range of roles, such as converting materials for easier extraction (e.g. coal to gas, or concentrating elements in landfill sites to make extraction easier), making new food sources (alongside algae), carbon fixation, pollutant detection and other sensory roles, decorative, clothing or cosmetic roles based on color changing, special surface treatments, biodegradable construction or packing materials, self-organizing printing… There are many others, even ignoring all the military ones.

I have written many times on smart yogurt now and it has to be the highlight of the bacterial future, one of the greatest hopes as well as potential danger to human survival. Here is an extract from a previous blog:

Progress is continuing to harness bacteria to make components of electronic circuits (after which the bacteria are dissolved to leave the electronics). Bacteria can also have genes added to emit light or electrical signals. They could later be enhanced so that as well as being able to fabricate electronic components, they could power them too. We might add various other features too, but eventually, we’re likely to end up with bacteria that contain electronics and can connect to other bacteria nearby that contain other electronics to make sophisticated circuits. We could obviously harness self-assembly and self-organisation, which are also progressing nicely. The result is that we will get smart bacteria, collectively making sophisticated, intelligent, conscious entities of a wide variety, with lots of sensory capability distributed over a wide range. Bacteria Sapiens.

I often talk about smart yogurt using such an approach as a key future computing solution. If it were to stay in a yogurt pot, it would be easy to control. But it won’t. A collective bacterial intelligence such as this could gain a global presence, and could exist in land, sea and air, maybe even in space. Allowing lots of different biological properties could allow colonization of every niche. In fact, the first few generations of bacteria sapiens might be smart enough to design their own offspring. They could probably buy or gain access to equipment to fabricate them and release them to multiply. It might be impossible for humans to stop this once it gets to a certain point. Accidents happen, as do rogue regimes, terrorism and general mad-scientist type mischief.

Transhumanists seem to think their goal is the default path for humanity, that transhumanism is inevitable. Well, it can’t easily happen without going first through transbacteria research stages, and that implies that we might well have to ask transbacteria for their consent before we can develop true transhumans.

Self-organizing printing is a likely future enhancement for 3D printing. If a 3D printer can print bacteria (onto the surface of another material being laid down, or as an ingredient in a suspension as the extrusion material itself, or even a bacterial paste, and the bacteria can then generate or modify other materials, or use self-organisation principles to form special structures or patterns, then the range of objects that can be printed will extend. In some cases, the bacteria may be involved in the construction and then die or be dissolved away.

Diesel – 4.4 times more deaths than by road accidents

In Dec 2010, the UK government released a report estimating that air pollution causes a ‘mortality burden’ of 340,000 years of life spread over an affected population of 200,000, equivalent to about 29,000 deaths each year in the UK, or a drop in average life expectancy across the whole population of 6 months. It also costs the NHS £27B per year. See:

http://webarchive.nationalarchives.gov.uk/20140505104658/http://www.comeap.org.uk/images/stories/Documents/Reports/COMEAP_Mortality_Effects_Press_Release.pdf

There is no more recent report as yet, although the figures in it refer to 2008.

Particulate matter (PM) is the worst offender and diesel engines are one of the main sources of PM, but they also emit some of the other offenders. COMEAP estimates that a quarter of PM-related deaths are caused by diesel engines, 7250 lives per year. Some of the PM comes from private vehicles. To save regeneration costs, some diesel drivers apparently remove the diesel particulate filters from their cars, which is illegal, and doing so would mean failing an MOT. See:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/263018/diesel-particulate-filters-guidance.pdf

The government encouraged people to go diesel by offering significant tax advantages. Road tax and company car tax are lower for diesels, resulting in more than half of new cars now being diesels. (https://www.gov.uk/government/publications/vehicle-licensing-statistics-2013) Almost all public buses and taxis and still many trains are diesel.

7250 lives per year caused by diesel vehicles is a lot, and let’s remember that was an estimate based on 2008 particulates. There are many more diesels on our roads now than then (https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/301636/veh0203.xls shows the number of diesel cars licensed has increased from 7163 to 10,064), but fuel efficiency has also improved in that period so total fuel use hasn’t increased much, only from 8788 to 9197 thousand tons of diesel. So the result isn’t as bad as it could have been and the proportionately scaled figure for 2012 would be 7587 deaths from diesel emissions. In 2013 there were only 1730 road deaths so 4.4 times as many people were killed by diesel emissions than road accidents.

I thought it would be interesting to compare deaths from just buses to those in road accidents, since buses are thought of by many as some sort of panacea whereas some of us see them as filthy environmental monsters. The proportion of diesel used by buses has fallen from 17% to 13.7% between 2008 and 2012. (I couldn’t find figures for the numbers of taxis, also officially included in public transport, since the fuel usage stats lump all cars together, but then I’ve never understood why taxis should be listed as public transport anyway.)

17% of the 7250 figure for 2008 gives 1232 deaths from public transport diesel emissions compared to 2538 road deaths that year, roughly half as many. However, for 2012, 13.7% of 7587 is 1039 deaths from public transport diesel emissions compared to 1754 people killed in road accidents in 2012.  That ratio has grown from 48.5% to 59% in just 4 years. Buses may use less fuel than cars but they certainly aren’t saints.

So, headline result: 60% as many people are killed by diesel emissions from buses as in road accidents, but altogether, 4.4 times as many people die due to diesel. The government is very noisy when it comes to reducing road deaths, but it should look at the far bigger gains that would be made by reducing diesel use. Perhaps it is time that the deaths arising from diesel emissions should be added to the road deaths figures. At least then there might be some better action against it.

As I wrote in a recent blog

(http://timeguide.wordpress.com/2014/07/18/road-deaths-v-hospital-hygiene/)

more still could be saved by just slightly improving the NHS. The £27B per year health costs saved by getting rid of diesel might go some way to doing both.

