Category Archives: biotech

The future of gardens

It’s been weeks since my last blog. I started a few but they need some more thought so as a catch-up, here is a nice frivolous topic, recycled from 1998.

Surely gardens are a place to get back to nature, to escape from technology? Well, when journalists ask to see really advanced technology, I take them to the garden. Humans still have a long way to go to catch up with what nature does all the time. A dragonfly catching smaller flies is just a hint of future warfare, and every flower is an exercise in high precision marketing, let alone engineering. But we will catch up, and even the stages between now and then will be fun.

Advanced garden technology today starts and ends with robotic lawn trimmers. I guess you could add the special materials used in garden tools, advanced battery tech, security monitoring, plant medications and nutrition. OK, there are already lots of advanced technologies in gardens, they just aren’t very glamorous. The fact is that our gardens already use a wide range of genetically enhanced plants and flowers, state of the art fertilizers and soil conditioners, fancy lawnmowers and automatic sprinkler systems. So what can we expect next?

Fiber optic plants already  add a touch of somewhat tacky enchantment to a garden and can be a good substitute for more conventional lighting. Home security uses video cameras and webcams and some rather fun documentaries have resulted from videoing pets and wild animals during the night. There will soon be many other appliances in the future garden, including the various armies of robots and micro-bots  doing a range of jobs from cutting the grass every time a blade gets more than 3 cm long, weeding, watering, pollination or carrying individual grains of fertilizer to the plants that need it. Others will fight with bugs or tidy up debris, or remove dying flowers to keep the garden looking pristine. They could even assist in propagation, burying seeds in just the right places and tending them while they become established. The garden pond may have robot ducks or fish just for fun.

Various sensors may be inserted into the ground around the garden, or smart dust just sprinkled randomly. These would warn when the ground is getting too dry and perhaps co-ordinate automatic sprinklers. They could also monitor the chemical composition, advising the gardener where to add which type of fertilizer or conditioner. In fact, when the price and size falls sufficiently, electronic sensors might well be mixed in with fertilizer and other garden care products.

With all this robot assistance, the human may design the garden and then just let the robots get on with the construction and maintenance. Or maybe just download a garden plan if they’re really lazy, or get the AI to download one.

Another obvious potential impact comes in the shape of genetic engineering. While designing the genome for custom plants is not quite as simple as assembling Lego blocks, we will nevertheless be able to pick and choose from a wide variety of characteristics available from anywhere in the plant and animal kingdom. We are promised blue roses that smell of designer perfumes, grass that only needs cut once a year and ground cover plants that actually grow faster than weeds. By messing about with genes we can thus change the appearance and characteristics of plants enormously, and while getting a company logo to appear on a flower petal might be beyond us, the garden could certainly look much more kaleidoscopic than today’s. We are already in the era where genetics has become a hobbyist activity, but so far the limits are pretty simple gene transfers to add fun things like fluorescence or light emission. Legislation will hopefully prevent people using such clubs to learn how to make viruses or bacteria for terrorist use.

In the long term we are not limited by the Lego bricks provided by nature. Nanotechnology will eventually allow us to produce inorganic ‘plants’ . You might buy a seed and drop it in the required place and it would grow into a predetermined structure just like an organic seed, taking the materials from the soil or air, or perhaps from some additives. However, there is almost no theoretical limit to the type of ‘plant’ that could be produced this way. Flowers with logos are possible, but so are video displays built into the flowers, so are garden gnomes that wander around or that actually fish in the pond. A wide range of static and dynamic ornamentation could add fun to every garden. Nanotechnology has so many possibilities, there are almost no ultimate limits to what can be done apart from the fundamental physics of materials. Power supplies for these devices could use solar, wind or thermal power.

On the patio, there is more scope for video displays in the paving and walls, to add color or atmosphere, and also to provide a recharging base for the robots without their own independent power supplies. Flat speakers could also be built into the walls, providing birdsong or other natural sounds that are otherwise declining in our gardens. Appropriately placed large display panels could simulate being on a beach while sunbathing in Nottingham (for non-Brits, Nottingham is a city not renowned for its sunshine, and very far from a beach).

All in all, the garden could become a place of relaxation, getting back to what we like best in nature, without all the boring bits looking after it in our few spare hours. Even before we retire, we will be able to enjoy the garden, instead of just weeding and cutting the grass.

1998 is a long time ago and I have lots of new ideas for the garden now, but time demands I leave them for a later blog.

The future of death

This one is a cut and paste from my book You Tomorrow.

Although age-related decline can be postponed significantly, it will eventually come. But that is just biological decline. In a few decades, people will have their brains linked to the machine world and much of their mind will be online, and that opens up the strong likelihood that death is not inevitable, and in fact anyone who expects to live past 2070 biologically (and rich people who can get past 2050) shouldn’t need to face death of their mind. Their bodies will eventually die, but their minds can live on, and an android body will replace the biological one they’ve lost.

Death used to be one of the great certainties of life, along with taxes. But unless someone under 35 now is unfortunate enough to die early from accident or disease, they have a good chance of not dying at all. Let’s explore that.

Genetics and other biotechnology will work with advanced materials technology and nanotechnology to limit and even undo damage caused by disease and age, keeping us young for longer, eventually perhaps forever. It remains to be seen how far we get with that vision in the next century, but we can certainly expect some progress in that area. We won’t get biological immortality for a good while, but if you can move into a high quality android body, who cares?

With this combination of technologies locked together with IT in a positive feedback loop, we will certainly eventually develop the technology to enable a direct link between the human brain and the machine, i.e. the descendants of today’s computers. On the computer side, neural networks are already the routine approach to many problems and are based on many of the same principles that neurons in the brain use. As this field develops, we will be able to make a good emulation of biological neurons. As it develops further, it ought to be possible on a sufficiently sophisticated computer to make a full emulation of a whole brain. Progress is already happening in this direction.

Meanwhile, on the human side, nanotechnology and biotechnology will also converge so that we will have the capability to link synthetic technology directly to individual neurons in the brain. We don’t know for certain that this is possible, but it may be possible to measure the behaviour of each individual neuron using this technology and to signal this behaviour to the brain emulation running in the computer, which could then emulate it. Other sensors could similarly measure and allow emulation of the many chemical signalling mechanisms that are used in the brain. The computer could thus produce an almost perfect electronic equivalent of the person’s brain, neuron by neuron. This gives us two things.

