Category Archives: death

The future of drones – predators. No, not that one.

It is a sad fact of life that companies keep using the most useful terminology for things that don’t deserve it. The Apple retina display, which makes it more difficult to find a suitable name for direct retinal displays that use the retina directly. Why can’t they be the ones called retina displays? Or the LED TV, where the LEDs are typically just LED back-lighting for an LCD display. That makes it hard to name TVs where each pixel is actually an LED. Or the Predator drone, as definitely  not the topic of this blog, where I will talk about predator drones that attack other ones.

I have written several times now on the dangers of drones. My most recent scare was realizing the potential for small drones carrying high-powered lasers and using cloud based face recognition to identify valuable targets in a crowd and blind them, using something like a Raspberry Pi as the main controller. All of that could be done tomorrow with components easily purchased on the net. A while ago I blogged that the Predators and Reapers are not the ones you need to worry about, so much as the little ones which can attack you in swarms.

This morning I was again considering terrorist uses for the micro-drones we’re now seeing. A 5cm drone with a networked camera and control could carry a needle infected with Ebola or aids or carrying a drop of nerve toxin. A small swarm of tiny drones, each with a gram of explosive that detonates when it collides with a forehead, could kill as many people as a bomb.

We will soon have to defend against terrorist drones and the tiniest drones give the most effective terror per dollar so they are the most likely to be the threat. The solution is quite simple. and nature solved it a long time ago. Mosquitos and flies in my back garden get eaten by a range of predators. Frogs might get them if they come too close to the surface, but in the air, dragonflies are expert at catching them. Bats are good too. So to deal with threats from tiny drones, we could use predator drones to seek and destroy them. For bigger drones, we’d need bigger predators and for very big ones, conventional anti-aircraft weapons become useful. In most cases, catching them in nets would work well. Nets are very effective against rotors. The use of nets doesn’t need such sophisticated control systems and if the net can be held a reasonable distance from the predator, it won’t destroy it if the micro-drone explodes. With a little more precise control, spraying solidifying foam onto the target drone could also immobilize it and some foams could help disperse small explosions or contain their lethal payloads. Spiders also provide inspiration here, as many species wrap their victims in silk to immobilize them. A single predator could catch and immobilize many victims. Such a defense system ought to be feasible.

The main problem remains. What do we call predator drones now that the most useful name has been trademarked for a particular model?

 

The future of terminators

The Terminator films were important in making people understand that AI and machine consciousness will not necessarily be a good thing. The terminator scenario has stuck in our terminology ever since.

There is absolutely no reason to assume that a super-smart machine will be hostile to us. There are even some reasons to believe it would probably want to be friends. Smarter-than-man machines could catapult us into a semi-utopian era of singularity level development to conquer disease and poverty and help us live comfortably alongside a healthier environment. Could.

But just because it doesn’t have to be bad, that doesn’t mean it can’t be. You don’t have to be bad but sometimes you are.

It is also the case that even if it means us no harm, we could just happen to be in the way when it wants to do something, and it might not care enough to protect us.

Asimov’s laws of robotics are irrelevant. Any machine smart enough to be a terminator-style threat would presumably take little notice of rules it has been given by what it may consider a highly inferior species. The ants in your back garden have rules to govern their colony and soldier ants trained to deal with invader threats to enforce territorial rules. How much do you consider them when you mow the lawn or rearrange the borders or build an extension?

These arguments are put in debates every day now.

There are however a few points that are less often discussed

Humans are not always good, indeed quite a lot of people seem to want to destroy everything most of us want to protect. Given access to super-smart machines, they could design more effective means to do so. The machines might be very benign, wanting nothing more than to help mankind as far as they possibly can, but misled into working for them, believing in architected isolation that such projects are for the benefit of humanity. (The machines might be extremely  smart, but may have existed since their inception in a rigorously constructed knowledge environment. To them, that might be the entire world, and we might be introduced as a new threat that needs to be dealt with.) So even benign AI could be an existential threat when it works for the wrong people. The smartest people can sometimes be very naive. Perhaps some smart machines could be deliberately designed to be so.

I speculated ages ago what mad scientists or mad AIs could do in terms of future WMDs:

http://timeguide.wordpress.com/2014/03/31/wmds-for-mad-ais/

Smart machines might be deliberately built for benign purposes and turn rogue later, or they may be built with potential for harm designed in, for military purposes. These might destroy only enemies, but you might be that enemy. Others might do that and enjoy the fun and turn on their friends when enemies run short. Emotions might be important in smart machines just as they are in us, but we shouldn’t assume they will be the same emotions or be wired the same way.

Smart machines may want to reproduce. I used this as the core storyline in my sci-fi book. They may have offspring and with the best intentions of their parent AIs, the new generation might decide not to do as they’re told. Again, in human terms, a highly familiar story that goes back thousands of years.

In the Terminator film, it is a military network that becomes self aware and goes rogue that is the problem. I don’t believe digital IT can become conscious, but I do believe reconfigurable analog adaptive neural networks could. The cloud is digital today, but it won’t stay that way. A lot of analog devices will become part of it. In

http://timeguide.wordpress.com/2014/10/16/ground-up-data-is-the-next-big-data/

I argued how new self-organising approaches to data gathering might well supersede big data as the foundations of networked intelligence gathering. Much of this could be in a the analog domain and much could be neural. Neural chips are already being built.

It doesn’t have to be a military network that becomes the troublemaker. I suggested a long time ago that ‘innocent’ student pranks from somewhere like MIT could be the source. Some smart students from various departments could collaborate to see if they can hijack lots of networked kit to see if they can make a conscious machine. Their algorithms or techniques don’t have to be very efficient if they can hijack enough. There is a possibility that such an effort could succeed if the right bits are connected into the cloud and accessible via sloppy security, and the ground up data industry might well satisfy that prerequisite soon.

Self-organisation technology will make possible extremely effective combat drones.

http://timeguide.wordpress.com/2013/06/23/free-floating-ai-battle-drone-orbs-or-making-glyph-from-mass-effect/

Terminators also don’t have to be machines. They could be organic, products of synthetic biology. My own contribution here is smart yogurt: http://timeguide.wordpress.com/2014/08/20/the-future-of-bacteria/

With IT and biology rapidly converging via nanotech, there will be many ways hybrids could be designed, some of which could adapt and evolve to fill different niches or to evade efforts to find or harm them. Various grey goo scenarios can be constructed that don’t have any miniature metal robots dismantling things. Obviously natural viruses or bacteria could also be genetically modified to make weapons that could kill many people – they already have been. Some could result from seemingly innocent R&D by smart machines.

I dealt a while back with the potential to make zombies too, remotely controlling people – alive or dead. Zombies are feasible this century too:

http://timeguide.wordpress.com/2012/02/14/zombies-are-coming/ &

http://timeguide.wordpress.com/2013/01/25/vampires-are-yesterday-zombies-will-peak-soon-then-clouds-are-coming/

A different kind of terminator threat arises if groups of people are linked at consciousness level to produce super-intelligences. We will have direct brain links mid-century so much of the second half may be spent in a mental arms race. As I wrote in my blog about the Great Western War, some of the groups will be large and won’t like each other. The rest of us could be wiped out in the crossfire as they battle for dominance. Some people could be linked deeply into powerful machines or networks, and there are no real limits on extent or scope. Such groups could have a truly global presence in networks while remaining superficially human.