As a final observation, diesel was encouraged so much because it should help to reduce CO2 emissions, seen as a major contributor to global warming. In the last year or two, the sensitivity to CO2 emissions has been observed to be lower than originally thought. However, another major contribution to warming is the black carbon PM, noted especially for its contribution to melting glaciers by making them darker, also arising in large part from diesel. The efforts to reduce one contributor have increased another. Diesel doesn’t even solve the problem it was aimed at, but still causes others.

Ultra-simple computing: Part 4

Gel processing

One problem with making computers with a lot of cores is the wiring. Another is the distribution of tasks among the cores. Both of these can be solved with relatively simple architecture. Processing chips usually have a lot of connectors, letting them get data in parallel. But a beam of light can contain rays of millions of wavelengths, far more parallelism than is possible with wiring. If chips communicated using light with high density wavelength division multiplexing, it will solve some wiring issues. Taking another simple step, processors that are freed from wiring don’t have to be on a circuit board, but could be suspended in some sort of gel. Then they could use free space interconnection to connect to many nearby chips. Line of sight availability will be much easier than on a circuit board. Gel can also be used to cool chips.

Simpler chips with very few wired connections also means less internal wiring too. This reduces size still further and permits higher density of suspension without compromising line of sight.

Ripple scheduler

Process scheduling can also be done more simply with many processors. Complex software algorithms are not needed. In an array of many processors, some would be idle while some are already engaged on tasks. When a job needs processed, a task request (this could be as simple as a short pulse of a certain frequency) would be broadcast and would propagate through the array. On encountering an idle processor, the idle processor would respond with an accept response (again this could be a single pulse of another frequency. This would also propagate out as a wave through the array. These two waves may arrive at a given processor in quick succession.

Other processors could stand down automatically once one has accepted the job (i.e. when they detect the acceptance wave). That would be appropriate when all processors are equally able. Alternatively, if processors have different capabilities, the requesting agent would pick a suitable one from the returning acceptances, send a point to point message to it, and send out a cancel broadcast wave to stand others down. It would exchange details about the task with this processor on a point to point link, avoiding swamping the system with unnecessary broadcast messages.  An idle processor in the array would thus see a request wave, followed by a number of accept waves. It may then receive a personalized point to point message with task information, or if it hasn’t been chosen, it would just see the cancel wave of . Busy processors would ignore all communications except those directed specifically to them.

I’m not saying the ripple scheduling is necessarily the best approach, just an example of a very simple system for process scheduling that doesn’t need sophisticated algorithms and code.

Activator Pastes

It is obvious that this kind of simple protocol can be used with a gel processing medium populated with a suitable mixture of different kinds of processors, sensors, storage, transmission and power devices to provide a fully scalable self-organizing array that can perform a high task load with very little administrative overhead. To make your smart gel, you might just choose the volume of weight ratios of components you want and stir them into a gel rather like mixing a cocktail. A paste made up in this way could be used to add sensing, processing and storage to any surface just by painting some of the paste onto it.

A highly sophisticated distributed cloud sensor network for example could be made just by painting dabs of paste onto lamp posts. Solar power or energy harvesting devices in the paste would power the sensors to make occasional readings, pre-process them, and send them off to the net. This approach would work well for environmental or structural monitoring, surveillance, even for everyday functions like adding parking meters to lines marking the spaces on the road where they interact with ID devices in the car or an app on the driver’s smartphone.

Special inks could contain a suspension of such particles and add a highly secure electronic signature onto one signed by pen and ink.

The tacky putty stuff that we use to stick paper to walls could use activator paste as the electronic storage and processing medium to let you manage  content an e-paper calendar or notice on a wall.

I can think of lots of ways of using smart pastes in health monitoring, packaging, smart makeup and so on. The basic principle stays the same though. It would be very cheap and yet very powerful, with many potential uses. Self-organising, and needs no set up beyond giving it a job to do, which could come from any of your devices. You’d probably buy it by the litre, keep some in the jar as your computer, and paste the rest of it all over the place to make your skin, your clothes, your work-spaces and your world smart. Works for me.

 

The United Nations: Gaza, climate change and UK welfare

This one is just personal commentary, not my normal futurology; even futurists have opinions on things today. Move along to my futurist pieces if you want.

These areas are highly polarized and I know many readers will disagree with my views this time and I don’t want to cause offence, but I think it is too important an issue to leave un-blogged. Maybe I won’t say anything that hasn’t already been said 1000 times by others, but I would not feel justified in keeping quiet.

Feel free to add unoffensive comments.

The UN started off as a good idea, but over some decades now its reputation has taken an occasional battering. I will argue that it has recently started to do more harm than good in a couple of areas so it should take more care. Instead of being a global organisation to solve global problems and ensure better life for everyone, in these areas at least it has become a tool for activists using it to push their own personal political and ideological agendas.

Last week the UN Human Rights Council condemned Israel for its action in Gaza and wanted to investigate it for war crimes, because they apparently weren’t doing enough to reduce civilian casualties in Gaza. The UN is also critical that far more Palestinians are killed than Israelis. Let’s look at that. My analysis echoes that of many others.

I am of course distressed by the civilian deaths in Gaza and Israel, just as I am in other conflicts, and wish they could be avoided, but watching the news and listening to the many voices, my view is that any blame for them must be assigned to Hamas, not Israel. I hope that the UN’s taking sides against Israel shares no common ground with the growing antisemitism we are now seeing in many of the public demonstrations we see about the conflict.

Israel does its best to reduce Palestinian civilian deaths by giving advanced warnings of their activities, even at the cost of greater risk to their own forces, so it seems reasonable to absolve them of responsibility for casualties after such warnings. If people remain in a danger zone because they are not permitted to leave, those who force them to remain are guilty. If civilians are forced to remain while the military evacuate, then the military are doubly guilty. War is always messy and there are always some errors of judgment, rogue soldiers and accidents, but that is a quite separate issue.