Firstly, by doing this, we would have a ‘backup’ copy of the person’s brain, so that in principle, they can carry on thinking, and effectively living, long after their biological body and brain has died. At this point we could claim effective immortality. Secondly, we have a two way link between the brain and the computer which allows thought to be executed on either platform and to be signalled between them.

There is an important difference between the brain and computer already that we may be able to capitalise on. In the brain’s neurons, signals travel at hundreds of metres per second. In a free space optical connection, they travel at hundreds of millions of metres per second, millions of times faster. Switching speeds are similarly faster in electronics. In the brain, cells are also very large compared to the electronic components of the future, so we may be able to reduce the distances over which the signals have to travel by another factor of 100 or more. But this assumes we take an almost exact representation of brain layout. We might be able to do much better than this. In the brain, we don’t appear to use all the neurons, (some are either redundant or have an unknown purpose) and those that we do use in a particular process are often in groups that are far apart. Reconfigurable hardware will be the norm in the 21st century and we may be able to optimize the structure for each type of thought process. Rearranging the useful neurons into more optimal structures should give another huge gain.

This means that our electronic emulation of the brain should behave in a similar way but much faster – maybe billions of times faster! It may be able to process an entire lifetime’s thoughts in a second or two. But even there are several opportunities for vast improvement. The brain is limited in size by a variety of biological constraints. Even if there were more space available, it could not be made much more efficient by making it larger, because of the need for cooling, energy and oxygen supply taking up ever more space and making distances between processors larger. In the computer, these constraints are much more easily addressable, so we could add large numbers of additional neurons to give more intelligence. In the brain, many learning processes stop soon after birth or in childhood. There need be no such constraints in computer emulations, so we could learn new skills as easily as in our infancy. And best of all, the computer is not limited by the memory of a single brain – it has access to all the world’s information and knowledge, and huge amounts of processing outside the brain emulation. Our electronic brain could be literally the size of the planet – the whole internet and all the processing and storage connected to it.

With all these advances, the computer emulation of the brain could be many orders of magnitude superior to its organic equivalent, and yet it might be connected in real time to the original. We would have an effective brain extension in cyberspace, one that gives us immeasurably improved performance and intelligence. Most of our thoughts might happen in the machine world, and because of the direct link, we might experience them as if they had occurred inside our head.

Our brains are in some ways equivalent in nature to how computers were before the age of the internet. They are certainly useful, but communication between them is slow and inefficient. However, when our brains are directly connected to machines, and those machines are networked, then everyone else’s brains are also part of that network, so we have a global network of people’s brains, all connected together, with all the computers too.

So we may soon eradicate death. By the time today’s children are due to die, they will have been using brain extensions for many years, and backups will be taken for granted. Death need not be traumatic for our relatives. They will soon get used to us walking around in an android body. Funerals will be much more fun as the key participant makes a speech about what they are expecting from their new life. Biological death might still be unpleasant, but it need no longer be a career barrier.

In terms of timescales, rich people might have this capability by 2050 and the rest of us some time before 2070. Your life expectancy biologically is increasing every year, so even if you are over 35, you have a pretty good chance of surviving long enough to gain. Half the people alive today are under 35 and will almost certainly not die fully. Many more are under 50 and some of them will live on electronically too. If you are over 50, the chances are that you will be the last generation of your family ever to have a full death.

As a side-note, there are more conventional ways of achieving immortality. Some Egyptian pharaohs are remembered because of their great pyramids. A few philosophers, artists, engineers and scientists have left such great works that they are remembered millennia later. And of course, on a small scale, for the rest of us, making an impression on those around us keeps your memory going a few generations. Writing a book immortalises your words. And you may have a multimedia headstone on your grave, or one that at least links into augmented reality to bring up your old web page of social networking site profile. But frankly, I am with Woody Allen on this one “I don’t want to achieve immortality through my work; I want to achieve immortality through not dying”. I just hope the technology arrives early enough.

The future of bacteria

Bacteria have already taken the prize for the first synthetic organism. Craig Venter’s team claimed the first synthetic bacterium in 2010.

Bacteria are being genetically modified for a range of roles, such as converting materials for easier extraction (e.g. coal to gas, or concentrating elements in landfill sites to make extraction easier), making new food sources (alongside algae), carbon fixation, pollutant detection and other sensory roles, decorative, clothing or cosmetic roles based on color changing, special surface treatments, biodegradable construction or packing materials, self-organizing printing… There are many others, even ignoring all the military ones.

I have written many times on smart yogurt now and it has to be the highlight of the bacterial future, one of the greatest hopes as well as potential danger to human survival. Here is an extract from a previous blog:

Progress is continuing to harness bacteria to make components of electronic circuits (after which the bacteria are dissolved to leave the electronics). Bacteria can also have genes added to emit light or electrical signals. They could later be enhanced so that as well as being able to fabricate electronic components, they could power them too. We might add various other features too, but eventually, we’re likely to end up with bacteria that contain electronics and can connect to other bacteria nearby that contain other electronics to make sophisticated circuits. We could obviously harness self-assembly and self-organisation, which are also progressing nicely. The result is that we will get smart bacteria, collectively making sophisticated, intelligent, conscious entities of a wide variety, with lots of sensory capability distributed over a wide range. Bacteria Sapiens.

I often talk about smart yogurt using such an approach as a key future computing solution. If it were to stay in a yogurt pot, it would be easy to control. But it won’t. A collective bacterial intelligence such as this could gain a global presence, and could exist in land, sea and air, maybe even in space. Allowing lots of different biological properties could allow colonization of every niche. In fact, the first few generations of bacteria sapiens might be smart enough to design their own offspring. They could probably buy or gain access to equipment to fabricate them and release them to multiply. It might be impossible for humans to stop this once it gets to a certain point. Accidents happen, as do rogue regimes, terrorism and general mad-scientist type mischief.

Transhumanists seem to think their goal is the default path for humanity, that transhumanism is inevitable. Well, it can’t easily happen without going first through transbacteria research stages, and that implies that we might well have to ask transbacteria for their consent before we can develop true transhumans.

Self-organizing printing is a likely future enhancement for 3D printing. If a 3D printer can print bacteria (onto the surface of another material being laid down, or as an ingredient in a suspension as the extrusion material itself, or even a bacterial paste, and the bacteria can then generate or modify other materials, or use self-organisation principles to form special structures or patterns, then the range of objects that can be printed will extend. In some cases, the bacteria may be involved in the construction and then die or be dissolved away.