Transhumans could be a threat to normal un-enhanced humans too. While some transhumanists are very nice people, some are not, and would consider elimination of ordinary humans a price worth paying to achieve transhumanism. Transhuman doesn’t mean better human, it just means humans with greater capability. A transhuman Hitler could do a lot of harm, but then again so could ordinary everyday transhumanists that are just arrogant or selfish, which is sadly a much bigger subset.

I collated these various varieties of potential future cohabitants of our planet in: http://timeguide.wordpress.com/2014/06/19/future-human-evolution/

So there are numerous ways that smart machines could end up as a threat and quite a lot of terminators that don’t need smart machines.

Outcomes from a terminator scenario range from local problems with a few casualties all the way to total extinction, but I think we are still too focused on the death aspect. There are worse fates. I’d rather be killed than converted while still conscious into one of 7 billion zombies and that is one of the potential outcomes too, as is enslavement by some mad scientist.

 

The future of euthanasia and suicide

Another extract from You Tomorrow, one that is very much in debate at the moment, it is an area that needs wise legislation, but I don’t have much confidence that we’ll get it. I’ll highlight some of the questions here, but since I don’t have many answers, I’ll illustrate why: they are hard questions.

Sadly, some people feel the need to end their own lives and an increasing number are asking for the legal right to assisted suicide. Euthanasia is increasingly in debate now too, with some health service practices bordering on it, some would say even crossing the boundary. Suicide and euthanasia are inextricably linked, mainly because it is impossible to know for certain what is in someone’s mind, and that is the basis of the well-known slippery slope from assisted suicide to euthanasia.

The stages of progress are reasonably clear. Is the suicide request a genuine personal decision, originating from that person’s free thoughts, based solely on their own interests? Or is it a personal decision influenced by the interests of others, real or imagined? Or is it a personal decision made after pressure from friends and relatives who want the person to die peacefully rather than suffer, with the best possible interests of the person in mind? In which case, who first raised the possibility of suicide as a potential way out? Or is it a personal decision made after pressure applied because relatives want rid of the person, perhaps over-eager to inherit or wanting to end their efforts to care for them? Guilt can be a powerful force and can be applied very subtly indeed over a period of time.

If the person is losing their ability to communicate a little, perhaps a friend or relative may help interpret their wishes to a doctor. From here, it is a matter of degree of communication skill loss and gradual increase of the part relatives play in guiding the doctor’s opinion of whether the person genuinely wants to die. Eventually, the person might not be directly consulted because their relatives can persuade a doctor that they really want to die but can’t say so effectively. Not much further along the path, people make their minds up what is in the best interests of another person as far as living or dying goes. It is a smooth path between these many small steps from genuine suicide to euthanasia. And that all ignores all the impact of possible alternatives such as pain relief, welfare, special care etc. Interestingly, the health services seem to be moving down the euthanasia route far faster than the above steps would suggest, skipping some of them and going straight to the ‘doctor knows best’ step.

Once the state starts to get involved in deciding cases, even by abdicating it to doctors, it is a long but easy road to Logan’s run, where death is compulsory at a certain age, or a certain care cost, or you’ve used up your lifetime carbon credit allocation.

There are sometimes very clear cases where someone obviously able to make up their own mind has made a thoroughly thought-through decision to end their life because of ongoing pain, poor quality of life and no hope of any cure or recovery, the only prospect being worsening condition leading to an undignified death. Some people would argue with their decision to die, others would consider that they should be permitted to do so in such clear circumstances, without any fear for their friends or relatives being prosecuted.

There are rarely razor-sharp lines between cases; situations can get blurred sometimes because of the complexity of individual lives, and because judges have their own personalities and differ slightly in their judgements. There is inevitably another case slightly further down the line that seems reasonable to a particular judge in the circumstances, and once that point is passed, and accepted by the courts, other cases with slightly less-defined circumstances can use it to help argue theirs. This is the path by which most laws evolve. They start in parliament and then after implementation, case law and a gradually changing public mind-set or even the additive effects of judges’ ideologies gradually evolve them into something quite different.

It seems likely given current trends and pressures that one day, we will accept suicide, and then we may facilitate it. Then, if we are not careful, it may evolve into euthanasia by a hundred small but apparently reasonable steps, and if we don’t stop it in time, one day we might even have a system like the one in the film ‘Logan’s Run’.

 Suicide and euthanasia are certainly gradually becoming less shocking to people, and we should expect that in the far future both will become more accepted. If you doubt that society can change its attitudes quickly, it actually only takes about 30 years to get a full reversal. Think of how long it took for homosexuality to change from condemned to fashionable, or how long abortion took from being something a woman would often be condemned for to something that is now a woman’s right to choose. Each of these took only 3 decades for a full 180 degree turnaround. Attitudes to the environment switched from mad panic about a coming ice age to mad panic about global warming in just 3 decades too, and are already switching back again towards ice age panic. If the turn in attitudes to suicide started 10 years ago, then we may have about 20 years left before it is widely accepted as a basic right that is only questioned by bigots. But social change aside, the technology will make the whole are much more interesting.

As I argued earlier, the very long term (2050 and beyond) will bring technology that allows people to link their brains to the machine world, perhaps using nanotech implants connected to each synapse to relay brain activity to a high speed neural replica hosted by a computer. This will have profound implications for suicide too. When this technology has matured, it will allow people to do wonderful things such as using machine sensors as extensions to their own capabilities. They will be able to use android bodies to move around and experience distant places and activities as if they were there in person. For people who feel compelled to end it all because of disability, pain or suffering, an alternative where they could effectively upload their mind into an android might be attractive. Their quality of life could improve dramatically at least in terms of capability. We might expect that pain and suffering could be dealt with much more effectively too if we have a direct link into the brain to control the way sensations are dealt with. So if that technology does progress as I expect, then we might see a big drop in the number of people who want to die.

But the technology options don’t stop there. If a person has a highly enhanced replica of their own brain/mind, in the machine world, people will begin to ask why they need the original. The machine world could give them greater sensory ability, greater physical ability, and greater mental ability. Smarter, with better memory, more and better senses, connected to all the world’s knowledge via the net, able effectively to wander around the world at the speed of light, and being connected directly to other people’s minds when you want, and doing so without fear of ageing, ill health of pain, this would seem a very attractive lifestyle. And it will become possible this century, at low enough cost for anyone to afford.

What of suicide then? It might not seem so important to keep the original body, especially if it is worn out or defective, so even without any pain and suffering, some people might decide to dispose of their body and carry on their lives without it. Partial suicide might become possible. Aside from any religious issues, this would be a hugely significant secular ethical issue. Updating the debate today, should people be permitted to opt out of physical existence, only keeping an electronic copy of their mind, timesharing android bodies when they need to enter the physical world? Should their families and friends be able to rebuild their loved ones electronically if they die accidentally? If so, should people be able to rebuild several versions, each representing the deceased’s different life stages, or just the final version, which may have been ill or in decline?