A superior military will generally suffer fewer casualties than their opponent. The Israelis can hardly be blamed for protecting their own people as well as they can and it isn’t their fault if Hamas wants to maximize casualties on their side. Little would be gained by forcing Israel to have random Israelis killed to meet a quota.

Hamas has declared its aim to be the annihilation of Israel and all Jews. There can be no justification for such a position. It is plain wrong. The Israeli goal is self-defense – to prevent their people being killed by rocket attacks, and ultimately to prevent their nation from being annihilated. There is no moral equivalence in such a conflict. One side is in the right and behaves in a broadly civilized manner, the other is wrong and behaves in a barbaric manner.

Israelis  don’t mix their civilian and military areas, so it easy to see which are which. Their civilian areas are deliberately targeted by Hamas with no warnings to cause as many civilian deaths as possible but Israel evacuates people and uses its ‘Iron Shield’ to destroy incoming rockets before they hit.

On the other side, the military in Gaza deliberately conceal their personnel and weapons in civilian areas such as primary schools, hospitals and residential areas and launch attacks from those areas. (UN schools have been included in that.) When they receive Israeli warnings of an attack, they evacuate key personnel and force civilians to remain. Hamas knows that innocent people on their own side will be killed. It deliberately puts them in harm’s way to capitalise on the leverage they can get for them via some western media and politicians and now the UN. The more innocents killed in incoming fire, the more points and sympathy they get, and the more battering the Israelis get.

I don’t see any blame at all on the Israeli side here. As the Israelis put it, they use missiles to defend their civilians, while Hamas uses civilians to defend its missiles.

If Hamas uses Palestinian women and children as a human shields, then they must be given the blame for the inevitable deaths, not Israel. They are murdering their own people for media and political points.

The UN, by fostering the illusion that both sides are equally bad, by condemning Israel, and helping Hamas in their media war, are rewarding Hamas for killing their own women and children. The UN is ignoring those critically important circumstances: Hamas using human shields, forcing people to remain in danger zones, putting military resources in civilian areas and launching attacks from there. The UN also ignores Israeli seeking to minimize civilian casualties via warnings and advanced mini-strikes.

The UN therefore forfeits any right to pontificate on morality in this conflict. They have stupidly rewarded Hamas for its human shield policy. Some extra women and children in Gaza will die because of the UN’s condemnation of Israel. It is proof that the human shields policy works. The long list of useful idiots with innocent Palestinian blood on their hands includes many Western journalists, news programs and politicians who have also condemned Israel rather than Hamas for the civilian deaths. The UN deserves condemnation for its words, but the victims will be innocent Palestinian civilians.

Let’s move on to look at another area the UN is doing harm.

The UN is the home of the Intergovernmental Panel on Climate Change. It is the source of scientific and socio-economic advice on a wide range of policies intended to defend the environment against global warming. I won’t look at the issue of climate change here, only the harmful economic policies resulting from poor IPCC advice aimed at reducing CO2 emissions:

Biodiesel – the IPCC produced extremely encouraging figures for palm oil plantation as a substitute for fossil fuels, leading to massive growth of palm oil planting. A lot of forest was burned down to make land available, causing huge immediate emissions in CO2. A lot of planting was on peat-land, causing the peat to dry out and biodegrade, again emitting massive amounts of CO2 into the air. Many poor people were evicted from their land to make room for the plantations. The result of this advice is that CO2 emissions increased, the environment was badly damaged in several ways, and many poor people suffered.

In western countries, huge areas of land were switched to grow crops to make biodiesel. This caused a drop in food grain production, with an increase in food prices, causing malnutrition in poor countries, unknown deaths from starvation and a massive increase in poverty. This policy is in reverse now, but the damage has been done., Very many poor people suffered.

Solar power farms have sprung up widely on agricultural land. Again this pushes up food prices and again the poor suffer. Since solar is not economic in most countries yet, it has to be subsidized, and poor people suffer additionally via higher energy bills.

Wind energy is a worse solution still. In Scotland, many turbines are planted on peat-land. The turbines need to have roads to them for building and maintenance. The roads cause the peat to dry out, making it biodegrade and leading to high CO2 emissions. The resulting CO2 emissions from some Scottish wind farms are greater than would have resulted from producing the same energy from coal, while a local ecosystem is destroyed. Additionally, 1% of the endangered white-tailed eagles in Scotland have already been killed by them. Small mammals and birds have their breeding cycles interrupted due to stress caused by the flicker and noise. Humans in nearby areas are stressed too. Wind energy is even more expensive than solar, so it needs even more subsidy, and this has therefore increased energy prices and fuel poverty. Poor people have suffered while rich landowners and wind farm owners have gained from huge subsidy windfalls. The environment has taken a beating instead of benefiting, money has been transferred from the poor to the rich and the poor suffer again.

Carbon taxes favored by the IPCC have been associated with fraud and money laundering, helping criminality to flourish. They have also caused some industries to relocate overseas, destroying jobs and local communities that depend on those industries. The environmental standards followed in recipient countries are sometimes lower, so the environment overall suffers. The poor suffer most since they find it harder to relocate.

Carbon offsetting has similar issues to those above – increasing prices and taxes, creating fraud opportunities, and encouraging deforestation and forced relocation of communities in areas wanted for offset schemes. The environment and the poor both suffer again.

The huge economic drain on national economies trying to meet emissions targets resulting from IPCC reports makes economic recovery in Europe much slower and the poor suffer. Everyone in a country suffers as a result of higher national debts and higher taxes to pay it back with interest. Enforced government austerity measures lead to cuts in budget increases for welfare and the poor suffer. Increasing economic tension also leads to more violence, more social division.

The IPCC’s political influence, making reports that are essentially politics rather than simply reporting good science, have led to its infiltration by political green activists who seek to introduce otherwise unacceptable socialist policies via the environmental door and also providing official accreditation for activist propaganda. This has subsequently led to corruption of the whole process of science followed in environmental circles, damaging public faith in science generally. This loss of trust in science and scientists now echoes across other spheres of science, making it harder to get public support for important science projects such as future medical programs, beneficial lifestyle changes, dietary advice and other things that will affect quality and quantity of life for everyone. It’s a pretty safe bet that the poor will suffer most, some people won’t live as long, and the environment will take more damage too.