Future materials: Variable grip

variable grip

 

Another simple idea for the future. Variable grip under electronic control.

Shape changing materials are springing up regularly now. There are shape memory metal alloys, proteins, polymer gel muscle fibers and even string (changes shape when it gets wet or dries again). It occurred to me that if you make a triangle out of carbon fibre or indeed anything hard, with a polymer gel base, and pull the base together, either the base moves down or the tip will move up. If tiny components this shape are embedded throughout a 3D structure such as a tire (tyre is the English spelling, the rest of this text just uses tire because most of the blog readers are Americans), then tiny spikes could be made to poke through the surface by contracting the polymer gel that forms the base. All you have to do is apply an electric field across it, and that makes the tire surface just another part of the car electronics along with the engine management system and suspension.

Tires that can vary their grip and wear according to road surface conditions might be attractive, especially in car racing, but also on the street. Emergency braking improvement would save lives, as would reduce skidding in rain or ice, and allowing the components to retract when not in use would greatly reduce their rate of wear. In racing, grip could be optimized for cornering and braking and wear could be optimized for the straights.

Fashion

Although I haven’t bothered yet to draw pretty pictures to illustrate, clothes could use variable grip too. Shoes and gloves would both benefit. Since both can have easy contact with skin (shoes can use socks as a relay), the active components could pick up electrical signals associated with muscle control or even thinking. Even stress is detectable via skin resistance measurement. Having gloves or shoes that change grip just by you thinking it would be like a cat with claws that push out when it wants to climb a fence or attack something. You could even be a micro-scale version of Wolverine. Climbers might want to vary the grip for different kinds of rock, extruding different spikes for different conditions.

Other clothes could use different materials for the components and still use the same basic techniques to push them out, creating a wide variety of electronically controllable fabric textures. Anything from smooth and shiny through to soft and fluffy could be made with a single adaptable fabric garment. Shoes, hosiery, underwear and outerwear can all benefit. Fun!

Switching people off

A very interesting development has been reported in the discovery of how consciousness works, where neuroscientists stimulating a particular brain region were able to switch a woman’s state of awareness on and off. They said: “We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness…”

http://www.newscientist.com/article/mg22329762.700-consciousness-onoff-switch-discovered-deep-in-brain.html.

The region of the brain concerned was the claustrum, and apparently nobody had tried stimulating it before, although Francis Crick and Christof Koch had suggested the region would likely be important in achieving consciousness. Apparently, the woman involved in this discovery was also missing some of her hippocampus, and that may be a key factor, but they don’t know for sure yet.

Mohamed Koubeissi and his the team at the George Washington university in Washington DC were investigating her epilepsy and stimulated her claustrum area with high frequency electrical impulses. When they did so, the woman lost consciousness, no longer responding to any audio or visual stimuli, just staring blankly into space. They verified that she was not having any epileptic activity signs at the time, and repeated the experiment with similar results over two days.

The team urges caution and recommends not jumping to too many conclusions. They did observe the obvious potential advantages as an anesthesia substitute if it can be made generally usable.

As a futurologist, it is my job to look as far down the road as I can see, and imagine as much as I can. Then I filter out all the stuff that is nonsensical, or doesn’t have a decent potential social or business case or as in this case, where research teams suggest that it is too early to draw conclusions. I make exceptions where it seems that researchers are being over-cautious or covering their asses or being PC or unimaginative, but I have no evidence of that in this case. However, the other good case for making exceptions is where it is good fun to jump to conclusions. Anyway, it is Saturday, I’m off work, so in the great words of Dr Emmett Brown in ‘Back to the future':  “Well, I figured, what the hell.”

OK, IF it works for everyone without removing parts of the brain, what will we do with it and how?

First, it is reasonable to assume that we can produce electrical stimulation at specific points in the brain by using external kit. Trans-cranial magnetic stimulation might work, or perhaps implants may be possible using injection of tiny particles that migrate to the right place rather than needing significant surgery. Failing those, a tiny implant or two via a fine needle into the right place ought to do the trick. Powering via induction should work. So we will be able to produce the stimulation, once the sucker victim subject has the device implanted.

I guess that could happen voluntarily, or via a court ordered protective device, as a condition of employment or immigration, or conditional release from prison, or a supervision order, or as a violent act or in war.

Imagine if government demands a legal right to access it, for security purposes and to ensure your comfort and safety, of course.

If you think 1984 has already gone too far, imagine a government or police officer that can switch you off if you are saying or thinking the wrong thing. Automated censorship devices could ensure that nobody discusses prohibited topics.

Imagine if people on the street were routinely switched off as a VIP passes to avoid any trouble for them.

Imagine a future carbon-reduction law where people are immobilized for an hour or two each day during certain periods. There might be a quota for how long you are allowed to be conscious each week to limit your environmental footprint.

In war, captives could have devices implanted to make them easy to control, simply turned off for packing and transport to a prison camp. A perimeter fence could be replaced by a line in the sand. If a prisoner tries to cross it, they are rendered unconscious automatically and put back where they belong.

Imagine a higher class of mugger that doesn’t like violence much and prefers to switch victims off before stealing their valuables.

Imagine being able to switch off for a few hours to pass the time on a long haul flight. Airlines could give discounts to passengers willing to be disabled and therefore less demanding of attention.

Imagine  a couple or a group of friends, or a fetish club, where people can turn each other off at will. Once off, other people can do anything they please with them – use them as dolls, as living statues or as mannequins, posing them, dressing them up. This is not an adult blog so just use your imagination – it’s pretty obvious what people will do and what sorts of clubs will emerge if an off-switch is feasible, making people into temporary toys.

Imagine if you got an illegal hacking app and could freeze the other people in your vicinity. What would you do?

Imagine if your off-switch is networked and someone else has a remote control or hacks into it.

Imagine if an AI manages to get control of such a system.

Having an off-switch installed could open a new world of fun, but it could also open up a whole new world for control by the authorities, crime control, censorship or abuse by terrorists and thieves and even pranksters.

 

 

Your most likely cause of death is being switched off

This one’s short and sweet.

The majority of you reading this blog live in the USA, UK, Canada or Australia. More than half of you are under 40.

That means your natural life expectancy is over 85, so statistically, your body will probably live until after 2060.