And then the ethical questions get even trickier. If it is possible to replicate the brain’s structure and so capture the mind, will people start to build ‘restore points’, where they make a permanent record of the state of their self at a given moment? If they get older and decide they could have run their lives better, they might be able to start again from any restore point. If the person exists in cyberspace and has disposed of their physical body, what about ownership of their estate? What about working and living in cyberspace? Will people get jobs? Will they live in virtual towns like the Sims? Indeed, in the same time frame, AI will have caught up and superseded humans in ability. Maybe Sims will get bored in their virtual worlds and want to end it all by migrating to the real world. Maybe they could swap bodies with someone coming the other way?

What will the State do when it is possible to reduce costs and environmental impact by migrating people into the virtual universe? Will it then become socially and politically acceptable, even compulsory when someone reaches a given age or costs too much for health care?

So perhaps suicide has an interesting future. It might eventually decline, and then later increase again, but in many very different forms, becoming a whole range of partial suicide options. But the scariest possibility is that people may not be able to die completely. If their body is an irrelevance, and there are many restore points from which they can be recovered, friends, family, or even the state might keep them ‘alive’ as long as they are useful. And depending on the law, they might even become a form of slave labour, their minds used for information processing or creativity whether they wish it or not. It has often truly been noted that there are worse fates than death.

The future of death

This one is a cut and paste from my book You Tomorrow.

Although age-related decline can be postponed significantly, it will eventually come. But that is just biological decline. In a few decades, people will have their brains linked to the machine world and much of their mind will be online, and that opens up the strong likelihood that death is not inevitable, and in fact anyone who expects to live past 2070 biologically (and rich people who can get past 2050) shouldn’t need to face death of their mind. Their bodies will eventually die, but their minds can live on, and an android body will replace the biological one they’ve lost.

Death used to be one of the great certainties of life, along with taxes. But unless someone under 35 now is unfortunate enough to die early from accident or disease, they have a good chance of not dying at all. Let’s explore that.

Genetics and other biotechnology will work with advanced materials technology and nanotechnology to limit and even undo damage caused by disease and age, keeping us young for longer, eventually perhaps forever. It remains to be seen how far we get with that vision in the next century, but we can certainly expect some progress in that area. We won’t get biological immortality for a good while, but if you can move into a high quality android body, who cares?

With this combination of technologies locked together with IT in a positive feedback loop, we will certainly eventually develop the technology to enable a direct link between the human brain and the machine, i.e. the descendants of today’s computers. On the computer side, neural networks are already the routine approach to many problems and are based on many of the same principles that neurons in the brain use. As this field develops, we will be able to make a good emulation of biological neurons. As it develops further, it ought to be possible on a sufficiently sophisticated computer to make a full emulation of a whole brain. Progress is already happening in this direction.

Meanwhile, on the human side, nanotechnology and biotechnology will also converge so that we will have the capability to link synthetic technology directly to individual neurons in the brain. We don’t know for certain that this is possible, but it may be possible to measure the behaviour of each individual neuron using this technology and to signal this behaviour to the brain emulation running in the computer, which could then emulate it. Other sensors could similarly measure and allow emulation of the many chemical signalling mechanisms that are used in the brain. The computer could thus produce an almost perfect electronic equivalent of the person’s brain, neuron by neuron. This gives us two things.

Firstly, by doing this, we would have a ‘backup’ copy of the person’s brain, so that in principle, they can carry on thinking, and effectively living, long after their biological body and brain has died. At this point we could claim effective immortality. Secondly, we have a two way link between the brain and the computer which allows thought to be executed on either platform and to be signalled between them.

There is an important difference between the brain and computer already that we may be able to capitalise on. In the brain’s neurons, signals travel at hundreds of metres per second. In a free space optical connection, they travel at hundreds of millions of metres per second, millions of times faster. Switching speeds are similarly faster in electronics. In the brain, cells are also very large compared to the electronic components of the future, so we may be able to reduce the distances over which the signals have to travel by another factor of 100 or more. But this assumes we take an almost exact representation of brain layout. We might be able to do much better than this. In the brain, we don’t appear to use all the neurons, (some are either redundant or have an unknown purpose) and those that we do use in a particular process are often in groups that are far apart. Reconfigurable hardware will be the norm in the 21st century and we may be able to optimize the structure for each type of thought process. Rearranging the useful neurons into more optimal structures should give another huge gain.

This means that our electronic emulation of the brain should behave in a similar way but much faster – maybe billions of times faster! It may be able to process an entire lifetime’s thoughts in a second or two. But even there are several opportunities for vast improvement. The brain is limited in size by a variety of biological constraints. Even if there were more space available, it could not be made much more efficient by making it larger, because of the need for cooling, energy and oxygen supply taking up ever more space and making distances between processors larger. In the computer, these constraints are much more easily addressable, so we could add large numbers of additional neurons to give more intelligence. In the brain, many learning processes stop soon after birth or in childhood. There need be no such constraints in computer emulations, so we could learn new skills as easily as in our infancy. And best of all, the computer is not limited by the memory of a single brain – it has access to all the world’s information and knowledge, and huge amounts of processing outside the brain emulation. Our electronic brain could be literally the size of the planet – the whole internet and all the processing and storage connected to it.

With all these advances, the computer emulation of the brain could be many orders of magnitude superior to its organic equivalent, and yet it might be connected in real time to the original. We would have an effective brain extension in cyberspace, one that gives us immeasurably improved performance and intelligence. Most of our thoughts might happen in the machine world, and because of the direct link, we might experience them as if they had occurred inside our head.

Our brains are in some ways equivalent in nature to how computers were before the age of the internet. They are certainly useful, but communication between them is slow and inefficient. However, when our brains are directly connected to machines, and those machines are networked, then everyone else’s brains are also part of that network, so we have a global network of people’s brains, all connected together, with all the computers too.

So we may soon eradicate death. By the time today’s children are due to die, they will have been using brain extensions for many years, and backups will be taken for granted. Death need not be traumatic for our relatives. They will soon get used to us walking around in an android body. Funerals will be much more fun as the key participant makes a speech about what they are expecting from their new life. Biological death might still be unpleasant, but it need no longer be a career barrier.

In terms of timescales, rich people might have this capability by 2050 and the rest of us some time before 2070. Your life expectancy biologically is increasing every year, so even if you are over 35, you have a pretty good chance of surviving long enough to gain. Half the people alive today are under 35 and will almost certainly not die fully. Many more are under 50 and some of them will live on electronically too. If you are over 50, the chances are that you will be the last generation of your family ever to have a full death.

As a side-note, there are more conventional ways of achieving immortality. Some Egyptian pharaohs are remembered because of their great pyramids. A few philosophers, artists, engineers and scientists have left such great works that they are remembered millennia later. And of course, on a small scale, for the rest of us, making an impression on those around us keeps your memory going a few generations. Writing a book immortalises your words. And you may have a multimedia headstone on your grave, or one that at least links into augmented reality to bring up your old web page of social networking site profile. But frankly, I am with Woody Allen on this one “I don’t want to achieve immortality through my work; I want to achieve immortality through not dying”. I just hope the technology arrives early enough.

Road deaths v hospital hygiene and errors

Here is a slide I just made for a road safety conference. All the figures I used came from government sources. We use the argument that a life is worth any spend, and we might be able to shave 10% off road deaths if we try hard, but we’d save 30 times more if we could reduce NHS errors and improve hygiene by just 10%.

road safety v NHS

Your most likely cause of death is being switched off

This one’s short and sweet.