A much more minor one to finish:

Going back to September 2013, the UN Human Rights Special Rapporteur Raquel Rolnik was heavily critical of the UK government’s attempt at removing the ‘spare room subsidy’ that allowed people to remain in council houses bigger than they need, designed to free up homes for families that need them. Why should this be a UN human rights concern? Regardless of political affiliation, most people agree that if new houses can’t be built fast enough, it makes sense to encourage families to downsize to smaller properties if they no longer need them, provided of course that policies allow for genuine specific needs. Even with poor implementation, it is hard to see this as a priority for a human rights investigation in the midst of such genuine and extreme abuses worldwide. The fact that this review occurred at all shows a significant distortion of values and priorities in today’s UN.

These are just a few areas where the UN makes a negative contribution to the world. I haven’t looked at others, though clearly some of its activities are praiseworthy. I hope that it will fix these meanderings away from its rightful path. If it doesn’t, it could eventually become a liability.

Switching people off

A very interesting development has been reported in the discovery of how consciousness works, where neuroscientists stimulating a particular brain region were able to switch a woman’s state of awareness on and off. They said: “We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness…”

http://www.newscientist.com/article/mg22329762.700-consciousness-onoff-switch-discovered-deep-in-brain.html.

The region of the brain concerned was the claustrum, and apparently nobody had tried stimulating it before, although Francis Crick and Christof Koch had suggested the region would likely be important in achieving consciousness. Apparently, the woman involved in this discovery was also missing some of her hippocampus, and that may be a key factor, but they don’t know for sure yet.

Mohamed Koubeissi and his the team at the George Washington university in Washington DC were investigating her epilepsy and stimulated her claustrum area with high frequency electrical impulses. When they did so, the woman lost consciousness, no longer responding to any audio or visual stimuli, just staring blankly into space. They verified that she was not having any epileptic activity signs at the time, and repeated the experiment with similar results over two days.

The team urges caution and recommends not jumping to too many conclusions. They did observe the obvious potential advantages as an anesthesia substitute if it can be made generally usable.

As a futurologist, it is my job to look as far down the road as I can see, and imagine as much as I can. Then I filter out all the stuff that is nonsensical, or doesn’t have a decent potential social or business case or as in this case, where research teams suggest that it is too early to draw conclusions. I make exceptions where it seems that researchers are being over-cautious or covering their asses or being PC or unimaginative, but I have no evidence of that in this case. However, the other good case for making exceptions is where it is good fun to jump to conclusions. Anyway, it is Saturday, I’m off work, so in the great words of Dr Emmett Brown in ‘Back to the future':  “Well, I figured, what the hell.”

OK, IF it works for everyone without removing parts of the brain, what will we do with it and how?

First, it is reasonable to assume that we can produce electrical stimulation at specific points in the brain by using external kit. Trans-cranial magnetic stimulation might work, or perhaps implants may be possible using injection of tiny particles that migrate to the right place rather than needing significant surgery. Failing those, a tiny implant or two via a fine needle into the right place ought to do the trick. Powering via induction should work. So we will be able to produce the stimulation, once the sucker victim subject has the device implanted.

I guess that could happen voluntarily, or via a court ordered protective device, as a condition of employment or immigration, or conditional release from prison, or a supervision order, or as a violent act or in war.

Imagine if government demands a legal right to access it, for security purposes and to ensure your comfort and safety, of course.

If you think 1984 has already gone too far, imagine a government or police officer that can switch you off if you are saying or thinking the wrong thing. Automated censorship devices could ensure that nobody discusses prohibited topics.

Imagine if people on the street were routinely switched off as a VIP passes to avoid any trouble for them.

Imagine a future carbon-reduction law where people are immobilized for an hour or two each day during certain periods. There might be a quota for how long you are allowed to be conscious each week to limit your environmental footprint.

In war, captives could have devices implanted to make them easy to control, simply turned off for packing and transport to a prison camp. A perimeter fence could be replaced by a line in the sand. If a prisoner tries to cross it, they are rendered unconscious automatically and put back where they belong.

Imagine a higher class of mugger that doesn’t like violence much and prefers to switch victims off before stealing their valuables.

Imagine being able to switch off for a few hours to pass the time on a long haul flight. Airlines could give discounts to passengers willing to be disabled and therefore less demanding of attention.

Imagine  a couple or a group of friends, or a fetish club, where people can turn each other off at will. Once off, other people can do anything they please with them – use them as dolls, as living statues or as mannequins, posing them, dressing them up. This is not an adult blog so just use your imagination – it’s pretty obvious what people will do and what sorts of clubs will emerge if an off-switch is feasible, making people into temporary toys.

Imagine if you got an illegal hacking app and could freeze the other people in your vicinity. What would you do?

Imagine if your off-switch is networked and someone else has a remote control or hacks into it.

Imagine if an AI manages to get control of such a system.

Having an off-switch installed could open a new world of fun, but it could also open up a whole new world for control by the authorities, crime control, censorship or abuse by terrorists and thieves and even pranksters.

 

 

Your most likely cause of death is being switched off

This one’s short and sweet.

The majority of you reading this blog live in the USA, UK, Canada or Australia. More than half of you are under 40.

That means your natural life expectancy is over 85, so statistically, your body will probably live until after 2060.

By then, electronic mind enhancement will probably mean that most of your mind runs on external electronics, not in your brain, so that your mind won’t die when your body does. You’ll just need to find a new body, probably an android, for those times you aren’t content being on the net. Most of us identify ourselves mainly as our mind, and would still think of ourselves as still alive if our mind carries on as if nothing much has happened, which is likely.