By then, electronic mind enhancement will probably mean that most of your mind runs on external electronics, not in your brain, so that your mind won’t die when your body does. You’ll just need to find a new body, probably an android, for those times you aren’t content being on the net. Most of us identify ourselves mainly as our mind, and would still think of ourselves as still alive if our mind carries on as if nothing much has happened, which is likely.

Electronic immortality is not true immortality though. Your mind can only survive on the net as long as it is supported by the infrastructure. That will be controlled by others. Future technology will likely be able to defend against asteroid strikes, power surges cause by solar storms and so on, so accidental death seems unlikely for hundreds of years. However, since minds supported on it need energy to continue running and electronics to be provided and maintained, and will want to make trips into the ‘real’ world, or even live there a lot of the time, they will have a significant resource footprint. They will probably not be considered as valuable as other people whose bodies are still alive. In fact they might be considered as competition – for jobs, resources, space, housing, energy… They may even be seen as easy targets for future cyber-terrorists.

So, it seems quite likely, maybe even inevitable, that life limits will be imposed on the vast majority of you. At some point you will simply be switched off. There might be some prioritization, competitions, lotteries or other selection mechanism, but only some will benefit from it.

Since you are unlikely to die when your body ceases to work, your most likely cause of death is therefore to be switched off. Sorry to break that to you.

Future human evolution

I’ve done patches of work on this topic frequently over the last 20 years. It usually features in my books at some point too, but it’s always good to look afresh at anything. Sometimes you see something you didn’t see last time.

Some of the potential future is pretty obvious. I use the word potential, because there are usually choices to be made, regulations that may or may not get in the way, or many other reasons we could divert from the main road or even get blocked completely.

We’ve been learning genetics now for a long time, with a few key breakthroughs. It is certain that our understanding will increase, less certain how far people will be permitted to exploit the potential here in any given time frame. But let’s take a good example to learn a key message first. In IVF, we can filter out embryos that have the ‘wrong’ genes, and use their sibling embryos instead. Few people have a problem with that. At the same time, pregnant women may choose an abortion if they don’t want a child when they discover it is the wrong gender, but in the UK at least, that is illegal. The moral and ethical values of our society are on a random walk though, changing direction frequently. The social assignment of right and wrong can reverse completely in just 30 years. In this example, we saw a complete reversal of attitudes to abortion itself within 30 years, so who is to say we won’t see reversal on the attitude to abortion due to gender? It is unwise to expect that future generations will have the same value sets. In fact, it is highly unlikely that they will.

That lesson likely applies to many technology developments and quite a lot of social ones – such as euthanasia and assisted suicide, both already well into their attitude reversal. At some point, even if something is distasteful to current attitudes, it is pretty likely to be legalized eventually, and hard to ban once the door is opened. There will always be another special case that opens the door a little further. So we should assume that we may eventually use genetics to its full capability, even if it is temporarily blocked for a few decades along the way. The same goes for other biotech, nanotech, IT, AI and any other transhuman enhancements that might come down the road.

So, where can we go in the future? What sorts of splits can we expect in the future human evolution path? It certainly won’t remain as just plain old homo sapiens.

I drew this evolution path a long time ago in the mid 1990s:

human evolution 1

It was clear even then that we could connect external IT to the nervous system, eventually the brain, and this would lead to IT-enhanced senses, memory, processing, higher intelligence, hence homo cyberneticus. (No point in having had to suffer Latin at school if you aren’t allowed to get your own back on it later). Meanwhile, genetic enhancement and optimization of selected features would lead to homo optimus. Converging these two – why should you have to choose, why not have a perfect body and an enhanced mind? – you get homo hybridus. Meanwhile, in the robots and AI world, machine intelligence is increasing and we eventually we get the first self-aware AI/robot (it makes little sense to separate the two since networked AI can easily be connected to a machine such as a robot) and this has its own evolution path towards a rich diversity of different kinds of AI and robots, robotus multitudinus. Since both the AI world and the human world could be networked to the same network, it is then easy to see how they could converge, to give homo machinus. This future transhuman would have any of the abilities of humans and machines at its disposal. and eventually the ability to network minds into a shared consciousness. A lot of ordinary conventional humans would remain, but with safe upgrades available, I called them homo sapiens ludditus. As they watch their neighbors getting all the best jobs, winning at all the sports, buying everything, and getting the hottest dates too, many would be tempted to accept the upgrades and homo sapiens might gradually fizzle out.

My future evolution timeline stayed like that for several years. Then in the early 2000s I updated it to include later ideas:

human evolution 2

I realized that we could still add AI into computer games long after it becomes comparable with human intelligence, so games like EA’s The Sims might evolve to allow entire civilizations living within a computer game, each aware of their existence, each running just as real a life as you and I. It is perhaps unlikely that we would allow children any time soon to control fully sentient people within a computer game, acting as some sort of a god to them, but who knows, future people will argue that they’re not really real people so it’s OK. Anyway, you could employ them in the game to do real knowledge work, and make money, like slaves. But since you’re nice, you might do an incentive program for them that lets them buy their freedom if they do well, letting them migrate into an android. They could even carry on living in their Sims home and still wander round in our world too.

Emigration from computer games into our world could be high, but the reverse is also possible. If the mind is connected well enough, and enhanced so far by external IT that almost all of it runs on the IT instead of in the brain, then when your body dies, your mind would carry on living. It could live in any world, real or fantasy, or move freely between them. (As I explained in my last blog, it would also be able to travel in time, subject to certain very expensive infrastructural requirements.) As well as migrants coming via electronic immortality route, it would be likely that some people that are unhappy in the real world might prefer to end it all and migrate their minds into a virtual world where they might be happy. As an alternative to suicide, I can imagine that would be a popular route. If they feel better later, they could even come back, using an android.  So we’d have an interesting future with lots of variants of people, AI and computer game and fantasy characters migrating among various real and imaginary worlds.

But it doesn’t stop there. Meanwhile, back in the biotech labs, progress is continuing to harness bacteria to make components of electronic circuits (after which the bacteria are dissolved to leave the electronics). Bacteria can also have genes added to emit light or electrical signals. They could later be enhanced so that as well as being able to fabricate electronic components, they could power them too. We might add various other features too, but eventually, we’re likely to end up with bacteria that contain electronics and can connect to other bacteria nearby that contain other electronics to make sophisticated circuits. We could obviously harness self-assembly and self-organisation, which are also progressing nicely. The result is that we will get smart bacteria, collectively making sophisticated, intelligent, conscious entities of a wide variety, with lots of sensory capability distributed over a wide range. Bacteria Sapiens.