The majority of you reading this blog live in the USA, UK, Canada or Australia. More than half of you are under 40.

That means your natural life expectancy is over 85, so statistically, your body will probably live until after 2060.

By then, electronic mind enhancement will probably mean that most of your mind runs on external electronics, not in your brain, so that your mind won’t die when your body does. You’ll just need to find a new body, probably an android, for those times you aren’t content being on the net. Most of us identify ourselves mainly as our mind, and would still think of ourselves as still alive if our mind carries on as if nothing much has happened, which is likely.

Electronic immortality is not true immortality though. Your mind can only survive on the net as long as it is supported by the infrastructure. That will be controlled by others. Future technology will likely be able to defend against asteroid strikes, power surges cause by solar storms and so on, so accidental death seems unlikely for hundreds of years. However, since minds supported on it need energy to continue running and electronics to be provided and maintained, and will want to make trips into the ‘real’ world, or even live there a lot of the time, they will have a significant resource footprint. They will probably not be considered as valuable as other people whose bodies are still alive. In fact they might be considered as competition – for jobs, resources, space, housing, energy… They may even be seen as easy targets for future cyber-terrorists.

So, it seems quite likely, maybe even inevitable, that life limits will be imposed on the vast majority of you. At some point you will simply be switched off. There might be some prioritization, competitions, lotteries or other selection mechanism, but only some will benefit from it.

Since you are unlikely to die when your body ceases to work, your most likely cause of death is therefore to be switched off. Sorry to break that to you.

Future human evolution

I’ve done patches of work on this topic frequently over the last 20 years. It usually features in my books at some point too, but it’s always good to look afresh at anything. Sometimes you see something you didn’t see last time.

Some of the potential future is pretty obvious. I use the word potential, because there are usually choices to be made, regulations that may or may not get in the way, or many other reasons we could divert from the main road or even get blocked completely.

We’ve been learning genetics now for a long time, with a few key breakthroughs. It is certain that our understanding will increase, less certain how far people will be permitted to exploit the potential here in any given time frame. But let’s take a good example to learn a key message first. In IVF, we can filter out embryos that have the ‘wrong’ genes, and use their sibling embryos instead. Few people have a problem with that. At the same time, pregnant women may choose an abortion if they don’t want a child when they discover it is the wrong gender, but in the UK at least, that is illegal. The moral and ethical values of our society are on a random walk though, changing direction frequently. The social assignment of right and wrong can reverse completely in just 30 years. In this example, we saw a complete reversal of attitudes to abortion itself within 30 years, so who is to say we won’t see reversal on the attitude to abortion due to gender? It is unwise to expect that future generations will have the same value sets. In fact, it is highly unlikely that they will.

That lesson likely applies to many technology developments and quite a lot of social ones – such as euthanasia and assisted suicide, both already well into their attitude reversal. At some point, even if something is distasteful to current attitudes, it is pretty likely to be legalized eventually, and hard to ban once the door is opened. There will always be another special case that opens the door a little further. So we should assume that we may eventually use genetics to its full capability, even if it is temporarily blocked for a few decades along the way. The same goes for other biotech, nanotech, IT, AI and any other transhuman enhancements that might come down the road.

So, where can we go in the future? What sorts of splits can we expect in the future human evolution path? It certainly won’t remain as just plain old homo sapiens.

I drew this evolution path a long time ago in the mid 1990s:

human evolution 1

It was clear even then that we could connect external IT to the nervous system, eventually the brain, and this would lead to IT-enhanced senses, memory, processing, higher intelligence, hence homo cyberneticus. (No point in having had to suffer Latin at school if you aren’t allowed to get your own back on it later). Meanwhile, genetic enhancement and optimization of selected features would lead to homo optimus. Converging these two – why should you have to choose, why not have a perfect body and an enhanced mind? – you get homo hybridus. Meanwhile, in the robots and AI world, machine intelligence is increasing and we eventually we get the first self-aware AI/robot (it makes little sense to separate the two since networked AI can easily be connected to a machine such as a robot) and this has its own evolution path towards a rich diversity of different kinds of AI and robots, robotus multitudinus. Since both the AI world and the human world could be networked to the same network, it is then easy to see how they could converge, to give homo machinus. This future transhuman would have any of the abilities of humans and machines at its disposal. and eventually the ability to network minds into a shared consciousness. A lot of ordinary conventional humans would remain, but with safe upgrades available, I called them homo sapiens ludditus. As they watch their neighbors getting all the best jobs, winning at all the sports, buying everything, and getting the hottest dates too, many would be tempted to accept the upgrades and homo sapiens might gradually fizzle out.

My future evolution timeline stayed like that for several years. Then in the early 2000s I updated it to include later ideas:

human evolution 2

I realized that we could still add AI into computer games long after it becomes comparable with human intelligence, so games like EA’s The Sims might evolve to allow entire civilizations living within a computer game, each aware of their existence, each running just as real a life as you and I. It is perhaps unlikely that we would allow children any time soon to control fully sentient people within a computer game, acting as some sort of a god to them, but who knows, future people will argue that they’re not really real people so it’s OK. Anyway, you could employ them in the game to do real knowledge work, and make money, like slaves. But since you’re nice, you might do an incentive program for them that lets them buy their freedom if they do well, letting them migrate into an android. They could even carry on living in their Sims home and still wander round in our world too.

Emigration from computer games into our world could be high, but the reverse is also possible. If the mind is connected well enough, and enhanced so far by external IT that almost all of it runs on the IT instead of in the brain, then when your body dies, your mind would carry on living. It could live in any world, real or fantasy, or move freely between them. (As I explained in my last blog, it would also be able to travel in time, subject to certain very expensive infrastructural requirements.) As well as migrants coming via electronic immortality route, it would be likely that some people that are unhappy in the real world might prefer to end it all and migrate their minds into a virtual world where they might be happy. As an alternative to suicide, I can imagine that would be a popular route. If they feel better later, they could even come back, using an android.  So we’d have an interesting future with lots of variants of people, AI and computer game and fantasy characters migrating among various real and imaginary worlds.

But it doesn’t stop there. Meanwhile, back in the biotech labs, progress is continuing to harness bacteria to make components of electronic circuits (after which the bacteria are dissolved to leave the electronics). Bacteria can also have genes added to emit light or electrical signals. They could later be enhanced so that as well as being able to fabricate electronic components, they could power them too. We might add various other features too, but eventually, we’re likely to end up with bacteria that contain electronics and can connect to other bacteria nearby that contain other electronics to make sophisticated circuits. We could obviously harness self-assembly and self-organisation, which are also progressing nicely. The result is that we will get smart bacteria, collectively making sophisticated, intelligent, conscious entities of a wide variety, with lots of sensory capability distributed over a wide range. Bacteria Sapiens.

I often talk about smart yogurt using such an approach as a key future computing solution. If it were to stay in a yogurt pot, it would be easy to control. But it won’t. A collective bacterial intelligence such as this could gain a global presence, and could exist in land, sea and air, maybe even in space. Allowing lots of different biological properties could allow colonization of every niche. In fact, the first few generations of bacteria sapiens might be smart enough to design their own offspring. They could probably buy or gain access to equipment to fabricate them and release them to multiply. It might be impossible for humans to stop this once it gets to a certain point. Accidents happen, as do rogue regimes, terrorism and general mad-scientist type mischief.