Electronic immortality is not true immortality though. Your mind can only survive on the net as long as it is supported by the infrastructure. That will be controlled by others. Future technology will likely be able to defend against asteroid strikes, power surges cause by solar storms and so on, so accidental death seems unlikely for hundreds of years. However, since minds supported on it need energy to continue running and electronics to be provided and maintained, and will want to make trips into the ‘real’ world, or even live there a lot of the time, they will have a significant resource footprint. They will probably not be considered as valuable as other people whose bodies are still alive. In fact they might be considered as competition – for jobs, resources, space, housing, energy… They may even be seen as easy targets for future cyber-terrorists.

So, it seems quite likely, maybe even inevitable, that life limits will be imposed on the vast majority of you. At some point you will simply be switched off. There might be some prioritization, competitions, lotteries or other selection mechanism, but only some will benefit from it.

Since you are unlikely to die when your body ceases to work, your most likely cause of death is therefore to be switched off. Sorry to break that to you.

Future human evolution

I’ve done patches of work on this topic frequently over the last 20 years. It usually features in my books at some point too, but it’s always good to look afresh at anything. Sometimes you see something you didn’t see last time.

Some of the potential future is pretty obvious. I use the word potential, because there are usually choices to be made, regulations that may or may not get in the way, or many other reasons we could divert from the main road or even get blocked completely.

We’ve been learning genetics now for a long time, with a few key breakthroughs. It is certain that our understanding will increase, less certain how far people will be permitted to exploit the potential here in any given time frame. But let’s take a good example to learn a key message first. In IVF, we can filter out embryos that have the ‘wrong’ genes, and use their sibling embryos instead. Few people have a problem with that. At the same time, pregnant women may choose an abortion if they don’t want a child when they discover it is the wrong gender, but in the UK at least, that is illegal. The moral and ethical values of our society are on a random walk though, changing direction frequently. The social assignment of right and wrong can reverse completely in just 30 years. In this example, we saw a complete reversal of attitudes to abortion itself within 30 years, so who is to say we won’t see reversal on the attitude to abortion due to gender? It is unwise to expect that future generations will have the same value sets. In fact, it is highly unlikely that they will.

That lesson likely applies to many technology developments and quite a lot of social ones – such as euthanasia and assisted suicide, both already well into their attitude reversal. At some point, even if something is distasteful to current attitudes, it is pretty likely to be legalized eventually, and hard to ban once the door is opened. There will always be another special case that opens the door a little further. So we should assume that we may eventually use genetics to its full capability, even if it is temporarily blocked for a few decades along the way. The same goes for other biotech, nanotech, IT, AI and any other transhuman enhancements that might come down the road.

So, where can we go in the future? What sorts of splits can we expect in the future human evolution path? It certainly won’t remain as just plain old homo sapiens.

I drew this evolution path a long time ago in the mid 1990s:

human evolution 1

It was clear even then that we could connect external IT to the nervous system, eventually the brain, and this would lead to IT-enhanced senses, memory, processing, higher intelligence, hence homo cyberneticus. (No point in having had to suffer Latin at school if you aren’t allowed to get your own back on it later). Meanwhile, genetic enhancement and optimization of selected features would lead to homo optimus. Converging these two – why should you have to choose, why not have a perfect body and an enhanced mind? – you get homo hybridus. Meanwhile, in the robots and AI world, machine intelligence is increasing and we eventually we get the first self-aware AI/robot (it makes little sense to separate the two since networked AI can easily be connected to a machine such as a robot) and this has its own evolution path towards a rich diversity of different kinds of AI and robots, robotus multitudinus. Since both the AI world and the human world could be networked to the same network, it is then easy to see how they could converge, to give homo machinus. This future transhuman would have any of the abilities of humans and machines at its disposal. and eventually the ability to network minds into a shared consciousness. A lot of ordinary conventional humans would remain, but with safe upgrades available, I called them homo sapiens ludditus. As they watch their neighbors getting all the best jobs, winning at all the sports, buying everything, and getting the hottest dates too, many would be tempted to accept the upgrades and homo sapiens might gradually fizzle out.

My future evolution timeline stayed like that for several years. Then in the early 2000s I updated it to include later ideas:

human evolution 2

I realized that we could still add AI into computer games long after it becomes comparable with human intelligence, so games like EA’s The Sims might evolve to allow entire civilizations living within a computer game, each aware of their existence, each running just as real a life as you and I. It is perhaps unlikely that we would allow children any time soon to control fully sentient people within a computer game, acting as some sort of a god to them, but who knows, future people will argue that they’re not really real people so it’s OK. Anyway, you could employ them in the game to do real knowledge work, and make money, like slaves. But since you’re nice, you might do an incentive program for them that lets them buy their freedom if they do well, letting them migrate into an android. They could even carry on living in their Sims home and still wander round in our world too.

Emigration from computer games into our world could be high, but the reverse is also possible. If the mind is connected well enough, and enhanced so far by external IT that almost all of it runs on the IT instead of in the brain, then when your body dies, your mind would carry on living. It could live in any world, real or fantasy, or move freely between them. (As I explained in my last blog, it would also be able to travel in time, subject to certain very expensive infrastructural requirements.) As well as migrants coming via electronic immortality route, it would be likely that some people that are unhappy in the real world might prefer to end it all and migrate their minds into a virtual world where they might be happy. As an alternative to suicide, I can imagine that would be a popular route. If they feel better later, they could even come back, using an android.  So we’d have an interesting future with lots of variants of people, AI and computer game and fantasy characters migrating among various real and imaginary worlds.

But it doesn’t stop there. Meanwhile, back in the biotech labs, progress is continuing to harness bacteria to make components of electronic circuits (after which the bacteria are dissolved to leave the electronics). Bacteria can also have genes added to emit light or electrical signals. They could later be enhanced so that as well as being able to fabricate electronic components, they could power them too. We might add various other features too, but eventually, we’re likely to end up with bacteria that contain electronics and can connect to other bacteria nearby that contain other electronics to make sophisticated circuits. We could obviously harness self-assembly and self-organisation, which are also progressing nicely. The result is that we will get smart bacteria, collectively making sophisticated, intelligent, conscious entities of a wide variety, with lots of sensory capability distributed over a wide range. Bacteria Sapiens.