I often talk about smart yogurt using such an approach as a key future computing solution. If it were to stay in a yogurt pot, it would be easy to control. But it won’t. A collective bacterial intelligence such as this could gain a global presence, and could exist in land, sea and air, maybe even in space. Allowing lots of different biological properties could allow colonization of every niche. In fact, the first few generations of bacteria sapiens might be smart enough to design their own offspring. They could probably buy or gain access to equipment to fabricate them and release them to multiply. It might be impossible for humans to stop this once it gets to a certain point. Accidents happen, as do rogue regimes, terrorism and general mad-scientist type mischief.

And meanwhile, we’ll also be modifying nature. We’ll be genetically enhancing a wide range of organisms, bringing some back from extinction, creating new ones, adding new features, changing even some of the basic mechanism by which nature works in some cases. We might even create new kinds of DNA or develop substitutes with enhanced capability. We may change nature’s evolution hugely. With a mix of old and new and modified, nature evolves nicely into Gaia Sapiens.

We’re not finished with the evolution chart though. Here is the next one:

human evolution 3

Just one thing is added. Homo zombius. I realized eventually that the sci-fi ideas of zombies being created by viruses could be entirely feasible. A few viruses, bacteria and other parasites can affect the brains of the victims and change their behaviour to harness them for their own life cycle.

See http://io9.com/12-real-parasites-that-control-the-lives-of-their-hosts-461313366 for fun.

Bacteria sapiens could be highly versatile. It could make virus variants if need be. It could evolve itself to be able to live in our bodies, maybe penetrate our brains. Bacteria sapiens could make tiny components that connect to brain cells and intercept signals within our brains, or put signals back in. It could read our thoughts, and then control our thoughts. It could essentially convert people into remote controlled robots, or zombies as we usually call them. They could even control muscles directly to a point, so even if the zombie is decapitated, it could carry on for a short while. I used that as part of my storyline in Space Anchor. If future humans have widespread availability of cordless electricity, as they might, then it is far fetched but possible that headless zombies could wander around for ages, using the bacterial sensors to navigate. Homo zombius would be mankind enslaved by bacteria. Hopefully just a few people, but it could be everyone if we lose the battle. Think how difficult a war against bacteria would be, especially if they can penetrate anyone’s brain and intercept thoughts. The Terminator films looks a lot less scary when you compare the Terminator with the real potential of smart yogurt.

Bacteria sapiens might also need to be consulted when humans plan any transhuman upgrades. If they don’t consent, we might not be able to do other transhuman stuff. Transhumans might only be possible if transbacteria allow it.

Not done yet. I wrote a couple of weeks ago about fairies. I suggested fairies are entirely feasible future variants that would be ideally suited to space travel.

http://timeguide.wordpress.com/2014/06/06/fairies-will-dominate-space-travel/

They’d also have lots of environmental advantages as well as most other things from the transhuman library. So I think they’re inevitable. So we should add fairies to the future timeline. We need a revised timeline and they certainly deserve their own branch. But I haven’t drawn it yet, hence this blog as an excuse. Before I do and finish this, what else needs to go on it?

Well, time travel in cyberspace is feasible and attractive beyond 2075. It’s not the proper real world time travel that isn’t permitted by physics, but it could feel just like that to those involved, and it could go further than you might think. It certainly will have some effects in the real world, because some of the active members of the society beyond 2075 might be involved in it. It certainly changes the future evolution timeline if people can essentially migrate from one era to another (there are some very strong caveats applicable here that I tried to explain in the blog, so please don’t misquote me as a nutter – I haven’t forgotten basic physics and logic, I’m just suggesting a feasible implementation of cyberspace that would allow time travel within it. It is really a cyberspace bubble that intersects with the real world at the real time front so doesn’t cause any physics problems, but at that intersection, its users can interact fully with the real world and their cultural experiences of time travel are therefore significant to others outside it.)

What else? OK, well there is a very significant community (many millions of people) that engages in all sorts of fantasy in shared on-line worlds, chat rooms and other forums. Fairies, elves, assorted spirits, assorted gods, dwarves, vampires, werewolves, assorted furry animals, assorted aliens, dolls,  living statues, mannequins, remote controlled people, assorted inanimate but living objects, plants and of course assorted robot/android variants are just some of those that already exist in principle; I’m sure I’ve forgotten some here and anyway, many more are invented every year so an exhaustive list would quickly become out of date. In most cases, many people already role play these with a great deal of conviction and imagination, not just in standalone games, but in communities, with rich cultures, back-stories and story-lines. So we know there is a strong demand, so we’re only waiting for their implementation once technology catches up, and it certainly will.

Biotech can do a lot, and nanotech and IT can add greatly to that. If you can design any kind of body with almost any kind of properties and constraints and abilities, and add any kind of IT and sensing and networking and sharing and external links for control and access and duplication, we will have an extremely rich diversity of future forms with an infinite variety of subcultures, cross-fertilization, migration and transformation. In fact, I can’t add just a few branches to my timeline. I need millions. So instead I will just lump all these extras into a huge collected category that allows almost anything, called Homo Whateverus.

So, here is the future of human (and associates) evolution, for the next 150 years. A few possible cross-links are omitted for clarity

evolution

I won’t be around to watch it all happen. But a lot of you will.

 

Time – The final frontier. Maybe

It is very risky naming the final frontier. A frontier is just the far edge of where we’ve got to.

Technology has a habit of opening new doors to new frontiers so it is a fast way of losing face. When Star Trek named space as the final frontier, it was thought to be so. We’d go off into space and keep discovering new worlds, new civilizations, long after we’ve mapped the ocean floor. Space will keep us busy for a while. In thousands of years we may have gone beyond even our own galaxy if we’ve developed faster than light travel somehow, but that just takes us to more space. It’s big, and maybe we’ll never ever get to explore all of it, but it is just a physical space with physical things in it. We can imagine more than just physical things. That means there is stuff to explore beyond space, so space isn’t the final frontier.

So… not space. Not black holes or other galaxies.

Certainly not the ocean floor, however fashionable that might be to claim. We’ll have mapped that in details long before the rest of space. Not the centre of the Earth, for the same reason.