And meanwhile, we’ll also be modifying nature. We’ll be genetically enhancing a wide range of organisms, bringing some back from extinction, creating new ones, adding new features, changing even some of the basic mechanism by which nature works in some cases. We might even create new kinds of DNA or develop substitutes with enhanced capability. We may change nature’s evolution hugely. With a mix of old and new and modified, nature evolves nicely into Gaia Sapiens.

We’re not finished with the evolution chart though. Here is the next one:

human evolution 3

Just one thing is added. Homo zombius. I realized eventually that the sci-fi ideas of zombies being created by viruses could be entirely feasible. A few viruses, bacteria and other parasites can affect the brains of the victims and change their behaviour to harness them for their own life cycle.

See http://io9.com/12-real-parasites-that-control-the-lives-of-their-hosts-461313366 for fun.

Bacteria sapiens could be highly versatile. It could make virus variants if need be. It could evolve itself to be able to live in our bodies, maybe penetrate our brains. Bacteria sapiens could make tiny components that connect to brain cells and intercept signals within our brains, or put signals back in. It could read our thoughts, and then control our thoughts. It could essentially convert people into remote controlled robots, or zombies as we usually call them. They could even control muscles directly to a point, so even if the zombie is decapitated, it could carry on for a short while. I used that as part of my storyline in Space Anchor. If future humans have widespread availability of cordless electricity, as they might, then it is far fetched but possible that headless zombies could wander around for ages, using the bacterial sensors to navigate. Homo zombius would be mankind enslaved by bacteria. Hopefully just a few people, but it could be everyone if we lose the battle. Think how difficult a war against bacteria would be, especially if they can penetrate anyone’s brain and intercept thoughts. The Terminator films looks a lot less scary when you compare the Terminator with the real potential of smart yogurt.

Bacteria sapiens might also need to be consulted when humans plan any transhuman upgrades. If they don’t consent, we might not be able to do other transhuman stuff. Transhumans might only be possible if transbacteria allow it.

Not done yet. I wrote a couple of weeks ago about fairies. I suggested fairies are entirely feasible future variants that would be ideally suited to space travel.

http://timeguide.wordpress.com/2014/06/06/fairies-will-dominate-space-travel/

They’d also have lots of environmental advantages as well as most other things from the transhuman library. So I think they’re inevitable. So we should add fairies to the future timeline. We need a revised timeline and they certainly deserve their own branch. But I haven’t drawn it yet, hence this blog as an excuse. Before I do and finish this, what else needs to go on it?

Well, time travel in cyberspace is feasible and attractive beyond 2075. It’s not the proper real world time travel that isn’t permitted by physics, but it could feel just like that to those involved, and it could go further than you might think. It certainly will have some effects in the real world, because some of the active members of the society beyond 2075 might be involved in it. It certainly changes the future evolution timeline if people can essentially migrate from one era to another (there are some very strong caveats applicable here that I tried to explain in the blog, so please don’t misquote me as a nutter – I haven’t forgotten basic physics and logic, I’m just suggesting a feasible implementation of cyberspace that would allow time travel within it. It is really a cyberspace bubble that intersects with the real world at the real time front so doesn’t cause any physics problems, but at that intersection, its users can interact fully with the real world and their cultural experiences of time travel are therefore significant to others outside it.)

What else? OK, well there is a very significant community (many millions of people) that engages in all sorts of fantasy in shared on-line worlds, chat rooms and other forums. Fairies, elves, assorted spirits, assorted gods, dwarves, vampires, werewolves, assorted furry animals, assorted aliens, dolls,  living statues, mannequins, remote controlled people, assorted inanimate but living objects, plants and of course assorted robot/android variants are just some of those that already exist in principle; I’m sure I’ve forgotten some here and anyway, many more are invented every year so an exhaustive list would quickly become out of date. In most cases, many people already role play these with a great deal of conviction and imagination, not just in standalone games, but in communities, with rich cultures, back-stories and story-lines. So we know there is a strong demand, so we’re only waiting for their implementation once technology catches up, and it certainly will.

Biotech can do a lot, and nanotech and IT can add greatly to that. If you can design any kind of body with almost any kind of properties and constraints and abilities, and add any kind of IT and sensing and networking and sharing and external links for control and access and duplication, we will have an extremely rich diversity of future forms with an infinite variety of subcultures, cross-fertilization, migration and transformation. In fact, I can’t add just a few branches to my timeline. I need millions. So instead I will just lump all these extras into a huge collected category that allows almost anything, called Homo Whateverus.

So, here is the future of human (and associates) evolution, for the next 150 years. A few possible cross-links are omitted for clarity

evolution

I won’t be around to watch it all happen. But a lot of you will.

 

Time Travel: Cyberspace opens a rift in the virtual time-space continuum

Dr Who should have written this but he didn’t so I have to. We keep seeing those cute little tears in space-time in episodes of the BBC’s Dr Who, that let through Daleks and Cybermen and other nasties. (As an aside, how come feminists never seem to object to the term Cybermen, even though 50% of them are made from women?). Dr Who calls them rifts, and it allegedly needs the energy of entire star systems to open and close them. So, not much use as a weapon then, but still a security issue if our universe leaks.

Sci-fi authors have recognized the obvious dangers of time-space rifts for several decades. They cause problems with causality as well. I got a Physics degree a long time ago (well, Applied Mathematics and Theoretical Physics, but all the maths was EM theory, quantum mechanics and relativity, so it was really a physics degree), but I have never really understood fully why causality is such a big deal. Sure it needs a lot of explaining if it fails, but why would an occasional causal error cause such a huge problem? The Daleks are far more worrying. **Politically incorrect joke censored**

I just wrote about time travel again. All competent physicists rightly switch on their idiot filters automatically on hearing any of the terms ‘cold fusion’, ‘telekinetic’, ‘psychic’, ‘perpetual motion machine’, ‘time travel’ or ‘global warming catastrophe’. Sorry, that last one just sort of crept in there. Time travel is not really possible, unless you’re inside a black hole or you’re talking about a particle shifting atoseconds in a huge accelerator or GPS relativistic corrections or something. A Tardis isn’t going to be here any time soon and may be impossible and never ever come. However, there is a quite real cyberspace route to quite real time travel that will become feasible around 2075, a virtual rift if you like, but no need to activate idiot filters just yet, it’s only a virtual rift, a rift in a sandbox effectively, and it won’t cause the universe to collapse or violate any known laws of physics. So, hit the temporary override button on your idiot filter. It’s a fun thought experiment that gets more and more fun the more you look at it. (Einstein invented thought experiments to investigate relativity, because he couldn’t do any real experiments with the technology of his time. We can’t verify this sort of time travel experimentally yet so thought experiment is the only mechanism available. Sadly, I don’t have Einstein’s brain to hand, but some aspects at least are open to the rest of us to explore.) The hypothesis here is that if you can make a platform that stores the state of all the minds in a system continuously over a period from A to B, and that runs all those minds continuously using a single editable record, then you can travel in time freely between A and B.  Now we need to think it through a bit to test the hypothesis and see what virtual physics we can learn from it, see how real it would be and what it would need and lead to.