I often talk about smart yogurt using such an approach as a key future computing solution. If it were to stay in a yogurt pot, it would be easy to control. But it won’t. A collective bacterial intelligence such as this could gain a global presence, and could exist in land, sea and air, maybe even in space. Allowing lots of different biological properties could allow colonization of every niche. In fact, the first few generations of bacteria sapiens might be smart enough to design their own offspring. They could probably buy or gain access to equipment to fabricate them and release them to multiply. It might be impossible for humans to stop this once it gets to a certain point. Accidents happen, as do rogue regimes, terrorism and general mad-scientist type mischief.

And meanwhile, we’ll also be modifying nature. We’ll be genetically enhancing a wide range of organisms, bringing some back from extinction, creating new ones, adding new features, changing even some of the basic mechanism by which nature works in some cases. We might even create new kinds of DNA or develop substitutes with enhanced capability. We may change nature’s evolution hugely. With a mix of old and new and modified, nature evolves nicely into Gaia Sapiens.

We’re not finished with the evolution chart though. Here is the next one:

human evolution 3

Just one thing is added. Homo zombius. I realized eventually that the sci-fi ideas of zombies being created by viruses could be entirely feasible. A few viruses, bacteria and other parasites can affect the brains of the victims and change their behaviour to harness them for their own life cycle.

See http://io9.com/12-real-parasites-that-control-the-lives-of-their-hosts-461313366 for fun.

Bacteria sapiens could be highly versatile. It could make virus variants if need be. It could evolve itself to be able to live in our bodies, maybe penetrate our brains. Bacteria sapiens could make tiny components that connect to brain cells and intercept signals within our brains, or put signals back in. It could read our thoughts, and then control our thoughts. It could essentially convert people into remote controlled robots, or zombies as we usually call them. They could even control muscles directly to a point, so even if the zombie is decapitated, it could carry on for a short while. I used that as part of my storyline in Space Anchor. If future humans have widespread availability of cordless electricity, as they might, then it is far fetched but possible that headless zombies could wander around for ages, using the bacterial sensors to navigate. Homo zombius would be mankind enslaved by bacteria. Hopefully just a few people, but it could be everyone if we lose the battle. Think how difficult a war against bacteria would be, especially if they can penetrate anyone’s brain and intercept thoughts. The Terminator films looks a lot less scary when you compare the Terminator with the real potential of smart yogurt.

Bacteria sapiens might also need to be consulted when humans plan any transhuman upgrades. If they don’t consent, we might not be able to do other transhuman stuff. Transhumans might only be possible if transbacteria allow it.

Not done yet. I wrote a couple of weeks ago about fairies. I suggested fairies are entirely feasible future variants that would be ideally suited to space travel.

http://timeguide.wordpress.com/2014/06/06/fairies-will-dominate-space-travel/

They’d also have lots of environmental advantages as well as most other things from the transhuman library. So I think they’re inevitable. So we should add fairies to the future timeline. We need a revised timeline and they certainly deserve their own branch. But I haven’t drawn it yet, hence this blog as an excuse. Before I do and finish this, what else needs to go on it?

Well, time travel in cyberspace is feasible and attractive beyond 2075. It’s not the proper real world time travel that isn’t permitted by physics, but it could feel just like that to those involved, and it could go further than you might think. It certainly will have some effects in the real world, because some of the active members of the society beyond 2075 might be involved in it. It certainly changes the future evolution timeline if people can essentially migrate from one era to another (there are some very strong caveats applicable here that I tried to explain in the blog, so please don’t misquote me as a nutter – I haven’t forgotten basic physics and logic, I’m just suggesting a feasible implementation of cyberspace that would allow time travel within it. It is really a cyberspace bubble that intersects with the real world at the real time front so doesn’t cause any physics problems, but at that intersection, its users can interact fully with the real world and their cultural experiences of time travel are therefore significant to others outside it.)

What else? OK, well there is a very significant community (many millions of people) that engages in all sorts of fantasy in shared on-line worlds, chat rooms and other forums. Fairies, elves, assorted spirits, assorted gods, dwarves, vampires, werewolves, assorted furry animals, assorted aliens, dolls,  living statues, mannequins, remote controlled people, assorted inanimate but living objects, plants and of course assorted robot/android variants are just some of those that already exist in principle; I’m sure I’ve forgotten some here and anyway, many more are invented every year so an exhaustive list would quickly become out of date. In most cases, many people already role play these with a great deal of conviction and imagination, not just in standalone games, but in communities, with rich cultures, back-stories and story-lines. So we know there is a strong demand, so we’re only waiting for their implementation once technology catches up, and it certainly will.

Biotech can do a lot, and nanotech and IT can add greatly to that. If you can design any kind of body with almost any kind of properties and constraints and abilities, and add any kind of IT and sensing and networking and sharing and external links for control and access and duplication, we will have an extremely rich diversity of future forms with an infinite variety of subcultures, cross-fertilization, migration and transformation. In fact, I can’t add just a few branches to my timeline. I need millions. So instead I will just lump all these extras into a huge collected category that allows almost anything, called Homo Whateverus.

So, here is the future of human (and associates) evolution, for the next 150 years. A few possible cross-links are omitted for clarity

evolution

I won’t be around to watch it all happen. But a lot of you will.

 

Fairies will dominate space travel

The future sometimes looks ridiculous. I have occasionally written about smart yogurt and zombies and other things that sound silly but have a real place in the future. I am well used to being laughed at, ever since I invented text messaging and the active contact lens, but I am also well used to saying I told you so later. So: Fairies will play a big role in space travel, probably even dominate it. Yes, those little people with wings, and magic wands, that kind. Laugh all you like, but I am right.