How about cyberspace? Cyberspace physically includes all the memory in all our computers, but also the imaginary spaces that are represented in it. The entire physical universe could be simulated as just a tiny bit of cyberspace, since it only needs to be rendered when someone looks at it. All the computer game environments and virtual shops are part of it too. The cyberspace tree doesn’t have to make a sound unless someone is there to hear it, but it could. The memory in computers is limited, but the cyberspace limits come from imagination of those building or exploring it. It is sort of infinite, but really its outer limits are just a function of our minds.

Games? Dreams? Human Imagination? Love? All very new agey and sickly sweet, but no. Just like cyberspace, these are also all just different products of the human mind, so all of these can be replaced by ‘the human mind’ as a frontier. I’m still not convinced that is the final one though. Even if we extend that to greatly AI-enhanced future human mind, it still won’t be the final frontier. When we AI-enhance ourselves, and connect to the smart AIs too, we have a sort of global consciousness, linking everyone’s minds together as far as each allows. That’s a bigger frontier, since the individual minds and AIs add up to more cooperative capability than they can achieve individually. The frontier is getting bigger and more interesting. You could explore other people directly, share and meld with them. Fun, but still not the final frontier.

Time adds another dimension. We can’t do physical time travel, and even if we can do so in physics labs with tiny particles for tiny time periods, that won’t necessarily translate into a practical time machine to travel in the physical world. We can time travel in cyberspace though, as I explained in

http://timeguide.wordpress.com/2012/10/25/the-future-of-time-travel-cheat/

and when our minds are fully networked and everything is recorded, you’ll be able to travel back in time and genuinely interact with people in the past, back to the point where the recording started. You would also be able to travel forwards in time as far as the recording stops and future laws allow (I didn’t fully realise that when I wrote my time travel blog, so I ought to update it, soon). You’d be able to inhabit other peoples’ bodies, share their minds, share consciousness and feelings and emotions and thoughts. The frontier suddenly jumps out a lot once we start that recording, because you can go into the future as far as is continuously permitted. Going into that future allows you to get hold of all the future technologies and bring them back home, short circuiting the future, as long as time police don’t stop you. No, I’m not nuts – if you record everyone’s minds continuously, you can time travel into the future using cyberspace, and the effects extend beyond cyberspace into the real world you inhabit, so although it is certainly a cheat, it is effectively real time travel, backwards and forwards. It needs some security sorted out on warfare, banking and investments, procreation, gambling and so on, as well as lot of other causality issues, but to quote from Back to the Future: ‘What the hell?’ [IMPORTANT EDIT: in my following blog, I revise this a bit and conclude that although time travel to the future in this system lets you do pretty much what you want outside the system, time travel to the past only lets you interact with people and other things supported within the system platform, not the physical universe outside it. This does limit the scope for mischief.]

So, time travel in fully networked fully AI-enhanced cosmically-connected cyberspace/dream-space/imagination/love/games would be a bigger and later frontier. It lets you travel far into the future and so it notionally includes any frontiers invented and included by then. Is it the final one though? Well, there could be some frontiers discovered after the time travel windows are closed. They’d be even finaller, so I won’t bet on it.

 

 

Fairies will dominate space travel

The future sometimes looks ridiculous. I have occasionally written about smart yogurt and zombies and other things that sound silly but have a real place in the future. I am well used to being laughed at, ever since I invented text messaging and the active contact lens, but I am also well used to saying I told you so later. So: Fairies will play a big role in space travel, probably even dominate it. Yes, those little people with wings, and magic wands, that kind. Laugh all you like, but I am right.

To avoid misrepresentation and being accused of being away with the fairies, let’s be absolutely clear: I don’t believe fairies exist. They never have, except in fairy tales of course. Anyone who thinks they have seen one probably just has poor eyesight or an overactive imagination and maybe saw a dragonfly or was on drugs or was otherwise hallucinating, or whatever. But we will have fairies soon. In 50 or 60 years.

In the second half of this century, we will be able to link and extend our minds into the machine world so well that we will effectively have electronic immortality. You won’t have to die to benefit, you will easily do so while remaining fully alive, extending your mind into the machine world, into any enabled object. Some of those objects will be robots or androids, some might well be organic.

Think of the film Avatar, a story based on yesterday’s ideas. Real science and technology will be far more exciting. You could have an avatar like in the film, but that is just the tip of the iceberg when you consider the social networking implications once the mind-linking technology is commoditised and ubiquitous part of everyday life. There won’t be just one or two avatars used for military purposes like in the film, but millions of people doing that sort of thing all the time.

If an animal’s mind is networked, a human might be able to make some sort of link to it too, again like in Avatar, where the Navii link to their dragon-like creatures. You could have remote presence in the animal. That maybe won’t be as fulfilling as being in a human because the animal has limited functionality, but it might have some purpose. Now let’s leave Avatar behind.

You could link AI to an animal to make it comparable with humans so that your experience could be better, and the animal might have a more interesting life too. Imagine chatting to a pet cat or dog and it chatting back properly.

If your mind is networked as well as we think it could be, you could link your mind to other people’s minds, share consciousness, be a part-time Borg if you want. You could share someone else’s sensations, share their body. You could exchange bodies with someone, or rent yours out and live in the net for a while, or hire a different one. That sounds a lot of fun already. But it gets better.

In the same timeframe, we will have mastered genetics. We will be able to design new kinds of organisms with whatever properties chemistry and physics permits. We’ll have new proteins, new DNA bases, maybe some new bases that don’t use DNA. We’ll also have strong AI, conscious machines. We’ll also be able to link electronics routinely to our organic nervous systems, and we’ll also have a wide range of cybernetic implants to increase sensory capability, memory, IQ, networking and so on.

We will be able to make improved versions of the brain that work and feel pretty much the same as the original, but are far, far smaller. Using synthetic electronics instead of organic cells, signals will travel between neurons at light speed, instead of 200m/s, that’s more than a million times faster. But they won’t have to go so far, because we can also make neurons physically far smaller, hundreds of times smaller, so that’s a couple more zeros to play with. And we can use light to interconnect them, using millions of wavelengths, so they could have millions of connections instead of thousands and those connections will be a billion times faster. And the neurons will switch at terahertz speeds, not hundreds of hertz, that’s also billions of times faster. So even if we keep the same general architecture and feel as the Mk1 brain, we could make it a millimetre across and it could work billions of times faster than the original human brain. But with a lot more connectivity and sensory capability, greater memory, higher processing speed, it would actually be vastly superhuman, even as it retains broadly the same basic human nature.