I recognized on my first look at it in

http://timeguide.wordpress.com/2012/10/25/the-future-of-time-travel-cheat/

that cyberspace offers a time travel cheat. The basic idea, to save you reading it now that it’s out of date, is that some time soon after 2050 – let’s take 2075 as the date that crowd-funding enables its implementation – we’ll all be able to connect our brains so well to the machine world that it will be possible to share thoughts and consciousness, sensations, effectively share bodies, live electronically until all the machines stop working, store your mind as a snapshot periodically in case you want to restore to an earlier backup and do all sorts of really fun things like swapping personalities. (You can see why it might attract the required funding so might well become real).  If that recording of your mind is complete enough, and it could be, then, you really could go back to an earlier state of yourself. More importantly, a future time tourist could access all the stored records and create an instance of your mind and chat to you and chat and interact with you from the future. This would allow future historians to do history better. Well, that’s the basic version. Our thought experiment version needs to go a bit further than that. Let’s call it the deluxe version.

If you implement the deluxe version, then minds run almost entirely on the machine world platform, and are hosted there with frequent restore points. The current state of the system is an interactive result of real-time running of all the minds held in cyberspace across the whole stored timeline. For those minds running on the deluxe version platform, there isn’t any other reality. That’s what makes up those future humans and AIs on it. Once you join the system, you can enjoy all of the benefits above and many more.

You could actually change old records and use the machines to ripple the full system-wide consequences all the way through the timeline to whenever your future today is. It would allow you to go back to visit your former self and do some editing, wouldn’t it? And in this deluxe version, the edits you make would ripple through into your later self. That’s what you get when you migrate the human mind from the Mk1 human brain platform into the machine world platform. It becomes endlessly replicable and editable. In this deluxe version, the future world really could be altered by editing the past. You may reasonably ask why we would allow any moron to allow that to be built, but that won’t affect the theoretical ability to travel in time through cyberspace.

It is very easy to see how such a system allows you to chat with someone in the past. What is less obvious, and what my excuse for a brain missed first time round, is that it also lets you travel forwards in time. How, you may reasonably ask, can you access and edit records that don’t exist yet? Well, think of it from the other direction. Someone in the future can restore any previous instance of you from any time point and talk to them, even edit them. They could do that all in some sort of time-play sandbox to save money and avoid quite a few social issues, or they could restore you fully to their time, and since the reality is just real-time emulation all rippled through nicely by the machine platform, you would suddenly appear in the future and become part of that future world. You could wander around in a future android body and do physical things in that future physical world just as if you’d always lived there. Your future self would feel they have travelled in time. But a key factor here is that it could be your future self that makes it happen. You could make a request in 2075 to your future self to bring you to the future in 2150. When 2150 arrives, you see (or might even remember) the request, you go into the archives, and you restore your old 2075 self to 2150, then you instruct deletion of all the records between 2075 and 2150 and then you push the big red button. The system runs all the changes and effects through the timeline, and the result is that you disappear in 2075, and suddenly reappear in 2150.

There would be backups of the alternative timeline, but the official and effective system reality would be that you travelled from 2075 to 2150. That will be the reality running on the deluxe system. Any other realities are just backups and records on a database. Now,so far it’s a one way trip, far better if you can have a quick trip to the future and come back. So, you’re in 2150, suppose you want to go back again. You’ve been around a while and don’t like the new music or the food or something. So before you go, you do the usual time mischief. You collect lots of really useful data about how all the latest tech works, buy the almanacs of who wins what, just like in Back to the Future, just in case the system has bugs that let you use them, and you tweak the dials again. You set the destination to 2075 and hit the big red button. The system writes your new future-wise self over your original 2075 entry, keeping a suitable backup of course. The entry used by the deluxe system is whatever is written in its working record, and that is the you that went to 2150 and back. Any other realities are just backups. So, the system ripples it all through the timeline. You start the day in 2075, have a quick trip for a week’s holiday in 2150, and then return a few minutes later. Your 2075 self will have experienced a trip to 2150 and come back, complete with all the useful data about the 2150 world. If you don’t mess with anything else, you will remember that trip until 2150, at which time you’ll grab a few friends and chat about the first time you ever did time travel.

All of the above is feasible theoretically, and none of it violates any known physics. The universe won’t collapse in a causality paradox bubble rift if you do it, no need to send for Dr Who. That doesn’t mean it isn’t without issues. It still creates a lot of the time travel issues we are so familiar with from sci-fi. But this one isn’t sci-fi – we could build it, and we could get the crowd-funding to make it real by 2075. Don’t get too excited yet though.

You could have gone further into the future than 2150 too, but there is a limit. You can only go as far as there exists a continuous record from where you are. You basically need a road that goes all the way there. If some future authority bans time travel or changes to an incompatible system, that represents a wall you can’t pass through. An even later authority could only remove that wall under certain circumstances, and only if they have the complete records, and the earlier authority might have stopped storing them or even deleted earlier ones and that would ruin any chances of doing it properly.

So, having established that it is possible, we have to ask the more serious question: how real is this time travel? Is it just a cyberspace trick with no impact on the real world? Well, in this scenario, your 2075 mind runs on the deluxe system using its 2075 record. But which one, the old one or the edited one? The edited one of course. The old version is overwritten and ceases to exist except as a backup. There remains no reality except the one you did your time travel trip in. Your time trip is real. But let’s ask a few choice questions, because reality can turn out to be just an illusion sometimes.

So, when you get home to 2075, you can print off your 2150 almanac and brag about all the new technologies you just invented from 2150. Yes?

Yes… if you implement the deluxe version.

Is there a causality paradox?

No.

Will the world end?

No.

But you just short-circuited technology development from 2075 to 2150?

Yes.

So you can do real time travel from 2075? You’ll suddenly vanish from 2075, spend some time in 2150, and later reappear in 2075?

Yes, if you implement the deluxe version.

Well, what happens in 2150?

You’ll do all the pushing red button stuff and have a party with your friends to remember your first time trip. If you set the times right, you could even invite your old self from 2075 as a guest and wave goodbye as you* goes back to 2075.

Or you* could stay in 2150 and there’d be two of you from then on?

Yes

OK, this sounds great fun.  So when can we build this super-duper deluxe version that let’s you time travel from 2075 to 2150 and go back again.

2150

And what happens to me between 2075 and 2150 while I wait for it to be built?

Well, you invest in the deluxe version, connect into the system, and it starts recording all its subscribers’ minds from then on, and you carry on enjoying life until 2150 arrives. Then you can travel from 2075 to 2150, retrospectively.

Retrospectively?

Well, you can travel from 2075 to whatever date in the future the deluxe system still exists. And your 2075 self will fully experience it as time travel. It won’t feel retrospective.

But you have to wait till that date before you can go there?

Yes. But you won’t remember having to wait, all the records of that will be wiped, you’ll just vanish in 2075 and reappear in 2150 or whenever.

What *insert string of chosen expletives here* use is that?

Erm…. Well…. You will still have enjoyed a nice life from 2075 to 2150 before it’s deleted and replaced.

But I won’t remember that will I?

No. But you won’t remember it when you’re dead either.