To avoid misrepresentation and being accused of being away with the fairies, let’s be absolutely clear: I don’t believe fairies exist. They never have, except in fairy tales of course. Anyone who thinks they have seen one probably just has poor eyesight or an overactive imagination and maybe saw a dragonfly or was on drugs or was otherwise hallucinating, or whatever. But we will have fairies soon. In 50 or 60 years.

In the second half of this century, we will be able to link and extend our minds into the machine world so well that we will effectively have electronic immortality. You won’t have to die to benefit, you will easily do so while remaining fully alive, extending your mind into the machine world, into any enabled object. Some of those objects will be robots or androids, some might well be organic.

Think of the film Avatar, a story based on yesterday’s ideas. Real science and technology will be far more exciting. You could have an avatar like in the film, but that is just the tip of the iceberg when you consider the social networking implications once the mind-linking technology is commoditised and ubiquitous part of everyday life. There won’t be just one or two avatars used for military purposes like in the film, but millions of people doing that sort of thing all the time.

If an animal’s mind is networked, a human might be able to make some sort of link to it too, again like in Avatar, where the Navii link to their dragon-like creatures. You could have remote presence in the animal. That maybe won’t be as fulfilling as being in a human because the animal has limited functionality, but it might have some purpose. Now let’s leave Avatar behind.

You could link AI to an animal to make it comparable with humans so that your experience could be better, and the animal might have a more interesting life too. Imagine chatting to a pet cat or dog and it chatting back properly.

If your mind is networked as well as we think it could be, you could link your mind to other people’s minds, share consciousness, be a part-time Borg if you want. You could share someone else’s sensations, share their body. You could exchange bodies with someone, or rent yours out and live in the net for a while, or hire a different one. That sounds a lot of fun already. But it gets better.

In the same timeframe, we will have mastered genetics. We will be able to design new kinds of organisms with whatever properties chemistry and physics permits. We’ll have new proteins, new DNA bases, maybe some new bases that don’t use DNA. We’ll also have strong AI, conscious machines. We’ll also be able to link electronics routinely to our organic nervous systems, and we’ll also have a wide range of cybernetic implants to increase sensory capability, memory, IQ, networking and so on.

We will be able to make improved versions of the brain that work and feel pretty much the same as the original, but are far, far smaller. Using synthetic electronics instead of organic cells, signals will travel between neurons at light speed, instead of 200m/s, that’s more than a million times faster. But they won’t have to go so far, because we can also make neurons physically far smaller, hundreds of times smaller, so that’s a couple more zeros to play with. And we can use light to interconnect them, using millions of wavelengths, so they could have millions of connections instead of thousands and those connections will be a billion times faster. And the neurons will switch at terahertz speeds, not hundreds of hertz, that’s also billions of times faster. So even if we keep the same general architecture and feel as the Mk1 brain, we could make it a millimetre across and it could work billions of times faster than the original human brain. But with a lot more connectivity and sensory capability, greater memory, higher processing speed, it would actually be vastly superhuman, even as it retains broadly the same basic human nature.

And guess what? It will easily fit in a fairy.

So, around the time that space industry is really taking off, and we’re doing asteroid mining, and populating bases on Mars and Europa, and thinking of going further, and routinely designing new organisms, we will be able to make highly miniaturized people with brains vastly more capable than conventional humans. Since they are small, it will be quite easy to make them with fully functional wings, exactly the sort of advantage you want in a space ship where gravity is in short supply and you want to make full use of a 3D space. Exactly the sort of thing you want when size and mass is a big issue. Exactly the sort of thing you want when food is in short supply. A custom-designed electronic, fully networked brain is exactly the sort of thing you want when you need a custom-designed organism that can hibernate instantly. Fairies would be ideally suited to space travel. We could even design the brains with lots of circuit redundancy, so that radiation-induced faults can be error-corrected and repaired by newly designed proteins.

Wands are easy too. Linking the mind to a stick, and harnessing the millions of years of recent evolution that has taught us how to use sticks is a pretty good idea too. Waving a wand and just thinking what they want to happen at the target is all the interface a space-fairy needs.

This is a rich seam and I will explore it again some time. But for now, you get the idea.

Space-farers will mostly be space fairies.

 

 

 

 

Preventing soil erosion using waffles

Sometimes simple ideas work, and this one is pretty simple.

Soil erosion occurs when rainwater lands faster than it can drain and starts to run off, and as it does, makes streams that wash away surface soil. It is worsened in heavy rain because the higher energy of the larger raindrops, which fall faster, breaks up the soil particles and makes them easier to wash away. Having excess non-draining water and a freshly broken surface layer makes for rapid erosion.

The speed of run-off can be slowed somewhat by making furrows run diagonally to a slope instead of straight up and down. Terraces also work, locally flattening areas of a slope and adding a small earth wall to keep water on that area until it can soak in.

My tiny idea is to imprint a waffle structure into the soil surface after plowing and leveling. If you aren’t familiar with waffles, here’s a pic from wikipedia. I don’t recommend adding the strawberries.

250px-Waffles_with_Strawberries

Waffles would keep rain water within a small square and prevent the soil from washing away, at least until the waffle floods and overflows. Some wall breakage would then occur, but much more rarely than otherwise. I don’t think the waffle structure needs to be printed very deeply. Even a few millimetres of wall would make a difference. Intuitively, I imagine a typical waffle could use a 10cm grid with 1cm wide walls 5mm high, but I haven’t done any experiments to determine the optimum. At that structure, soil compression damage would be minimal and local confinement of organic materials and water would work fine.

I’m not a green futurist. I’d rather be right.