And guess what? It will easily fit in a fairy.

So, around the time that space industry is really taking off, and we’re doing asteroid mining, and populating bases on Mars and Europa, and thinking of going further, and routinely designing new organisms, we will be able to make highly miniaturized people with brains vastly more capable than conventional humans. Since they are small, it will be quite easy to make them with fully functional wings, exactly the sort of advantage you want in a space ship where gravity is in short supply and you want to make full use of a 3D space. Exactly the sort of thing you want when size and mass is a big issue. Exactly the sort of thing you want when food is in short supply. A custom-designed electronic, fully networked brain is exactly the sort of thing you want when you need a custom-designed organism that can hibernate instantly. Fairies would be ideally suited to space travel. We could even design the brains with lots of circuit redundancy, so that radiation-induced faults can be error-corrected and repaired by newly designed proteins.

Wands are easy too. Linking the mind to a stick, and harnessing the millions of years of recent evolution that has taught us how to use sticks is a pretty good idea too. Waving a wand and just thinking what they want to happen at the target is all the interface a space-fairy needs.

This is a rich seam and I will explore it again some time. But for now, you get the idea.

Space-farers will mostly be space fairies.

 

 

 

 

The future of biometric identification and authentication

If you work in IT security, the first part of this will not be news to you, skip to the section on the future. Otherwise, the first sections look at the current state of biometrics and some of what we already know about their security limitations.

Introduction

I just read an article on fingerprint recognition. Biometrics has been hailed by some as a wonderful way of determining someone’s identity, and by others as a security mechanism that is far too easy to spoof. I generally fall in the second category. I don’t mind using it for simple unimportant things like turning on my tablet, on which I keep nothing sensitive, but so far I would never trust it as part of any system that gives access to my money or sensitive files.

My own history is that voice recognition still doesn’t work for me, fingerprints don’t work for me, and face recognition doesn’t work for me. Iris scan recognition does, but I don’t trust that either. Let’s take a quick look at conventional biometrics today and the near future.

Conventional biometrics

Fingerprint recognition.

I use a Google Nexus, made by Samsung. Samsung is in the news today because their Galaxy S5 fingerprint sensor was hacked by SRLabs minutes after release, not the most promising endorsement of their security competence.

http://www.telegraph.co.uk/technology/samsung/10769478/Galaxy-S5-fingerprint-scanner-hacked.html

This article says the sensor is used in the user authentication to access Paypal. That is really not good. I expect quite a few engineers at Samsung are working very hard indeed today. I expect they thought they had tested it thoroughly, and their engineers know a thing or two about security. Every engineer knows you can photograph a fingerprint and print a replica in silicone or glue or whatever. It’s the first topic of discussion at any Biometrics 101 meeting. I would assume they tested for that. I assume they would not release something they expected to bring instant embarrassment on their company, especially something failing by that classic mechanism. Yet according to this article, that seems to be the case. Given that Samsung is one of the most advanced technology companies out there, and that they can be assumed to have made reasonable effort to get it right, that doesn’t offer much hope for fingerprint recognition. If they don’t do it right, who will?

My own experience with fingerprint recognition history is having to join a special queue every day at Universal Studios because their fingerprint recognition entry system never once recognised me or my child. So I have never liked it because of false negatives. For those people for whom it does work, their fingerprints are all over the place, some in high quality, and can easily be obtained and replicated.

As just one token in multi-factor authentication, it may yet have some potential, but as a primary access key, not a chance. It will probably remain be a weak authenticator.

Face recognition

There are many ways of recognizing faces – visible light, infrared or UV, bone structure, face shapes, skin texture patterns, lip-prints, facial gesture sequences… These could be combined in simultaneous multi-factor authentication. The technology isn’t there yet, but it offers more hope than fingerprint recognition. Using the face alone is no good though. You can make masks from high-resolution photographs of people, and photos could be made using the same spectrum known to be used in recognition systems. Adding gestures is a nice idea, but in a world where cameras are becoming ubiquitous, it wouldn’t be too hard to capture the sequence you use. Pretending that a mask is alive by adding sensing and then using video to detect any inspection for pulse or blood flows or gesture requests and then to provide appropriate response is entirely feasible, though it would deter casual entry. So I am not encouraged to believe it would be secure unless and until some cleverer innovation occurs.

What I do know is that I set my tablet up to recognize me and it works about one time in five. The rest of the time I have to wait till it fails and then type in a PIN. So on average, it actually slows entry down. False negative again. Giving lots of false negatives without the reward of avoiding false positives is not a good combination.

Iris scans

I was a subject in one of the early trials for iris recognition. It seemed very promising. It always recognized me and never confused me with someone else. That was a very small scale trial though so I’d need a lot more convincing before I let it near my bank account. I saw the problem of replication an iris using a high quality printer and was assured that that couldn’t work because the system checks for the eye being alive by watching for jitter and shining a light and watching for pupil contraction. Call me too suspicious but I didn’t and don’t find that at all reassuring. It won’t be too long before we can make a thin sheet high-res polymer display layered onto a polymer gel underlayer that contracts under electric field, with light sensors built in and some software analysis for real time response. You could even do it as part of a mask with the rest of the face also faithfully mimicking all the textures, real-time responses, blood flow mimicking, gesture sequences and so on. If the prize is valuable enough to justify the effort, every aspect of the eyes, face and fingerprints could be mimicked. It may be more Mission Impossible than casual high street robbery but I can’t yet have any confidence that any part of the face or gestures would offer good security.

DNA

We hear frequently that DNA is a superbly secure authenticator. Every one of your cells can identify you. You almost certainly leave a few cells at the scene of a crime so can be caught, and because your DNA is unique, it must have been you that did it. Perfect, yes? And because it is such a perfect authenticator, it could be used confidently to police entry to secure systems.

No! First, even for a criminal trial, only a few parts of your DNA are checked, they don’t do an entire genome match. That already brings the chances of a match down to millions rather than billions. A chance of millions to one sounds impressive to a jury until you look at the figure from the other direction. If you have 1 in 70 million chance of a match, a prosecution barrister might try to present that as a 70 million to 1 chance that you’re guilty and a juror may well be taken in. The other side of that is that 100 people of the 7 billion would have that same 1 in 70 million match. So your competent defense barrister should  present that as only a 1 in 100 chance that it was you. Not quite so impressive.