So I can only do this sort of time travel by having myself wiped off the system for all the years in between after I’ve done it? So the best way of doing that is not to bother with all the effort of living through all those years since they’re going to be deleted anyway and save all the memory and processing by just hibernation in the archives till that date arrives? So I’ll really vanish in 2075 and be restored in 2150 and feel it as time travel? And there won’t be any messy database records to clean up in between, and it will all be nice and environmentally friendly? And not having to run all those people years that would later be deleted will reduce storage and processing costs and system implementation costs dramatically?

Exactly!

OK, sounds a bit better again. But it’s still a fancy cyberspace hibernation scheme really isn’t it?

Well, you can travel back and forth through time as much as you like and socialize with anyone from any time zone and live in any time period. Some people from 2150 might prefer to live in 2075 and some from 2075 prefer to live in 2150. Everyone can choose when they live or just roam freely through the entire time period. A bit like that episode of Star Trek TOS where they all got sent through a portal to different places and times and mixed with societies made of others who had come the same way. You could do that. A bit like a glorified highly immersive computer game.

But what about gambling and using almanacs from the future? And inventing stuff in 2075 that isn’t really invented till 2150?

All the knowledge and data from 2150 will be there in the 2075 system so you won’t have anything new and gambling won’t be a viable industry. But it won’t be actually there until 2150. So the 2075 database will be a retrospective singularity where all of the future knowledge suddenly appears.

Isn’t that a rift in the time-space continuum, letting all the future weapons and political activists and terrorists and their plans through from 2150 to 2075? And Daleks? Some idiot will build one just for the hell of it. They’ll come through the rift too won’t they. And Cyberpersons?

It will not be without technical difficulties. And anyway, they can’t do any actual damage outside the system.

But these minds running in the system will be connected to android bodies or humans outside it. Their minds can time travel through cyberspace. Can’t they do anything nasty?

No, they can only send their minds back and connect to stuff within the system. Any androids and bodies could only be inhabited by first generation minds that belong to that physical time. They can only make use of androids or other body sharing stuff when they travel forwards through time, because it is their chosen future date where the android lives and they can arrange that. On a journey backwards, they can only change stuff running in the system.

 And that’s what stops it violating physics?

Yes

So let’s get this straight. This whole thing is great for extending your mind into cyberspace, sharing bodies, swapping personalities, changing gender or age, sharing consciousness and  some other things. But time travel is only possible for your mind that is supported exclusively in the system. And only that bit in the system can time travel. And your actual 2075 body can’t feel the effect at all or do anything about it? So it’s really another you that this all happens to and you start diverging from your other cyber-self the moment you connect. A replica of you enjoys all the benefits but it thinks it is you and feels like you and essentially is you, but not in the real world. And the original you carries on in parallel.

Correct. It is a big cyberspace bubble created over time with continuous timeline emulation, that only lets you time travel and interact within the bubble. Like an alternative universe, and you can travel in time in it. But it can only interact with the physical universe in real time at the furthermost frontier of the bubble. A frontier that moves into the future at the same speed as the rest of the local space-time continuum and doesn’t cause any physics problems or real time paradoxes outside of the system.

So it’s not REAL time travel. It’s just a sort of cyber-sandbox, albeit one that will be good fun and still worth building.

You can time travel in the parallel universe that you make in cyberspace. But it will be real within that universe. Forwards physical time travel is additionally possible in the physical universe if you migrate your mind totally into cyberspace, e.g. when you die, so you can live electronically, and even then it is really just a fancy form of hibernation. And if you travel back in time in the system, you won’t be able to interact with the physical stuff in the past, only what is running on the system. As long as you accept those limitations, you can travel in time after 2075 and live in any period supported after that.

Why do all the good things only ever happen in another universe?

I don’t know.

No physics or mathematics has knowingly been harmed during this thought experiment. No responsibility is accepted for any time-space rifts created as a result of analytical error.

 

 

Time – The final frontier. Maybe

It is very risky naming the final frontier. A frontier is just the far edge of where we’ve got to.

Technology has a habit of opening new doors to new frontiers so it is a fast way of losing face. When Star Trek named space as the final frontier, it was thought to be so. We’d go off into space and keep discovering new worlds, new civilizations, long after we’ve mapped the ocean floor. Space will keep us busy for a while. In thousands of years we may have gone beyond even our own galaxy if we’ve developed faster than light travel somehow, but that just takes us to more space. It’s big, and maybe we’ll never ever get to explore all of it, but it is just a physical space with physical things in it. We can imagine more than just physical things. That means there is stuff to explore beyond space, so space isn’t the final frontier.

So… not space. Not black holes or other galaxies.

Certainly not the ocean floor, however fashionable that might be to claim. We’ll have mapped that in details long before the rest of space. Not the centre of the Earth, for the same reason.

How about cyberspace? Cyberspace physically includes all the memory in all our computers, but also the imaginary spaces that are represented in it. The entire physical universe could be simulated as just a tiny bit of cyberspace, since it only needs to be rendered when someone looks at it. All the computer game environments and virtual shops are part of it too. The cyberspace tree doesn’t have to make a sound unless someone is there to hear it, but it could. The memory in computers is limited, but the cyberspace limits come from imagination of those building or exploring it. It is sort of infinite, but really its outer limits are just a function of our minds.

Games? Dreams? Human Imagination? Love? All very new agey and sickly sweet, but no. Just like cyberspace, these are also all just different products of the human mind, so all of these can be replaced by ‘the human mind’ as a frontier. I’m still not convinced that is the final one though. Even if we extend that to greatly AI-enhanced future human mind, it still won’t be the final frontier. When we AI-enhance ourselves, and connect to the smart AIs too, we have a sort of global consciousness, linking everyone’s minds together as far as each allows. That’s a bigger frontier, since the individual minds and AIs add up to more cooperative capability than they can achieve individually. The frontier is getting bigger and more interesting. You could explore other people directly, share and meld with them. Fun, but still not the final frontier.

Time adds another dimension. We can’t do physical time travel, and even if we can do so in physics labs with tiny particles for tiny time periods, that won’t necessarily translate into a practical time machine to travel in the physical world. We can time travel in cyberspace though, as I explained in

http://timeguide.wordpress.com/2012/10/25/the-future-of-time-travel-cheat/

and when our minds are fully networked and everything is recorded, you’ll be able to travel back in time and genuinely interact with people in the past, back to the point where the recording started. You would also be able to travel forwards in time as far as the recording stops and future laws allow (I didn’t fully realise that when I wrote my time travel blog, so I ought to update it, soon). You’d be able to inhabit other peoples’ bodies, share their minds, share consciousness and feelings and emotions and thoughts. The frontier suddenly jumps out a lot once we start that recording, because you can go into the future as far as is continuously permitted. Going into that future allows you to get hold of all the future technologies and bring them back home, short circuiting the future, as long as time police don’t stop you. No, I’m not nuts – if you record everyone’s minds continuously, you can time travel into the future using cyberspace, and the effects extend beyond cyberspace into the real world you inhabit, so although it is certainly a cheat, it is effectively real time travel, backwards and forwards. It needs some security sorted out on warfare, banking and investments, procreation, gambling and so on, as well as lot of other causality issues, but to quote from Back to the Future: ‘What the hell?’ [IMPORTANT EDIT: in my following blog, I revise this a bit and conclude that although time travel to the future in this system lets you do pretty much what you want outside the system, time travel to the past only lets you interact with people and other things supported within the system platform, not the physical universe outside it. This does limit the scope for mischief.]