Since 1998 I have written and lectured occasionally on environmentalism and often criticise its green, pseudo-religious sub-community. I care about the environment just as greens are supposed to, but I see dogmatic, poorly thought through green policies as a big part of the problem facing the environment. With the greens as its friends, the Earth needs no enemies. Today, I read that solar companies are leaving Spain, where it is usually sunny, to come to the UK, where it usually isn’t, because our previous and existing governments were very keen to demonstrate their green credentials by subsidising solar power. Clarification: they are increasing installation in the UK instead of Spain. This is obviously counter-productive, as are many other policies thought up by the green community. 

So while many other futurists and futurologists advertise themselves as green, I am very proud to be on the other side, that of clear-thinking, full life cycle, system-wide analysis. I am certainly not a ‘green futurist’. I am an engineer and a proper futurist, looking at the future objectively and logically to try to work out what is likely to happen, not caring whether the news is popular or not. I’d rather be right. Of course I want to do my best to help ensure to a sustainable world and where a practice makes good sense I follow it. Greens are meant to do that but they often end up doing the opposite. Many greens think of science and technology as the problem. They want to go back to the dark ages, reduce standard of living, even reduce population. They advocate policies that disadvantage many of the world’s poor and prevent many from being born. I couldn’t ever live with such an ideology. I see advanced technology as the main foundation for living sustainably. As my own contribution to environmentalism and sustainability, as well as inventing quite a few things that can help, I also wrote a book last year on system-wide sustainability, where I contrasted the application of green dogma against the far better approach of positively applying science, engineering and logical systems thinking instead of negatively trying to undo progress. The book is called Total Sustainability.

Nor am I an AGW (human-caused global warming) catastrophist, also in contrast to many other futurists. I am not taken in by the poor quality spun science that suggests imminent AGW-based catastrophe. There is far too much deception in the ‘climate science’ and politics community which then recommends diverting trillions onto ineffective or counter-productive policies that could be spent far better elsewhere. The most important skill a futurist can have is the ability to distinguish between sense and nonsense. 

The climate has always changed, and always will. Humans have some impact, but not so far or likely to be a catastrophic impact. CO2 is a greenhouse gas, a warming contributor, but the CO2-centric climate models that have predicted catastrophe have almost all greatly overestimated warming to date, and none predicted the 17.5 years of no warming that we have now seen, so they are wrong. Much is made of arctic melting, but little is mentioned about the record ice in the antarctic. The theories about why this or that happens seem to change every month. In the UK, seasonal predictions using the same theoretical base have got it wrong almost every time for years. We are meant to listen to a group who tell us a very distorted picture of what is going on, who claim competence and understanding far beyond what they demonstrate. As any real scientist understands, if a theory disagrees with observation, the theory is wrong. We need a new theory. The fact the ‘climate science’ community conspicuously ignores that fact, and spends an enormous effort to make excuses for poor models, or even changing the data, rather than admit that they simply don’t know what is happening puts them in opposition to the most basic principle of good science. While a lot of good science is undoubtedly done, many others disqualify themselves by that principle, and that pollutes the entire field, bringing science itself into disrepute, and damaging the ability of future science and technology to help protect and improve the environment. So I am skeptical when they say the sky is falling. It doesn’t look like it to me.

Other scientists often suggest reasons why the models may be wrong – the full influence of various-term ocean cycles and the full effects on cloud seeding from sunspots via galactic cosmic radiation deflection. These are better correlated through history than the outputs of the models. Many factors that can influence climate such as agricultural practices and socieconomic reactions to trends or subsidies are not included in the models. Much of the warming we have seen can be explained mostly by natural cycles overlaid on the continued warming as we recover from the last mini ice age. Some, but we don’t know how much, can be explained by a wide range of natural effects that are poorly understood and quantified – soil chemistry; forestry emissions; biological, chemical and physical environmental feedbacks and buffers. Some of it, but we don’t know how much, can be explained by changes in human originated CO2, changes in high atmosphere water vapour from aviation and space missions, CFCs, black carbon, and dozens of other human contributory factors, which are still not fully understood or quantified. Now, as we head into a likely prolonged solar minimum, some scientists are suggesting that a lengthy cooling period now looks to be as likely a short to medium term trend as further warming. I don’t pretend to understand all the science, but I don’t believe the AGW catastrophe people do either. I am a skeptic. I don’t deny that CO2 is a problem, nor that we have had warming, nor even that humans may account for some of that warming, but I sure as hell am not convinced we’re all about to cook if we don’t do something really big really fast.

I am quite pleased with my track record on environmentalism and green stuff. In my 2006 report Carbon, I laid out some of my views and I still stand by them. In it I said that increasing CO2 is an important issue but not a reason to panic, mainly because it will eventually take care of itself. We are not faced with imminent AGW catastrophe. The default future migration to other energy sources as they become cheaper will limit CO2 emissions in the long term, so we will be absolutely fine, provided that the proven ongoing damage from green policies can be limited. I analysed a lot of policies advocated by greens and found them likely to be counterproductive. I have sadly been proved right on many of those, but thankfully, some of the engineering solutions I recommended have since gained traction. I was blocked from publishing my 2006 report since it was seen as too controversial at the time. I published it almost unchanged when I went freelance at the end of 2007. I later used much of it in my book.

You can read it here: http://www.futurizon.com/wp-content/uploads/2013/05/carbonfeb08.pdf

Unlike catastrophic global warming advocates, I haven’t had to change my story every month. I first lectured at the World Futures Society conference on the pseudo-religious nature of green environmentalism way back in 1998 , and I am still saying the same now.

Green usually means wrong and usually means harming the environment by doing something that hasn’t been thought through properly but is based on dogma. I’d rather be someone who helps the environment and helps sustainability by doing proper engineering. I’d rather not have to make excuses in a few years when the historians analyse what was going on today and ask why so many people were taken in by predictions of AGW catastrophe, and why they advocated wasting so much money and impoverishing so many, damaging so many economies and so many lives to make so little impact on a problem that has in any case been exaggerated greatly.

I’m not a green futurist. I’d much rather be right.