I doubt a DNA system used commercially for security systems would be as sophisticated as one used in forensic labs. It will be many years before an instant response using large parts of your genome could be made economic. But what then? Still no. You leave DNA everywhere you go, all day, every day. I find it amazing that it is permitted as evidence in trials, because it is so easy to get hold of someone’s hairs or skin flakes. You could gather hairs or skin flakes from any bus seat or hotel bathroom or bed. Any maid in a big hotel or any airline cabin attendant could gather packets of tissue and hair samples and in many cases could even attach a name to them.  Your DNA could be found at the scene of any crime having been planted there by someone who simply wanted to deflect attention from themselves and get someone else convicted instead of them. They don’t even need to know who you are. And the police can tick the crime solved box as long as someone gets convicted. It doesn’t have to be the culprit. Think you have nothing to fear if you have done nothing wrong? Think again.

If someone wants to get access to an account, but doesn’t mind whose, perhaps a DNA-based entry system would offer good potential, because people perceive it as secure, whereas it simply isn’t. So it might not be paired with other secure factors. Going back to the maid or cabin attendant. Both are low paid. A few might welcome some black market bonuses if they can collect good quality samples with a name attached, especially a name of someone staying in a posh suite, probably with a nice account or two, or privy to valuable information. Especially if they also gather their fingerprints at the same time. Knowing who they are, getting a high res pic of their face and eyes off the net, along with some voice samples from videos, then making a mask, iris replica, fingerprint and if you’re lucky also buying video of their gesture patterns from the black market, you could make an almost perfect multi-factor biometric spoof.

It also becomes quickly obvious that the people who are the most valuable or important are also the people who are most vulnerable to such high quality spoofing.

So I am not impressed with biometric authentication. It sounds good at first, but biometrics are too easy to access and mimic. Other security vulnerabilities apply in sequence too. If your biometric is being measured and sent across a network for authentication, all the other usual IT vulnerabilities still apply. The signal could be intercepted and stored, replicated another time, and you can’t change your body much, so once your iris has been photographed or your fingerprint stored and hacked, it is useless for ever. The same goes for the other biometrics.

Dynamic biometrics

Signatures, gestures and facial expressions offer at least the chance to change them. If you signature has been used, you could start using a new one. You could sign different phrases each time, as a personal one-time key. You could invent new gesture sequences. These are really just an equivalent to passwords. You have to remember them and which one you use for which system. You don’t want a street seller using your signature to verify a tiny transaction and then risk the seller using the same signature to get right into your account.

Summary of status quo

This all brings us back to the most basic of security practice. You can only use static biometrics safely as a small part of a multi-factor system, and you have to use different dynamic biometrics such as gestures or signatures on a one time basis for each system, just as you do with passwords. At best, they provide a simple alternative to a simple password. At worst, they pair low actual security with the illusion of high security, and that is a very bad combination indeed.

So without major progress, biometrics in its conventional meaning doesn’t seem to have much of a future. If it is not much more than a novelty or a toy, and can only be used safely in conjunction with some proper security system, why bother at all?

The future

You can’t easily change your eyes or your DNA or you skin, but you can add things to your body that are similar to biometrics or interact with it but offer the flexibility and replaceability of electronics.

I have written frequently about active skin, using the skin as a platform for electronics, and I believe the various layers of it offer the best potential for security technology.

Long ago, RFID chips implants became commonplace in pets and some people even had them inserted too. RFID variants could easily be printed on a membrane and stuck onto the skin surface. They could be used for one time keys too, changing each time they are used. Adding accelerometers, magnetometers, pressure sensors or even location sensors could all offer ways of enhancing security options. Active skin allows easy combination of fingerprints with other factors.

 

Ultra-thin and uninvasive security patches could be stuck onto the skin, and could not be removed without damaging them, so would offer a potentially valuable platform. Pretty much any kinds and combinations of electronics could be used in them. They could easily be made to have a certain lifetime. Very thin ones could wash off after a few days so could be useful for theme park entry during holidays or for short term contractors. Banks could offer stick on electronic patches that change fundamentally how they work every month, making it very hard to hack them.

Active skin can go inside the skin too, not just on the surface. You could for example have an electronic circuit or an array of micro-scale magnets embedded among the skin cells in your fingertip. Your fingerprint alone could easily be copied and spoofed, but not the accompanying electronic interactivity from the active skin that can be interrogated at the same time. Active skin could measure all sorts of properties of the body too, so personal body chemistry at a particular time could be used. In fact, medical monitoring is the first key development area for active skin, so we’re likely to have a lot of body data available that could make new biometrics. The key advantage here is that skin cells are very large compared to electronic feature sizes. A decent processor or memory can be made around the size of one skin cell and many could be combined using infrared optics within the skin. Temperature or chemical gradients between inner and outer skin layers could be used to power devices too.

If you are signing something, the signature could be accompanied by a signal from the fingertip, sufficiently close to the surface being signed to be useful. A ring on a finger could also offer a voluminous security electronics platform to house any number of sensors, memory and processors.

Skin itself offers a reasonable communications route, able to carry a few Mbit’s of data stream, so touching something could allow a lot of data transfer very quickly. A smart watch or any other piece of digital jewelry or active skin security patch could use your fingertip to send an authentication sequence. The watch would know who you are by constant proximity and via its own authentication tools. It could easily be unauthorized instantly when detached or via a remote command.

Active makeup offer a novel mechanism too. Makeup will soon exist that uses particles that can change color or alignment under electronic control, potentially allowing video rate pattern changes. While that makes for fun makeup, it also allows for sophisticated visual authentication sequences using one-time keys. Makeup doesn’t have to be confined only to the face of course, and security makeup could maybe be used on the forearm or hands. Combining with static biometrics, many-factor authentication could be implemented.

I believe active skin, using membranes added or printed onto and even within the skin, together with the use of capsules, electronic jewelry, and even active makeup offers the future potential to implement extremely secure personal authentication systems. This pseudo-biometric authentication offers infinitely more flexibility and changeability than the body itself, but because it is attached to the body, offers much the same ease of use and constant presence as other biometrics.

Biometrics may be pretty useless as it is, but the field does certainly have a future. We just need to add some bits. The endless potential variety of those bits and their combinations makes the available creativity space vast.