So, time travel in fully networked fully AI-enhanced cosmically-connected cyberspace/dream-space/imagination/love/games would be a bigger and later frontier. It lets you travel far into the future and so it notionally includes any frontiers invented and included by then. Is it the final one though? Well, there could be some frontiers discovered after the time travel windows are closed. They’d be even finaller, so I won’t bet on it.

 

 

WMDs for mad AIs

We think sometimes about mad scientists and what they might do. It’s fun, makes nice films occasionally, and highlights threats years before they become feasible. That then allows scientists and engineers to think through how they might defend against such scenarios, hopefully making sure they don’t happen.

You’ll be aware that a lot more talk of AI is going on again now. It does seem to be picking up progress finally. If it succeeds well enough, a lot more future science and engineering will be done by AI than by people. If genuinely conscious, self-aware AI, with proper emotions etc becomes feasible, as I think it will, then we really ought to think about what happens when it goes wrong. (Sci-fi computer games producers already do think that stuff through sometimes – my personal favorite is Mass Effect). We will one day have some insane AIs. In Mass Effect, the concept of AI being shackled is embedded in the culture, thereby attempting to limit the damage it could presumably do. On the other hand, we have had Asimov’s laws of robotics for decades, but they are sometimes being ignored when it comes to making autonomous defense systems. That doesn’t bode well. So, assuming that Mass Effect’s writers don’t get to be in charge of the world, and instead we have ideological descendants of our current leaders, what sort of things could an advanced AI do in terms of its chosen weaponry?

Advanced AI

An ultra-powerful AI is a potential threat in itself. There is no reason to expect that an advanced AI will be malign, but there is also no reason to assume it won’t be. High level AI could have at least the range of personality that we associate with people, with a potentially greater  range of emotions or motivations, so we’d have the super-helpful smart scientist type AIs but also perhaps the evil super-villain and terrorist ones.

An AI doesn’t have to intend harm to be harmful. If it wants to do something and we are in the way, even if it has no malicious intent, we could still become casualties, like ants on a building site.

I have often blogged about achieving conscious computers using techniques such as gel computing and how we could end up in a terminator scenario, favored by sci-fi. This could be deliberate act of innocent research, military development or terrorism.

Terminator scenarios are diverse but often rely on AI taking control of human weapons systems. I won’t major on that here because that threat has already been analysed in-depth by many people.

Conscious botnets could arrive by accident too – a student prank harnessing millions of bots even with an inefficient algorithm might gain enough power to achieve high level of AI. 

Smart bacteria – Bacterial DNA could be modified so that bacteria can make electronics inside their cell, and power it. Linking to other bacteria, massive AI could be achieved.

Zombies

Adding the ability to enter a human nervous system or disrupt or capture control of a human brain could enable enslavement, giving us zombies. Having been enslaved, zombies could easily be linked across the net. The zombie films we watch tend to miss this feature. Zombies in films and games tend to move in herds, but not generally under control or in a much coordinated way. We should assume that real ones will be full networked, liable to remote control, and able to share sensory systems. They’d be rather smarter and more capable than what we’re generally used to. Shooting them in the head might not work so well as people expect either, as their nervous systems don’t really need a local controller, and could just as easily be controlled by a collective intelligence, though blood loss would eventually cause them to die. To stop a herd of real zombies, you’d basically have to dismember them. More Dead Space than Dawn of the Dead.

Zombie viruses could be made other ways too. It isn’t necessary to use smart bacteria. Genetic modification of viruses, or a suspension of nanoparticles are traditional favorites because they could work. Sadly, we are likely to see zombies result from deliberate human acts, likely this century.

From Zombies, it is a short hop to full evolution of the Borg from Star Trek, along with emergence of characters from computer games to take over the zombified bodies.

Terraforming

Using strong external AI to make collective adaptability so that smart bacteria can colonize many niches, bacterial-based AI or AI using bacteria could engage in terraforming. Attacking many niches that are important to humans or other life would be very destructive. Terraforming a planet you live on is not generally a good idea, but if an organism can inhabit land, sea or air and even space, there is plenty of scope to avoid self destruction. Fighting bacteria engaged on such a pursuit might be hard. Smart bacteria could spread immunity to toxins or biological threats almost instantly through a population.

Correlated traffic

Information waves and other correlated traffic, network resonance attacks are another way of using networks to collapse economies by taking advantage of the physical properties of the links and protocols rather than using more traditional viruses or denial or service attacks. AIs using smart dust or bacteria could launch signals in perfect coordination from any points on any networks simultaneously. This could push any network into resonant overloads that would likely crash them, and certainly act to deprive other traffic of bandwidth.

Decryption

Conscious botnets could be used to make decryption engines to wreck security and finance systems. Imagine how much more so a worldwide collection of trillions of AI-harnessed organisms or devices. Invisibly small smart dust and networked bacteria could also pick up most signals well before they are encrypted anyway, since they could be resident on keyboards or the components and wires within. They could even pick up electrical signals from a person’s scalp and engage in thought recognition, intercepting passwords well before a person’s fingers even move to type them.

Space guns

Solar wind deflector guns are feasible, ionizing some of the ionosphere to make a reflective surface to deflect some of the incoming solar wind to make an even bigger reflector, then again, thus ending up with an ionospheric lens or reflector that can steer perhaps 1% of the solar wind onto a city. That could generate a high enough energy density to ignite and even melt a large area of city within minutes.

This wouldn’t be as easy as using space based solar farms, and using energy direction from them. Space solar is being seriously considered but it presents an extremely attractive target for capture because of its potential as a directed energy weapon. Their intended use is to use microwave beams directed to rectenna arrays on the ground, but it would take good design to prevent a takeover possibility.

Drone armies

Drones are already becoming common at an alarming rate, and the sizes of drones are increasing in range from large insects to medium sized planes. The next generation is likely to include permanently airborne drones and swarms of insect-sized drones. The swarms offer interesting potential for WMDs. They can be dispersed and come together on command, making them hard to attack most of the time.

Individual insect-sized drones could build up an electrical charge by a wide variety of means, and could collectively attack individuals, electrocuting or disabling them, as well as overload or short-circuit electrical appliances.

Larger drones such as the ones I discussed in

http://carbonweapons.com/2013/06/27/free-floating-combat-drones/ would be capable of much greater damage, and collectively, virtually indestructible since each can be broken to pieces by an attack and automatically reassembled without losing capability using self organisation principles. A mixture of large and small drones, possibly also using bacteria and smart dust, could present an extremely formidable coordinated attack.

I also recently blogged about the storm router

http://carbonweapons.com/2014/03/17/stormrouter-making-wmds-from-hurricanes-or-thunderstorms/ that would harness hurricanes, tornados or electrical storms and divert their energy onto chosen targets.

In my Space Anchor novel, my superheroes have to fight against a formidable AI army that appears as just a global collection of tiny clouds. They do some of the things I highlighted above and come close to threatening human existence. It’s a fun story but it is based on potential engineering.

Well, I think that’s enough threats to worry about for today. Maybe given the timing of release, you’re expecting me to hint that this is an April Fool blog. Not this time. All these threats are feasible.